1
|
Zhu Z, Becam I, Tovey CA, Elfarkouchi A, Yen EC, Bernard F, Guichet A, Conduit PT. Multifaceted modes of γ-tubulin complex recruitment and microtubule nucleation at mitotic centrosomes. J Cell Biol 2023; 222:e202212043. [PMID: 37698931 PMCID: PMC10497398 DOI: 10.1083/jcb.202212043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/18/2023] [Accepted: 07/24/2023] [Indexed: 09/14/2023] Open
Abstract
Microtubule nucleation is mediated by γ-tubulin ring complexes (γ-TuRCs). In most eukaryotes, a GCP4/5/4/6 "core" complex promotes γ-tubulin small complex (γ-TuSC) association to generate cytosolic γ-TuRCs. Unlike γ-TuSCs, however, this core complex is non-essential in various species and absent from budding yeasts. In Drosophila, Spindle defective-2 (Spd-2) and Centrosomin (Cnn) redundantly recruit γ-tubulin complexes to mitotic centrosomes. Here, we show that Spd-2 recruits γ-TuRCs formed via the GCP4/5/4/6 core, but Cnn can recruit γ-TuSCs directly via its well-conserved CM1 domain, similar to its homologs in budding yeast. When centrosomes fail to recruit γ-tubulin complexes, they still nucleate microtubules via the TOG domain protein Mini-spindles (Msps), but these microtubules have different dynamic properties. Our data, therefore, help explain the dispensability of the GCP4/5/4/6 core and highlight the robustness of centrosomes as microtubule organizing centers. They also suggest that the dynamic properties of microtubules are influenced by how they are nucleated.
Collapse
Affiliation(s)
- Zihan Zhu
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Isabelle Becam
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Corinne A. Tovey
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Abir Elfarkouchi
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Eugenie C. Yen
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Fred Bernard
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Antoine Guichet
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Paul T. Conduit
- Department of Zoology, University of Cambridge, Cambridge, UK
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| |
Collapse
|
2
|
Travis SM, Mahon BP, Huang W, Ma M, Rale MJ, Kraus J, Taylor DJ, Zhang R, Petry S. Integrated model of the vertebrate augmin complex. Nat Commun 2023; 14:2072. [PMID: 37055408 PMCID: PMC10102177 DOI: 10.1038/s41467-023-37519-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/17/2023] [Indexed: 04/15/2023] Open
Abstract
Accurate segregation of chromosomes is required to maintain genome integrity during cell division. This feat is accomplished by the microtubule-based spindle. To build a spindle rapidly and with high fidelity, cells take advantage of branching microtubule nucleation, which rapidly amplifies microtubules during cell division. Branching microtubule nucleation relies on the hetero-octameric augmin complex, but lack of structure information about augmin has hindered understanding how it promotes branching. In this work, we combine cryo-electron microscopy, protein structural prediction, and visualization of fused bulky tags via negative stain electron microscopy to identify the location and orientation of each subunit within the augmin structure. Evolutionary analysis shows that augmin's structure is highly conserved across eukaryotes, and that augmin contains a previously unidentified microtubule binding site. Thus, our findings provide insight into the mechanism of branching microtubule nucleation.
Collapse
Affiliation(s)
- Sophie M Travis
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Brian P Mahon
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Department of Structural Biology, Bristol Myers Squibb, Princeton, NJ, USA
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Meisheng Ma
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Michael J Rale
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Jodi Kraus
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Derek J Taylor
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
3
|
The augmin complex architecture reveals structural insights into microtubule branching. Nat Commun 2022; 13:5635. [PMID: 36163468 PMCID: PMC9512787 DOI: 10.1038/s41467-022-33228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
In mitosis, the augmin complex binds to spindle microtubules to recruit the γ-tubulin ring complex (γ-TuRC), the principal microtubule nucleator, for the formation of branched microtubules. Our understanding of augmin-mediated microtubule branching is hampered by the lack of structural information on the augmin complex. Here, we elucidate the molecular architecture and conformational plasticity of the augmin complex using an integrative structural biology approach. The elongated structure of the augmin complex is characterised by extensive coiled-coil segments and comprises two structural elements with distinct but complementary functions in γ-TuRC and microtubule binding, linked by a flexible hinge. The augmin complex is recruited to microtubules via a composite microtubule binding site comprising a positively charged unordered extension and two calponin homology domains. Our study provides the structural basis for augmin function in branched microtubule formation, decisively fostering our understanding of spindle formation in mitosis. The formation of branched microtubule networks in mitotic spindles depends on the augmin complex. Zupa, Würtz et al. elucidate the molecular architecture and conformational plasticity of the augmin complex using integrative structural biology, providing structural insights into microtubule branching.
Collapse
|
4
|
Zhang Y, Hong X, Hua S, Jiang K. Reconstitution and mechanistic dissection of the human microtubule branching machinery. J Cell Biol 2022; 221:e202109053. [PMID: 35604367 PMCID: PMC9129923 DOI: 10.1083/jcb.202109053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/07/2022] [Accepted: 05/02/2022] [Indexed: 01/07/2023] Open
Abstract
Branching microtubule (MT) nucleation is mediated by the augmin complex and γ-tubulin ring complex (γ-TuRC). However, how these two complexes work together to promote this process remains elusive. Here, using purified components from native and recombinant sources, we demonstrate that human augmin and γ-TuRC are sufficient to reconstitute the minimal MT branching machinery, in which NEDD1 bridges between augmin holo complex and GCP3/MZT1 subcomplex of γ-TuRC. The single-molecule experiment suggests that oligomerization of augmin may activate the branching machinery. We provide direct biochemical evidence that CDK1- and PLK1-dependent phosphorylation are crucial for NEDD1 binding to augmin, for their synergistic MT-binding activities, and hence for branching MT nucleation. In addition, we unveil that NEDD1 possesses an unanticipated intrinsic affinity for MTs via its WD40 domain, which also plays a pivotal role in the branching process. In summary, our study provides a comprehensive understanding of the underlying mechanisms of branching MT nucleation in human cells.
Collapse
Affiliation(s)
- Yaqian Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xing Hong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Shasha Hua
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Kai Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Abstract
As one of four filament types, microtubules are a core component of the cytoskeleton and are essential for cell function. Yet how microtubules are nucleated from their building blocks, the αβ-tubulin heterodimer, has remained a fundamental open question since the discovery of tubulin 50 years ago. Recent structural studies have shed light on how γ-tubulin and the γ-tubulin complex proteins (GCPs) GCP2 to GCP6 form the γ-tubulin ring complex (γ-TuRC). In parallel, functional and single-molecule studies have informed on how the γ-TuRC nucleates microtubules in real time, how this process is regulated in the cell and how it compares to other modes of nucleation. Another recent surprise has been the identification of a second essential nucleation factor, which turns out to be the well-characterized microtubule polymerase XMAP215 (also known as CKAP5, a homolog of chTOG, Stu2 and Alp14). This discovery helps to explain why the observed nucleation activity of the γ-TuRC in vitro is relatively low. Taken together, research in recent years has afforded important insight into how microtubules are made in the cell and provides a basis for an exciting era in the cytoskeleton field.
Collapse
Affiliation(s)
- Akanksha Thawani
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
6
|
Baião GC, Janice J, Galinou M, Klasson L. Comparative Genomics Reveals Factors Associated with Phenotypic Expression of Wolbachia. Genome Biol Evol 2021; 13:6277727. [PMID: 34003269 DOI: 10.1093/gbe/evab111] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 12/18/2022] Open
Abstract
Wolbachia is a widespread, vertically transmitted bacterial endosymbiont known for manipulating arthropod reproduction. Its most common form of reproductive manipulation is cytoplasmic incompatibility (CI), observed when a modification in the male sperm leads to embryonic lethality unless a compatible rescue factor is present in the female egg. CI attracts scientific attention due to its implications for host speciation and in the use of Wolbachia for controlling vector-borne diseases. However, our understanding of CI is complicated by the complexity of the phenotype, whose expression depends on both symbiont and host factors. In the present study, we perform a comparative analysis of nine complete Wolbachia genomes with known CI properties in the same genetic host background, Drosophila simulans STC. We describe genetic differences between closely related strains and uncover evidence that phages and other mobile elements contribute to the rapid evolution of both genomes and phenotypes of Wolbachia. Additionally, we identify both known and novel genes associated with the modification and rescue functions of CI. We combine our observations with published phenotypic information and discuss how variability in cif genes, novel CI-associated genes, and Wolbachia titer might contribute to poorly understood aspects of CI such as strength and bidirectional incompatibility. We speculate that high titer CI strains could be better at invading new hosts already infected with a CI Wolbachia, due to a higher rescue potential, and suggest that titer might thus be a relevant parameter to consider for future strategies using CI Wolbachia in biological control.
Collapse
Affiliation(s)
- Guilherme Costa Baião
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jessin Janice
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria Galinou
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lisa Klasson
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Ma D, Gao L, Han R. Effects of the protein GCP4 on gametophyte development in Arabidopsis thaliana. PROTOPLASMA 2021; 258:483-493. [PMID: 33155064 DOI: 10.1007/s00709-020-01520-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
γ-Tubulin complex protein 4 (GCP4, encoded by AT3G53760) participates in microtubule (MT) nucleation in Arabidopsis thaliana, affecting the MT nucleation angles in cortical MTs, and the formation of the spindle and phragmoplasts during mitosis. Here, we report that GCP4 plays a critical role in gametophyte development. The results indicate that the gcp4 mutant caused by T-DNA insertion may express an aberrant gene product interfering with normal GCP4 expression, ultimately leading to the formation of desiccated ovules and aborted seeds. An analysis of transmission efficiency (TE) indicated that female gametophytes were more impaired in development than male gametophytes, and so observation and analysis of gametophyte defects were conducted. Complementation lines obtained by the native promoter and GCP4-coded CDS gene sequence fused with GFP reduced the numbers of lethal phenotypes of the gcp4 mutant. The localization of GCP4 in the gametophyte was detected in cytoplasm around nuclei and in vicinity of plasma membrane of pollen grains, and also detected in full cytoplasm and around the nuclei of ovules in complementation line. Thus, it was established that GCP4 influences the functionality of gametophytes during gametophyte development.
Collapse
Affiliation(s)
- Dongjing Ma
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Shanxi Normal University, Linfen, 041000, Shanxi, People's Republic of China
- College of Life Science, Shanxi Normal University, Linfen, 041000, Shanxi, People's Republic of China
| | - Lin Gao
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Shanxi Normal University, Linfen, 041000, Shanxi, People's Republic of China
- College of Life Science, Shanxi Normal University, Linfen, 041000, Shanxi, People's Republic of China
| | - Rong Han
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Shanxi Normal University, Linfen, 041000, Shanxi, People's Republic of China.
- College of Life Science, Shanxi Normal University, Linfen, 041000, Shanxi, People's Republic of China.
| |
Collapse
|
8
|
Liu P, Würtz M, Zupa E, Pfeffer S, Schiebel E. Microtubule nucleation: The waltz between γ-tubulin ring complex and associated proteins. Curr Opin Cell Biol 2020; 68:124-131. [PMID: 33190097 DOI: 10.1016/j.ceb.2020.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/22/2020] [Accepted: 10/08/2020] [Indexed: 12/31/2022]
Abstract
Microtubules are essential cytoskeletal elements assembled from αβ-tubulin dimers. In high eukaryotes, microtubule nucleation, the de novo assembly of a microtubule from its minus end, is initiated by the γ-tubulin ring complex (γ-TuRC). Despite many years of research, the structural and mechanistic principles of the microtubule nucleation machinery remained poorly understood. Only recently, cryoelectron microscopy studies uncovered the molecular organization and potential activation mechanisms of γ-TuRC. In vitro assays further deciphered the spatial and temporal cooperation between γ-TuRC and additional factors, for example, the augmin complex, the phase separation protein TPX2, and the microtubule polymerase XMAP215. These breakthroughs deepen our understanding of microtubule nucleation mechanisms and will link the assembly of individual microtubules to the organization of cellular microtubule networks.
Collapse
Affiliation(s)
- Peng Liu
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120, Heidelberg, Germany.
| | - Martin Würtz
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120, Heidelberg, Germany
| | - Erik Zupa
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120, Heidelberg, Germany
| | - Stefan Pfeffer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120, Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120, Heidelberg, Germany
| |
Collapse
|
9
|
Tariq A, Green L, Jeynes JCG, Soeller C, Wakefield JG. In vitro reconstitution of branching microtubule nucleation. eLife 2020; 9:49769. [PMID: 31933481 PMCID: PMC6959987 DOI: 10.7554/elife.49769] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022] Open
Abstract
Eukaryotic cell division requires the mitotic spindle, a microtubule (MT)-based structure which accurately aligns and segregates duplicated chromosomes. The dynamics of spindle formation are determined primarily by correctly localising the MT nucleator, γ-Tubulin Ring Complex (γ-TuRC), within the cell. A conserved MT-associated protein complex, Augmin, recruits γ-TuRC to pre-existing spindle MTs, amplifying their number, in an essential cellular phenomenon termed ‘branching’ MT nucleation. Here, we purify endogenous, GFP-tagged Augmin and γ-TuRC from Drosophila embryos to near homogeneity using a novel one-step affinity technique. We demonstrate that, in vitro, while Augmin alone does not affect Tubulin polymerisation dynamics, it stimulates γ-TuRC-dependent MT nucleation in a cell cycle-dependent manner. We also assemble and visualise the MT-Augmin-γ-TuRC-MT junction using light microscopy. Our work therefore conclusively reconstitutes branching MT nucleation. It also provides a powerful synthetic approach with which to investigate the emergence of cellular phenomena, such as mitotic spindle formation, from component parts.
Collapse
Affiliation(s)
- Ammarah Tariq
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Lucy Green
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | | | - Christian Soeller
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - James G Wakefield
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
10
|
Verma V, Maresca TJ. Direct observation of branching MT nucleation in living animal cells. J Cell Biol 2019; 218:2829-2840. [PMID: 31340987 PMCID: PMC6719462 DOI: 10.1083/jcb.201904114] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/07/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023] Open
Abstract
Branching microtubule nucleation by its molecular mediators has never been directly observed in animal cells. By imaging augmin, γ-TuRC, and microtubules with high spatiotemporal resolution, Verma and Maresca quantitatively define the sequential steps of augmin-mediated branching microtubule nucleation in dividing Drosophila cells. Centrosome-mediated microtubule (MT) nucleation has been well characterized; however, numerous noncentrosomal MT nucleation mechanisms exist. The branching MT nucleation pathway envisages that the γ-tubulin ring complex (γ-TuRC) is recruited to MTs by the augmin complex to initiate nucleation of new MTs. While the pathway is well conserved at a molecular and functional level, branching MT nucleation by core constituents has never been directly observed in animal cells. Here, multicolor TIRF microscopy was applied to visualize and quantitatively define the entire process of branching MT nucleation in dividing Drosophila cells during anaphase. The steps of a stereotypical branching nucleation event entailed augmin binding to a mother MT and recruitment of γ-TuRC after 15 s, followed by nucleation 16 s later of a daughter MT at a 36° branch angle. Daughters typically remained attached throughout their ∼40-s lifetime unless the mother depolymerized past the branch point. Assembly of branched MT arrays, which did not require Drosophila TPX2, enhanced localized RhoA activation during cytokinesis.
Collapse
Affiliation(s)
- Vikash Verma
- Biology Department, University of Massachusetts, Amherst, MA
| | - Thomas J Maresca
- Biology Department, University of Massachusetts, Amherst, MA .,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA
| |
Collapse
|
11
|
Joukov V, De Nicolo A. The Centrosome and the Primary Cilium: The Yin and Yang of a Hybrid Organelle. Cells 2019; 8:E701. [PMID: 31295970 PMCID: PMC6678760 DOI: 10.3390/cells8070701] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 12/27/2022] Open
Abstract
Centrosomes and primary cilia are usually considered as distinct organelles, although both are assembled with the same evolutionary conserved, microtubule-based templates, the centrioles. Centrosomes serve as major microtubule- and actin cytoskeleton-organizing centers and are involved in a variety of intracellular processes, whereas primary cilia receive and transduce environmental signals to elicit cellular and organismal responses. Understanding the functional relationship between centrosomes and primary cilia is important because defects in both structures have been implicated in various diseases, including cancer. Here, we discuss evidence that the animal centrosome evolved, with the transition to complex multicellularity, as a hybrid organelle comprised of the two distinct, but intertwined, structural-functional modules: the centriole/primary cilium module and the pericentriolar material/centrosome module. The evolution of the former module may have been caused by the expanding cellular diversification and intercommunication, whereas that of the latter module may have been driven by the increasing complexity of mitosis and the requirement for maintaining cell polarity, individuation, and adhesion. Through its unique ability to serve both as a plasma membrane-associated primary cilium organizer and a juxtanuclear microtubule-organizing center, the animal centrosome has become an ideal integrator of extracellular and intracellular signals with the cytoskeleton and a switch between the non-cell autonomous and the cell-autonomous signaling modes. In light of this hypothesis, we discuss centrosome dynamics during cell proliferation, migration, and differentiation and propose a model of centrosome-driven microtubule assembly in mitotic and interphase cells. In addition, we outline the evolutionary benefits of the animal centrosome and highlight the hierarchy and modularity of the centrosome biogenesis networks.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia.
| | | |
Collapse
|
12
|
Tian J, Kong Z. The role of the augmin complex in establishing microtubule arrays. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3035-3041. [PMID: 30882862 DOI: 10.1093/jxb/erz123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/11/2019] [Indexed: 05/14/2023]
Abstract
Microtubule-dependent microtubule nucleation occurs on the lateral surface of pre-existing microtubules and provides a highly efficient means of amplifying their populations and reorganizing their architectures. The γ‑tubulin ring complex serves as the template to initiate nascent microtubule polymerization. Augmin, a hetero-octameric protein complex, acts as a recruiting factor to target the γ‑tubulin ring complex to pre-existing microtubules and trigger new microtubule growth. Although microtubule-dependent microtubule nucleation has been extensively studied in both animal and plant cells, it remains unclear how the augmin complex assembles in plant cells, especially in cell-cycle-specific and cell-type-specific manners, and how its spatial structure orchestrates the nucleation geometry. In this review, we summarize the advances in knowledge of augmin-dependent microtubule nucleation and the regulation of its geometry, and highlight recent findings and emerging questions concerning the role of the augmin complex in establishing microtubule arrays and the cell-cycle-specific composition of augmin in plant cells.
Collapse
Affiliation(s)
- Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Abstract
Neurons are polarized cells with long branched axons and dendrites. Microtubule generation and organization machineries are crucial to grow and pattern these complex cellular extensions. Microtubule organizing centers (MTOCs) concentrate the molecular machinery for templating microtubules, stabilizing the nascent polymer, and organizing the resultant microtubules into higher-order structures. MTOC formation and function are well described at the centrosome, in the spindle, and at interphase Golgi; we review these studies and then describe recent results about how the machineries acting at these classic MTOCs are repurposed in the postmitotic neuron for axon and dendrite differentiation. We further discuss a constant tug-of-war interplay between different MTOC activities in the cell and how this process can be used as a substrate for transcription factor-mediated diversification of neuron types.
Collapse
Affiliation(s)
- Jason Y Tann
- Laboratory for Neurodiversity, RIKEN Centre for Brain Science, Saitama, Japan
| | - Adrian W Moore
- Laboratory for Neurodiversity, RIKEN Centre for Brain Science, Saitama, Japan.
| |
Collapse
|
14
|
Romé P, Ohkura H. A novel microtubule nucleation pathway for meiotic spindle assembly in oocytes. J Cell Biol 2018; 217:3431-3445. [PMID: 30087124 PMCID: PMC6168254 DOI: 10.1083/jcb.201803172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/10/2018] [Accepted: 07/18/2018] [Indexed: 12/25/2022] Open
Abstract
The meiotic spindle in oocytes is assembled in the absence of centrosomes, the major microtubule nucleation sites in mitotic and male meiotic cells. A crucial, yet unresolved question in meiosis is how spindle microtubules are generated without centrosomes and only around chromosomes in the exceptionally large volume of oocytes. Here we report a novel oocyte-specific microtubule nucleation pathway that is essential for assembling most spindle microtubules complementarily with the Augmin pathway. This pathway is mediated by the kinesin-6 Subito/MKlp2, which recruits the γ-tubulin complex to the spindle equator to nucleate microtubules in Drosophila oocytes. Away from chromosomes, Subito interaction with the γ-tubulin complex is suppressed by its N-terminal region to prevent ectopic microtubule assembly in oocytes. We further demonstrate in vitro that the Subito complex from ovaries can nucleate microtubules from pure tubulin dimers. Collectively, microtubule nucleation regulated by Subito drives spatially restricted spindle assembly in oocytes.
Collapse
Affiliation(s)
- Pierre Romé
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Scotland, UK
| | - Hiroyuki Ohkura
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Scotland, UK
| |
Collapse
|
15
|
Song JG, King MR, Zhang R, Kadzik RS, Thawani A, Petry S. Mechanism of how augmin directly targets the γ-tubulin ring complex to microtubules. J Cell Biol 2018; 217:2417-2428. [PMID: 29875259 PMCID: PMC6028527 DOI: 10.1083/jcb.201711090] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/10/2018] [Accepted: 05/01/2018] [Indexed: 12/28/2022] Open
Abstract
Microtubules (MTs) must be generated from precise locations to form the structural frameworks required for cell shape and function. MTs are nucleated by the γ-tubulin ring complex (γ-TuRC), but it remains unclear how γ-TuRC gets to the right location. Augmin has been suggested to be a γ-TuRC targeting factor and is required for MT nucleation from preexisting MTs. To determine augmin's architecture and function, we purified Xenopus laevis augmin from insect cells. We demonstrate that augmin is sufficient to target γ-TuRC to MTs by in vitro reconstitution. Augmin is composed of two functional parts. One module (tetramer-II) is necessary for MT binding, whereas the other (tetramer-III) interacts with γ-TuRC. Negative-stain electron microscopy reveals that both tetramers fit into the Y-shape of augmin, and MT branching assays reveal that both are necessary for MT nucleation. The finding that augmin can directly bridge MTs with γ-TuRC via these two tetramers adds to our mechanistic understanding of how MTs can be nucleated from preexisting MTs.
Collapse
Affiliation(s)
- Jae-Geun Song
- Department of Molecular Biology, Princeton University, Princeton, NJ
| | - Matthew R King
- Department of Molecular Biology, Princeton University, Princeton, NJ
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Rachel S Kadzik
- Department of Molecular Biology, Princeton University, Princeton, NJ
| | - Akanksha Thawani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ
| |
Collapse
|
16
|
Coming into Focus: Mechanisms of Microtubule Minus-End Organization. Trends Cell Biol 2018; 28:574-588. [PMID: 29571882 DOI: 10.1016/j.tcb.2018.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/17/2018] [Accepted: 02/27/2018] [Indexed: 11/22/2022]
Abstract
Microtubule organization has a crucial role in regulating cell architecture. The geometry of microtubule arrays strongly depends on the distribution of sites responsible for microtubule nucleation and minus-end attachment. In cycling animal cells, the centrosome often represents a dominant microtubule-organizing center (MTOC). However, even in cells with a radial microtubule system, many microtubules are not anchored at the centrosome, but are instead linked to the Golgi apparatus or other structures. Non-centrosomal microtubules predominate in many types of differentiated cell and in mitotic spindles. In this review, we discuss recent advances in understanding how the organization of centrosomal and non-centrosomal microtubule networks is controlled by proteins involved in microtubule nucleation and specific factors that recognize free microtubule minus ends and regulate their localization and dynamics.
Collapse
|