1
|
Leite DJ, Schönauer A, Blakeley G, Harper A, Garcia-Castro H, Baudouin-Gonzalez L, Wang R, Sarkis N, Nikola AG, Koka VSP, Kenny NJ, Turetzek N, Pechmann M, Solana J, McGregor AP. An atlas of spider development at single-cell resolution provides new insights into arthropod embryogenesis. EvoDevo 2024; 15:5. [PMID: 38730509 PMCID: PMC11083766 DOI: 10.1186/s13227-024-00224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/15/2024] [Indexed: 05/13/2024] Open
Abstract
Spiders are a diverse order of chelicerates that diverged from other arthropods over 500 million years ago. Research on spider embryogenesis, particularly studies using the common house spider Parasteatoda tepidariorum, has made important contributions to understanding the evolution of animal development, including axis formation, segmentation, and patterning. However, we lack knowledge about the cells that build spider embryos, their gene expression profiles and fate. Single-cell transcriptomic analyses have been revolutionary in describing these complex landscapes of cellular genetics in a range of animals. Therefore, we carried out single-cell RNA sequencing of P. tepidariorum embryos at stages 7, 8 and 9, which encompass the establishment and patterning of the body plan, and initial differentiation of many tissues and organs. We identified 20 cell clusters, from 18.5 k cells, which were marked by many developmental toolkit genes, as well as a plethora of genes not previously investigated. We found differences in the cell cycle transcriptional signatures, suggestive of different proliferation dynamics, which related to distinctions between endodermal and some mesodermal clusters, compared with ectodermal clusters. We identified many Hox genes as markers of cell clusters, and Hox gene ohnologs were often present in different clusters. This provided additional evidence of sub- and/or neo-functionalisation of these important developmental genes after the whole genome duplication in an arachnopulmonate ancestor (spiders, scorpions, and related orders). We also examined the spatial expression of marker genes for each cluster to generate a comprehensive cell atlas of these embryonic stages. This revealed new insights into the cellular basis and genetic regulation of head patterning, hematopoiesis, limb development, gut development, and posterior segmentation. This atlas will serve as a platform for future analysis of spider cell specification and fate, and studying the evolution of these processes among animals at cellular resolution.
Collapse
Affiliation(s)
- Daniel J Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK.
| | - Anna Schönauer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Grace Blakeley
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Amber Harper
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Helena Garcia-Castro
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | | | - Ruixun Wang
- Institute for Zoology, Biocenter, University of Cologne, Zuelpicher Str. 47B, 50674, Cologne, Germany
| | - Naïra Sarkis
- Institute for Zoology, Biocenter, University of Cologne, Zuelpicher Str. 47B, 50674, Cologne, Germany
| | - Alexander Günther Nikola
- Evolutionary Ecology, Faculty of Biology, Biocenter, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Venkata Sai Poojitha Koka
- Evolutionary Ecology, Faculty of Biology, Biocenter, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Nathan J Kenny
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
- Department of Biochemistry Te Tari Matū Koiora, University of Otago, Dunedin, New Zealand
| | - Natascha Turetzek
- Evolutionary Ecology, Faculty of Biology, Biocenter, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Matthias Pechmann
- Institute for Zoology, Biocenter, University of Cologne, Zuelpicher Str. 47B, 50674, Cologne, Germany
| | - Jordi Solana
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK.
| |
Collapse
|
2
|
Lai X, Ji F, Yu F, Chen H, Shen S, Gao H. Delta of Exopalaemon carinicauda: molecular characterization, expression in different tissues and developmental stages, and its SNPs association analysis with development. Mol Biol Rep 2023; 50:10083-10095. [PMID: 37910385 DOI: 10.1007/s11033-023-08840-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND The Notch signaling pathway plays a significant role in the gene regulatory network of development of vertebrate and invertebrate. However, as a ligand for the Notch signaling pathway, the mechanism of Delta in the development of Exopalaemon carinicauda is still unclear. METHODS AND RESULTS The Delta's molecular characteristics, tissue distribution and their association with development in E. carinicauda were studied by RACE (rapid amplification of cDNA end), qRT-PCR (quantitative Real-time PCR) and SNP (single nucleotide polymorphism), respectively. The delta in E. carinicauda had a full-length cDNA of 2807 bp and its Delta of 808 amino-acid residue had the highest identity with the Delta of Homarus americanus (identity = 76.63%). Delta had the highest expression in the ovary, and its expression varied with different stages of embryonic, larval, and ovarian development. After delta RNA interference (with a highest interference efficiency of 66% at 24 h), the expression of Notch signaling pathway genes and developmental related genes was significantly reduced, and the ovarian development was significantly delayed. Further study found that there were 4 SNPs (ds1-4) in delta cDNA, of which two (ds2 T1521G caused a mutation Asn422Lys and ds3 G1674A caused a mutation Tyr473Cys in the EGF-like domain) were associated with the development of E. carinicauda. The Gonadosomatic Index (GSI) of the ds2 TT genotypes was 37.28% and 134.60% higher than E. carinicauda of GT and GG genotype respectively (P < 0.05). CONCLUSION Our research indicated that delta was involved in the development of E. carinicauda and provided new insights for molecular breeding with SNP markers in E. carinicauda.
Collapse
Affiliation(s)
- Xiaofang Lai
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Key Laboratory of Marine Biological Resources and Environment of Jiangsu Province, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, 222005, Jiangsu, China.
- Marine Resource Development institute of Jiangsu (Lianyungang), Lianyungang, 222005, Jiangsu, China.
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, Jiangsu, China.
| | - Fanyue Ji
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Key Laboratory of Marine Biological Resources and Environment of Jiangsu Province, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
| | - Feifan Yu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Key Laboratory of Marine Biological Resources and Environment of Jiangsu Province, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
| | - Hao Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Key Laboratory of Marine Biological Resources and Environment of Jiangsu Province, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
| | - Shanrui Shen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Key Laboratory of Marine Biological Resources and Environment of Jiangsu Province, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
| | - Huan Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Key Laboratory of Marine Biological Resources and Environment of Jiangsu Province, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, 222005, Jiangsu, China
- Marine Resource Development institute of Jiangsu (Lianyungang), Lianyungang, 222005, Jiangsu, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, Jiangsu, China
| |
Collapse
|
3
|
Chen Y, Li H, Yi TC, Shen J, Zhang J. Notch Signaling in Insect Development: A Simple Pathway with Diverse Functions. Int J Mol Sci 2023; 24:14028. [PMID: 37762331 PMCID: PMC10530718 DOI: 10.3390/ijms241814028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Notch signaling is an evolutionarily conserved pathway which functions between adjacent cells to establish their distinct identities. Despite operating in a simple mechanism, Notch signaling plays remarkably diverse roles in development to regulate cell fate determination, organ growth and tissue patterning. While initially discovered and characterized in the model insect Drosophila melanogaster, recent studies across various insect species have revealed the broad involvement of Notch signaling in shaping insect tissues. This review focuses on providing a comprehensive picture regarding the roles of the Notch pathway in insect development. The roles of Notch in the formation and patterning of the insect embryo, wing, leg, ovary and several specific structures, as well as in physiological responses, are summarized. These results are discussed within the developmental context, aiming to deepen our understanding of the diversified functions of the Notch signaling pathway in different insect species.
Collapse
Affiliation(s)
- Yao Chen
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Haomiao Li
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Tian-Ci Yi
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Junzheng Zhang
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| |
Collapse
|
4
|
Cheatle Jarvela AM, Trelstad CS, Pick L. Anterior-posterior patterning of segments in Anopheles stephensi offers insights into the transition from sequential to simultaneous segmentation in holometabolous insects. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:116-130. [PMID: 34734470 PMCID: PMC9061899 DOI: 10.1002/jez.b.23102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 11/10/2022]
Abstract
The gene regulatory network for segmentation in arthropods offers valuable insights into how networks evolve owing to the breadth of species examined and the extremely detailed knowledge gained in the model organism Drosophila melanogaster. These studies have shown that Drosophila's network represents a derived state that acquired changes to accelerate segment patterning, whereas most insects specify segments gradually as the embryo elongates. Such heterochronic shifts in segmentation have potentially emerged multiple times within holometabolous insects, resulting in many mechanistic variants and difficulties in isolating underlying commonalities that permit such shifts. Recent studies identified regulatory genes that work as timing factors, coordinating gene expression transitions during segmentation. These studies predict that changes in timing factor deployment explain shifts in segment patterning relative to other developmental events. Here, we test this hypothesis by characterizing the temporal and spatial expression of the pair-rule patterning genes in the malaria vector mosquito, Anopheles stephensi. This insect is a Dipteran (fly), like Drosophila, but represents an ancient divergence within this clade, offering a useful counterpart for evo-devo studies. In mosquito embryos, we observe anterior to posterior sequential addition of stripes for many pair-rule genes and a wave of broad timer gene expression across this axis. Segment polarity gene stripes are added sequentially in the wake of the timer gene wave and the full pattern is not complete until the embryo is fully elongated. This "progressive segmentation" mode in Anopheles displays commonalities with both Drosophila's rapid segmentation mechanism and sequential modes used by more distantly related insects.
Collapse
Affiliation(s)
- Alys M. Cheatle Jarvela
- Department of Entomology, University of Maryland, College Park, 4291 Fieldhouse Drive, College Park, MD 20742, U.S.A
| | - Catherine S. Trelstad
- Department of Entomology, University of Maryland, College Park, 4291 Fieldhouse Drive, College Park, MD 20742, U.S.A
| | - Leslie Pick
- Department of Entomology, University of Maryland, College Park, 4291 Fieldhouse Drive, College Park, MD 20742, U.S.A
| |
Collapse
|
5
|
Mundaca-Escobar M, Cepeda RE, Sarrazin AF. The organizing role of Wnt signaling pathway during arthropod posterior growth. Front Cell Dev Biol 2022; 10:944673. [PMID: 35990604 PMCID: PMC9389326 DOI: 10.3389/fcell.2022.944673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Wnt signaling pathways are recognized for having major roles in tissue patterning and cell proliferation. In the last years, remarkable progress has been made in elucidating the molecular and cellular mechanisms that underlie sequential segmentation and axial elongation in various arthropods, and the canonical Wnt pathway has emerged as an essential factor in these processes. Here we review, with a comparative perspective, the current evidence concerning the participation of this pathway during posterior growth, its degree of conservation among the different subphyla within Arthropoda and its relationship with the rest of the gene regulatory network involved. Furthermore, we discuss how this signaling pathway could regulate segmentation to establish this repetitive pattern and, at the same time, probably modulate different cellular processes precisely coupled to axial elongation. Based on the information collected, we suggest that this pathway plays an organizing role in the formation of the body segments through the regulation of the dynamic expression of segmentation genes, via controlling the caudal gene, at the posterior region of the embryo/larva, that is necessary for the correct sequential formation of body segments in most arthropods and possibly in their common segmented ancestor. On the other hand, there is insufficient evidence to link this pathway to axial elongation by controlling its main cellular processes, such as convergent extension and cell proliferation. However, conclusions are premature until more studies incorporating diverse arthropods are carried out.
Collapse
Affiliation(s)
| | | | - Andres F. Sarrazin
- CoDe-Lab, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
6
|
Janssen R, Eriksson BJ. Embryonic expression patterns of Wnt genes in the RTA-clade spider Cupiennius salei. Gene Expr Patterns 2022; 44:119247. [PMID: 35472494 DOI: 10.1016/j.gep.2022.119247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/27/2022] [Accepted: 04/12/2022] [Indexed: 11/04/2022]
Abstract
Spiders represent widely used model organisms for chelicerate and even arthropod development and evolution. Wnt genes are important and evolutionary conserved factors that control and regulate numerous developmental processes. Recent studies comprehensively investigated the complement and expression of spider Wnt genes revealing conserved as well as diverged aspects of their expression and thus (likely) function among different groups of spiders representing Mygalomorphae (tarantulas), and both main groups of Araneae (true spiders) (Haplogynae/Synspermiata and Entelegynae). The allegedly most modern/derived group of entelegyne spiders is represented by the RTA-clade of which no comprehensive data on Wnt expression were available prior to this study. Here, we investigated the embryonic expression of all Wnt genes of the RTA-clade spider Cupiennius salei. We found that most of the Wnt expression patterns are conserved between Cupiennius and other spiders, especially more basally branching species. Surprisingly, most differences in Wnt gene expression are seen in the common model spider Parasteatoda tepidariorum (a non-RTA clade entelegyne species). These results show that data and conclusions drawn from research on one member of a group of animals (or any other organism) cannot necessarily be extrapolated to the group as a whole, and instead highlight the need for comprehensive taxon sampling.
Collapse
Affiliation(s)
- Ralf Janssen
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236, Uppsala, Sweden.
| | - Bo Joakim Eriksson
- Department für Neurowissenschaften und Entwicklungsbiologie, Universität Wien, Djerassiplatz 1, A-1030, Vienna, Austria
| |
Collapse
|
7
|
Evo-Devo of Urbilateria and its larval forms. Dev Biol 2022; 487:10-20. [DOI: 10.1016/j.ydbio.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/28/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022]
|
8
|
Schmidt-Ott U, Yoon Y. Evolution and loss of ß-catenin and TCF-dependent axis specification in insects. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100877. [PMID: 35104659 PMCID: PMC9133022 DOI: 10.1016/j.cois.2022.100877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Mechanisms and evolution of primary axis specification in insects are discussed in the context of the roles of ß-catenin and TCF in polarizing metazoan embryos. Three hypotheses are presented. First, insects with sequential segmentation and posterior growth use cell-autonomous mechanisms for establishing embryo polarity via the nuclear ratio of ß-catenin and TCF. Second, TCF homologs establish competence for anterior specification. Third, the evolution of simultaneous segmentation mechanisms, also known as long-germ development, resulted in primary axis specification mechanisms that are independent of ß-catenin but reliant on TCF, a condition that preceded the frequent replacement of anterior determinants in long germ insects.
Collapse
Affiliation(s)
- Urs Schmidt-Ott
- University of Chicago, Dept. of Organismal Biology and Anatomy, 1027 East 57th Street, Chicago, IL 60637, USA.
| | - Yoseop Yoon
- University of California, Irvine, Dept. of Microbiology and Molecular Genetics, School of Medicine, 811 Health Sciences Rd., Med Sci B262, CA 92617, USA
| |
Collapse
|
9
|
Chavarria RA, Game M, Arbelaez B, Ramnarine C, Snow ZK, Smith FW. Extensive loss of Wnt genes in Tardigrada. BMC Ecol Evol 2021; 21:223. [PMID: 34961481 PMCID: PMC8711157 DOI: 10.1186/s12862-021-01954-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022] Open
Abstract
Background Wnt genes code for ligands that activate signaling pathways during development in Metazoa. Through the canonical Wnt (cWnt) signaling pathway, these genes regulate important processes in bilaterian development, such as establishing the anteroposterior axis and posterior growth. In Arthropoda, Wnt ligands also regulate segment polarity, and outgrowth and patterning of developing appendages. Arthropods are part of a lineage called Panarthropoda that includes Onychophora and Tardigrada. Previous studies revealed potential roles of Wnt genes in regulating posterior growth, segment polarity, and growth and patterning of legs in Onychophora. Unlike most other panarthropods, tardigrades lack posterior growth, but retain segmentation and appendages. Here, we investigated Wnt genes in tardigrades to gain insight into potential roles that these genes play during development of the highly compact and miniaturized tardigrade body plan. Results We analyzed published genomes for two representatives of Tardigrada, Hypsibius exemplaris and Ramazzottius varieornatus. We identified single orthologs of Wnt4, Wnt5, Wnt9, Wnt11, and WntA, as well as two Wnt16 paralogs in both tardigrade genomes. We only found a Wnt2 ortholog in H. exemplaris. We could not identify orthologs of Wnt1, Wnt6, Wnt7, Wnt8, or Wnt10. We identified most other components of cWnt signaling in both tardigrade genomes. However, we were unable to identify an ortholog of arrow/Lrp5/6, a gene that codes for a Frizzled co-receptor of Wnt ligands. Additionally, we found that some other animals that have lost several Wnt genes and are secondarily miniaturized, like tardigrades, are also missing an ortholog of arrow/Lrp5/6. We analyzed the embryonic expression patterns of Wnt genes in H. exemplaris during developmental stages that span the establishment of the AP axis through segmentation and leg development. We detected expression of all Wnt genes in H. exemplaris besides one of the Wnt16 paralogs. During embryo elongation, expression of several Wnt genes was restricted to the posterior pole or a region between the anterior and posterior poles. Wnt genes were expressed in distinct patterns during segmentation and development of legs in H. exemplaris, rather than in broadly overlapping patterns. Conclusions Our results indicate that Wnt signaling has been highly modified in Tardigrada. While most components of cWnt signaling are conserved in tardigrades, we conclude that tardigrades have lost Wnt1, Wnt6, Wnt7, Wnt8, and Wnt10, along with arrow/Lrp5/6. Our expression data may indicate a conserved role of Wnt genes in specifying posterior identities during establishment of the AP axis. However, the loss of several Wnt genes and the distinct expression patterns of Wnt genes during segmentation and leg development may indicate that combinatorial interactions among Wnt genes are less important during tardigrade development compared to many other animals. Based on our results, and comparisons to previous studies, we speculate that the loss of several Wnt genes in Tardigrada may be related to a reduced number of cells and simplified development that accompanied miniaturization and anatomical simplification in this lineage. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01954-y.
Collapse
Affiliation(s)
- Raul A Chavarria
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Mandy Game
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Briana Arbelaez
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Chloe Ramnarine
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Zachary K Snow
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Frank W Smith
- Biology Department, University of North Florida, Jacksonville, FL, USA.
| |
Collapse
|
10
|
Janssen R, Pechmann M, Turetzek N. A chelicerate Wnt gene expression atlas: novel insights into the complexity of arthropod Wnt-patterning. EvoDevo 2021; 12:12. [PMID: 34753512 PMCID: PMC8579682 DOI: 10.1186/s13227-021-00182-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/27/2021] [Indexed: 11/24/2022] Open
Abstract
The Wnt genes represent a large family of secreted glycoprotein ligands that date back to early animal evolution. Multiple duplication events generated a set of 13 Wnt families of which 12 are preserved in protostomes. Embryonic Wnt expression patterns (Wnt-patterning) are complex, representing the plentitude of functions these genes play during development. Here, we comprehensively investigated the embryonic expression patterns of Wnt genes from three species of spiders covering both main groups of true spiders, Haplogynae and Entelegynae, a mygalomorph species (tarantula), as well as a distantly related chelicerate outgroup species, the harvestman Phalangium opilio. All spiders possess the same ten classes of Wnt genes, but retained partially different sets of duplicated Wnt genes after whole genome duplication, some of which representing impressive examples of sub- and neo-functionalization. The harvestman, however, possesses a more complete set of 11 Wnt genes but with no duplicates. Our comprehensive data-analysis suggests a high degree of complexity and evolutionary flexibility of Wnt-patterning likely providing a firm network of mutational protection. We discuss the new data on Wnt gene expression in terms of their potential function in segmentation, posterior elongation, and appendage development and critically review previous research on these topics. We conclude that earlier research may have suffered from the absence of comprehensive gene expression data leading to partial misconceptions about the roles of Wnt genes in development and evolution.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| | - Matthias Pechmann
- Department of Developmental Biology, Biocenter, Institute for Zoology, University of Cologne, Zuelpicher Str. 47b, 50674, Cologne, Germany
| | - Natascha Turetzek
- Evolutionary Ecology, Faculty of Biology, Ludwig-Maximilians Universität München, Grosshaderner Strasse 2, 82152, Biozentrum, Germany
| |
Collapse
|
11
|
Liu Y, Henkel J, Beaurepaire A, Evans JD, Neumann P, Huang Q. Comparative genomics suggests local adaptations in the invasive small hive beetle. Ecol Evol 2021; 11:15780-15791. [PMID: 34824789 PMCID: PMC8601931 DOI: 10.1002/ece3.8242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 01/01/2023] Open
Abstract
Invasive species are a major driver of ecological and environmental changes that affect human health, food security, and natural biodiversity. The success and impact of biological invasions depend on adaptations to novel abiotic and biotic selective pressures. However, the molecular mechanisms underlying adaptations in invasive parasitic species are inadequately understood. Small hive beetles, Aethina tumida, are parasites of bee nests. Originally endemic to sub-Saharan Africa, they are now found nearly globally. Here, we investigated the molecular bases of the adaptations to novel environments underlying their invasion routes. Genomes of historic and recent adults A. tumida from both the endemic and introduced ranges were compared. Analysis of gene-environment association identified 3049 candidate loci located in 874 genes. Functional annotation showed a significant bias toward genes linked to growth and reproduction. One of the genes from the apoptosis pathway encodes an "ecdysone-related protein," which is a crucial regulator in controlling body size in response to environmental cues for holometabolous insects during cell death and renewal. Genes whose proteins regulate organ size, ovary activation, and oviposition were also detected. Functions of these enriched pathways parallel behavioral differences between introduced and native A. tumida populations, which may reflect patterns of local adaptation. The results considerably improve our understanding of the underlying mechanisms and ecological factors driving adaptations of invasive species. Deep functional investigation of these identified loci will help clarify the mechanisms of local adaptation in A. tumida.
Collapse
Affiliation(s)
- Yuanzhen Liu
- Vetsuisse FacultyInstitute of Bee HealthUniversity of BernBernSwitzerland
| | - Jan Henkel
- Vetsuisse FacultyInstitute of GeneticsUniversity of BernBernSwitzerland
| | - Alexis Beaurepaire
- Vetsuisse FacultyInstitute of Bee HealthUniversity of BernBernSwitzerland
| | - Jay D. Evans
- USDA‐ARS Beltsville Bee Research LaboratoryBeltsvilleMarylandUSA
| | - Peter Neumann
- Vetsuisse FacultyInstitute of Bee HealthUniversity of BernBernSwitzerland
- AgroscopeSwiss Bee Research CentreBernSwitzerland
| | - Qiang Huang
- Honeybee Research InstituteJiangxi Agricultural UniversityNanchangChina
| |
Collapse
|
12
|
Zhang F, Chen Y, Shen J, Zhang J. The Ubiquitin Conjugating Enzyme UbcD1 is Required for Notch Signaling Activation During Drosophila Wing Development. Front Genet 2021; 12:770853. [PMID: 34712275 PMCID: PMC8546230 DOI: 10.3389/fgene.2021.770853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Notch signaling pathway plays crucial roles in animal development. Protein ubiquitination contributes to Notch signaling regulation by governing the stability and activity of major signaling components. Studies in Drosophila have identified multiple ubiquitin ligases and deubiquitinating enzymes that modify Notch ligand and receptor proteins. The fate of ubiquitinated substrates depend on topologies of the attached ubiquitin chains, which are determined by the ubiquitin conjugating enzymes (E2 enzymes). However, which E2 enzymes participate in Notch signal transduction remain elusive. Here, we report that the E2 enzyme UbcD1 is required for Notch signaling activation during Drosophila wing development. Mutations of UbcD1 lead to marginal nicks in the adult wing and reduction of Notch signaling targets expression in the wing imaginal disc. Genetic analysis reveal that UbcD1 functions in the signaling receiving cells prior to cleavage of the Notch protein. We provide further evidence suggesting that UbcD1 is likely involved in endocytic trafficking of Notch protein. Our results demonstrate that UbcD1 positively regulates Notch signaling and thus reveal a novel role of UbcD1 in development.
Collapse
Affiliation(s)
- Fengchao Zhang
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yao Chen
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junzheng Zhang
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Chipman AD. The evolution of the gene regulatory networks patterning the Drosophila Blastoderm. Curr Top Dev Biol 2021; 139:297-324. [PMID: 32450964 DOI: 10.1016/bs.ctdb.2020.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Drosophila blastoderm gene regulatory network is one of the best studied networks in biology. It is composed of a series of tiered sub-networks that act sequentially to generate a primary segmental pattern. Many of these sub-networks have been studied in other arthropods, allowing us to reconstruct how each of them evolved over the transition from the arthropod ancestor to the situation seen in Drosophila today. I trace the evolution of each of these networks, showing how some of them have been modified significantly in Drosophila relative to the ancestral state while others are largely conserved across evolutionary timescales. I compare the putative ancestral arthropod segmentation network with that found in Drosophila and discuss how and why it has been modified throughout evolution, and to what extent this modification is unusual.
Collapse
Affiliation(s)
- Ariel D Chipman
- The Department of Ecology, Evolution & Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel.
| |
Collapse
|
14
|
Abstract
Arthropod segmentation and vertebrate somitogenesis are leading fields in the experimental and theoretical interrogation of developmental patterning. However, despite the sophistication of current research, basic conceptual issues remain unresolved. These include: (i) the mechanistic origins of spatial organization within the segment addition zone (SAZ); (ii) the mechanistic origins of segment polarization; (iii) the mechanistic origins of axial variation; and (iv) the evolutionary origins of simultaneous patterning. Here, I explore these problems using coarse-grained models of cross-regulating dynamical processes. In the morphogenetic framework of a row of cells undergoing axial elongation, I simulate interactions between an 'oscillator', a 'switch' and up to three 'timers', successfully reproducing essential patterning behaviours of segmenting systems. By comparing the output of these largely cell-autonomous models to variants that incorporate positional information, I find that scaling relationships, wave patterns and patterning dynamics all depend on whether the SAZ is regulated by temporal or spatial information. I also identify three mechanisms for polarizing oscillator output, all of which functionally implicate the oscillator frequency profile. Finally, I demonstrate significant dynamical and regulatory continuity between sequential and simultaneous modes of segmentation. I discuss these results in the context of the experimental literature.
Collapse
Affiliation(s)
- Erik Clark
- Department of Systems Biology, Harvard Medical School, 210 Longwood Ave, Boston, MA 02115, USA
- Trinity College Cambridge, University of Cambridge, Trinity Street, Cambridge CB2 1TQ, UK
| |
Collapse
|
15
|
Setton EVW, Sharma PP. A conserved role for arrow in posterior axis patterning across Arthropoda. Dev Biol 2021; 475:91-105. [PMID: 33607111 DOI: 10.1016/j.ydbio.2021.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Segmentation is a key characteristic of Arthropoda that is linked to the evolutionary success of this lineage. It has previously been shown in both vertebrates and short germ insects that posterior segmentation requires canonical Wnt (cWnt) signaling, which maintains the expression of Caudal and the posterior growth zone; disruption of cWnt signaling incurs posterior truncations in these lineages due to the loss of the tail bud. However, comparable datasets for Wnt signaling are limited outside of holometabolous insects, due to incomparable phenotypic spectra and inefficacy of gene misexpression methods in certain model species. We applied RNA interference (RNAi) against the Wnt co-receptor arrow (arr), a key member of the cWnt signaling pathway in holometabolous insects and vertebrates, to examine posterior axis elongation of the cobweb spider Parasteatoda tepidariorum (short germ embryogenesis; one Wnt8 homolog), the cricket Gryllus bimaculatus (intermediate germ; one Wnt8 homolog), and the milkweed bug Oncopeltus fasciatus (short germ; two Wnt8 homologs). Knockdown of arr in insects resulted in posterior truncations affecting the gnathos through the abdomen in O. fasciatus, whereas posterior truncations only affected the T3 segment through the abdomen in G. bimaculatus. Spider embryos with disrupted arr expression exhibited defects along the entire axis, including segmentation defects throughout the germband. RNA-Seq-based differential gene expression analysis of severe Ptep-arr loss-of-function phenotypes at two developmental stages was used to confirm that knockdown of Ptep-arr results in systemic disruption of the Wnt pathway. Intriguingly, we found that knockdown of arr did not abrogate Wnt8 expression in any of the three species, with cad expression additionally retained in severe loss-of-function phenotypes in the cricket and the spider. Together with data from a holometabolous insect, our results suggest that cWnt signaling is not required for maintenance of Wnt8 expression across Arthropoda. These outcomes underscore the diagnostic power of differential gene expression analyses in characterizing catastrophic phenotypes in emerging model species.
Collapse
Affiliation(s)
- Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA 53706.
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA 53706.
| |
Collapse
|
16
|
Spatiotemporal variation in cell proliferation patterns during arthropod axial elongation. Sci Rep 2021; 11:327. [PMID: 33431947 PMCID: PMC7801698 DOI: 10.1038/s41598-020-79373-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/04/2020] [Indexed: 01/29/2023] Open
Abstract
An elongated and segmented body plan is a common morphological characteristic of all arthropods and is probably responsible for their high adaptation ability to diverse environments. Most arthropods form their bodies by progressively adding segments, resembling vertebrate somitogenesis. This sequential segmentation relies on a molecular clock that operates in the posterior region of the elongating embryo that combines dynamically with cellular behaviors and tissue rearrangements, allowing the extension of the developing body along its main embryonic axis. Even though the molecular mechanisms involved in elongation and segment formation have been found to be conserved in a considerable degree, cellular processes such as cell division are quite variable between different arthropods. In this study, we show that cell proliferation in the beetle Tribolium castaneum has a nonuniform spatiotemporal patterning during axial elongation. We found that dividing cells are preferentially oriented along the anterior-posterior axis, more abundant and posteriorly localized during thoracic segments formation and that this cell proliferation peak was triggered at the onset of axis elongation. This raise in cell divisions, in turn, was correlated with an increase in the elongation rate, but not with changes in cell density. When DNA synthesis was inhibited over this period, both the area and length of thoracic segments were significantly reduced but not of the first abdominal segment. We discuss the variable participation that different cell division patterns and cell movements may have on arthropod posterior growth and their evolutionary contribution.
Collapse
|
17
|
Constantinou SJ, Duan N, Nagy LM, Chipman AD, Williams TA. Elongation during segmentation shows axial variability, low mitotic rates, and synchronized cell cycle domains in the crustacean, Thamnocephalus platyurus. EvoDevo 2020; 11:1. [PMID: 31988708 PMCID: PMC6969478 DOI: 10.1186/s13227-020-0147-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
Background Segmentation in arthropods typically occurs by sequential addition of segments from a posterior growth zone. However, the amount of tissue required for growth and the cell behaviors producing posterior elongation are sparsely documented. Results Using precisely staged larvae of the crustacean, Thamnocephalus platyurus, we systematically examine cell division patterns and morphometric changes associated with posterior elongation during segmentation. We show that cell division occurs during normal elongation but that cells in the growth zone need only divide ~ 1.5 times to meet growth estimates; correspondingly, direct measures of cell division in the growth zone are low. Morphometric measurements of the growth zone and of newly formed segments suggest tagma-specific features of segment generation. Using methods for detecting two different phases in the cell cycle, we show distinct domains of synchronized cells in the posterior trunk. Borders of cell cycle domains correlate with domains of segmental gene expression, suggesting an intimate link between segment generation and cell cycle regulation. Conclusions Emerging measures of cellular dynamics underlying posterior elongation already show a number of intriguing characteristics that may be widespread among sequentially segmenting arthropods and are likely a source of evolutionary variability. These characteristics include: the low rates of posterior mitosis, the apparently tight regulation of cell cycle at the growth zone/new segment border, and a correlation between changes in elongation and tagma boundaries.
Collapse
Affiliation(s)
- Savvas J Constantinou
- 1Biology Department, Trinity College, Hartford, CT USA.,4Present Address: Department of Integrative Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Nicole Duan
- 1Biology Department, Trinity College, Hartford, CT USA.,5Present Address: Bioinformatics and Quantitative Biosciences, Georgia Institute of Technology, North Avenue, Atlanta, GA 30332 USA
| | - Lisa M Nagy
- 2Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721 USA
| | - Ariel D Chipman
- 3The Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904 Jerusalem, Israel
| | | |
Collapse
|
18
|
Abstract
ABSTRACT
There is now compelling evidence that many arthropods pattern their segments using a clock-and-wavefront mechanism, analogous to that operating during vertebrate somitogenesis. In this Review, we discuss how the arthropod segmentation clock generates a repeating sequence of pair-rule gene expression, and how this is converted into a segment-polarity pattern by ‘timing factor’ wavefronts associated with axial extension. We argue that the gene regulatory network that patterns segments may be relatively conserved, although the timing of segmentation varies widely, and double-segment periodicity appears to have evolved at least twice. Finally, we describe how the repeated evolution of a simultaneous (Drosophila-like) mode of segmentation within holometabolan insects can be explained by heterochronic shifts in timing factor expression plus extensive pre-patterning of the pair-rule genes.
Collapse
Affiliation(s)
- Erik Clark
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Andrew D. Peel
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Michael Akam
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| |
Collapse
|
19
|
Hogvall M, Vellutini BC, Martín-Durán JM, Hejnol A, Budd GE, Janssen R. Embryonic expression of priapulid Wnt genes. Dev Genes Evol 2019; 229:125-135. [PMID: 31273439 PMCID: PMC6647475 DOI: 10.1007/s00427-019-00636-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/02/2019] [Indexed: 01/12/2023]
Abstract
Posterior elongation of the developing embryo is a common feature of animal development. One group of genes that is involved in posterior elongation is represented by the Wnt genes, secreted glycoprotein ligands that signal to specific receptors on neighbouring cells and thereby establish cell-to-cell communication. In segmented animals such as annelids and arthropods, Wnt signalling is also likely involved in segment border formation and regionalisation of the segments. Priapulids represent unsegmented worms that are distantly related to arthropods. Despite their interesting phylogenetic position and their importance for the understanding of ecdysozoan evolution, priapulids still represent a highly underinvestigated group of animals. Here, we study the embryonic expression patterns of the complete sets of Wnt genes in the priapulids Priapulus caudatus and Halicryptus spinulosus. We find that both priapulids possess a complete set of 12 Wnt genes. At least in Priapulus, most of these genes are expressed in and around the posterior-located blastopore and thus likely play a role in posterior elongation. Together with previous work on the expression of other genetic factors such as caudal and even-skipped, this suggests that posterior elongation in priapulids is under control of the same (or very similar) conserved gene regulatory network as in arthropods.
Collapse
Affiliation(s)
- Mattias Hogvall
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Bruno C Vellutini
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.,Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany
| | - José M Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.,School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden.
| |
Collapse
|
20
|
Ventos-Alfonso A, Ylla G, Belles X. Zelda and the maternal-to-zygotic transition in cockroaches. FEBS J 2019; 286:3206-3221. [PMID: 30993896 DOI: 10.1111/febs.14856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 03/22/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022]
Abstract
In the endopterygote Drosophila melanogaster, Zelda is an activator of the zygotic genome during the maternal-to-zygotic transition (MZT). Zelda binds cis-regulatory elements (TAGteam heptamers), making chromatin accessible for gene transcription. Zelda has been studied in other endopterygotes: Apis mellifera and Tribolium castaneum, and the paraneopteran Rhodnius prolixus. We studied Zelda in the cockroach Blattella germanica, a hemimetabolan, short germ-band, and polyneopteran species. B. germanica Zelda has the complete set of functional domains, which is typical of species displaying ancestral features concerning embryogenesis. Interestingly, we found D. melanogaster TAGteam heptamers in the B. germanica genome. The canonical one, CAGGTAG, is present at a similar proportion in the genome of these two species and in the genome of other insects, suggesting that the genome admits as many CAGGTAG motifs as its length allows. Zelda-depleted embryos of B. germanica show defects involving blastoderm formation and abdomen development, and genes contributing to these processes are down-regulated. We conclude that in B. germanica, Zelda strictly activates the zygotic genome, within the MZT, a role conserved in more derived endopterygote insects. In B. germanica, zelda is expressed during MZT, whereas in D. melanogaster and T. castaneum it is expressed beyond this transition. In these species and A. mellifera, Zelda has functions even in postembryonic development. The expansion of zelda expression beyond the MZT in endopterygotes might be related with the evolutionary innovation of holometabolan metamorphosis. DATABASES: The RNA-seq datasets of B. germanica, D. melanogaster, and T. castaneum are accessible at the GEO databases GSE99785, GSE18068, GSE63770, and GSE84253. In addition, the RNA-seq library from T. castaneum adult females is available at SRA: SRX021963. The B. germanica reference genome is available as BioProject PRJNA203136.
Collapse
Affiliation(s)
- Alba Ventos-Alfonso
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Guillem Ylla
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Xavier Belles
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
21
|
Untangling posterior growth and segmentation by analyzing mechanisms of axis elongation in hemichordates. Proc Natl Acad Sci U S A 2019; 116:8403-8408. [PMID: 30967509 DOI: 10.1073/pnas.1817496116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The trunk is a key feature of the bilaterian body plan. Despite spectacular morphological diversity in bilaterian trunk anatomies, most insights into trunk development are from segmented taxa, namely arthropods and chordates. Mechanisms of posterior axis elongation (PAE) and segmentation are tightly coupled in arthropods and vertebrates, making it challenging to differentiate between the underlying developmental mechanisms specific to each process. Investigating trunk elongation in unsegmented animals facilitates examination of mechanisms specific to PAE and provides a different perspective for testing hypotheses of bilaterian trunk evolution. Here we investigate the developmental roles of canonical Wnt and Notch signaling in the hemichordate Saccoglossus kowalevskii and reveal that both pathways play key roles in PAE immediately following the completion of gastrulation. Furthermore, our functional analysis of the role of Brachyury is supportive of a Wnt-Brachyury feedback loop during PAE in S. kowalevskii, establishing this key regulatory interaction as an ancestral feature of deuterostomes. Together, our results provide valuable data for testing hypotheses of bilaterian trunk evolution.
Collapse
|
22
|
Hogvall M, Budd GE, Janssen R. Gene expression analysis of potential morphogen signalling modifying factors in Panarthropoda. EvoDevo 2018; 9:20. [PMID: 30288252 PMCID: PMC6162966 DOI: 10.1186/s13227-018-0109-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/04/2018] [Indexed: 11/28/2022] Open
Abstract
Background Morphogen signalling represents a key mechanism of developmental processes during animal development. Previously, several evolutionary conserved morphogen signalling pathways have been identified, and their players such as the morphogen receptors, morphogen modulating factors (MMFs) and the morphogens themselves have been studied. MMFs are factors that regulate morphogen distribution and activity. The interactions of MMFs with different morphogen signalling pathways such as Wnt signalling, Hedgehog (Hh) signalling and Decapentaplegic (Dpp) signalling are complex because some of the MMFs have been shown to interact with more than one signalling pathway, and depending on genetic context, to have different, biphasic or even opposing function. This complicates the interpretation of expression data and functional data of MMFs and may be one reason why data on MMFs in other arthropods than Drosophila are scarce or totally lacking. Results As a first step to a better understanding of the potential roles of MMFs in arthropod development, we investigate here the embryonic expression patterns of division abnormally delayed (dally), dally-like protein (dlp), shifted (shf) and secreted frizzled-related protein 125 (sFRP125) and sFRP34 in the beetle Tribolium castaneum, the spider Parasteatoda tepidariorum, the millipede Glomeris marginata and the onychophoran Euperipatoides kanangrensis. This pioneer study represents the first comprehensive comparative data set of these genes in panarthropods. Conclusions Expression profiles reveal a high degree of diversity, suggesting that MMFs may represent highly evolvable nodes in otherwise conserved gene regulatory networks. Conserved aspects of MMF expression, however, appear to concern function in segmentation and limb development, two of the key topics of evolutionary developmental research. Electronic supplementary material The online version of this article (10.1186/s13227-018-0109-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mattias Hogvall
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| |
Collapse
|
23
|
Jockusch EL. Developmental and Evolutionary Perspectives on the Origin and Diversification of Arthropod Appendages. Integr Comp Biol 2017; 57:533-545. [DOI: 10.1093/icb/icx063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
24
|
Diphtheria Toxin-Induced Cell Death Triggers Wnt-Dependent Hair Cell Regeneration in Neonatal Mice. J Neurosci 2017; 36:9479-89. [PMID: 27605621 DOI: 10.1523/jneurosci.2447-15.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/20/2016] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Cochlear hair cells (HCs), the sensory cells that respond to sound, do not regenerate after damage in adult mammals, and their loss is a major cause of deafness. Here we show that HC regeneration in newborn mouse ears occurred spontaneously when the original cells were ablated by treatment with diphtheria toxin (DT) in ears that had been engineered to overexpress the DT receptor, but was not detectable when HCs were ablated in vivo by the aminoglycoside antibiotic neomycin. A variety of Wnts (Wnt1, Wnt2, Wnt2b, Wnt4, Wnt5a, Wnt7b, Wnt9a, Wnt9b, and Wnt11) and Wnt pathway component Krm2 were upregulated after DT damage. Nuclear β-catenin was upregulated in HCs and supporting cells of the DT-damaged cochlea. Pharmacological inhibition of Wnt decreased spontaneous regeneration, confirming a role of Wnt signaling in HC regeneration. Inhibition of Notch signaling further potentiated supporting cell proliferation and HC differentiation that occurred spontaneously. The absence of new HCs in the neomycin ears was correlated to less robust Wnt pathway activation, but the ears subjected to neomycin treatment nonetheless showed increased cell division and HC differentiation after subsequent forced upregulation of β-catenin. These studies suggest, first, that Wnt signaling plays a key role in regeneration, and, second, that the outcome of a regenerative response to damage in the newborn cochlea is determined by reaching a threshold level of Wnt signaling rather than its complete absence or presence. SIGNIFICANCE STATEMENT Sensory HCs of the inner ear do not regenerate in the adult, and their loss is a major cause of deafness. We found that HCs regenerated spontaneously in the newborn mouse after diphtheria toxin (DT)-induced, but not neomycin-induced, HC death. Regeneration depended on activation of Wnt signaling, and regeneration in DT-treated ears correlated to a higher level of Wnt activation than occurred in nonregenerating neomycin-treated ears. This is significant because insufficient regeneration caused by a failure to reach a threshold level of signaling, if true in the adult, has the potential to be exploited for development of clinical approaches for the treatment of deafness caused by HC loss.
Collapse
|
25
|
Liao BK, Oates AC. Delta-Notch signalling in segmentation. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:429-447. [PMID: 27888167 PMCID: PMC5446262 DOI: 10.1016/j.asd.2016.11.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/20/2016] [Accepted: 11/21/2016] [Indexed: 06/06/2023]
Abstract
Modular body organization is found widely across multicellular organisms, and some of them form repetitive modular structures via the process of segmentation. It's vastly interesting to understand how these regularly repeated structures are robustly generated from the underlying noise in biomolecular interactions. Recent studies from arthropods reveal similarities in segmentation mechanisms with vertebrates, and raise the possibility that the three phylogenetic clades, annelids, arthropods and chordates, might share homology in this process from a bilaterian ancestor. Here, we discuss vertebrate segmentation with particular emphasis on the role of the Notch intercellular signalling pathway. We introduce vertebrate segmentation and Notch signalling, pointing out historical milestones, then describe existing models for the Notch pathway in the synchronization of noisy neighbouring oscillators, and a new role in the modulation of gene expression wave patterns. We ask what functions Notch signalling may have in arthropod segmentation and explore the relationship between Notch-mediated lateral inhibition and synchronization. Finally, we propose open questions and technical challenges to guide future investigations into Notch signalling in segmentation.
Collapse
Affiliation(s)
- Bo-Kai Liao
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| | - Andrew C Oates
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK; Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
26
|
Williams TA, Nagy LM. Linking gene regulation to cell behaviors in the posterior growth zone of sequentially segmenting arthropods. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:380-394. [PMID: 27720841 DOI: 10.1016/j.asd.2016.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
Virtually all arthropods all arthropods add their body segments sequentially, one by one in an anterior to posterior progression. That process requires not only segment specification but typically growth and elongation. Here we review the functions of some of the key genes that regulate segmentation: Wnt, caudal, Notch pathway, and pair-rule genes, and discuss what can be inferred about their evolution. We focus on how these regulatory factors are integrated with growth and elongation and discuss the importance and challenges of baseline measures of growth and elongation. We emphasize a perspective that integrates the genetic regulation of segment patterning with the cellular mechanisms of growth and elongation.
Collapse
Affiliation(s)
| | - Lisa M Nagy
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
27
|
Minelli A. Introduction: The evolution of segmentation. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:323-327. [PMID: 28235577 DOI: 10.1016/j.asd.2017.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 06/06/2023]
Affiliation(s)
- Alessandro Minelli
- Department of Biology, University of Padova, Via Ugo Bassi, 58 B, I 35131 Padova, Italy.
| |
Collapse
|
28
|
Janssen R. A molecular view of onychophoran segmentation. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:341-353. [PMID: 27725255 DOI: 10.1016/j.asd.2016.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/22/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
This paper summarizes our current knowledge on the expression and assumed function of Drosophila and (other) arthropod segmentation gene orthologs in Onychophora, a closely related outgroup to Arthropoda. This includes orthologs of the so-called Drosophila segmentation gene cascade including the Hox genes, as well as other genetic factors and pathways involved in non-drosophilid arthropods. Open questions about and around the topic are addressed, such as the definition of segments in onychophorans, the unclear regulation of conserved expression patterns downstream of non-conserved factors, and the potential role of mesodermal patterning in onychophoran segmentation.
Collapse
Affiliation(s)
- Ralf Janssen
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden.
| |
Collapse
|
29
|
Auman T, Vreede BMI, Weiss A, Hester SD, Williams TA, Nagy LM, Chipman AD. Dynamics of growth zone patterning in the milkweed bug Oncopeltus fasciatus. Development 2017; 144:1896-1905. [PMID: 28432218 PMCID: PMC5450833 DOI: 10.1242/dev.142091] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 04/10/2017] [Indexed: 01/19/2023]
Abstract
We describe the dynamic process of abdominal segment generation in the milkweed bug Oncopeltus fasciatus. We present detailed morphological measurements of the growing germband throughout segmentation. Our data are complemented by cell division profiles and expression patterns of key genes, including invected and even-skipped as markers for different stages of segment formation. We describe morphological and mechanistic changes in the growth zone and in nascent segments during the generation of individual segments and throughout segmentation, and examine the relative contribution of newly formed versus existing tissue to segment formation. Although abdominal segment addition is primarily generated through the rearrangement of a pool of undifferentiated cells, there is nonetheless proliferation in the posterior. By correlating proliferation with gene expression in the growth zone, we propose a model for growth zone dynamics during segmentation in which the growth zone is functionally subdivided into two distinct regions: a posterior region devoted to a slow rate of growth among undifferentiated cells, and an anterior region in which segmental differentiation is initiated and proliferation inhibited. Summary: A detailed analysis of posterior segment addition in an insect reveals that the growth zone is divided into two functional domains responsible for growth and differentiation.
Collapse
Affiliation(s)
- Tzach Auman
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram 91904, Jerusalem, Israel
| | - Barbara M I Vreede
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram 91904, Jerusalem, Israel
| | - Aryeh Weiss
- Faculty of Engineering and The Bar-Ilan Institute of Nanotechnology & Advanced Materials, Bar Ilan University, Ramat Gan 52900, Israel.,Bio-Imaging Unit, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram 91904, Jerusalem, Israel
| | - Susan D Hester
- Molecular and Cellular Biology Department, University of Arizona, Tucson, AZ 85721, USA
| | | | - Lisa M Nagy
- Molecular and Cellular Biology Department, University of Arizona, Tucson, AZ 85721, USA
| | - Ariel D Chipman
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram 91904, Jerusalem, Israel
| |
Collapse
|
30
|
Liu H, Liu Q, Zhou X, Huang Y, Zhang Z. Genome Editing of Wnt-1, a Gene Associated with Segmentation, via CRISPR/Cas9 in the Pine Caterpillar Moth, Dendrolimus punctatus. Front Physiol 2017; 7:666. [PMID: 28111552 PMCID: PMC5216022 DOI: 10.3389/fphys.2016.00666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 12/19/2016] [Indexed: 01/11/2023] Open
Abstract
The pine caterpillar moth, Dendrolimus punctatus, is a devastating forest pest. Genetic manipulation of this insect pest is limited due to the lack of genomic and functional genomic toolsets. Recently, CRISPR/Cas9 technology has been demonstrated to be a promising approach to modify the genome. To investigate gene functions during the embryogenesis, we introduced CRISPR/Cas9 system in D. punctatus to precisely and effectively manipulate gene expressions inmutant embryos. Compared to controls, knocking out of DpWnt-1, a gene well known for its role in the early body planning, led to high embryonic mortality. Among these mutants, 32.9% of the embryos and larvae showed an abnormal development. DpWnt-1 mutants predominantly exhibited abnormal posterior segments. In addition, multiple phenotypes were observed, including the loss of limbs and the head deformation, suggesting that DpWnt-1 signaling pathway is necessary for anterior segmentation and appendage development. Overall, our results demonstrate that CRISPR/Cas9 system is feasible and efficient in inducing mutations at a specific locus in D. punctatus. This study not only lays the foundation for characterizing gene functions in a non-model species, but also facilitates the future development of pest control alternatives for a major defoliator.
Collapse
Affiliation(s)
- Huihui Liu
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration Beijing, China
| | - Qun Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky Lexington, KY, USA
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Zhen Zhang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration Beijing, China
| |
Collapse
|
31
|
Constantinou SJ, Pace RM, Stangl AJ, Nagy LM, Williams TA. Wntrepertoire and developmental expression patterns in the crustaceanThamnocephalus platyurus. Evol Dev 2016; 18:324-341. [DOI: 10.1111/ede.12204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Ryan M. Pace
- Department of Molecular and Cellular Biology; University of Arizona; Tucson AZ 85721 USA
| | - A. J. Stangl
- Department of Molecular and Cellular Biology; University of Arizona; Tucson AZ 85721 USA
| | - Lisa M. Nagy
- Department of Molecular and Cellular Biology; University of Arizona; Tucson AZ 85721 USA
| | | |
Collapse
|
32
|
Duncan EJ, Hyink O, Dearden PK. Notch signalling mediates reproductive constraint in the adult worker honeybee. Nat Commun 2016; 7:12427. [PMID: 27485026 PMCID: PMC4976197 DOI: 10.1038/ncomms12427] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023] Open
Abstract
The hallmark of eusociality is the reproductive division of labour, in which one female caste reproduces, while reproduction is constrained in the subordinate caste. In adult worker honeybees (Apis mellifera) reproductive constraint is conditional: in the absence of the queen and brood, adult worker honeybees activate their ovaries and lay haploid male eggs. Here, we demonstrate that chemical inhibition of Notch signalling can overcome the repressive effect of queen pheromone and promote ovary activity in adult worker honeybees. We show that Notch signalling acts on the earliest stages of oogenesis and that the removal of the queen corresponds with a loss of Notch protein in the germarium. We conclude that the ancient and pleiotropic Notch signalling pathway has been co-opted into constraining reproduction in worker honeybees and we provide the first molecular mechanism directly linking ovary activity in adult worker bees with the presence of the queen. In honeybees, pheromones produced by the queen inhibit reproduction by workers and enforce a eusocial division of labour. Here, Duncan, Hyink and Dearden show that this inhibition is mediated by the Notch signalling pathway in the workers' ovaries.
Collapse
Affiliation(s)
- Elizabeth J Duncan
- Department of Biochemistry, Laboratory for Evolution and Development, Genetics Otago and Gravida (The National Centre for Growth and Development), University of Otago, P.O. Box 56, Dunedin 9054, Aotearoa-New Zealand
| | - Otto Hyink
- Department of Biochemistry, Laboratory for Evolution and Development, Genetics Otago and Gravida (The National Centre for Growth and Development), University of Otago, P.O. Box 56, Dunedin 9054, Aotearoa-New Zealand
| | - Peter K Dearden
- Department of Biochemistry, Laboratory for Evolution and Development, Genetics Otago and Gravida (The National Centre for Growth and Development), University of Otago, P.O. Box 56, Dunedin 9054, Aotearoa-New Zealand
| |
Collapse
|
33
|
Leite DJ, McGregor AP. Arthropod evolution and development: recent insights from chelicerates and myriapods. Curr Opin Genet Dev 2016; 39:93-100. [DOI: 10.1016/j.gde.2016.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 01/30/2023]
|
34
|
Janssen R, Budd GE. Gene expression analysis reveals that Delta/Notch signalling is not involved in onychophoran segmentation. Dev Genes Evol 2016; 226:69-77. [PMID: 26935716 PMCID: PMC4819559 DOI: 10.1007/s00427-016-0529-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 02/09/2016] [Indexed: 11/24/2022]
Abstract
Delta/Notch (Dl/N) signalling is involved in the gene regulatory network underlying the segmentation process in vertebrates and possibly also in annelids and arthropods, leading to the hypothesis that segmentation may have evolved in the last common ancestor of bilaterian animals. Because of seemingly contradicting results within the well-studied arthropods, however, the role and origin of Dl/N signalling in segmentation generally is still unclear. In this study, we investigate core components of Dl/N signalling by means of gene expression analysis in the onychophoran Euperipatoides kanangrensis, a close relative to the arthropods. We find that neither Delta or Notch nor any other investigated components of its signalling pathway are likely to be involved in segment addition in onychophorans. We instead suggest that Dl/N signalling may be involved in posterior elongation, another conserved function of these genes. We suggest further that the posterior elongation network, rather than classic Dl/N signalling, may be in the control of the highly conserved segment polarity gene network and the lower-level pair-rule gene network in onychophorans. Consequently, we believe that the pair-rule gene network and its interaction with Dl/N signalling may have evolved within the arthropod lineage and that Dl/N signalling has thus likely been recruited independently for segment addition in different phyla.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden
| |
Collapse
|
35
|
Schönauer A, Paese CLB, Hilbrant M, Leite DJ, Schwager EE, Feitosa NM, Eibner C, Damen WGM, McGregor AP. The Wnt and Delta-Notch signalling pathways interact to direct pair-rule gene expression via caudal during segment addition in the spider Parasteatoda tepidariorum. Development 2016; 143:2455-63. [DOI: 10.1242/dev.131656] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 05/19/2016] [Indexed: 12/16/2022]
Abstract
In short germ arthropods, posterior segments are added sequentially from a growth zone or segment addition zone (SAZ) during embryogenesis. Studies in spiders such as the common house spider, Parasteatoda tepidariorum, have provided insights into the gene regulatory network (GRN) that underlies the development of the SAZ, and revealed the involvement of two important signalling pathways. It was shown that Wnt8 maintains a pool of undifferentiated cells in the SAZ, but this ligand is also required for dynamic Delta (Dl) expression associated with the formation of new segments. However, it remains unclear how these pathways interact during SAZ formation and subsequently regulate segment addition. Here we show that Delta-Notch signalling is required for Wnt8 expression in posterior SAZ cells, but represses the expression of this Wnt gene in anterior SAZ cells. We also found that these two signalling pathways are required for the expression of the spider orthologues of the segmentation genes even-skipped (eve) and runt-1 (run-1), at least in part via the transcription factor encoded by caudal (cad). Moreover, it appears that dynamic expression of eve in this spider does not require a feedback loop with run-1, as is found in the pair-rule circuit of the beetle Tribolium. Taken together, our results suggest that the development of posterior segments in Parasteatoda is directed by dynamic interactions between Wnt8 and Delta-Notch signalling that are read out by cad, which is necessary but not sufficient to regulate the expression of the pair-rule genes eve and run-1. Our study therefore provides new insights towards better understanding the evolution and developmental regulation of segmentation in other arthropods including insects.
Collapse
Affiliation(s)
- Anna Schönauer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Christian L. B. Paese
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Maarten Hilbrant
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
- Present address: Institute for Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Daniel J. Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Evelyn E. Schwager
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
- Present address: Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside St., Lowell, MA 01854, USA
| | - Natália Martins Feitosa
- Laboratório Integrado de Ciências Morfofuncionais, Universidade Federal do Rio de Janeiro- UFRJ/NUPEM-Campus Macaé
| | - Cornelius Eibner
- Department of Genetics, Friedrich-Schiller-University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Wim G. M. Damen
- Department of Genetics, Friedrich-Schiller-University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Alistair P. McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| |
Collapse
|
36
|
Temereva EN, Malakhov VV. Metamorphic remodeling of morphology and the body cavity in Phoronopsis harmeri (Lophotrochozoa, Phoronida): the evolution of the phoronid body plan and life cycle. BMC Evol Biol 2015; 15:229. [PMID: 26489660 PMCID: PMC4618516 DOI: 10.1186/s12862-015-0504-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/01/2015] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Phoronids undergo a remarkable metamorphosis, in which some parts of the larval body are consumed by the juvenile and the body plan completely changes. According to the only previous hypothesis concerning the evolution of the phoronid body plan, a hypothetical ancestor of phoronids inhabited a U-shaped burrow in soft sediment, where it drew the anterior and posterior parts of the body together and eventually fused them. In the current study, we investigated the metamorphosis of Phoronopsis harmeri with light, electron, and laser confocal microscopy. RESULTS During metamorphosis, the larval hood is engulfed by the juvenile; the epidermis of the postroral ciliated band is squeezed from the tentacular epidermis and then engulfed; the larval telotroch undergoes cell death and disappears; and the juvenile body forms from the metasomal sack of the larva. The dorsal side of the larva becomes very short, whereas the ventral side becomes very long. The terminal portion of the juvenile body is the ampulla, which can repeatedly increase and decrease in diameter. This flexibility of the ampulla enables the juvenile to dig into the sediment. The large blastocoel of the larval collar gives rise to the lophophoral blood vessels of the juvenile. The dorsal blood vessel of the larva becomes the definitive median blood vessel. The juvenile inherits the larval protocoel, mesocoel, and metacoel. Late in metamorphosis, however, the protocoel loses its epithelial structure: the desmosomes between cells and the basal lamina under the cells disappear. This loss may reflect a reduction of the protocoel, which is a characteristic of some recent phoronids. CONCLUSIONS Based on our investigation of P. harmeri metamorphosis, we hypothesize that the phoronid ancestor was worm-like animal that possessed preoral, tentacular, and trunk coeloms. It lived on the soft sediment and collected food with its tentacles. When threatened, this worm-like ancestor buried itself in the soft sediment by means of the ventral protrusion into which the loop of the intestine and the blood vessels were drawn. We propose that this behavior gave rise to the body plan of all recent phoronids. The evolution of phoronid life cycle seems having more in common with"intercalation" than "terminal addition" theories.
Collapse
Affiliation(s)
- Elena N Temereva
- Department of Invertebrate Zoology, Biological Faculty, Moscow State University, Leninskie Gory 1-12, Moscow, 119234, Russian Federation.
| | - Vladimir V Malakhov
- Department of Invertebrate Zoology, Biological Faculty, Moscow State University, Leninskie Gory 1-12, Moscow, 119234, Russian Federation
| |
Collapse
|
37
|
Changing cell behaviours during beetle embryogenesis correlates with slowing of segmentation. Nat Commun 2015; 6:6635. [PMID: 25858515 DOI: 10.1038/ncomms7635] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 02/10/2015] [Indexed: 02/06/2023] Open
Abstract
Segmented animals are found in major clades as phylogenetically distant as vertebrates and arthropods. Typically, segments form sequentially in what has been thought to be a regular process, relying on a segmentation clock to pattern budding segments and posterior mitosis to generate axial elongation. Here we show that segmentation in Tribolium has phases of variable periodicity during which segments are added at different rates. Furthermore, elongation during a period of rapid posterior segment addition is driven by high rates of cell rearrangement, demonstrated by differential fates of marked anterior and posterior blastoderm cells. A computational model of this period successfully reproduces elongation through cell rearrangement in the absence of cell division. Unlike current models of steady-state sequential segmentation and elongation from a proliferative growth zone, our results indicate that cell behaviours are dynamic and variable, corresponding to differences in segmentation rate and giving rise to morphologically distinct regions of the embryo.
Collapse
|
38
|
Pace RM, Eskridge PC, Grbić M, Nagy LM. Evidence for the plasticity of arthropod signal transduction pathways. Dev Genes Evol 2014; 224:209-22. [PMID: 25213332 PMCID: PMC10492230 DOI: 10.1007/s00427-014-0479-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/19/2014] [Indexed: 01/23/2023]
Abstract
Metazoans are known to contain a limited, yet highly conserved, set of signal transduction pathways that instruct early developmental patterning mechanisms. Genomic surveys that have compared gene conservation in signal transduction pathways between various insects and Drosophila support the conclusion that these pathways are conserved in evolution. However, the degree to which individual components of signal transduction pathways vary among more divergent arthropods is not known. Here, we report our results of a survey of the genome of the two-spotted spider mite Tetranychus urticae, using a set of 294 Drosophila orthologs of genes that function in signal transduction. We find a third of all genes surveyed absent from the spider mite genome. We also identify several novel duplications that have not been previously reported for a chelicerate. In comparison with previous insect surveys, Tetranychus contains a decrease in overall gene conservation, as well as an unusual ratio of ligands to receptors and other modifiers. These findings suggest that gene loss and duplication among components of signal transduction pathways are common among arthropods and suggest that signal transduction pathways in arthropods are more evolutionarily labile than previously hypothesized.
Collapse
Affiliation(s)
- Ryan M Pace
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA
| | | | | | | |
Collapse
|
39
|
|
40
|
Struck TH, Wey-Fabrizius AR, Golombek A, Hering L, Weigert A, Bleidorn C, Klebow S, Iakovenko N, Hausdorf B, Petersen M, Kück P, Herlyn H, Hankeln T. Platyzoan paraphyly based on phylogenomic data supports a noncoelomate ancestry of spiralia. Mol Biol Evol 2014; 31:1833-49. [PMID: 24748651 DOI: 10.1093/molbev/msu143] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Based on molecular data three major clades have been recognized within Bilateria: Deuterostomia, Ecdysozoa, and Spiralia. Within Spiralia, small-sized and simply organized animals such as flatworms, gastrotrichs, and gnathostomulids have recently been grouped together as Platyzoa. However, the representation of putative platyzoans was low in the respective molecular phylogenetic studies, in terms of both, taxon number and sequence data. Furthermore, increased substitution rates in platyzoan taxa raised the possibility that monophyletic Platyzoa represents an artifact due to long-branch attraction. In order to overcome such problems, we employed a phylogenomic approach, thereby substantially increasing 1) the number of sampled species within Platyzoa and 2) species-specific sequence coverage in data sets of up to 82,162 amino acid positions. Using established and new measures (long-branch score), we disentangled phylogenetic signal from misleading effects such as long-branch attraction. In doing so, our phylogenomic analyses did not recover a monophyletic origin of platyzoan taxa that, instead, appeared paraphyletic with respect to the other spiralians. Platyhelminthes and Gastrotricha formed a monophylum, which we name Rouphozoa. To the exclusion of Gnathifera, Rouphozoa and all other spiralians represent a monophyletic group, which we name Platytrochozoa. Platyzoan paraphyly suggests that the last common ancestor of Spiralia was a simple-bodied organism lacking coelomic cavities, segmentation, and complex brain structures, and that more complex animals such as annelids evolved from such a simply organized ancestor. This conclusion contradicts alternative evolutionary scenarios proposing an annelid-like ancestor of Bilateria and Spiralia and several independent events of secondary reduction.
Collapse
Affiliation(s)
- Torsten H Struck
- Zoological Research Museum Alexander Koenig, Bonn, GermanyUniversity of Osnabrück, FB05 Biology/Chemistry, AG Zoology, Osnabrück, Germany
| | - Alexandra R Wey-Fabrizius
- Institute of Molecular Genetics, Biosafety Research and Consulting, Johannes Gutenberg University, Mainz, Germany
| | - Anja Golombek
- Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Lars Hering
- Animal Evolution and Development, Institute of Biology II, University of Leipzig, Leipzig, Germany
| | - Anne Weigert
- Molecular Evolution and Systematics of Animals, Institute of Biology, University of Leipzig, Leipzig, Germany
| | - Christoph Bleidorn
- Molecular Evolution and Systematics of Animals, Institute of Biology, University of Leipzig, Leipzig, Germany
| | - Sabrina Klebow
- Institute of Molecular Genetics, Biosafety Research and Consulting, Johannes Gutenberg University, Mainz, Germany
| | - Nataliia Iakovenko
- Department of Biology and Ecology, Ostravian University in Ostrava, Ostrava, Czech RepublicDepartment of Invertebrate Fauna and Systematics, Schmalhausen Institute of Zoology NAS of Ukraine, Kyiv, Ukraine
| | | | - Malte Petersen
- Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Patrick Kück
- Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Holger Herlyn
- Institute of Anthropology, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Hankeln
- Institute of Molecular Genetics, Biosafety Research and Consulting, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
41
|
Hogvall M, Schönauer A, Budd GE, McGregor AP, Posnien N, Janssen R. Analysis of the Wnt gene repertoire in an onychophoran provides new insights into the evolution of segmentation. EvoDevo 2014; 5:14. [PMID: 24708787 PMCID: PMC4021614 DOI: 10.1186/2041-9139-5-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Onychophora are a probable sister group to Arthropoda, one of the most intensively studied animal phyla from a developmental perspective. Pioneering work on the fruit fly Drosophila melanogaster and subsequent investigation of other arthropods has revealed important roles for Wnt genes during many developmental processes in these animals. RESULTS We screened the embryonic transcriptome of the onychophoran Euperipatoides kanangrensis and found that at least 11 Wnt genes are expressed during embryogenesis. These genes represent 11 of the 13 known subfamilies of Wnt genes. CONCLUSIONS Many onychophoran Wnt genes are expressed in segment polarity gene-like patterns, suggesting a general role for these ligands during segment regionalization, as has been described in arthropods. During early stages of development, Wnt2, Wnt4, and Wnt5 are expressed in broad multiple segment-wide domains that are reminiscent of arthropod gap and Hox gene expression patterns, which suggests an early instructive role for Wnt genes during E. kanangrensis segmentation.
Collapse
Affiliation(s)
| | | | | | | | | | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, 75236, Sweden.
| |
Collapse
|
42
|
Abstract
Animals have been described as segmented for more than 2,000 years, yet a precise definition of segmentation remains elusive. Here we give the history of the definition of segmentation, followed by a discussion on current controversies in defining a segment. While there is a general consensus that segmentation involves the repetition of units along the anterior-posterior (a-p) axis, long-running debates exist over whether a segment can be composed of only one tissue layer, whether the most anterior region of the arthropod head is considered segmented, and whether and how the vertebrate head is segmented. Additionally, we discuss whether a segment can be composed of a single cell in a column of cells, or a single row of cells within a grid of cells. We suggest that ‘segmentation’ be used in its more general sense, the repetition of units with a-p polarity along the a-p axis, to prevent artificial classification of animals. We further suggest that this general definition be combined with an exact description of what is being studied, as well as a clearly stated hypothesis concerning the specific nature of the potential homology of structures. These suggestions should facilitate dialogue among scientists who study vastly differing segmental structures.
Collapse
Affiliation(s)
| | - Nipam H Patel
- Departments of Molecular and Cell Biology and Integrative Biology, University of California, 519A LSA #3200, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
43
|
Brena C, Akam M. An analysis of segmentation dynamics throughout embryogenesis in the centipede Strigamia maritima. BMC Biol 2013; 11:112. [PMID: 24289308 PMCID: PMC3879059 DOI: 10.1186/1741-7007-11-112] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/22/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Most segmented animals add segments sequentially as the animal grows. In vertebrates, segment patterning depends on oscillations of gene expression coordinated as travelling waves in the posterior, unsegmented mesoderm. Recently, waves of segmentation gene expression have been clearly documented in insects. However, it remains unclear whether cyclic gene activity is widespread across arthropods, and possibly ancestral among segmented animals. Previous studies have suggested that a segmentation oscillator may exist in Strigamia, an arthropod only distantly related to insects, but further evidence is needed to document this. RESULTS Using the genes even skipped and Delta as representative of genes involved in segment patterning in insects and in vertebrates, respectively, we have carried out a detailed analysis of the spatio-temporal dynamics of gene expression throughout the process of segment patterning in Strigamia. We show that a segmentation clock is involved in segment formation: most segments are generated by cycles of dynamic gene activity that generate a pattern of double segment periodicity, which is only later resolved to the definitive single segment pattern. However, not all segments are generated by this process. The most posterior segments are added individually from a localized sub-terminal area of the embryo, without prior pair-rule patterning. CONCLUSIONS Our data suggest that dynamic patterning of gene expression may be widespread among the arthropods, but that a single network of segmentation genes can generate either oscillatory behavior at pair-rule periodicity or direct single segment patterning, at different stages of embryogenesis.
Collapse
Affiliation(s)
- Carlo Brena
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | | |
Collapse
|