1
|
Dufrancais O, Verdys P, Plozza M, Métais A, Juzans M, Sanchez T, Bergert M, Halper J, Panebianco CJ, Mascarau R, Gence R, Arnaud G, Neji MB, Maridonneau-Parini I, Cabec VL, Boerckel JD, Pavlos NJ, Diz-Muñoz A, Lagarrigue F, Blin-Wakkach C, Carréno S, Poincloux R, Burkhardt JK, Raynaud-Messina B, Vérollet C. Moesin controls cell-cell fusion and osteoclast function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593799. [PMID: 38798563 PMCID: PMC11118517 DOI: 10.1101/2024.05.13.593799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Cell-cell fusion is an evolutionarily conserved process that is essential for many functions, including fertilisation and the formation of placenta, muscle and osteoclasts, multinucleated cells that are unique in their ability to resorb bone. The mechanisms of osteoclast multinucleation involve dynamic interactions between the actin cytoskeleton and the plasma membrane that are still poorly characterized. Here, we found that moesin, a cytoskeletal linker protein member of the Ezrin/Radixin/Moesin (ERM) protein family, is activated during osteoclast maturation and plays an instrumental role in both osteoclast fusion and function. In mouse and human osteoclast precursors, moesin inhibition favors their ability to fuse into multinucleated osteoclasts. Accordingly, we demonstrated that moesin depletion decreases membrane-to-cortex attachment and enhances the formation of tunneling nanotubes (TNTs), F-actin-based intercellular bridges that we reveal here to trigger cell-cell fusion. Moesin also controls HIV-1- and inflammation-induced cell fusion. In addition, moesin regulates the formation of the sealing zone, the adhesive structure determining osteoclast bone resorption area, and thus controls bone degradation, via a β3-integrin/RhoA/SLK pathway. Supporting our results, moesin - deficient mice present a reduced density of trabecular bones and increased osteoclast abundance and activity. These findings provide a better understanding of the regulation of cell-cell fusion and osteoclast biology, opening new opportunities to specifically target osteoclast activity in bone disease therapy.
Collapse
|
2
|
Noubissi FK, Odubanjo OV, Ogle BM, Tchounwou PB. Mechanisms of Cell Fusion in Cancer. Results Probl Cell Differ 2024; 71:407-432. [PMID: 37996688 PMCID: PMC10893907 DOI: 10.1007/978-3-031-37936-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Cell-cell fusion is a normal physiological mechanism that requires a well-orchestrated regulation of intracellular and extracellular factors. Dysregulation of this process could lead to diseases such as osteoporosis, malformation of muscles, difficulties in pregnancy, and cancer. Extensive literature demonstrates that fusion occurs between cancer cells and other cell types to potentially promote cancer progression and metastasis. However, the mechanisms governing this process in cancer initiation, promotion, and progression are less well-studied. Fusogens involved in normal physiological processes such as syncytins and associated factors such as phosphatidylserine and annexins have been observed to be critical in cancer cell fusion as well. Some of the extracellular factors associated with cancer cell fusion include chronic inflammation and inflammatory cytokines, hypoxia, and viral infection. The interaction between these extracellular factors and cell's intrinsic factors potentially modulates actin dynamics to drive the fusion of cancer cells. In this review, we have discussed the different mechanisms that have been identified or postulated to drive cancer cell fusion.
Collapse
Affiliation(s)
- Felicite K Noubissi
- Department of Biology, Jackson State University, Jackson, MS, USA.
- Research Centers in Minority Institutions (RCMI), Center for Health Disparity Research (RCMI-CHDR), Jackson State University, Jackson, MS, USA.
| | - Oluwatoyin V Odubanjo
- Department of Biology, Jackson State University, Jackson, MS, USA
- Research Centers in Minority Institutions (RCMI), Center for Health Disparity Research (RCMI-CHDR), Jackson State University, Jackson, MS, USA
| | - Brenda M Ogle
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Paul B Tchounwou
- Department of Biology, Jackson State University, Jackson, MS, USA
- Research Centers in Minority Institutions (RCMI), Center for Health Disparity Research (RCMI-CHDR), Jackson State University, Jackson, MS, USA
| |
Collapse
|
3
|
Abstract
Osteoclasts are multinucleated bone-resorbing cells derived from the monocyte/macrophage lineage. The macrophage colony-stimulating factor/receptor activator of nuclear factor κB ligand (M-CSF/RANKL) signaling network governs the differentiation of precursor cells into fusion-competent mononucleated cells. Repetitive fusion of fusion-competent cells produces multinucleated osteoclasts. Osteoclasts are believed to die via apoptosis after bone resorption. However, recent studies have found that osteoclastogenesis in vivo proceeds by replacing the old nucleus of existing osteoclasts with a single newly differentiated mononucleated cell. Thus, the formation of new osteoclasts is minimal. Furthermore, the sizes of osteoclasts can change via cell fusion and fission in response to external conditions. On the other hand, osteoclastogenesis in vitro involves various levels of heterogeneity, including osteoclast precursors, mode of fusion, and properties of the differentiated osteoclasts. To better understand the origin of these heterogeneities and the plasticity of osteoclasts, we examine several processes of osteoclastogenesis in this review. Candidate mechanisms that create heterogeneity involve asymmetric cell division, osteoclast niche, self-organization, and mode of fusion and fission. Elucidation of the plasticity or fluctuation of the M-CSF/RANKL network should be an important topic for future researches.
Collapse
Affiliation(s)
- Jiro Takito
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, Tokyo, Japan.
| | - Naoko Nonaka
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|
4
|
Hou J, Liu J, Huang Z, Wang Y, Yao H, Hu Z, Shi C, Xu J, Wang Q. Structure and function of the membrane microdomains in osteoclasts. Bone Res 2023; 11:61. [PMID: 37989999 PMCID: PMC10663511 DOI: 10.1038/s41413-023-00294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 11/23/2023] Open
Abstract
The cell membrane structure is closely related to the occurrence and progression of many metabolic bone diseases observed in the clinic and is an important target to the development of therapeutic strategies for these diseases. Strong experimental evidence supports the existence of membrane microdomains in osteoclasts (OCs). However, the potential membrane microdomains and the crucial mechanisms underlying their roles in OCs have not been fully characterized. Membrane microdomain components, such as scaffolding proteins and the actin cytoskeleton, as well as the roles of individual membrane proteins, need to be elucidated. In this review, we discuss the compositions and critical functions of membrane microdomains that determine the biological behavior of OCs through the three main stages of the OC life cycle.
Collapse
Affiliation(s)
- Jialong Hou
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhixian Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yining Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hanbing Yao
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenxin Hu
- Department of Spine Surgery, Peking University Fourth School of Clinical Medicine, Beijing, China
| | - Chengge Shi
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
5
|
Jeong H, Kim D, Montagne K, Ushida T, Furukawa KS. Differentiation-inducing effect of osteoclast microgrooves for the purpose of three-dimensional design of regenerated bone. Acta Biomater 2023; 168:174-184. [PMID: 37392936 DOI: 10.1016/j.actbio.2023.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
In vivo bone remodeling is promoted by the balance between osteoclast and osteoblast activity. Conventional research on bone regeneration has mainly focused on increasing osteoblast activity, with limited studies on the effects of scaffold topography on cell differentiation. Here, we examined the effect of microgroove-patterned substrate with spacings ranging from 1 to 10 μm on the differentiation of rat bone marrow-derived osteoclast precursors. Tartrate-resistant acid phosphatase (TRAP) staining and relative gene expression quantification showed that osteoclast differentiation was enhanced in substrate with 1 µm microgroove spacing compared with that in the other groups. Additionally, the ratio of podosome maturation stages in substrate with 1 μm microgroove spacing exhibited a distinct pattern, which was characterized by an increase in the ratio of belts and rings and a decrease in that of clusters. However, myosin II abolished the effects of topography on osteoclast differentiation. Overall, these showed that the reduction of myosin II tension in the podosome core by an integrin vertical vector increased podosome stability and promoted osteoclast differentiation in substrates with 1 μm microgroove spacing, including that microgroove design plays an important role in scaffolds for bone regeneration. STATEMENT OF SIGNIFICANCE: Reduction of myosin II tension in the podosome core, facilitated by an integrin vertical vector, resulted in an enhanced osteoclast differentiation, concomitant with an increase in podosome stability within 1-μm-spaced microgrooves. These findings are anticipated to serve as valuable indicators for the regulation of osteoclast differentiation through the manipulation of biomaterial surface topography in tissue engineering. Furthermore, this study contributes to the lucidation of the underlying mechanisms governing cellular differentiation by providing insights into the impact of the microtopographical environment.
Collapse
Affiliation(s)
- Heonuk Jeong
- Department of Bioengineering, School of Engineering, University of Tokyo, Tokyo, Japan
| | - Dain Kim
- Department of Mechanical Engineering, School of Engineering, University of Tokyo, Tokyo, Japan
| | - Kevin Montagne
- Department of Mechanical Engineering, School of Engineering, University of Tokyo, Tokyo, Japan
| | - Takashi Ushida
- Department of Mechanical Engineering, School of Engineering, University of Tokyo, Tokyo, Japan
| | - Katsuko S Furukawa
- Department of Bioengineering, School of Engineering, University of Tokyo, Tokyo, Japan; Department of Mechanical Engineering, School of Engineering, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
6
|
Chen ZH, Wu JJ, Guo DY, Li YY, Chen MN, Zhang ZY, Yuan ZD, Zhang KW, Chen WW, Tian F, Ye JX, Li X, Yuan FL. Physiological functions of podosomes: From structure and function to therapy implications in osteoclast biology of bone resorption. Ageing Res Rev 2023; 85:101842. [PMID: 36621647 DOI: 10.1016/j.arr.2023.101842] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/09/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
With increasing age, bone tissue undergoes significant alterations in composition, architecture, and metabolic functions, probably causing senile osteoporosis. Osteoporosis possess the vast majority of bone disease and associates with a reduction in bone mass and increased fracture risk. Bone loss is on account of the disorder in osteoblast-induced bone formation and osteoclast-induced bone resorption. As a unique bone resorptive cell type, mature bone-resorbing osteoclasts exhibit dynamic actin-based cytoskeletal structures called podosomes that participate in cell-matrix adhesions specialized in the degradation of mineralized bone matrix. Podosomes share many of the same molecular constitutions as focal adhesions, but they have a unique structural organization, with a central core abundant in F-actin and encircled by scaffolding proteins, kinases and integrins. Here, we conclude recent advancements in our knowledge of the architecture and the functions of podosomes. We also discuss the regulatory pathways in osteoclast podosomes, providing a reference for future research on the podosomes of osteoclasts and considering podosomes as a therapeutic target for inhibiting bone resorption.
Collapse
Affiliation(s)
- Zhong-Hua Chen
- Affiliated Hospital 3 of Nantong University, Nantong University, Jiangsu, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Dan-Yang Guo
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Yue-Yue Li
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Meng-Nan Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Zhen-Yu Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Kai-Wen Zhang
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei-Wei Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Fan Tian
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Jun-Xing Ye
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Xia Li
- Affiliated Hospital 3 of Nantong University, Nantong University, Jiangsu, China; Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China.
| | - Feng-Lai Yuan
- Affiliated Hospital 3 of Nantong University, Nantong University, Jiangsu, China; Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China.
| |
Collapse
|
7
|
Monocyte-Macrophage Lineage Cell Fusion. Int J Mol Sci 2022; 23:ijms23126553. [PMID: 35742997 PMCID: PMC9223484 DOI: 10.3390/ijms23126553] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/06/2023] Open
Abstract
Cell fusion (fusogenesis) occurs in natural and pathological conditions in prokaryotes and eukaryotes. Cells of monocyte–macrophage lineage are highly fusogenic. They create syncytial multinucleated giant cells (MGCs) such as osteoclasts (OCs), MGCs associated with the areas of infection/inflammation, and foreign body-induced giant cells (FBGCs). The fusion of monocytes/macrophages with tumor cells may promote cancer metastasis. We describe types and examples of monocyte–macrophage lineage cell fusion and the role of actin-based structures in cell fusion.
Collapse
|
8
|
Weber K, Hey S, Cervero P, Linder S. The circle of life: Phases of podosome formation, turnover and reemergence. Eur J Cell Biol 2022; 101:151218. [PMID: 35334303 DOI: 10.1016/j.ejcb.2022.151218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/06/2023] Open
Abstract
Podosomes are highly dynamic actin-rich structures in a variety of cell types, especially monocytic cells. They fulfill multiple functions such as adhesion, mechanosensing, or extracellular matrix degradation, thus allowing cells to detect and respond to a changing environment. These abilities are based on an intricate architecture that enables podosomes to sense mechanical properties of their substratum and to transduce them intracellularly in order to generate an appropriate cellular response. These processes are enabled through the tightly orchestrated interplay of more than 300 different components that are dynamically recruited during podosome formation and turnover. In this review, we discuss the different phases of the podosome life cycle and the current knowledge on regulatory factors that impact on the genesis, activity, dissolution and reemergence of podosomes. We also highlight mechanoregulatory processes that become important during these different stages, on the level of individual podosomes, and also at podosome sub- and superstructures.
Collapse
Affiliation(s)
- Kathrin Weber
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Sven Hey
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Pasquale Cervero
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
9
|
Masuda S, Kato K, Ishibashi M, Nishibata Y, Sugimoto A, Nakazawa D, Tanaka S, Tomaru U, Tsujino I, Ishizu A. Phorbol 12-myristate 13-acetate stimulation under hypoxia induces nuclear swelling with DNA outflow but not extracellular trap formation of neutrophils. Exp Mol Pathol 2022; 125:104754. [DOI: 10.1016/j.yexmp.2022.104754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/28/2021] [Accepted: 03/01/2022] [Indexed: 11/29/2022]
|
10
|
Low disease activity of microscopic polyangiitis in patients with anti-myosin light chain 6 antibody that disrupts actin rearrangement necessary for neutrophil extracellular trap formation. Arthritis Res Ther 2022; 24:274. [PMID: 36527167 PMCID: PMC9756472 DOI: 10.1186/s13075-022-02974-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) are critically involved in microscopic polyangiitis (MPA) pathogenesis, and some patients with MPA possess anti-NET antibody (ANETA). Anti-myosin light chain 6 (MYL6) antibody is an ANETA that affects NETs. This study aimed to determine the significance of anti-MYL6 antibody in MPA. METHODS The influence of anti-MYL6 antibody on NET formation and actin rearrangement necessary for NET formation was assessed by fluorescent staining. An enzyme-linked immunosorbent assay was established to detect serum anti-MYL6 antibody, and the prevalence of this antibody in MPA was determined. Furthermore, the disease activity and response to remission-induction therapy of MPA were compared between anti-MYL6 antibody-positive and anti-MYL6 antibody-negative MPA patients. RESULTS Anti-MYL6 antibody disrupted G-actin polymerization into F-actin, suppressing phorbol 12-myristate 13-acetate-induced NET formation. Serum anti-MYL6 antibody was detected in 7 of 59 patients with MPA. The Birmingham vasculitis activity score (BVAS) of anti-MYL6 antibody-positive MPA patients was significantly lower than anti-MYL6 antibody-negative MPA patients. Among the nine BVAS evaluation items, the cutaneous, cardiovascular, and nervous system scores of anti-MYL6 antibody-positive MPA patients were significantly lower than anti-MYL6 antibody-negative MPA patients, although other items, including the renal and chest scores, were equivalent between the two groups. The proportion of patients with remission 6 months after initiation of remission-induction therapy in anti-MYL6 antibody-positive MPA patients was significantly higher than in anti-MYL6 antibody-negative MPA patients. CONCLUSIONS Collective findings suggested that anti-MYL6 antibody disrupted actin rearrangement necessary for NET formation and could reduce the disease activity of MPA.
Collapse
|
11
|
Dufrançais O, Mascarau R, Poincloux R, Maridonneau-Parini I, Raynaud-Messina B, Vérollet C. Cellular and molecular actors of myeloid cell fusion: podosomes and tunneling nanotubes call the tune. Cell Mol Life Sci 2021; 78:6087-6104. [PMID: 34296319 PMCID: PMC8429379 DOI: 10.1007/s00018-021-03875-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/25/2021] [Accepted: 06/05/2021] [Indexed: 12/22/2022]
Abstract
Different types of multinucleated giant cells (MGCs) of myeloid origin have been described; osteoclasts are the most extensively studied because of their importance in bone homeostasis. MGCs are formed by cell-to-cell fusion, and most types have been observed in pathological conditions, especially in infectious and non-infectious chronic inflammatory contexts. The precise role of the different MGCs and the mechanisms that govern their formation remain poorly understood, likely due to their heterogeneity. First, we will introduce the main populations of MGCs derived from the monocyte/macrophage lineage. We will then discuss the known molecular actors mediating the early stages of fusion, focusing on cell-surface receptors involved in the cell-to-cell adhesion steps that ultimately lead to multinucleation. Given that cell-to-cell fusion is a complex and well-coordinated process, we will also describe what is currently known about the evolution of F-actin-based structures involved in macrophage fusion, i.e., podosomes, zipper-like structures, and tunneling nanotubes (TNT). Finally, the localization and potential role of the key fusion mediators related to the formation of these F-actin structures will be discussed. This review intends to present the current status of knowledge of the molecular and cellular mechanisms supporting multinucleation of myeloid cells, highlighting the gaps still existing, and contributing to the proposition of potential disease-specific MGC markers and/or therapeutic targets.
Collapse
Affiliation(s)
- Ophélie Dufrançais
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Rémi Mascarau
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina
| | - Renaud Poincloux
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France
| | - Brigitte Raynaud-Messina
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France.
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina.
| | - Christel Vérollet
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France.
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina.
| |
Collapse
|
12
|
Place DE, Malireddi RKS, Kim J, Vogel P, Yamamoto M, Kanneganti TD. Osteoclast fusion and bone loss are restricted by interferon inducible guanylate binding proteins. Nat Commun 2021; 12:496. [PMID: 33479228 PMCID: PMC7820603 DOI: 10.1038/s41467-020-20807-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation during many diseases is associated with bone loss. While interferons (IFNs) are often inhibitory to osteoclast formation, the complex role that IFN and interferon-stimulated genes (ISGs) play in osteoimmunology during inflammatory diseases is still poorly understood. We show that mice deficient in IFN signaling components including IFN alpha and beta receptor 1 (IFNAR1), interferon regulatory factor 1 (IRF1), IRF9, and STAT1 each have reduced bone density and increased osteoclastogenesis compared to wild type mice. The IFN-inducible guanylate-binding proteins (GBPs) on mouse chromosome 3 (GBP1, GBP2, GBP3, GBP5, GBP7) are required to negatively regulate age-associated bone loss and osteoclastogenesis. Mechanistically, GBP2 and GBP5 both negatively regulate in vitro osteoclast differentiation, and loss of GBP5, but not GBP2, results in greater age-associated bone loss in mice. Moreover, mice deficient in GBP5 or chromosome 3 GBPs have greater LPS-mediated inflammatory bone loss compared to wild type mice. Overall, we find that GBP5 contributes to restricting age-associated and inflammation-induced bone loss by negatively regulating osteoclastogenesis.
Collapse
Affiliation(s)
- David E Place
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - R K Subbarao Malireddi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jieun Kim
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Peter Vogel
- Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | |
Collapse
|
13
|
Takito J, Nakamura M. Heterogeneity and Actin Cytoskeleton in Osteoclast and Macrophage Multinucleation. Int J Mol Sci 2020; 21:ijms21186629. [PMID: 32927783 PMCID: PMC7554939 DOI: 10.3390/ijms21186629] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoclast signatures are determined by two transcriptional programs, the lineage-determining transcription pathway and the receptor activator of nuclear factor kappa-B ligand (RANKL)-dependent differentiation pathways. During differentiation, mononuclear precursors become multinucleated by cell fusion. Recently, live-cell imaging has revealed a high level of heterogeneity in osteoclast multinucleation. This heterogeneity includes the difference in the differentiation states and the mobility of the fusion precursors, as well as the mode of fusion among the fusion precursors with different numbers of nuclei. In particular, fusion partners often form morphologically distinct actin-based linkages that allow two cells to exchange lipids and proteins before membrane fusion. However, the origin of this heterogeneity remains elusive. On the other hand, osteoclast multinucleation is sensitive to the environmental cues. Such cues promote the reorganization of the actin cytoskeleton, especially the formation and transformation of the podosome, an actin-rich punctate adhesion. This review covers the heterogeneity of osteoclast multinucleation at the pre-fusion stage with reference to the environment-dependent signaling pathway responsible for reorganizing the actin cytoskeleton. Furthermore, we compare osteoclast multinucleation with macrophage fusion, which results in multinucleated giant macrophages.
Collapse
|
14
|
Gambari L, Grassi F, Roseti L, Grigolo B, Desando G. Learning from Monocyte-Macrophage Fusion and Multinucleation: Potential Therapeutic Targets for Osteoporosis and Rheumatoid Arthritis. Int J Mol Sci 2020; 21:ijms21176001. [PMID: 32825443 PMCID: PMC7504439 DOI: 10.3390/ijms21176001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Excessive bone resorption by osteoclasts (OCs) covers an essential role in developing bone diseases, such as osteoporosis (OP) and rheumatoid arthritis (RA). Monocytes or macrophages fusion and multinucleation (M-FM) are key processes for generating multinucleated mature cells with essential roles in bone remodelling. Depending on the phenotypic heterogeneity of monocyte/macrophage precursors and the extracellular milieu, two distinct morphological and functional cell types can arise mature OCs and giant cells (GCs). Despite their biological relevance in several physiological and pathological responses, many gaps exist in our understanding of their formation and role in bone, including the molecular determinants of cell fusion and multinucleation. Here, we outline fusogenic molecules during M-FM involved in OCs and GCs formation in healthy conditions and during OP and RA. Moreover, we discuss the impact of the inflammatory milieu on modulating macrophages phenotype and their differentiation towards mature cells. Methodological approach envisaged searches on Scopus, Web of Science Core Collection, and EMBASE databases to select relevant studies on M-FM, osteoclastogenesis, inflammation, OP, and RA. This review intends to give a state-of-the-art description of mechanisms beyond osteoclastogenesis and M-FM, with a focus on OP and RA, and to highlight potential biological therapeutic targets to prevent extreme bone loss.
Collapse
Affiliation(s)
| | | | - Livia Roseti
- Correspondence: (L.R.); (B.G.); Tel.: +39-051-6366090 (B.G.)
| | | | | |
Collapse
|
15
|
Osteoclast Multinucleation: Review of Current Literature. Int J Mol Sci 2020; 21:ijms21165685. [PMID: 32784443 PMCID: PMC7461040 DOI: 10.3390/ijms21165685] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
Multinucleation is a hallmark of osteoclast maturation. The unique and dynamic multinucleation process not only increases cell size but causes functional alterations through reconstruction of the cytoskeleton, creating the actin ring and ruffled border that enable bone resorption. Our understanding of the molecular mechanisms underlying osteoclast multinucleation has advanced considerably in this century, especially since the identification of DC-STAMP and OC-STAMP as “master fusogens”. Regarding the molecules and pathways surrounding these STAMPs, however, only limited progress has been made due to the absence of their ligands. Various molecules and mechanisms other than the STAMPs are involved in osteoclast multinucleation. In addition, several preclinical studies have explored chemicals that may be able to target osteoclast multinucleation, which could enable us to control pathogenic bone metabolism more precisely. In this review, we will focus on recent discoveries regarding the STAMPs and other molecules involved in osteoclast multinucleation.
Collapse
|
16
|
Balabiyev A, Podolnikova NP, Mursalimov A, Lowry D, Newbern JM, Roberson RW, Ugarova TP. Transition of podosomes into zipper-like structures in macrophage-derived multinucleated giant cells. Mol Biol Cell 2020; 31:2002-2020. [PMID: 32579434 PMCID: PMC7543064 DOI: 10.1091/mbc.e19-12-0707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Macrophage fusion resulting in the formation of multinucleated giant cells (MGCs) is a multistage process that requires many adhesion-dependent steps and involves the rearrangement of the actin cytoskeleton. The diversity of actin-based structures and their role in macrophage fusion is poorly understood. In this study, we revealed hitherto unrecognized actin-based zipper-like structures (ZLSs) that arise between MGCs formed on the surface of implanted biomaterials. We established an in vitro model for the induction of these structures in mouse macrophages undergoing IL-4–mediated fusion. Using this model, we show that over time MGCs develop cell–cell contacts containing ZLSs. Live-cell imaging using macrophages isolated from mRFP- or eGFP-LifeAct mice demonstrated that ZLSs are dynamic formations undergoing continuous assembly and disassembly and that podosomes are precursors of these structures. Immunostaining experiments showed that vinculin, talin, integrin αMβ2, and other components of podosomes are present in ZLSs. Macrophages deficient in WASp or Cdc42, two key molecules involved in actin core organization in podosomes, as well as cells treated with the inhibitors of the Arp2/3 complex, failed to form ZLSs. Furthermore, E-cadherin and nectin-2 were found between adjoining membranes, suggesting that the transition of podosomes into ZLSs is induced by bridging plasma membranes by junctional proteins.
Collapse
Affiliation(s)
- Arnat Balabiyev
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | | | - Aibek Mursalimov
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | - David Lowry
- Eyring Materials Center, Arizona State University, Tempe, AZ 85287
| | - Jason M Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | | | | |
Collapse
|
17
|
Place DE, Briard B, Samir P, Karki R, Bhattacharya A, Guy CS, Peters JL, Frase S, Vogel P, Neale G, Yamamoto M, Kanneganti TD. Interferon inducible GBPs restrict Burkholderia thailandensis motility induced cell-cell fusion. PLoS Pathog 2020; 16:e1008364. [PMID: 32150572 PMCID: PMC7082077 DOI: 10.1371/journal.ppat.1008364] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/19/2020] [Accepted: 01/29/2020] [Indexed: 12/20/2022] Open
Abstract
Innate immunity responds to pathogens by producing alarm signals and activating pathways that make host cells inhospitable for pathogen replication. The intracellular bacterium Burkholderia thailandensis invades the cytosol, hijacks host actin, and induces cell fusion to spread to adjacent cells, forming multinucleated giant cells (MNGCs) which promote bacterial replication. We show that type I interferon (IFN) restricts macrophage MNGC formation during B. thailandensis infection. Guanylate-binding proteins (GBPs) expressed downstream of type I IFN were required to restrict MNGC formation through inhibition of bacterial Arp2/3-dependent actin motility during infection. GTPase activity and the CAAX prenylation domain were required for GBP2 recruitment to B. thailandensis, which restricted bacterial actin polymerization required for MNGC formation. Consistent with the effects in in vitro macrophages, Gbp2-/-, Gbp5-/-, GbpChr3-KO mice were more susceptible to intranasal infection with B. thailandensis than wildtype mice. Our findings reveal that IFN and GBPs play a critical role in restricting cell-cell fusion and bacteria-induced pathology during infection.
Collapse
Affiliation(s)
- David E. Place
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Benoit Briard
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Parimal Samir
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Rajendra Karki
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Anannya Bhattacharya
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Clifford S. Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jennifer L. Peters
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Sharon Frase
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Peter Vogel
- Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Osaka University, 3–1 Yamadaoka, Suita, Osaka, Japan
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
18
|
Zhong Z, Qian Z, Zhang X, Chen F, Ni S, Kang Z, Zhang F, Li D, Yu B. Tetrandrine Prevents Bone Loss in Ovariectomized Mice by Inhibiting RANKL-Induced Osteoclastogenesis. Front Pharmacol 2020; 10:1530. [PMID: 31998129 PMCID: PMC6967024 DOI: 10.3389/fphar.2019.01530] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a metabolic bone disease characterized by decreased bone density and strength due to the imbalance between osteogenesis and osteoclastogenesis. Postmenopausal estrogen withdrawal increases proinflammatory cytokines and increases the serum level of Receptor activator of NF-kB ligand (RANKL)/Osteoprotegerin (OPG), which then leads to the overactivation of osteoclastogenesis. Tetrandrine, a bis-benzylisoquinoline alkaloid, has been widely used in the treatment of rheumatoid arthritis clinically in China. Here, we demonstrate that tetrandrine significantly prevented ovariectomy-induced bone loss and inhibited RANKL-induced osteoclastogenesis. In vivo, we found that intraperitoneal injection of tetrandrine (30 mg/kg) every other day markedly reduced bone loss in ovariectomized mice and the serum levels of TRAcp5b, TNF-a, IL-6, CTX-I, and RANKL/OPG were significantly decreased. In vitro, we found that tetrandrine significantly inhibited osteoclast differentiation in bone marrow monocytes (BMMs) and RAW264.7 cells according to the results of osteoclastogenesis-related gene expression, tartrate-resistant acid phosphatase (TRAP) staining and actin-ring formation as well as bone resorption assay. Mechanistically, tetrandrine inhibited RANKL-induced osteoclastogenesis by suppressing NF-kB, Ca2+, PI3K/AKT, and MAPKs signaling pathways. Taken together, our findings suggest that tetrandrine suppresses osteoclastogenesis through modulation of multiple pathways and has potential value as a therapeutic agent for PMOP, especially for those suffering from RA and PMOP at the same time.
Collapse
Affiliation(s)
- Zeyuan Zhong
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zhi Qian
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xu Zhang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Fancheng Chen
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuo Ni
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zhanrong Kang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Fangxue Zhang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Baoqing Yu
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
19
|
Myosins in Osteoclast Formation and Function. Biomolecules 2018; 8:biom8040157. [PMID: 30467281 PMCID: PMC6317158 DOI: 10.3390/biom8040157] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 01/16/2023] Open
Abstract
Skeletal quantity and quality are determined by processes of bone modeling and remodeling, which are undertaken by cells that build and resorb bone as they respond to mechanical, hormonal, and other external and internal signals. As the sole bone resorptive cell type, osteoclasts possess a remarkably dynamic actin cytoskeleton that drives their function in this enterprise. Actin rearrangements guide osteoclasts’ capacity for precursor fusion during differentiation, for migration across bone surfaces and sensing of their composition, and for generation of unique actin superstructures required for the resorptive process. In this regard, it is not surprising that myosins, the superfamily of actin-based motor proteins, play key roles in osteoclast physiology. This review briefly summarizes current knowledge of the osteoclast actin cytoskeleton and describes myosins’ roles in osteoclast differentiation, migration, and actin superstructure patterning.
Collapse
|
20
|
The Sealing Zone in Osteoclasts: A Self-Organized Structure on the Bone. Int J Mol Sci 2018; 19:ijms19040984. [PMID: 29587415 PMCID: PMC5979552 DOI: 10.3390/ijms19040984] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 01/08/2023] Open
Abstract
Osteoclasts form a specialized cell-matrix adhesion structure, known as the "sealing zone", during bone resorption. The sealing zone is a dynamic actin-rich structure that defines the resorption area of the bone. The detailed dynamics and fine structure of the sealing zone have been elusive. Osteoclasts plated on glass do not form a sealing zone, but generate a separate supra-molecular structure called the "podosome belt". Podosomes are integrin-based adhesion complexes involved in matrix adhesion, cell migration, matrix degradation, and mechanosensing. Invadopodia, podosome-like protrusions in cancer cells, are involved in cell invasion into other tissues by promoting matrix degradation. Both podosomes and invadopodia exhibit actin pattern transitions during maturation. We previously found that Arp2/3-dependent actin flow occurs in all observed assembly patterns of podosomes in osteoclasts on glass. It is known that the actin wave in Dictyostelium cells exhibits a similar pattern transition in its evolution. Because of significant advances in our understanding regarding the mechanism of podosomes/invadopodia formation over the last decade, we revisited the structure and function of the sealing zone in this review, highlighting the possible involvement of self-organized actin waves in the organogenesis of the sealing zone.
Collapse
|
21
|
Osteoclast Formation within a Human Co-Culture System on Bone Material as an In Vitro Model for Bone Remodeling Processes. J Funct Morphol Kinesiol 2018. [DOI: 10.3390/jfmk3010017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
22
|
Abstract
The actin cytoskeleton is essential for the biology of osteoclasts, in particular during bone resorption. As key regulators of actin dynamics, the small GTPases of the Rho family are very important in the control of osteoclast activity. The study of Rho GTPase signaling pathways is essential to uncover the mechanisms of bone resorption and can have interesting applications for the treatment of osteolytic diseases. In this chapter, we describe various techniques to obtain primary osteoclasts from murine bone marrow cells, to measure Rho GTPase activation levels, to monitor bone resorption activity of osteoclasts and to introduce the expression of proteins of interest using a retroviral approach. We illustrate the different methods with experimental examples of the effect of Rac1 activation by the exchange factor Dock5 on bone resorption by osteoclasts.
Collapse
Affiliation(s)
- Anne Morel
- CRBM CNRS UMR 5237, Montpellier, France
- Montpellier University, Montpellier, France
| | - Anne Blangy
- CRBM CNRS UMR 5237, Montpellier, France.
- Montpellier University, Montpellier, France.
| | - Virginie Vives
- CRBM CNRS UMR 5237, Montpellier, France
- Montpellier University, Montpellier, France
| |
Collapse
|