1
|
Motlhatlhedi K, Pilusa NB, Ndaba T, George M, Masamba P, Kappo AP. Therapeutic and vaccinomic potential of moonlighting proteins for the discovery and design of drugs and vaccines against schistosomiasis. Am J Transl Res 2024; 16:4279-4300. [PMID: 39398578 PMCID: PMC11470331 DOI: 10.62347/bxrt7210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/15/2024] [Indexed: 10/15/2024]
Abstract
Despite significant and coordinated efforts to combat schistosomiasis, such as providing clean water, sanitation, hygiene, and snail control, these strategies still fall short, as regions previously thought to be disease-free have shown active schistosomiasis transmission. Therefore, it is necessary to implement integrated control methods, emphasizing vaccine development for sustainable control of schistosomiasis. Vaccination has significantly contributed to global healthcare and has been the most economically friendly method for avoiding pathogenic infections. Over the years, different vaccine candidates for schistosomiasis have been investigated with varying degrees of success in clinical trials with many not proceeding past the early clinical phase. Recently, proteins have been mentioned as targets for drug discovery and vaccine development, especially those with multiple functions in schistosomes. Moonlighting proteins are a class of proteins that can perform several functions besides their known functions. This multifunctional property is believed to have been expressed through evolution, where the polypeptide chain gained the ability to perform other tasks without undergoing any structural changes. Since proteins have gained more traction as drug targets, multifunctional proteins have thus become attractive for discovering and developing novel drugs since the drug can target more than one function. Moonlighting proteins are promising drug and vaccine candidates for diseases such as schistosomiasis, since they aid in disease promotion in the human host. This manuscript elucidates vital moonlighting proteins used by schistosomes to drive their life cycle and to ensure their survival in the human host, which can be used to develop anti-schistosomal therapeutics and vaccinomics.
Collapse
Affiliation(s)
- Kagiso Motlhatlhedi
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| | - Naledi Beatrice Pilusa
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| | - Tshepang Ndaba
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| | - Mary George
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| | - Priscilla Masamba
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| | - Abidemi Paul Kappo
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| |
Collapse
|
2
|
Pirovich DB, Da'dara AA, Skelly PJ. GLYCOLYTIC ENZYMES AS VACCINES AGAINST SCHISTOSOMIASIS: TESTING SCHISTOSOMA MANSONI PHOSPHOGLYCERATE MUTASE IN MICE. J Parasitol 2024; 110:96-105. [PMID: 38466806 DOI: 10.1645/23-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Schistosomiasis is a globally burdensome parasitic disease caused by flatworms (blood flukes) in the genus Schistosoma. The current standard treatment for schistosomiasis is the drug praziquantel, but there is an urgent need to advance novel interventions such as vaccines. Several glycolytic enzymes have been evaluated as vaccine targets for schistosomiasis, and data from these studies are reviewed here. Although these parasites are canonically considered to be intracellular, proteomic analysis has revealed that many schistosome glycolytic enzymes are additionally found at the host-interactive surface. We have recently found that the intravascular stage of Schistosoma mansoni (Sm) expresses the glycolytic enzyme phosphoglycerate mutase (PGM) on the tegumental surface. Live parasites display PGM activity, and suppression of PGM gene expression by RNA interference diminishes surface enzyme activity. Recombinant SmPGM (rSmPGM) can cleave its glycolytic substrate, 3-phosphoglycerate and can both bind to plasminogen and promote its conversion to an active form (plasmin) in vitro, suggesting a moonlighting role for this enzyme in regulating thrombosis in vivo. We found that antibodies in sera from chronically infected mice recognize rSmPGM. We also tested the protective efficacy of rSmPGM as a vaccine in the murine model. Although immunization generates high titers of anti-SmPGM antibodies (against both recombinant and native SmPGM), no significant differences in worm numbers were found between vaccinated and control animals.
Collapse
Affiliation(s)
- David B Pirovich
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts 01536
| | - Akram A Da'dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts 01536
| | - Patrick J Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts 01536
| |
Collapse
|
3
|
Zumuk CP, Jones MK, Navarro S, Gray DJ, You H. Transmission-Blocking Vaccines against Schistosomiasis Japonica. Int J Mol Sci 2024; 25:1707. [PMID: 38338980 PMCID: PMC10855202 DOI: 10.3390/ijms25031707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Control of schistosomiasis japonica, endemic in Asia, including the Philippines, China, and Indonesia, is extremely challenging. Schistosoma japonicum is a highly pathogenic helminth parasite, with disease arising predominantly from an immune reaction to entrapped parasite eggs in tissues. Females of this species can generate 1000-2200 eggs per day, which is about 3- to 15-fold greater than the egg output of other schistosome species. Bovines (water buffalo and cattle) are the predominant definitive hosts and are estimated to generate up to 90% of parasite eggs released into the environment in rural endemic areas where these hosts and humans are present. Here, we highlight the necessity of developing veterinary transmission-blocking vaccines for bovines to better control the disease and review potential vaccine candidates. We also point out that the approach to producing efficacious transmission-blocking animal-based vaccines before moving on to human vaccines is crucial. This will result in effective and feasible public health outcomes in agreement with the One Health concept to achieve optimum health for people, animals, and the environment. Indeed, incorporating a veterinary-based transmission vaccine, coupled with interventions such as human mass drug administration, improved sanitation and hygiene, health education, and snail control, would be invaluable to eliminating zoonotic schistosomiasis.
Collapse
Affiliation(s)
- Chika P. Zumuk
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Malcolm K. Jones
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Severine Navarro
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Centre for Childhood Nutrition Research, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Darren J. Gray
- Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia;
| | - Hong You
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
4
|
Ancarola ME, Maldonado LL, García LCA, Franchini GR, Mourglia-Ettlin G, Kamenetzky L, Cucher MA. A Comparative Analysis of the Protein Cargo of Extracellular Vesicles from Helminth Parasites. Life (Basel) 2023; 13:2286. [PMID: 38137887 PMCID: PMC10744797 DOI: 10.3390/life13122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Helminth parasites cause debilitating-sometimes fatal-diseases in humans and animals. Despite their impact on global health, mechanisms underlying host-parasite interactions are still poorly understood. One such mechanism involves the exchange of extracellular vesicles (EVs), which are membrane-enclosed subcellular nanoparticles. To date, EV secretion has been studied in helminth parasites, including EV protein content. However, information is highly heterogeneous, since it was generated in multiple species, using varied protocols for EV isolation and data analysis. Here, we compared the protein cargo of helminth EVs to identify common markers for each taxon. For this, we integrated published proteomic data and performed a comparative analysis through an orthology approach. Overall, only three proteins were common in the EVs of the seven analyzed species. Additionally, varied repertoires of proteins with moonlighting activity, vaccine antigens, canonical and non-canonical proteins related to EV biogenesis, taxon-specific proteins of unknown function and RNA-binding proteins were observed in platyhelminth and nematode EVs. Despite the lack of consensus on EV isolation protocols and protein annotation, several proteins were shown to be consistently detected in EV preparations from organisms at different taxa levels, providing a starting point for a selective biochemical characterization.
Collapse
Affiliation(s)
- María Eugenia Ancarola
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires C1121, Argentina; (M.E.A.); (L.L.M.)
- Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires C1121, Argentina
| | - Lucas L. Maldonado
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires C1121, Argentina; (M.E.A.); (L.L.M.)
- Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires C1121, Argentina
- Instituto de Tecnología (INTEC), Universidad Argentina de la Empresa (UADE), Buenos Aires C1073, Argentina
| | - Lucía C. A. García
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires C1121, Argentina; (M.E.A.); (L.L.M.)
- Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires C1121, Argentina
| | - Gisela R. Franchini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP)-Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), La Plata B1900, Argentina;
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata B1900, Argentina
| | - Gustavo Mourglia-Ettlin
- Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay;
| | - Laura Kamenetzky
- Instituto de Biociencias, Biotecnología y Biología Traslacional, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428, Argentina;
| | - Marcela A. Cucher
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires C1121, Argentina; (M.E.A.); (L.L.M.)
- Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires C1121, Argentina
| |
Collapse
|
5
|
Li L, He W, Fan X, Liu M, Luo B, Yang F, Jiang N, Wang L, Zhou B. Proteomic analysis of Taenia solium cysticercus and adult stages. Front Vet Sci 2023; 9:934197. [PMID: 36699330 PMCID: PMC9868161 DOI: 10.3389/fvets.2022.934197] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 12/07/2022] [Indexed: 01/10/2023] Open
Abstract
Taenia solium (T. solium) cysticercosis is a neglected parasitic zoonosis that occurs in developing countries. Since T. solium has a complex life cycle that includes eggs, oncospheres, cysticerci, and adults, presumably many proteins are produced that enable them to survive and establish an infection within the host. The objectives of this study were to perform a comparative proteomic analysis of two ontogenetic stages of T. solium (cysticerci and adult) and to analyze their differential expression of proteins. Methods proteins were separated by High Performance Liquid Chromatography (HPLC) fractionation, and protein samples were also digested in liquid and identified by liquid chromatography tandem mass spectrometry (LC-MS/MS); the differentially expressed proteins were then processed by a bioinformatics analysis and verified by parallel reaction monitoring (PRM). Results we identified 2,481 proteins by label-free quantitative proteomics. Then differentially expressed proteins were screened under P values < 0.05 and 2 fold change, we found that 293 proteins up-regulated and 265 proteins down-regulated. Discussion through the bioinformatics analysis, we analyzed the differences types and functions of proteins in the Taenia solium and cysticercus, the data will provide reference value for studying the pathogenic mechanism of the two stages and the interaction with the host, and also support for further experimental verification.
Collapse
|
6
|
Pirovich DB, Da'dara AA, Skelly PJ. Schistosoma mansoni phosphoglycerate mutase: a glycolytic ectoenzyme with thrombolytic potential. PARASITE (PARIS, FRANCE) 2022; 29:41. [PMID: 36083036 PMCID: PMC9461710 DOI: 10.1051/parasite/2022042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/28/2022] [Indexed: 11/14/2022]
Abstract
Schistosomiasis is a debilitating parasitic disease caused by intravascular flatworms called schistosomes (blood flukes) that affects >200 million people worldwide. Proteomic analysis has revealed the surprising presence of classical glycolytic enzymes – typically cytosolic proteins – located on the extracellular surface of the parasite tegument (skin). Immunolocalization experiments show that phosphoglycerate mutase (PGM) is widely expressed in parasite tissues and is highly expressed in the tegument. We demonstrate that live Schistosoma mansoni parasites express enzymatically active PGM on their tegumental surface. Suppression of PGM using RNA interference (RNAi) diminishes S. mansoni PGM (SmPGM) gene expression, protein levels, and surface enzyme activity. Sequence comparisons place SmPGM in the cofactor (2,3-bisphosphoglycerate)-dependent PGM (dPGM) family. We have produced recombinant SmPGM (rSmPGM) in an enzymatically active form in Escherichia coli. The Michaelis-Menten constant (Km) of rSmPGM for its glycolytic substrate (3-phosphoglycerate) is 0.85 mM ± 0.02. rSmPGM activity is inhibited by the dPGM-specific inhibitor vanadate. Here, we show that rSmPGM not only binds to plasminogen but also promotes its conversion to an active form (plasmin) in vitro. This supports the hypothesis that host-interactive tegumental proteins (such as SmPGM), by enhancing plasmin formation, may help degrade blood clots around the worms in the vascular microenvironment and thus promote parasite survival in vivo.
Collapse
Affiliation(s)
- David B Pirovich
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Akram A Da'dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Patrick J Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA
| |
Collapse
|
7
|
Molecular characterization of glyceraldehyde-3-phosphate dehydrogenase from Eimeria tenella. Parasitol Res 2022; 121:1749-1760. [PMID: 35366097 DOI: 10.1007/s00436-022-07508-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/26/2022] [Indexed: 12/18/2022]
Abstract
Chicken coccidiosis is an extremely common and lethally epidemic disease caused by Eimeria spp. The control measures of coccidiosis depend mainly on drugs. However, the ensuing drug resistance problem has brought considerable economic loss to the poultry industry. In our previous study, comparative transcriptome analyses of a drug-sensitive (DS) strain and two drug-resistant strains (diclazuril-resistant (DZR) and maduramicin-resistant (MRR) strains) of Eimeria tenella were carried out by transcriptome sequencing. The expression of glyceraldehyde-3-phosphate dehydrogenase of E. tenella (EtGAPDH) was upregulated in the two resistant strains. In this study, we cloned and characterized EtGAPDH. Indirect immunofluorescence localization was used to observe the distribution of EtGAPDH in E. tenella. The results showed that the protein was distributed mainly on the surface of sporozoites and merozoites, and in the cytoplasm of merozoites. qPCR was performed to detect the transcription level of EtGAPDH in the different developmental stages of the E. tenella DS strain. The transcription level of EtGAPDH was significantly higher in second-generation merozoites than in the other three stages. The transcription level of EtGAPDH in the different drug-resistant strains and DS strain of E. tenella was also analyzed by qPCR. The results showed that the transcription level was significantly higher in the two drug-resistant strains (MRR and DZR) than in the DS strain. As the concentration of diclazuril and maduramicin increased, the transcription levels also increased. Western blot results showed that EtGAPDH protein was upregulated in the DZR and MRR strains. Enzyme activity showed that the enzyme activity of EtGAPDH was higher in the two resistant strains than in the DS strain. These results showed that EtGAPDH possess several roles that separate and distinct from its glycolytic function and maybe involved in the development of E. tenella resistance to anticoccidial drugs.
Collapse
|
8
|
Abstract
Schistosomes are long lived, intravascular parasitic platyhelminths that infect >200 million people globally. The molecular mechanisms used by these blood flukes to dampen host immune responses are described in this review. Adult worms express a collection of host-interactive tegumental ectoenzymes that can cleave host signaling molecules such as the "alarmin" ATP (cleaved by SmATPDase1), the platelet activator ADP (SmATPDase1, SmNPP5), and can convert AMP into the anti-inflammatory mediator adenosine (SmAP). SmAP can additionally cleave the lipid immunomodulator sphingosine-1-phosphate and the proinflammatory anionic polymer, polyP. In addition, the worms release a barrage of proteins (e.g., SmCB1, SjHSP70, cyclophilin A) that can impinge on immune cell function. Parasite eggs also release their own immunoregulatory proteins (e.g., IPSE/α1, omega1, SmCKBP) as do invasive cercariae (e.g., Sm16, Sj16). Some schistosome glycans (e.g., LNFPIII, LNnT) and lipids (e.g., Lyso-PS, LPC), produced by several life stages, likewise affect immune cell responses. The parasites not only produce eicosanoids (e.g., PGE2, PGD2-that can be anti-inflammatory) but can also induce host cells to release these metabolites. Finally, the worms release extracellular vesicles (EVs) containing microRNAs, and these too have been shown to skew host cell metabolism. Thus, schistosomes employ an array of biomolecules-protein, lipid, glycan, nucleic acid, and more, to bend host biochemistry to their liking. Many of the listed molecules have been individually shown capable of inducing aspects of the polarized Th2 response seen following infection (with the generation of regulatory T cells (Tregs), regulatory B cells (Bregs) and anti-inflammatory, alternatively activated (M2) macrophages). Precisely how host cells integrate the impact of these myriad parasite products following natural infection is not known. Several of the schistosome immunomodulators described here are in development as novel therapeutics against autoimmune, inflammatory, and other, nonparasitic, diseases.
Collapse
Affiliation(s)
- Sreemoyee Acharya
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Akram A. Da’dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Patrick J. Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
9
|
Fifty years of the schistosome tegument: discoveries, controversies, and outstanding questions. Int J Parasitol 2021; 51:1213-1232. [PMID: 34767805 DOI: 10.1016/j.ijpara.2021.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022]
Abstract
The unique multilaminate appearance of the tegument surface of schistosomes was first described in 1973, in one of the earliest volumes of the International Journal for Parasitology. The present review, published almost 50 years later, traces the development of our knowledge of the tegument, starting with those earliest cytological advances, particularly the surface plasma membrane-membranocalyx complex, through an era of protein discovery to the modern age of protein characterization, aided by proteomics. More recently, analysis of single cell transcriptomes of schistosomes is providing insight into the organisation of the cell bodies that support the surface syncytium. Our understanding of the tegument, notably the nature of the proteins present within the plasma membrane and membranocalyx, has provided insights into how the schistosomes interact with their hosts but many aspects of how the tegument functions remain unanswered. Among the unresolved aspects are those concerned with maintenance and renewal of the surface membrane complex, and whether surface proteins and membrane components are recycled. Current controversies arising from investigations about whether the tegument is a source of extracellular vesicles during parasitism, and if it is covered with glycolytic enzymes, are evaluated in the light of cytological and proteomic knowledge of the layer.
Collapse
|
10
|
Assessment of reference genes at six different developmental stages of Schistosoma mansoni for quantitative RT-PCR. Sci Rep 2021; 11:16816. [PMID: 34413342 PMCID: PMC8376997 DOI: 10.1038/s41598-021-96055-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/31/2021] [Indexed: 12/13/2022] Open
Abstract
Reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) is the most used, fast, and reproducible method to confirm large-scale gene expression data. The use of stable reference genes for the normalization of RT-qPCR assays is recognized worldwide. No systematic study for selecting appropriate reference genes for usage in RT-qPCR experiments comparing gene expression levels at different Schistosoma mansoni life-cycle stages has been performed. Most studies rely on genes commonly used in other organisms, such as actin, tubulin, and GAPDH. Therefore, the present study focused on identifying reference genes suitable for RT-qPCR assays across six S. mansoni developmental stages. The expression levels of 25 novel candidates that we selected based on the analysis of public RNA-Seq datasets, along with eight commonly used reference genes, were systematically tested by RT-qPCR across six developmental stages of S. mansoni (eggs, miracidia, cercariae, schistosomula, adult males and adult females). The stability of genes was evaluated with geNorm, NormFinder and RefFinder algorithms. The least stable candidate reference genes tested were actin, tubulin and GAPDH. The two most stable reference genes suitable for RT-qPCR normalization were Smp_101310 (Histone H4 transcription factor) and Smp_196510 (Ubiquitin recognition factor in ER-associated degradation protein 1). Performance of these two genes as normalizers was successfully evaluated with females maintained unpaired or paired to males in culture for 8 days, or with worm pairs exposed for 16 days to double-stranded RNAs to silence a protein-coding gene. This study provides reliable reference genes for RT-qPCR analysis using samples from six different S. mansoni life-cycle stages.
Collapse
|
11
|
Pirovich DB, Da’dara AA, Skelly PJ. Multifunctional Fructose 1,6-Bisphosphate Aldolase as a Therapeutic Target. Front Mol Biosci 2021; 8:719678. [PMID: 34458323 PMCID: PMC8385298 DOI: 10.3389/fmolb.2021.719678] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/31/2021] [Indexed: 01/01/2023] Open
Abstract
Fructose 1,6-bisphosphate aldolase is a ubiquitous cytosolic enzyme that catalyzes the fourth step of glycolysis. Aldolases are classified into three groups: Class-I, Class-IA, and Class-II; all classes share similar structural features but low amino acid identity. Apart from their conserved role in carbohydrate metabolism, aldolases have been reported to perform numerous non-enzymatic functions. Here we review the myriad "moonlighting" functions of this classical enzyme, many of which are centered on its ability to bind to an array of partner proteins that impact cellular scaffolding, signaling, transcription, and motility. In addition to the cytosolic location, aldolase has been found the extracellular surface of several pathogenic bacteria, fungi, protozoans, and metazoans. In the extracellular space, the enzyme has been reported to perform virulence-enhancing moonlighting functions e.g., plasminogen binding, host cell adhesion, and immunomodulation. Aldolase's importance has made it both a drug target and vaccine candidate. In this review, we note the several inhibitors that have been synthesized with high specificity for the aldolases of pathogens and cancer cells and have been shown to inhibit classical enzyme activity and moonlighting functions. We also review the many trials in which recombinant aldolases have been used as vaccine targets against a wide variety of pathogenic organisms including bacteria, fungi, and metazoan parasites. Most of such trials generated significant protection from challenge infection, correlated with antigen-specific cellular and humoral immune responses. We argue that refinement of aldolase antigen preparations and expansion of immunization trials should be encouraged to promote the advancement of promising, protective aldolase vaccines.
Collapse
Affiliation(s)
- David B. Pirovich
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States
| | | | | |
Collapse
|
12
|
Al-Naseri A, Al-Absi S, El Ridi R, Mahana N. A comprehensive and critical overview of schistosomiasis vaccine candidates. J Parasit Dis 2021; 45:557-580. [PMID: 33935395 PMCID: PMC8068781 DOI: 10.1007/s12639-021-01387-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
A digenetic platyhelminth Schistosoma is the causative agent of schistosomiasis, one of the neglected tropical diseases that affect humans and animals in numerous countries in the Middle East, sub-Saharan Africa, South America and China. Several control methods were used for prevention of infection or treatment of acute and chronic disease. Mass drug administration led to reduction in heavy-intensity infections and morbidity, but failed to decrease schistosomiasis prevalence and eliminate transmission, indicating the need to develop anti-schistosome vaccine to prevent infection and parasite transmission. This review summarizes the efficacy and protective capacity of available schistosomiasis vaccine candidates with some insights and future prospects.
Collapse
Affiliation(s)
- Aya Al-Naseri
- Zoology Department, Faculty of Science, Cairo Univesity, Giza, 12613 Egypt
| | - Samar Al-Absi
- Zoology Department, Faculty of Science, Cairo Univesity, Giza, 12613 Egypt
| | - Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo Univesity, Giza, 12613 Egypt
| | - Noha Mahana
- Zoology Department, Faculty of Science, Cairo Univesity, Giza, 12613 Egypt
| |
Collapse
|
13
|
Boreiko S, Silva M, Iulek J. Structure determination and analyses of the GAPDH from the parasite Schistosoma mansoni, the first one from a platyhelminth. Biochimie 2021; 184:18-25. [PMID: 33524435 DOI: 10.1016/j.biochi.2021.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
The enzyme Glyceraldehyde-3-Phosphate Dehydrogenase from Schistosoma mansoni (SmGAPDH) is characterized as a therapeutical target for schistosomiasis. In this context, we report here the experimental structure, structural analyses and comparisons of SmGAPDH, the first one from a Platyhelminth. The enzyme was expressed, purified and assayed for crystallization, what allowed the obtainment of crystals of sufficient quality to collect X-ray diffraction data up to 2.51 Å resolution. SmGAPDH is the only GAPDH to present the sequence NNR (its residues 114-116) which leads to (especially R116) a hydrogen bond network that possibly reflects on the flexibility of residues to interact with the adenine part of NAD+, speculated to be important for differential drug design.
Collapse
Affiliation(s)
- Sheila Boreiko
- Department of Chemistry, State University of Ponta Grossa, Ponta Grossa - PR, 84030-900, Brazil
| | - Marcio Silva
- Department of Education, Federal Technological University of Paraná, Ponta Grossa - PR, 84016-210, Brazil
| | - Jorge Iulek
- Department of Chemistry, State University of Ponta Grossa, Ponta Grossa - PR, 84030-900, Brazil.
| |
Collapse
|
14
|
Angeles JMM, Mercado VJP, Rivera PT. Behind Enemy Lines: Immunomodulatory Armamentarium of the Schistosome Parasite. Front Immunol 2020; 11:1018. [PMID: 32582161 PMCID: PMC7295904 DOI: 10.3389/fimmu.2020.01018] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
The deeply rooted, intricate relationship between the Schistosoma parasite and the human host has enabled the parasite to successfully survive within the host and surreptitiously evade the host's immune attacks. The parasite has developed a variety of strategies in its immunomodulatory armamentarium to promote infection without getting harmed or killed in the battlefield of immune responses. These include the production of immunomodulatory molecules, alteration of membranes, and the promotion of granuloma formation. Schistosomiasis thus serves as a paradigm for understanding the Th2 immune responses seen in various helminthiases. This review therefore aims to summarize the immunomodulatory mechanisms of the schistosome parasites to survive inside the host. Understanding these immunomodulatory strategies not only provides information on parasite-host interactions, but also forms the basis in the development of novel drugs and vaccines against the schistosome infection, as well as various types of autoimmune and inflammatory conditions.
Collapse
Affiliation(s)
- Jose Ma M Angeles
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| | - Van Jerwin P Mercado
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| | - Pilarita T Rivera
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| |
Collapse
|
15
|
First person – David Pirovich. Biol Open 2020. [PMCID: PMC7104855 DOI: 10.1242/bio.051631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
First Person is a series of interviews with the first authors of a selection of papers published in Biology Open (BiO), helping early-career researchers promote themselves alongside their papers. David Pirovich is first author on ‘Schistosoma mansoni glyceraldehyde-3-phosphate dehydrogenase enhances formation of the blood-clot lysis protein plasmin’, published in BiO. David is a PhD candidate in the lab of Dr Patrick Skelly at Tufts University, North Grafton, MA, USA, investigating novel moonlighting functions (thrombolysis, immunomodulation) of Schistosoma mansoni glycolytic enzymes.
Collapse
|