1
|
Jain I, Chan AHP, Yang G, He H, Lam J, Sung K, Huang NF. Combinatorial extracellular matrix tissue chips for optimizing mesenchymal stromal cell microenvironment and manufacturing. NPJ Regen Med 2025; 10:21. [PMID: 40263357 PMCID: PMC12015357 DOI: 10.1038/s41536-025-00408-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 04/11/2025] [Indexed: 04/24/2025] Open
Abstract
Despite the therapeutic potential of mesenchymal stromal cells (MSC), there is limited understanding of optimal extracellular matrix (ECM) environments to manufacture these cells. We developed tissue chips to study the effects of multi-factorial ECM environments under manufacturable stiffness ranges and multi-component ECM compositions. Manufacturing qualities of cell expansion potential, immunomodulation, and differentiation capacity were examined. The results show stiffness effects, with 900 kPa substrates supporting higher proliferation and osteogenic differentiation, along with anti-inflammatory IL-10 expression, whereas 150 kPa substrates promoted adipogenic differentiation at 150 kPa, suggesting that optimal ECM environments may differ based on manufacturing goals. ECM biochemistries containing fibronectin and laminin further modulated MSC manufacturing qualities across various stiffnesses. Proteomic and transcriptomic analyses revealed unique ECM combinations that induced higher levels of angiogenic and immunomodulatory cytokines, compared to single factor ECMs. These findings demonstrate that optimized ECM environments enhance MSC manufacturing quality.
Collapse
Affiliation(s)
- Ishita Jain
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| | - Alex H P Chan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| | - Guang Yang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA
- Epicrispr Biotechnologies, South San Francisco, CA, USA
| | - Hao He
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA
| | - Johnny Lam
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Kyung Sung
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Ngan F Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA.
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA.
- Center for Tissue Regeneration, Repair and Restoration & Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94304, USA.
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
2
|
Kureel SK, Maroto R, Davis K, Sheetz M. Cellular mechanical memory: a potential tool for mesenchymal stem cell-based therapy. Stem Cell Res Ther 2025; 16:159. [PMID: 40165288 PMCID: PMC11960036 DOI: 10.1186/s13287-025-04249-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/20/2025] [Indexed: 04/02/2025] Open
Abstract
Recent studies have shown that mechanical properties such as extracellular matrix stiffness, fluid flow, weight loading, compression, and stretching can affect cellular functions. Some examples of cell responses to mechanical properties could be the migration of cancer cells from rigid to soft surfaces or the differentiation of fibroblasts into myofibroblasts. Cellular responses to mechanical changes can modify the insertion of proteins in the extracellular matrix (ECM), causing an increase in tissue stiffness with functional consequences. In general, mechanical and physical factors can affect any kind of cell phenotype in culture conditions and in vivo tissues. Cells sense mechanical stimuli by applying force and restructuring their shape and functions in response to the resistance of the stimuli. Furthermore, mechanical triggers can develop a "memory" for altering cellular plasticity and adaptation. This phenomenon is called cellular mechanical memory (CMM), a singular feature of mesenchymal stem cells (MSCs). Controlled targeting of CMM may resolve the scarcity of viable cells needed for cell based therapy (CBT) and implement studies concerning cancer research, fibrosis, and senescence. This review focusses on cells from the mesodermal lineage, such as MSCs, fibroblasts and chondrocytes, and the role of CMM as a potential target for CBT.
Collapse
Affiliation(s)
- Sanjay Kumar Kureel
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Rosario Maroto
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kristen Davis
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Michael Sheetz
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
3
|
Joshi H, Anaya E, Addanki A, Almgren-Bell A, Todd EM, Morley SC. Mechanosensitivity of macrophage polarization: comparing small molecule leukadherin-1 to substrate stiffness. Front Immunol 2025; 16:1420325. [PMID: 40114914 PMCID: PMC11922956 DOI: 10.3389/fimmu.2025.1420325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Abstract
Macrophages sustain tissue homeostasis through host defense and wound repair. To promote host defense, macrophages upregulate surface markers associated with antigen processing and secrete pro-inflammatory mediators such as IL-6 and IL-1β. After pathogen clearance, macrophages shift phenotype to promote wound repair. Shifts in phenotypes are termed "polarization" and have historically been modeled by exposure to soluble mediators such as LPS+IFNγ (host defense) or IL-4+IL-13 (tissue repair). Greater emphasis is now being placed on understanding how the mechanical environment of macrophages, such as tissue compliance, regulates macrophages responses. Here, we compare incubation of primary macrophages on collagen-coated silica gels of varying stiffness to treatment with the small molecule integrin activator, leukadherin-1 (LA1), to examine how substrate stiffness alters macrophage polarization in response to multiple stimuli. LA1 was developed as an immunomodulator to treat inflammatory diseases by impairing trafficking of inflammatory cells. A recent clinical trial examining LA1 as an immunomodulator in solid tumors was terminated early because no benefit was observed. We hypothesized that LA1 treatment may exert additional, unexpected effects on macrophage polarization by replicating mechanotransduction. Specifically, we hypothesized that LA1 would mimic effects of incubation on stiffer substrates, as both conditions would be predicted to activate integrins. Our results show that soft substrate (0.2 kPa) trends towards upregulation of host defense molecules, in contrast to prior reports using different experimental systems. We further show that soft substrates enhance NLRP3-mediated IL-1β production, compared to stiff, in both primary mouse and human macrophages. LA1 mimicked incubation on stiff substrates in inhibiting NLRP3 activation and in regulating expression of several surface markers but differed by reducing IL-6 production. Our results show that macrophage inflammatory responses are regulated by adhesion-based, integrin-mediated mechanical signaling. Modulation of NLRP3-mediated IL-1β production by LA1 supports the possibility of repurposing LA1 to treat NLRP3-dependent inflammatory diseases.
Collapse
Affiliation(s)
- Hemant Joshi
- Division of Infectious Diseases, Department of Pediatrics, Washington School of Medicine in St. Louis, St. Louis, MO, United States
| | - Edgar Anaya
- Division of Infectious Diseases, Department of Pediatrics, Washington School of Medicine in St. Louis, St. Louis, MO, United States
| | - Anvitha Addanki
- Division of Infectious Diseases, Department of Pediatrics, Washington School of Medicine in St. Louis, St. Louis, MO, United States
| | - Alison Almgren-Bell
- Division of Infectious Diseases, Department of Pediatrics, Washington School of Medicine in St. Louis, St. Louis, MO, United States
| | - Elizabeth M Todd
- Division of Infectious Diseases, Department of Pediatrics, Washington School of Medicine in St. Louis, St. Louis, MO, United States
| | - Sharon Celeste Morley
- Division of Infectious Diseases, Department of Pediatrics, Washington School of Medicine in St. Louis, St. Louis, MO, United States
- Division of Immunobiology, Department of Pathology and Immunology, Washington School of Medicine in St. Louis, St. Louis, MO, United States
| |
Collapse
|
4
|
Yang YJ, Yeo D, Shin SJ, Lee JH, Lee JH. Influence of Soft and Stiff Matrices on Cytotoxicity in Gingival Fibroblasts: Implications for Soft Tissue Biocompatibility. Cells 2024; 13:1932. [PMID: 39682682 PMCID: PMC11639834 DOI: 10.3390/cells13231932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
The biocompatibility of dental materials is critical for ensuring safety in clinical applications. However, standard in vitro cytotoxicity assays often rely on stiff tissue culture plastic (TCP), which does not accurately replicate the biomechanical properties of soft oral tissues. In this study, we compared human gingival fibroblasts (HGFs) cultured on soft, gel-based substrates mimicking gingival tissue stiffness (0.2 kPa) with those cultured on conventional TCP (3 GPa) to assess the influence of substrate stiffness on the cytotoxicity of methyl methacrylate (MMA), as well as other cytotoxic agents, including DMSO and H2O2. The results demonstrated that cells cultured on softer substrates exhibited enhanced resistance to cytotoxic stress, with increased viability and decreased apoptosis and DNA damage following exposure to MMA, DMSO, and H2O2. Notably, HGFs on soft substrates showed significantly greater resilience to MMA-induced cytotoxicity compared to those cultured on TCP. These findings emphasize the critical role of substrate stiffness in modulating cellular responses to toxic agents and highlight the necessity of using physiologically relevant models for cytotoxicity testing of dental materials. This study provides valuable insights for improving biocompatibility assessment protocols in clinical settings.
Collapse
Affiliation(s)
- Ye-Jin Yang
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (Y.-J.Y.); (D.Y.); (S.-J.S.); (J.H.L.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Donghyeon Yeo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (Y.-J.Y.); (D.Y.); (S.-J.S.); (J.H.L.)
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Seong-Jin Shin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (Y.-J.Y.); (D.Y.); (S.-J.S.); (J.H.L.)
- Mechanobiology Dental Medicine Research Center, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (Y.-J.Y.); (D.Y.); (S.-J.S.); (J.H.L.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (Y.-J.Y.); (D.Y.); (S.-J.S.); (J.H.L.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| |
Collapse
|
5
|
Joshi R, Suryawanshi T, Mukherjee S, Shukla S, Majumder A. Chromatin Condensation Delays Senescence in Human Mesenchymal Stem Cells by Safeguarding Nuclear Damages during In Vitro Expansion. J Tissue Eng Regen Med 2024; 2024:1543849. [PMID: 40225747 PMCID: PMC11919206 DOI: 10.1155/2024/1543849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/30/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2025]
Abstract
Human mesenchymal stem cells (hMSCs) are multipotent cells that differentiate into adipocytes, chondrocytes, and osteoblasts. Owing to their differentiation potential, hMSCs are among the cells most frequently used for therapeutic applications in tissue engineering and regenerative medicine. However, the number of cells obtained through isolation alone is insufficient for hMSC-based therapies and basic research, which necessitates in vitro expansion. Conventionally, this is often performed on rigid surfaces such as tissue culture plates (TCPs). However, during in vitro expansion, hMSCs lose their proliferative ability and multilineage differentiation potential, rendering them unsuitable for clinical use. Although multiple approaches have been attempted to maintain hMSC stemness during prolonged expansion, finding a suitable culture system remains an unmet need. Recently, a few research groups have shown that hMSCs maintain their stemness over long passages when cultured on soft substrates. In addition, it has been shown that hMSCs cultured on soft substrates have more condensed chromatin and lower levels of histone acetylation compared to those cultured on stiff substrates. Furthermore, it has also been shown that condensing/decondensing chromatin by deacetylation/acetylation can delay replicative senescence in hMSCs during long-term expansion on TCPs. However, the mechanism by which chromatin condensation/decondensation influences nuclear morphology and DNA damage, which are strongly related to the onset of senescence, remains unknown. To answer this question, we cultured hMSCs for long duration in the presence of epigenetic modifiers, histone acetyltransferase inhibitor (HATi), which promotes chromatin condensation by preventing histone acetylation, and histone deacetylase inhibitor (HDACi), which promotes chromatin decondensation, and investigated their effects on various nuclear markers related to senescence. We found that consistent acetylation causes severe nuclear abnormalities, whereas chromatin condensation by deacetylation helps to safeguard the nucleus from damage caused by in vitro expansion.
Collapse
Affiliation(s)
- Rohit Joshi
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Tejas Suryawanshi
- Centre for Research in Nano Technology and Science, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sourav Mukherjee
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shobha Shukla
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Abhijit Majumder
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
6
|
Rajput SN, Naeem BK, Ali A, Salim A, Khan I. Expansion of human umbilical cord derived mesenchymal stem cells in regenerative medicine. World J Stem Cells 2024; 16:410-433. [PMID: 38690517 PMCID: PMC11056638 DOI: 10.4252/wjsc.v16.i4.410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Stem cells are undifferentiated cells that possess the potential for self-renewal with the capacity to differentiate into multiple lineages. In humans, their limited numbers pose a challenge in fulfilling the necessary demands for the regeneration and repair of damaged tissues or organs. Studies suggested that mesenchymal stem cells (MSCs), necessary for repair and regeneration via transplantation, require doses ranging from 10 to 400 million cells. Furthermore, the limited expansion of MSCs restricts their therapeutic application. AIM To optimize a novel protocol to achieve qualitative and quantitative expansion of MSCs to reach the targeted number of cells for cellular transplantation and minimize the limitations in stem cell therapy protocols. METHODS Human umbilical cord (hUC) tissue derived MSCs were obtained and re-cultured. These cultured cells were subjected to the following evaluation procedures: Immunophenotyping, immunocytochemical staining, trilineage differentiation, population doubling time and number, gene expression markers for proliferation, cell cycle progression, senescence-associated β-galactosidase assay, human telomerase reverse transcriptase (hTERT) expression, mycoplasma, cytomegalovirus and endotoxin detection. RESULTS Analysis of pluripotent gene markers Oct4, Sox2, and Nanog in recultured hUC-MSC revealed no significant differences. The immunophenotypic markers CD90, CD73, CD105, CD44, vimentin, CD29, Stro-1, and Lin28 were positively expressed by these recultured expanded MSCs, and were found negative for CD34, CD11b, CD19, CD45, and HLA-DR. The recultured hUC-MSC population continued to expand through passage 15. Proliferative gene expression of Pax6, BMP2, and TGFb1 showed no significant variation between recultured hUC-MSC groups. Nevertheless, a significant increase (P < 0.001) in the mitotic phase of the cell cycle was observed in recultured hUC-MSCs. Cellular senescence markers (hTERT expression and β-galactosidase activity) did not show any negative effect on recultured hUC-MSCs. Additionally, quality control assessments consistently confirmed the absence of mycoplasma, cytomegalovirus, and endotoxin contamination. CONCLUSION This study proposes the development of a novel protocol for efficiently expanding stem cell population. This would address the growing demand for larger stem cell doses needed for cellular transplantation and will significantly improve the feasibility of stem cell based therapies.
Collapse
Affiliation(s)
- Shafiqa Naeem Rajput
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Bushra Kiran Naeem
- Surgical Unit 4, Dr. Ruth KM Pfau Civil Hospital, Karachi 74400, Pakistan
| | - Anwar Ali
- Department of Physiology, University of Karachi, Karachi 75270, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
- Center for Regenerative Medicine and Stem Cells Research, and Department of Ophthalmology and Visual Sciences, The Aga Khan University, Karachi 74800, Sindh, Pakistan.
| |
Collapse
|
7
|
Kureel SK, Blair B, Sheetz MP. Recent Advancement in Elimination Strategies and Potential Rejuvenation Targets of Senescence. Adv Biol (Weinh) 2024; 8:e2300461. [PMID: 37857532 DOI: 10.1002/adbi.202300461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Indexed: 10/21/2023]
Abstract
Cellular senescence is a state of exiting the cell cycle, resisting apoptosis, and changing phenotype. Senescent cells (SCs) can be identified by large, distorted morphology and irreversible inability to replicate. In early development, senescence has beneficial roles like tissue patterning and wound healing, where SCs are cleared by the immune system. However, there is a steep rise in SC number as organisms age. The issue with SC accumulation stems from the loss of cellular function, alterations of the microenvironment, and secretions of pro-inflammatory molecules, consisting of cytokines, chemokines, matrix metalloproteinases (MMPs), interleukins, and extracellular matrix (ECM)-associated molecules. This secreted cocktail is referred to as the senescence-associated secretory phenotype (SASP), a hallmark of cellular senescence. The SASP promotes inflammation and displays a bystander effect where paracrine signaling turns proliferating cells into senescent states. To alleviate age-associated diseases, researchers have developed novel methods and techniques to selectively eliminate SCs in aged individuals. Although studies demonstrated that selectively killing SCs improves age-related disorders, there are drawbacks to SC removal. Considering favorable aspects of senescence in the body, this paper reviews recent advancements in elimination strategies and potential rejuvenation targets of senescence to bring researchers in the field up to date.
Collapse
Affiliation(s)
- Sanjay Kumar Kureel
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Brandon Blair
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Michael P Sheetz
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
8
|
Kaonis S, Aboellail Z, Forman J, Ghosh S. High-Throughput Multiparametric Quantification of Mechanics Driven Heterogeneity in Mesenchymal Stromal Cell Population. Adv Biol (Weinh) 2024; 8:e2300318. [PMID: 37840408 DOI: 10.1002/adbi.202300318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Indexed: 10/17/2023]
Abstract
Mesenchymal stromal or stem cells (MSCs) are one of the most promising candidates for a myriad of cell therapy applications. Despite showing promise in numerous preclinical and clinical studies, MSC-based therapy is not yet a reality for regenerative medicine due to its suboptimal outcome at the clinical endpoint. The mechanical environment is a critical determinant of MSC gene expression and function. This study reports that MSC population becomes phenotypically heterogenous and commits to an unwanted osteoprogenitor pathway when it experiences an abnormal mechanically stiff environment, compared to its native softer environment. A method is developed to measure the heterogeneity using nuclear shape, chromatin state, and CD73 marker. Heterogeneity is shown to be associated with a larger spread in the nuclear shape parameters and a smaller spread in the chromatin openness. Subsequently, intervention strategies are investigated to create a more homogeneous MSC population. Culturing MSCs on soft surfaces or inhibiting actomyosin on stiff surfaces can make them more homogeneous, while inhibiting YAP, Runx2, and actin polymerization helps maintain but does not fully homogenize them. This study offers insights for cell and tissue engineers, aiding in the design of optimal conditions and materials for MSC culture, ultimately enhancing their therapeutic potential.
Collapse
Affiliation(s)
- Samantha Kaonis
- School of Biomedical Engineering, Colorado State University, 700 Meridian Ave, Fort Collins, CO, 80523, USA
- Translational Medicine Institute, Colorado State University, 2350 Gillette Dr, Fort Collins, CO, 80523, USA
| | - Zack Aboellail
- School of Biomedical Engineering, Colorado State University, 700 Meridian Ave, Fort Collins, CO, 80523, USA
- Translational Medicine Institute, Colorado State University, 2350 Gillette Dr, Fort Collins, CO, 80523, USA
- Department of Chemical and Biological Engineering, Colorado State University, 400 Isotope Dr, Fort Collins, CO, 80521, USA
| | - Jack Forman
- School of Biomedical Engineering, Colorado State University, 700 Meridian Ave, Fort Collins, CO, 80523, USA
- Translational Medicine Institute, Colorado State University, 2350 Gillette Dr, Fort Collins, CO, 80523, USA
- Department of Chemical and Biological Engineering, Colorado State University, 400 Isotope Dr, Fort Collins, CO, 80521, USA
| | - Soham Ghosh
- School of Biomedical Engineering, Colorado State University, 700 Meridian Ave, Fort Collins, CO, 80523, USA
- Translational Medicine Institute, Colorado State University, 2350 Gillette Dr, Fort Collins, CO, 80523, USA
- Department of Mechanical Engineering, Colorado State University, 400 Isotope Dr, Fort Collins, CO, 80521, USA
- Cell and Molecular Biology, Colorado State University, 1050 Libbie Coy Way, Fort Collins, CO, 80524, USA
| |
Collapse
|
9
|
Dudaryeva OY, Bernhard S, Tibbitt MW, Labouesse C. Implications of Cellular Mechanical Memory in Bioengineering. ACS Biomater Sci Eng 2023; 9:5985-5998. [PMID: 37797187 PMCID: PMC10646820 DOI: 10.1021/acsbiomaterials.3c01007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The ability to maintain and differentiate cells in vitro is critical to many advances in the field of bioengineering. However, on traditional, stiff (E ≈ GPa) culture substrates, cells are subjected to sustained mechanical stress that can lead to phenotypic changes. Such changes may remain even after transferring the cells to another scaffold or engrafting them in vivo and bias the outcomes of the biological investigation or clinical treatment. This persistence─or mechanical memory─was initially observed for sustained myofibroblast activation of pulmonary fibroblasts after culturing them on stiff (E ≈ 100 kPa) substrates. Aspects of mechanical memory have now been described in many in vitro contexts. In this Review, we discuss the stiffness-induced effectors of mechanical memory: structural changes in the cytoskeleton and activity of transcription factors and epigenetic modifiers. We then focus on how mechanical memory impacts cell expansion and tissue regeneration outcomes in bioengineering applications relying on prolonged 2D plastic culture, such as stem cell therapies and disease models. We propose that alternatives to traditional cell culture substrates can be used to mitigate or erase mechanical memory and improve the efficiency of downstream cell-based bioengineering applications.
Collapse
Affiliation(s)
- Oksana Y Dudaryeva
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
- Department of Orthopedics, University Medical Center Utrecht, Utrecht 3584, Netherlands
| | - Stéphane Bernhard
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Céline Labouesse
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
10
|
Rong W, Rome CP, Dietrich MA, Yao S. Decreased CRISPLD2 expression impairs osteogenic differentiation of human mesenchymal stem cells during in vitro expansion. J Cell Physiol 2023; 238:1368-1380. [PMID: 37021796 PMCID: PMC10330378 DOI: 10.1002/jcp.31014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 04/07/2023]
Abstract
Human mesenchymal stem cells (hMSCs) are the cornerstone of regenerative medicine; large quantities of hMSCs are required via in vitro expansion to meet therapeutic purposes. However, hMSCs quickly lose their osteogenic differentiation potential during in vitro expansion, which is a major roadblock to their clinical applications. In this study, we found that the osteogenic differentiation potential of human bone marrow stem cells (hBMSCs), dental pulp stem cells (hDPSCs), and adipose stem cells (hASCs) was severely impaired after in vitro expansion. To clarify the molecular mechanism underlying this in vitro expansion-related loss of osteogenic capacity in hMSCs, the transcriptome changes following in vitro expansion of these hMSCs were compared. Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2) was identified as the most downregulated gene shared by late passage hBMSCs, hDPSCs, and hASCs. Both the secreted and non-secreted CRISPLD2 proteins progressively declined in hMSCs during in vitro expansion when the cells gradually lost their osteogenic potential. We thus hypothesized that the expression of CRISPLD2 is critical for hMSCs to maintain their osteogenic differentiation potential during in vitro expansion. Our studies showed that the knockdown of CRISPLD2 in early passage hBMSCs inhibited the cells' osteogenic differentiation in a siRNA dose-dependent manner. Transcriptome analysis and immunoblotting indicated that the CRISPLD2 knockdown-induced osteogenesis suppression might be attributed to the downregulation of matrix metallopeptidase 1 (MMP1) and forkhead box Q1 (FOXQ1). Furthermore, adeno-associated virus (AAV)-mediated CRISPLD2 overexpression could somewhat rescue the impaired osteogenic differentiation of hBMSCs during in vitro expansion. These results revealed that the downregulation of CRISPLD2 contributes to the impaired osteogenic differentiation of hMSCs during in vitro expansion. Our findings shed light on understanding the loss of osteogenic differentiation in hMSCs and provide a potential therapeutic target gene for bone-related diseases.
Collapse
Affiliation(s)
- Weiqiong Rong
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Calvin P. Rome
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Marilyn A. Dietrich
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Shaomian Yao
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
11
|
Miyoshi H, Yamazaki M, Fujie H, Kidoaki S. Guideline for design of substrate stiffness for mesenchymal stem cell culture based on heterogeneity of YAP and RUNX2 responses. Biophys Physicobiol 2023; 20:e200018. [PMID: 38496240 PMCID: PMC10941962 DOI: 10.2142/biophysico.bppb-v20.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/17/2023] [Indexed: 03/19/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have the potential for self-renewal and multipotency to differentiate into various lineages. Thus, they are of great interest in regenerative medicine as a cell source for tissue engineering. Substrate stiffness is one of the most extensively studied exogenous physical factors; however, consistent results have not always been reported for controlling MSCs. Conventionally used stiff culture substrates, such as tissue-culture polystyrene and glass, enhance nuclear localization of a mechanotransducer YAP and a pre-osteogenic transcription factor RUNX2, and bias MSCs towards the osteogenic lineage, even without osteogenic-inducing soluble factors. The mechanosensitive nature and intrinsic heterogeneity present challenges for obtaining reproducible results. This review summarizes the heterogeneity in human MSC response, specifically, nuclear/cytoplasmic localization changes in the mechanotransducer yes-associated protein (YAP) and the osteogenic transcription factor RUNX2, in response to substrate stiffness. In addition, a perspective on the intracellular factors attributed to response heterogeneity is discussed. The optimal range of stiffness parameters, Young's modulus, for MSC expansion culture to suppress osteogenic differentiation bias through the suppression of YAP and RUNX2 nuclear localization, and cell cycle progression is likely to be surprisingly narrow for a cell population from an identical donor and vary among cell populations from different donors. We believe that characterization of the heterogeneity of MSCs and understanding their biological meaning is an exciting research direction to establish guidelines for the design of culture substrates for the sophisticated control of MSC properties.
Collapse
Affiliation(s)
- Hiromi Miyoshi
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Masashi Yamazaki
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Hiromichi Fujie
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Satoru Kidoaki
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
12
|
Ross EA, Turner LA, Donnelly H, Saeed A, Tsimbouri MP, Burgess KV, Blackburn G, Jayawarna V, Xiao Y, Oliva MAG, Willis J, Bansal J, Reynolds P, Wells JA, Mountford J, Vassalli M, Gadegaard N, Oreffo ROC, Salmeron-Sanchez M, Dalby MJ. Nanotopography reveals metabolites that maintain the immunomodulatory phenotype of mesenchymal stromal cells. Nat Commun 2023; 14:753. [PMID: 36765065 PMCID: PMC9918539 DOI: 10.1038/s41467-023-36293-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent progenitor cells that are of considerable clinical potential in transplantation and anti-inflammatory therapies due to their capacity for tissue repair and immunomodulation. However, MSCs rapidly differentiate once in culture, making their large-scale expansion for use in immunomodulatory therapies challenging. Although the differentiation mechanisms of MSCs have been extensively investigated using materials, little is known about how materials can influence paracrine activities of MSCs. Here, we show that nanotopography can control the immunomodulatory capacity of MSCs through decreased intracellular tension and increasing oxidative glycolysis. We use nanotopography to identify bioactive metabolites that modulate intracellular tension, growth and immunomodulatory phenotype of MSCs in standard culture and during larger scale cell manufacture. Our findings demonstrate an effective route to support large-scale expansion of functional MSCs for therapeutic purposes.
Collapse
Affiliation(s)
- Ewan A Ross
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Lesley-Anne Turner
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
| | - Hannah Donnelly
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
| | - Anwer Saeed
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Monica P Tsimbouri
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
| | - Karl V Burgess
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, Bearsden, Glasgow, G61 1QH, UK
| | - Gavin Blackburn
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, Bearsden, Glasgow, G61 1QH, UK
| | - Vineetha Jayawarna
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
| | - Yinbo Xiao
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
| | - Mariana A G Oliva
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
| | - Jennifer Willis
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Jaspreet Bansal
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Paul Reynolds
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Julia A Wells
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Joanne Mountford
- Scottish National Blood Transfusion Service, Advanced Therapeutics, Jack Copland Centre, 52 Research Avenue North, Heriot Watt Research Park, Edinburgh, EH14 4BE, UK
| | - Massimo Vassalli
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
| | - Nikolaj Gadegaard
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK.
| |
Collapse
|
13
|
Mogha P, Iyer S, Majumder A. Extracellular matrix protein gelatin provides higher expansion, reduces size heterogeneity, and maintains cell stiffness in a long-term culture of mesenchymal stem cells. Tissue Cell 2023; 80:101969. [PMID: 36403499 DOI: 10.1016/j.tice.2022.101969] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/17/2022] [Accepted: 10/29/2022] [Indexed: 11/08/2022]
Abstract
Extracellular matrices (ECM) present in our tissues play a significant role in maintaining tissue homeostasis through various physical and chemical cues such as topology, stiffness, and secretion of biochemicals. They are known to influence the behavior of resident stem cells. It is also known that ECM type and coating density on cell culture plates strongly influence in vitro cellular behavior. However, the influence of ECM protein coating on long-term mesenchymal stem cell expansion has not been studied yet. To address this gap, we cultured bone-marrow derived hMSCs for multiple passages on the tissue culture plastic plates coated with 25 μg/ml of various ECM proteins. We found that cells on plates coated with ECM proteins had much higher proliferation compared to the regular tissue culture plates. Further, gelatin-coated plates helped the cells to grow faster compared to collagen, fibronectin, and laminin coated plates. Additionally, the use of gelatin showed less size heterogeneity among the cells when expanded from passages 3 to 9 (P3 to P9). Gelatin also helped in maintaining cellular stiffness which was not observed across other ECM proteins. In summary, in this research, we have shown that gelatin which is the least expensive compared to other ECM proteins, provides a better platform for mesenchymal stem cell expansion.
Collapse
Affiliation(s)
- Pankaj Mogha
- Chemical Engineering Department, IIT Bombay, Mumbai 400076 India.
| | - Shruti Iyer
- Chemical Engineering Department, IIT Bombay, Mumbai 400076 India
| | - Abhijit Majumder
- Chemical Engineering Department, IIT Bombay, Mumbai 400076 India.
| |
Collapse
|
14
|
Davies DM, van den Handel K, Bharadwaj S, Lengefeld J. Cellular enlargement - A new hallmark of aging? Front Cell Dev Biol 2022; 10:1036602. [PMID: 36438561 PMCID: PMC9688412 DOI: 10.3389/fcell.2022.1036602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2023] Open
Abstract
Years of important research has revealed that cells heavily invest in regulating their size. Nevertheless, it has remained unclear why accurate size control is so important. Our recent study using hematopoietic stem cells (HSCs) in vivo indicates that cellular enlargement is causally associated with aging. Here, we present an overview of these findings and their implications. Furthermore, we performed a broad literature analysis to evaluate the potential of cellular enlargement as a new aging hallmark and to examine its connection to previously described aging hallmarks. Finally, we highlight interesting work presenting a correlation between cell size and age-related diseases. Taken together, we found mounting evidence linking cellular enlargement to aging and age-related diseases. Therefore, we encourage researchers from seemingly unrelated areas to take a fresh look at their data from the perspective of cell size.
Collapse
Affiliation(s)
- Daniel M. Davies
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kim van den Handel
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Soham Bharadwaj
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jette Lengefeld
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Labusca L, Danceanu C, Minuti AE, Herea DD, Ghemes A, Rotarescu C, Dragos-Pinzaru O, Tibu M, Marian G, Chiriac H, Lupu N. Magnetic nanowires substrate increases adipose-derived mesenchymal cells osteogenesis. Sci Rep 2022; 12:16698. [PMID: 36202902 PMCID: PMC9537172 DOI: 10.1038/s41598-022-21145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/22/2022] [Indexed: 11/08/2022] Open
Abstract
Magnetic nanomaterials are increasingly impacting the field of biology and medicine. Their versatility in terms of shape, structure, composition, coating, and magnetic responsivity make them attractive for drug delivery, cell targeting and imaging. Adipose derived-mesenchymal cells (ASCs) are intensely scrutinized for tissue engineering and regenerative medicine. However, differentiation into musculoskeletal lineages can be challenging. In this paper, we show that uncoated nickel nanowires (Ni NW) partially released from their alumina membrane offer a mechanically-responsive substrate with regular topography that can be used for the delivery of magneto-mechanical stimulation. We have used a tailored protocol for improving ASCs adherence to the substrate, and showed that cells retain their characteristic fibroblastic appearance, cytoskeletal fiber distribution and good viability. We report here for the first time significant increase in osteogenic but not adipogenic differentiation of ASCs on Ni NW exposed to 4 mT magnetic field compared to non-exposed. Moreover, magnetic actuation is shown to induce ASCs osteogenesis but not adipogenesis in the absence of external biochemical cues. While these findings need to be verified in vivo, the use of Ni NW substrate for inducing osteogenesis in the absence of specific differentiation factors is attractive for bone engineering. Implant coating with similar surfaces for orthopedic and dentistry could be as well envisaged as a modality to improve osteointegration.
Collapse
Affiliation(s)
- Luminita Labusca
- Department of Magnetic Devices and Materials, National Institute of Research and Development for Technical Physics, 700050, Iasi, Romania
- Orthopedics and Traumatology Clinic, County Emergency Hospital Saint Spiridon Iasi, 700111, Iasi, Romania
| | - Camelia Danceanu
- Department of Magnetic Devices and Materials, National Institute of Research and Development for Technical Physics, 700050, Iasi, Romania
| | - Anca Emanuela Minuti
- Department of Magnetic Devices and Materials, National Institute of Research and Development for Technical Physics, 700050, Iasi, Romania
- Alexandru Ioan Cuza University, Faculty of Physics, 700506, Iasi, Romania
| | - Dumitru-Daniel Herea
- Department of Magnetic Devices and Materials, National Institute of Research and Development for Technical Physics, 700050, Iasi, Romania.
| | - Adrian Ghemes
- Department of Magnetic Devices and Materials, National Institute of Research and Development for Technical Physics, 700050, Iasi, Romania
| | - Cristian Rotarescu
- Department of Magnetic Devices and Materials, National Institute of Research and Development for Technical Physics, 700050, Iasi, Romania
| | - Oana Dragos-Pinzaru
- Department of Magnetic Devices and Materials, National Institute of Research and Development for Technical Physics, 700050, Iasi, Romania
| | - Mihai Tibu
- Department of Magnetic Devices and Materials, National Institute of Research and Development for Technical Physics, 700050, Iasi, Romania
| | - Grigoras Marian
- Department of Magnetic Devices and Materials, National Institute of Research and Development for Technical Physics, 700050, Iasi, Romania
| | - Horia Chiriac
- Department of Magnetic Devices and Materials, National Institute of Research and Development for Technical Physics, 700050, Iasi, Romania
| | - Nicoleta Lupu
- Department of Magnetic Devices and Materials, National Institute of Research and Development for Technical Physics, 700050, Iasi, Romania
| |
Collapse
|
16
|
Abbasi A, Imaichi S, Ling V, Shukla A. Mesenchymal Stem Cell Behavior on Soft Hydrogels with Aligned Surface Topographies. ACS APPLIED BIO MATERIALS 2022; 5:1890-1900. [PMID: 35199983 DOI: 10.1021/acsabm.1c01260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human mesenchymal stem cells (HMSCs) are important for cell-based therapies. However, the success of HMSC therapy requires large-scale in vitro expansion of these multipotent cells. The traditional expansion of HMSCs on tissue-culture-treated stiff polystyrene induces significant changes in their shape, multipotency, and secretome, leading to early senescence and subdued paracrine activity. To enhance their therapeutic potential, here, we have developed two-dimensional soft hydrogels with imprinted microscale aligned grooves for use as HMSC culture substrates. We showed that, depending on the dimensions of the topographical features, these substrates led to lower cellular spreading and cytoskeletal tension, maintaining multipotency and osteogenic and adipogenic differentiate potential, while lowering cellular senescence. We also observed a greater capacity of HMSCs to produce anti-inflammatory cytokines after short-term priming on these hydrogel substrates. Overall, these soft hydrogels with unique surface topography have shown great promise as in vitro culture substrates to maximize the therapeutic potential of HMSCs.
Collapse
Affiliation(s)
- Akram Abbasi
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Sachiko Imaichi
- Takeda Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Vincent Ling
- Takeda Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Anita Shukla
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
17
|
Nazbar A, Samani S, Yazdian Kashani S, Amanzadeh A, Shoeibi S, Bonakdar S. Molecular imprinting as a simple way for the long-term maintenance of the stemness and proliferation potential of adipose-derived stem cells: an in vitro study. J Mater Chem B 2022; 10:6816-6830. [DOI: 10.1039/d2tb00279e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Culturing adipose-derived stem cells (ADSCs) on the biomimetic ADSC-imprinted substrate is a simple way for long-term maintenance of their stemness and proliferation potential.
Collapse
Affiliation(s)
- Abolfazl Nazbar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Saeed Samani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Yazdian Kashani
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Amir Amanzadeh
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Shahram Shoeibi
- Food and Drug Laboratory Research Center (FDLRC), Iran Food and Drug Administration (IFDA), MOH & ME, Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
18
|
Yadav P, Chatterjee K, Saini DK. Senescent cells in 3D culture show suppressed senescence signatures. Biomater Sci 2021; 9:6461-6473. [PMID: 34582533 DOI: 10.1039/d1bm00536g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cellular senescence, an irreversible proliferation arrested but viable cellular state, has been implicated in the progression of several age-associated pathologies. A vast amount of information about senescence has been acquired in cultured cells; however, senescence in living organisms (in vivo) remains poorly understood, mainly because of technical limitations. Furthermore, it is now widely recognized that three-dimensional (3D) culture systems are a better mimic of the in vivo physiology. Herein, senescence was induced in HeLa cells by irradiation. Non-senescent or senescent cells were cultured in soft 3D polymer scaffolds and compared with cells in conventional two-dimensional (2D) culture. This work shows that the morphology of the senescent cells markedly varies between substrates/culture platforms, driving the differences in the cytoskeletal organization, cellular division, and nanomechanical properties. One characteristic feature of senescent cells on 2D culture systems is the enlarged and flattened morphology; however, such drastic changes are not seen in vivo. This is an artificial effect of the substrate, which renders such non-physiological morphology to senescent cells. In the 3D scaffolds, this artifact is reduced. Hence, it serves as a better mimic of tissues, leading to reduced expression of senescence-associated genes, implying that the 3D scaffolds suppress the senescence in cells.
Collapse
Affiliation(s)
- Parul Yadav
- Centre for BioSystems Science and Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India
| | - Kaushik Chatterjee
- Centre for BioSystems Science and Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India.,Department of Materials Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India.
| | - Deepak Kumar Saini
- Centre for BioSystems Science and Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India.,Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India.
| |
Collapse
|
19
|
Pourmohammadi-Bejarpasi Z, Sabzevari R, Mohammadi Roushandeh A, Ebrahimi A, Mobayen M, Jahanian-Najafabadi A, Darjani A, Habibi Roudkenar M. Combination Therapy of Metadichol Nanogel and Lipocalin-2 Engineered Mesenchymal Stem Cells Improve Wound Healing in Rat Model of Excision Injury. Adv Pharm Bull 2021; 12:550-560. [PMID: 35935055 PMCID: PMC9348536 DOI: 10.34172/apb.2022.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/29/2021] [Accepted: 09/11/2021] [Indexed: 11/11/2022] Open
Abstract
Purpose: Currently, several disorders including burns, trauma, excisional and diabetic wounds, and bedsores threaten the human health. Application of mesenchymal stem cells (MSCs) is recommended for treatment of skin disorders. However, because of oxidative stress and inflammation after skin injury, survival of transplanted MSCs is low which in turn negatively affects the efficiency of the MSCs-based therapy. In an attempt to address the aforementioned challenge and introducing a novel potential therapeutic strategy, we employed combination therapy by lipocalin 2 (Lcn2)-engineered MSCs and a Metadichol (an inverse agonist of vitamin D receptor (VDR)) nanogel in a rat model of excisional wound.
Methods: First, human umbilical cord MSCs (hUC-MSCs) was transfected by a recombinant plasmid encoding Lcn2 gene. Next, a combination of Metadichol nanogel and the engineered MSCs was co-applied on wound in rat model of excision injury. Finally the improvement of wound healing in experimental groups was evaluated by photography and histological assessments (hematoxylin and eosin staining).
Results: Our findings revealed that the repair rate was higher in the group received combination therapy comparing to control groups. Notably, Metadichol+Lcn2-MSCs showed significantly higher wound contraction rate compared to control group at all time points (P value < 0.001). Furthermore, wound repair rate was 95% 14 days after surgery, and 100% after 21 days in the treatment groups. Our results also revealed that the combination therapy improved and accelerated the wound healing process.
Conclusion: Our findings suggest a novel potential therapeutic strategy i.e. Lcn2-engineered MSCs and Metadichol for wound healing. However, further preclinical and clinical studies are required.
Collapse
Affiliation(s)
| | - Reza Sabzevari
- Medical Biotechnology Department, Paramedicine Faculty, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Cellular and Molecular Research Center, Medicine Faculty, Guilan University of Medical Sciences, Rasht, Iran
- Burn and Regenerative Research Center, Medicine Faculty, Guilan University of Medical Sciences, Rasht, Iran
| | - Ammar Ebrahimi
- Medical Biotechnology Department, Paramedicine Faculty, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammadreza Mobayen
- Burn and Regenerative Research Center, Medicine Faculty, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Abbas Darjani
- Skin Research Center, Department of Dermatology, Razi Hospital, School of Medicine, Guilan University of Medical Science, Rasht, Iran
| | - Mehryar Habibi Roudkenar
- Cellular and Molecular Research Center, Medicine Faculty, Guilan University of Medical Sciences, Rasht, Iran
- Burn and Regenerative Research Center, Medicine Faculty, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
20
|
Mesenchymal stem cells from biology to therapy. Emerg Top Life Sci 2021; 5:539-548. [PMID: 34355761 PMCID: PMC8639183 DOI: 10.1042/etls20200303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/30/2021] [Accepted: 07/21/2021] [Indexed: 01/07/2023]
Abstract
Mesenchymal stem cells are as fascinating as they are enigmatic. They appear capable of performing a wide array of functions that cross skeletal biology, immunology and haematology. As therapeutics, mesenchymal stem cells or even just their secreted products may be used to regenerate tissue lost through injury or disease and suppress damaging immune reactions. However, these cells lack unique markers and are hard to identify and isolate as pure cell populations. They are often grown in laboratories using basic and undefined culture conditions. We cannot even agree on their name. While mesenchymal stem cells may lack the developmental understanding and defined differentiation hierarchies of their more illustrious stem cell cousins, they offer a compelling scientific challenge. In depth understanding of mesenchymal stem cell biology will enable us to exploit fully one of the most clinically valuable cell sources.
Collapse
|
21
|
Doron G, Temenoff JS. Culture Substrates for Improved Manufacture of Mesenchymal Stromal Cell Therapies. Adv Healthc Mater 2021; 10:e2100016. [PMID: 33930252 DOI: 10.1002/adhm.202100016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Recent developments in mesenchymal stromal cell (MSC) therapies have increased the demand for tools to improve their manufacture, including the selection of optimal culture substrate materials. While many clinical manufacturers use planar tissue culture plastic (TCP) surfaces for MSC production, others have begun exploring the use of alternative culture substrates that present a variety of spatial, mechanical, and biochemical cues that influence cell expansion and resulting cell quality. In this review, the effects of culture and material properties distinct from traditional planar TCP surfaces on MSC proliferation, surface marker expression, and commonly used indications for therapeutic potency are examined. The different properties summarized include the use of alternative culture formats such as cellular aggregates or 3D scaffolds, as well as the effects of culture substrate stiffness and presentation of specific adhesive ligands and topographical cues. Specific substrate properties can be related to greater cell expansion and improvement in specific therapeutic functionalities, demonstrating the utility of culture materials in further improving the clinical-scale manufacture of highly secretory MSC products.
Collapse
Affiliation(s)
- Gilad Doron
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University 313 Ferst Drive Atlanta GA 30332 USA
- Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology Atlanta GA 30332 USA
| | - Johnna S. Temenoff
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University 313 Ferst Drive Atlanta GA 30332 USA
- Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
22
|
Phuagkhaopong S, Mendes L, Müller K, Wobus M, Bornhäuser M, Carswell HVO, Duarte IF, Seib FP. Silk Hydrogel Substrate Stress Relaxation Primes Mesenchymal Stem Cell Behavior in 2D. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30420-30433. [PMID: 34170674 PMCID: PMC8289244 DOI: 10.1021/acsami.1c09071] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/08/2021] [Indexed: 05/03/2023]
Abstract
Tissue-mimetic silk hydrogels are being explored for diverse healthcare applications, including stem cell delivery. However, the impact of stress relaxation of silk hydrogels on human mesenchymal stem cell (MSC) biology is poorly defined. The aim of this study was to fabricate silk hydrogels with tuned mechanical properties that allowed the regulation of MSC biology in two dimensions. The silk content and stiffness of both elastic and viscoelastic silk hydrogels were kept constant to permit direct comparisons. Gene expression of IL-1β, IL-6, LIF, BMP-6, BMP-7, and protein tyrosine phosphatase receptor type C were substantially higher in MSCs cultured on elastic hydrogels than those on viscoelastic hydrogels, whereas this pattern was reversed for insulin, HNF-1A, and SOX-2. Protein expression was also mechanosensitive and the elastic cultures showed strong activation of IL-1β signaling in response to hydrogel mechanics. An elastic substrate also induced higher consumption of glucose and aspartate, coupled with a higher secretion of lactate, than was observed in MSCs grown on viscoelastic substrate. However, both silk hydrogels changed the magnitude of consumption of glucose, pyruvate, glutamine, and aspartate, and also metabolite secretion, resulting in an overall lower metabolic activity than that found in control cells. Together, these findings describe how stress relaxation impacts the overall biology of MSCs cultured on silk hydrogels.
Collapse
Affiliation(s)
- Suttinee Phuagkhaopong
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K.
| | - Luís Mendes
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Katrin Müller
- University
Hospital Carl Gustav Carus, Technical University Dresden, Dresden 01307, Germany
| | - Manja Wobus
- University
Hospital Carl Gustav Carus, Technical University Dresden, Dresden 01307, Germany
| | - Martin Bornhäuser
- University
Hospital Carl Gustav Carus, Technical University Dresden, Dresden 01307, Germany
- Center
for Regenerative Therapies Dresden (CRTD), Technical University Dresden, Dresden 01307, Germany
| | - Hilary V. O. Carswell
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K.
| | - Iola F. Duarte
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - F. Philipp Seib
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K.
- EPSRC
Future Manufacturing Research Hub for Continuous Manufacturing and
Advanced Crystallisation (CMAC), University
of Strathclyde, Technology and Innovation Centre, Glasgow G1 1RD, U.K.
- Leibniz
Institute of Polymer Research Dresden, Max
Bergmann Center of Biomaterials Dresden, Dresden 01069, Germany
| |
Collapse
|
23
|
Xiang S, Li Z, Fritch MR, Li L, Velankar S, Liu Y, Sohn J, Baker N, Lin H, Tuan RS. Caveolin-1 mediates soft scaffold-enhanced adipogenesis of human mesenchymal stem cells. Stem Cell Res Ther 2021; 12:347. [PMID: 34127047 PMCID: PMC8201886 DOI: 10.1186/s13287-021-02356-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human bone marrow-derived mesenchymal stem cells (hBMSCs) can differentiate into adipocytes upon stimulation and are considered an appropriate cell source for adipose tissue engineering. In addition to biochemical cues, the stiffness of a substrate that cells attach to has also been shown to affect hBMSC differentiation potential. Of note, most current studies are conducted on monolayer cultures which do not directly inform adipose tissue engineering, where 3-dimensional (3D) scaffolds are often used to create proper tissue architecture. In this study, we aim to examine the adipogenic differentiation of hBMSCs within soft or stiff scaffolds and investigate the molecular mechanism mediating the response of hBMSCs to substrate stiffness in 3D culture, specifically the involvement of the integral membrane protein, caveolin-1 (CAV1), known to regulate signaling in MSCs via compartmentalizing and concentrating signaling molecules. METHODS By adjusting the photo-illumination time, photocrosslinkable gelatin scaffolds with the same polymer concentration but different stiffnesses were created. hBMSCs were seeded within soft and stiff scaffolds, and their response to adipogenic induction under different substrate mechanical conditions was characterized. The functional involvement of CAV1 was assessed by suppressing its expression level using CAV1-specific siRNA. RESULTS The soft and stiff scaffolds used in this study had a compressive modulus of ~0.5 kPa and ~23.5 kPa, respectively. hBMSCs showed high viability in both scaffold types, but only spread out in the soft scaffolds. hBMSCs cultured in soft scaffolds displayed significantly higher adipogenesis, as revealed by histology, qRT-PCR, and immunostaining. Interestingly, a lower CAV1 level was observed in hBMSCs in the soft scaffolds, concomitantly accompanied by increased levels of Yes-associated protein (YAP) and decreased YAP phosphorylation, when compared to cells seeded in the stiff scaffolds. Interestingly, reducing CAV1 expression with siRNA was shown to further enhance hBMSC adipogenesis, which may function through activation of the YAP signaling pathway. CONCLUSIONS Soft biomaterials support superior adipogenesis of encapsulated hBMSCs in 3D culture, which is partially mediated by the CAV1-YAP axis. Suppressing CAV1 expression levels represents a robust method in the promotion of hBMSC adipogenesis.
Collapse
Affiliation(s)
- Shiqi Xiang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhong Li
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Madalyn R Fritch
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - La Li
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sachin Velankar
- Department of Chem/Petroleum Engineering and Mechanical Engineering & Materials Science, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA
| | - Yuwei Liu
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jihee Sohn
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Present Address: Biogen, Boston, Massachusetts, USA
| | - Natasha Baker
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Present Address: Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania, USA
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA. .,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. .,Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA.
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA. .,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. .,Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA. .,Present Address: Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
24
|
Hyperthermia induced disruption of mechanical balance leads to G1 arrest and senescence in cells. Biochem J 2021; 478:179-196. [PMID: 33346336 DOI: 10.1042/bcj20200705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
Human body temperature limits below 40°C during heat stroke or fever. The implications of prolonged exposure to the physiologically relevant temperature (40°C) on cellular mechanobiology is poorly understood. Here, we have examined the effects of heat stress (40°C for 72 h incubation) in human lung adenocarcinoma (A549), mouse melanoma (B16F10), and non-cancerous mouse origin adipose tissue cells (L929). Hyperthermia increased the level of ROS, γ-H2AX and HSP70 and decreased mitochondrial membrane potential in the cells. Heat stress impaired cell division, caused G1 arrest, induced cellular senescence, and apoptosis in all the tested cell lines. The cells incubated at 40°C for 72 h displayed a significant decrease in the f-actin level and cellular traction as compared with cells incubated at 37°C. Also, the cells showed a larger focal adhesion area and stronger adhesion at 40°C than at 37°C. The mitotic cells at 40°C were unable to round up properly and displayed retracting actin stress fibers. Hyperthermia down-regulated HDAC6, increased the acetylation level of microtubules, and perturbed the chromosome alignment in the mitotic cells at 40°C. Overexpression of HDAC6 rescued the cells from the G1 arrest and reduced the delay in cell rounding at 40°C suggesting a crucial role of HDAC6 in hyperthermia mediated responses. This study elucidates the significant role of cellular traction, focal adhesions, and cytoskeletal networks in mitotic cell rounding and chromosomal misalignment. It also highlights the significance of HDAC6 in heat-evoked senile cellular responses.
Collapse
|
25
|
Das A, Adhikary S, Chowdhury AR, Barui A. Substrate-dependent control of the chiral orientation of mesenchymal stem cells: image-based quantitative profiling. Biomed Mater 2021; 16:034102. [PMID: 33657017 DOI: 10.1088/1748-605x/abce4e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Stem-cell (SC) chirality or left-right (LR) asymmetry is an essential attribute, observed during tissue regeneration. The ability to control the LR orientation of cells by biophysical manipulation is a promising approach for recapitulating their inherent function. Despite remarkable progress in tissue engineering, the development of LR chirality in SCs has been largely unexplored. Here, we demonstrate the role of substrate stiffness on the LR asymmetry of cultured mesenchymal stem cells (MSCs). We found that MSCs acquired higher asymmetricity when cultured on stiffer PCL/collagen matrices. To confirm cellular asymmetry, different parameters such as the aspect ratio, orientation angle and intensity of polarized proteins (Par) were investigated. The results showed a significant (p < 0.01) difference in the average orientation angle, the cellular aspect ratio, and the expression of actin and Par proteins in MSCs cultured on matrices with different stiffnesses. Furthermore, a Gaussian support-vector machine was applied to classify cells cultured on both (2% and 10% PCL/Collagen) matrices, with a resulting accuracy of 96.2%. To the best of our knowledge, this study is the first that interrelates and quantifies MSC asymmetricity with matrix properties using a simple 2D model.
Collapse
Affiliation(s)
- Ankita Das
- Centre for Healthcare Science and Technology, IIEST, Shibpur, Howrah, West Bengal 711103, India
| | | | | | | |
Collapse
|
26
|
Dwivedi N, Das S, Bellare J, Majumder A. Viscoelastic substrate decouples cellular traction force from other related phenotypes. Biochem Biophys Res Commun 2021; 543:38-44. [PMID: 33508771 DOI: 10.1016/j.bbrc.2021.01.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 01/03/2023]
Abstract
Survival and maintenance of normal physiological functions depends on continuous interaction of cells with its microenvironment. Cells sense the mechanical properties of underlying substrate by applying force and modulate their behaviour in response to the resistance offered by the substrate. Most of the studies addressing cell-substrate mechanical interactions have been carried out using elastic substrates. Since tissues within our body are viscoelastic in nature, here we explore the effect of substrate's viscoelasticity on various properties of mesenchymal stem cells. Here, we used two sets of polyacrylamide substrates having similar storage modulus (G' = 1.1-1.6 kPa) but different loss modulus (G" = 45 Pa and 300 Pa). We report that human mesenchymal stem cells spread more but apply less force on the viscoelastic substrate (substrate with higher loss modulus). We further investigated the effect of substrate viscoelasticity on the expression of other contractility-associated proteins such as focal adhesion (FA) proteins (Vinculin, Paxillin, Talin), cytoskeletal proteins (actin, mysion, intermediate filaments, and microtubules) and mechano-sensor protein Yes-Associated Protein (YAP). Our results show that substrate viscoelasticity decouples cellular traction from other known traction related phenotypes.
Collapse
Affiliation(s)
- Nehal Dwivedi
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), Mumbai, 400076, India
| | - Siddhartha Das
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), Mumbai, 400076, India
| | - Jayesh Bellare
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), Mumbai, 400076, India
| | - Abhijit Majumder
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), Mumbai, 400076, India.
| |
Collapse
|
27
|
Childs PG, Reid S, Salmeron-Sanchez M, Dalby MJ. Hurdles to uptake of mesenchymal stem cells and their progenitors in therapeutic products. Biochem J 2020; 477:3349-3366. [PMID: 32941644 PMCID: PMC7505558 DOI: 10.1042/bcj20190382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/15/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022]
Abstract
Twenty-five years have passed since the first clinical trial utilising mesenchymal stomal/stem cells (MSCs) in 1995. In this time academic research has grown our understanding of MSC biochemistry and our ability to manipulate these cells in vitro using chemical, biomaterial, and mechanical methods. Research has been emboldened by the promise that MSCs can treat illness and repair damaged tissues through their capacity for immunomodulation and differentiation. Since 1995, 31 therapeutic products containing MSCs and/or progenitors have reached the market with the level of in vitro manipulation varying significantly. In this review, we summarise existing therapeutic products containing MSCs or mesenchymal progenitor cells and examine the challenges faced when developing new therapeutic products. Successful progression to clinical trial, and ultimately market, requires a thorough understanding of these hurdles at the earliest stages of in vitro pre-clinical development. It is beneficial to understand the health economic benefit for a new product and the reimbursement potential within various healthcare systems. Pre-clinical studies should be selected to demonstrate efficacy and safety for the specific clinical indication in humans, to avoid duplication of effort and minimise animal usage. Early consideration should also be given to manufacturing: how cell manipulation methods will integrate into highly controlled workflows and how they will be scaled up to produce clinically relevant quantities of cells. Finally, we summarise the main regulatory pathways for these clinical products, which can help shape early therapeutic design and testing.
Collapse
Affiliation(s)
- Peter G. Childs
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
- Centre for the Cellular Microenvironment, SUPA Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1QE, U.K
| | - Stuart Reid
- Centre for the Cellular Microenvironment, SUPA Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1QE, U.K
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Matthew J. Dalby
- Centre for the Cellular Microenvironment, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
28
|
Tan JJY, Lee CP, Hashimoto M. Preheating of Gelatin Improves its Printability with Transglutaminase in Direct Ink Writing 3D Printing. Int J Bioprint 2020; 6:296. [PMID: 33088999 PMCID: PMC7557522 DOI: 10.18063/ijb.v6i4.296] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/07/2020] [Indexed: 02/06/2023] Open
Abstract
Gelatin and transglutaminase (TG) ink is increasingly popular in direct ink writing three-dimensional (3D) printing of cellular scaffolds and edible materials. The use of enzymes to crosslink gelatin chains removes the needs for toxic crosslinkers and bypasses undesired side reactions due to the specificity of the enzymes. However, their application in 3D printing remains challenging primarily due to the rapid crosslinking that leads to the short duration of printable time. In this work, we propose the use of gelatin preheated for 7 days to extend the duration of the printing time of the gelatin ink. We first determined the stiffness of freshly prepared gelatin (FG) and preheated gelatin (PG) (5 – 20% w/w) containing 5% w/w TG. We selected gelatin hydrogels made from 7.5% w/w FG and 10% w/w PG that yielded similar stiffness for subsequent studies to determine the duration of the printable time. PG inks exhibited longer time required for gelation and a smaller increase in viscosity with time than FG inks of similar stiffness. Our study suggested the advantage to preheat gelatin to enhance the printability of the ink, which is essential for extrusion-based bioprinting and food printing.
Collapse
Affiliation(s)
- Justin Jia Yao Tan
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.,SUTD-MIT International Design Centre, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Cheng Pau Lee
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.,SUTD-MIT International Design Centre, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Michinao Hashimoto
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.,SUTD-MIT International Design Centre, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| |
Collapse
|
29
|
Domingues C, Geraldo AM, Anjo SI, Matos A, Almeida C, Caramelo I, Lopes-da-Silva JA, Paiva A, Carvalho J, Pires das Neves R, Manadas B, Grãos M. Cofilin-1 Is a Mechanosensitive Regulator of Transcription. Front Cell Dev Biol 2020; 8:678. [PMID: 32903827 PMCID: PMC7438942 DOI: 10.3389/fcell.2020.00678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
The mechanical properties of the extracellular environment are interrogated by cells and integrated through mechanotransduction. Many cellular processes depend on actomyosin-dependent contractility, which is influenced by the microenvironment’s stiffness. Here, we explored the influence of substrate stiffness on the proteome of proliferating undifferentiated human umbilical cord-matrix mesenchymal stem/stromal cells. The relative abundance of several proteins changed significantly by expanding cells on soft (∼3 kPa) or stiff substrates (GPa). Many such proteins are associated with the regulation of the actin cytoskeleton, a major player of mechanotransduction and cell physiology in response to mechanical cues. Specifically, Cofilin-1 levels were elevated in cells cultured on soft comparing with stiff substrates. Furthermore, Cofilin-1 was de-phosphorylated (active) and present in the nuclei of cells kept on soft substrates, in contrast with phosphorylated (inactive) and widespread distribution in cells on stiff. Soft substrates promoted Cofilin-1-dependent increased RNA transcription and faster RNA polymerase II-mediated transcription elongation. Cofilin-1 is part of a novel mechanism linking mechanotransduction and transcription.
Collapse
Affiliation(s)
- Catarina Domingues
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal
| | - A Margarida Geraldo
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Sandra Isabel Anjo
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - André Matos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Polytechnic Institute of Coimbra, Coimbra College of Agriculture, Coimbra, Portugal
| | - Cláudio Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Polytechnic Institute of Coimbra, Coimbra College of Agriculture, Coimbra, Portugal
| | - Inês Caramelo
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal
| | | | - Artur Paiva
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, Coimbra, Portugal
| | - João Carvalho
- Centro de Física da Universidade de Coimbra (CFisUC), Department of Physics, University of Coimbra, Coimbra, Portugal
| | - Ricardo Pires das Neves
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal
| | - Bruno Manadas
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Mário Grãos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal.,Biocant, Technology Transfer Association, Cantanhede, Portugal
| |
Collapse
|
30
|
Castilla-Casadiego DA, Reyes-Ramos AM, Domenech M, Almodovar J. Effects of Physical, Chemical, and Biological Stimulus on h-MSC Expansion and Their Functional Characteristics. Ann Biomed Eng 2020; 48:519-535. [PMID: 31705365 PMCID: PMC6952531 DOI: 10.1007/s10439-019-02400-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/30/2019] [Indexed: 01/10/2023]
Abstract
Human adult mesenchymal stem or stromal cells (h-MSC) therapy has gained considerable attention due to the potential to treat or cure diseases given their immunosuppressive properties and tissue regeneration capabilities. Researchers have explored diverse strategies to promote high h-MSC production without losing functional characteristics or properties. Physical stimulus including stiffness, geometry, and topography, chemical stimulus, like varying the surface chemistry, and biochemical stimuli such as cytokines, hormones, small molecules, and herbal extracts have been studied but have yet to be translated to industrial manufacturing practice. In this review, we describe the role of those stimuli on h-MSC manufacturing, and how these stimuli positively promote h-MSC properties, impacting the cell manufacturing field for cell-based therapies. In addition, we discuss other process considerations such as bioreactor design, good manufacturing practice, and the importance of the cell donor and ethics factors for manufacturing potent h-MSC.
Collapse
Affiliation(s)
- David A Castilla-Casadiego
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA
| | - Ana M Reyes-Ramos
- Department of Chemical Engineering, University of Puerto Rico Mayagüez, Call Box 9000, Mayagüez, PR, 00681-9000, USA
| | - Maribella Domenech
- Department of Chemical Engineering, University of Puerto Rico Mayagüez, Call Box 9000, Mayagüez, PR, 00681-9000, USA
| | - Jorge Almodovar
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA.
| |
Collapse
|