1
|
Le TH, Li L, Rami FZ, Oh JM, Chun S, Chung YC. Effects of Epothilone D on Social Defeat Stress-induced Changes in Microtubule-related and Endoplasmic Reticulum Stress Protein Expression. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2025; 23:110-119. [PMID: 39820117 PMCID: PMC11747728 DOI: 10.9758/cpn.24.1212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 01/19/2025]
Abstract
Objective Epothilone D (EpoD), microtubule (MT) stabilizing agent, demonstrated promising results in the animal models of Alzheimer's disease, Parkinson's disease and schizophrenia. The present study sought to investigate preventive effects of EpoD on altered changes of MT related proteins and endoplasmic reticulum (ER) stress proteins induced by social defeat stress (SDS). Methods We measured protein expression levels of α-tubulin and its post-translational modifications, MT-associated protein 2, stathmin1 and 2 with their phosphorylated forms, and ER stress markers, 78-kDa glucose-regulated protein (GRP-78) and CCAAT/enhancer binding protein (C/EBP)-homologous protein (CHOP) in the prefrontal cortex (PFC) and hippocampus (HIP) of C57BL/6J strain mice treated with EpoD (2 mg/kg) or its vehicle, dimethylsulfoxide (DMSO), and exposed to SDS. Results We observed lower levels of acetylated α-tubulin, MAP2, p-STMN (Ser16), and GRP-78 in the PFC of the EpoD-Con group when compared to the DMSO-Con group. On the other hand, in the HIP, there were significantly higher levels of tyrosinated α-tubulin and GRP-78 in the EpoD-Defeat group compared to the DMSO-Defeat group. Furthermore, the level of MAP2 in the HIP was found to be lower in the EpoD-Con group compared to the DMSO-Con group. Conclusion Our results suggest that EpoD exhibits a dual impact, manifesting both beneficial and detrimental effects on the aberrant changes of MT-related proteins and ER stress proteins induced by SDS, depending on the brain regions. These findings underscore the complexity of EpoD's effects, necessitating further exploration to understand its intricate mechanisms in cellular pathways linked to SDS.
Collapse
Affiliation(s)
- Thi-Hung Le
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Ling Li
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Fatima Zahra Rami
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Jung-Mi Oh
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Korea
| | - Sungkun Chun
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Korea
| | - Young-Chul Chung
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|
2
|
Hafizur Rehman MR, Godad AP, Doshi GM. Behavioral and Neurological Effects of Edaravone and Noscapine in Albino Wistar Rats. Exp Aging Res 2024; 50:617-632. [PMID: 37615086 DOI: 10.1080/0361073x.2023.2250227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
OBJECTIVE The purpose of the study was to explore Edaravone and Noscapine in anAlCl3-induced Alzheimer's disease (AD) model. METHODS Morris Water Maze (MWM), Novel Object Recognition (NOR), andY-maze tests with TNF-α, IL-1, IL-6, amyloid-β, CAT, SOD and MDAlevels were performed, followed by brain histology. RESULTS On the probe trial, the MWM demonstrated a decrease in escape latencyfollowed by an increase in the target quadrant. The NOR showeddiscrimination and recognition index scores and Y-maze, revealed arise in spontaneous alterations. TNF-α, IL-1, IL-6, amyloid-β, CATand MDA levels increased, while SOD levels dropped. The results werefound to be significant for combination full and half doses (***p <0.001, **p < 0.01). The treated group's histology ofbrain revealed mild neurodegeneration with hippocampal pyknoticnuclei. CONCLUSIONS Thus, Edaravone and Noscapine can be used for thetreatment of AD. .
Collapse
Affiliation(s)
| | - Angel Pavalu Godad
- Department of Pharmacology, SVKM's Dr Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Gaurav Mahesh Doshi
- Department of Pharmacology, SVKM's Dr Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
3
|
Siow SF, Yeow D, Rudaks LI, Jia F, Wali G, Sue CM, Kumar KR. Outcome Measures and Biomarkers for Clinical Trials in Hereditary Spastic Paraplegia: A Scoping Review. Genes (Basel) 2023; 14:1756. [PMID: 37761896 PMCID: PMC10530989 DOI: 10.3390/genes14091756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is characterized by progressive lower limb spasticity. There is no disease-modifying treatment currently available. Therefore, standardized, validated outcome measures to facilitate clinical trials are urgently needed. We performed a scoping review of outcome measures and biomarkers for HSP to provide recommendations for future studies and identify areas for further research. We searched Embase, Medline, Scopus, Web of Science, and the Central Cochrane database. Seventy studies met the inclusion criteria, and eighty-three outcome measures were identified. The Spastic Paraplegia Rating Scale (SPRS) was the most widely used (27 studies), followed by the modified Ashworth Scale (18 studies) and magnetic resonance imaging (17 studies). Patient-reported outcome measures (PROMs) were infrequently used to assess treatment outcomes (28% of interventional studies). Diffusion tensor imaging, gait analysis and neurofilament light chain levels were the most promising biomarkers in terms of being able to differentiate patients from controls and correlate with clinical disease severity. Overall, we found variability and inconsistencies in use of outcome measures with a paucity of longitudinal data. We highlight the need for (1) a standardized set of core outcome measures, (2) validation of existing biomarkers, and (3) inclusion of PROMs in HSP clinical trials.
Collapse
Affiliation(s)
- Sue-Faye Siow
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia (C.M.S.)
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards 2065, Australia
| | - Dennis Yeow
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia (C.M.S.)
- Neuroscience Research Australia, University of New South Wales, Randwick 2031, Australia
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst 2010, Australia
- Translational Neurogenomics Group, Molecular Medicine Laboratory and Department of Neurology, Concord Hospital, Concord 2139, Australia
- Neurodegenerative Service, Prince of Wales Hospital, Randwick 2031, Australia
| | - Laura I. Rudaks
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia (C.M.S.)
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards 2065, Australia
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst 2010, Australia
- Translational Neurogenomics Group, Molecular Medicine Laboratory and Department of Neurology, Concord Hospital, Concord 2139, Australia
| | - Fangzhi Jia
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia (C.M.S.)
| | - Gautam Wali
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia (C.M.S.)
- Neuroscience Research Australia, University of New South Wales, Randwick 2031, Australia
| | - Carolyn M. Sue
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia (C.M.S.)
- Neuroscience Research Australia, University of New South Wales, Randwick 2031, Australia
- Neurodegenerative Service, Prince of Wales Hospital, Randwick 2031, Australia
- School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Kensington 2052, Australia
| | - Kishore R. Kumar
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia (C.M.S.)
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst 2010, Australia
- Translational Neurogenomics Group, Molecular Medicine Laboratory and Department of Neurology, Concord Hospital, Concord 2139, Australia
- School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Kensington 2052, Australia
| |
Collapse
|
4
|
Wali G, Siow SF, Liyanage E, Kumar KR, Mackay-Sim A, Sue CM. Reduced acetylated α-tubulin in SPAST hereditary spastic paraplegia patient PBMCs. Front Neurosci 2023; 17:1073516. [PMID: 37144097 PMCID: PMC10152469 DOI: 10.3389/fnins.2023.1073516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
HSP-SPAST is the most common form of hereditary spastic paraplegia (HSP), a neurodegenerative disease causing lower limb spasticity. Previous studies using HSP-SPAST patient-derived induced pluripotent stem cell cortical neurons have shown that patient neurons have reduced levels of acetylated α-tubulin, a form of stabilized microtubules, leading to a chain of downstream effects eventuating in increased vulnerability to axonal degeneration. Noscapine treatment rescued these downstream effects by restoring the levels of acetylated α-tubulin in patient neurons. Here we show that HSP-SPAST patient non-neuronal cells, peripheral blood mononuclear cells (PBMCs), also have the disease-associated effect of reduced levels of acetylated α-tubulin. Evaluation of multiple PBMC subtypes showed that patient T cell lymphocytes had reduced levels of acetylated α-tubulin. T cells make up to 80% of all PBMCs and likely contributed to the effect of reduced acetylated α-tubulin levels seen in overall PBMCs. We further showed that mouse administered orally with increasing concentrations of noscapine exhibited a dose-dependent increase of noscapine levels and acetylated α-tubulin in the brain. A similar effect of noscapine treatment is anticipated in HSP-SPAST patients. To measure acetylated α-tubulin levels, we used a homogeneous time resolved fluorescence technology-based assay. This assay was sensitive to noscapine-induced changes in acetylated α-tubulin levels in multiple sample types. The assay is high throughput and uses nano-molar protein concentrations, making it an ideal assay for evaluation of noscapine-induced changes in acetylated α-tubulin levels. This study shows that HSP-SPAST patient PBMCs exhibit disease-associated effects. This finding can help expedite the drug discovery and testing process.
Collapse
|
5
|
The interconnection of endoplasmic reticulum and microtubule and its implication in Hereditary Spastic Paraplegia. Comput Struct Biotechnol J 2023; 21:1670-1677. [PMID: 36860342 PMCID: PMC9968982 DOI: 10.1016/j.csbj.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The endoplasmic reticulum (ER) and microtubule (MT) network form extensive contact with each other and their interconnection plays a pivotal role in ER maintenance and distribution as well as MT stability. The ER participates in a variety of biological processes including protein folding and processing, lipid biosynthesis, and Ca2+ storage. MTs specifically regulate cellular architecture, provide routes for transport of molecules or organelles, and mediate signaling events. The ER morphology and dynamics are regulated by a class of ER shaping proteins, which also provide the physical contact structure for linking of ER and MT. In addition to these ER-localized and MT-binding proteins, specific motor proteins and adaptor-linking proteins also mediate bidirectional communication between the two structures. In this review, we summarize the current understanding of the structure and function of ER-MT interconnection. We further highlight the morphologic factors which coordinate the ER-MT network and maintain the normal physiological function of neurons, with their defect causing neurodegenerative diseases such as Hereditary Spastic Paraplegia (HSP). These findings promote our understanding of the pathogenesis of HSP and provide important therapeutic targets for treatment of these diseases.
Collapse
|
6
|
Fujiki Y, Okumoto K, Honsho M, Abe Y. Molecular insights into peroxisome homeostasis and peroxisome biogenesis disorders. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119330. [PMID: 35917894 DOI: 10.1016/j.bbamcr.2022.119330] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Peroxisomes are single-membrane organelles essential for cell metabolism including the β-oxidation of fatty acids, synthesis of etherlipid plasmalogens, and redox homeostasis. Investigations into peroxisome biogenesis and the human peroxisome biogenesis disorders (PBDs) have identified 14 PEX genes encoding peroxins involved in peroxisome biogenesis and the mutation of PEX genes is responsible for the PBDs. Many recent findings have further advanced our understanding of the biology, physiology, and consequences of a functional deficit of peroxisomes. In this Review, we discuss cell defense mechanisms that counteract oxidative stress by 1) a proapoptotic Bcl-2 factor BAK-mediated release to the cytosol of H2O2-degrading catalase from peroxisomes and 2) peroxisomal import suppression of catalase by Ser232-phosphorylation of Pex14, a docking protein for the Pex5-PTS1 complex. With respect to peroxisome division, the important issue of how the energy-rich GTP is produced and supplied for the division process was recently addressed by the discovery of a nucleoside diphosphate kinase-like protein, termed DYNAMO1 in a lower eukaryote, which has a mammalian homologue NME3. In regard to the mechanisms underlying the pathogenesis of PBDs, a new PBD model mouse defective in Pex14 manifests a dysregulated brain-derived neurotrophic factor (BDNF)-TrkB pathway, an important signaling pathway for cerebellar morphogenesis. Communications between peroxisomes and other organelles are also addressed.
Collapse
Affiliation(s)
- Yukio Fujiki
- Medical Institute of Bioregulation, Institute of Rheological Functions of Food, Collaboration Program, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan.
| | - Kanji Okumoto
- Department of Biology and Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Masanori Honsho
- Medical Institute of Bioregulation, Institute of Rheological Functions of Food, Collaboration Program, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| | - Yuichi Abe
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
7
|
Costa AC, Sousa MM. The Role of Spastin in Axon Biology. Front Cell Dev Biol 2022; 10:934522. [PMID: 35865632 PMCID: PMC9294387 DOI: 10.3389/fcell.2022.934522] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/07/2022] [Indexed: 12/05/2022] Open
Abstract
Neurons are highly polarized cells with elaborate shapes that allow them to perform their function. In neurons, microtubule organization—length, density, and dynamics—are essential for the establishment of polarity, growth, and transport. A mounting body of evidence shows that modulation of the microtubule cytoskeleton by microtubule-associated proteins fine tunes key aspects of neuronal cell biology. In this respect, microtubule severing enzymes—spastin, katanin and fidgetin—a group of microtubule-associated proteins that bind to and generate internal breaks in the microtubule lattice, are emerging as key modulators of the microtubule cytoskeleton in different model systems. In this review, we provide an integrative view on the latest research demonstrating the key role of spastin in neurons, specifically in the context of axonal cell biology. We focus on the function of spastin in the regulation of microtubule organization, and axonal transport, that underlie its importance in the intricate control of axon growth, branching and regeneration.
Collapse
Affiliation(s)
- Ana Catarina Costa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação Em Saúde (i3S), University of Porto, Porto, Portugal
- Graduate Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- *Correspondence: Ana Catarina Costa, ; Monica Mendes Sousa,
| | - Monica Mendes Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação Em Saúde (i3S), University of Porto, Porto, Portugal
- *Correspondence: Ana Catarina Costa, ; Monica Mendes Sousa,
| |
Collapse
|
8
|
Mohan N, Qiang L, Morfini G, Baas PW. Therapeutic Strategies for Mutant SPAST-Based Hereditary Spastic Paraplegia. Brain Sci 2021; 11:brainsci11081081. [PMID: 34439700 PMCID: PMC8394973 DOI: 10.3390/brainsci11081081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
Mutations of the SPAST gene that encodes the microtubule-severing enzyme called spastin are the chief cause of Hereditary Spastic Paraplegia. Growing evidence indicates that pathogenic mutations functionally compromise the spastin protein and endow it with toxic gain-of-function properties. With each of these two factors potentially relevant to disease etiology, the present article discusses possible therapeutic strategies that may ameliorate symptoms in patients suffering from SPAST-based Hereditary Spastic Paraplegia, which is usually termed SPG4-HSP.
Collapse
Affiliation(s)
- Neha Mohan
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19422, USA; (N.M.); (L.Q.)
| | - Liang Qiang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19422, USA; (N.M.); (L.Q.)
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Peter W. Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19422, USA; (N.M.); (L.Q.)
- Correspondence: ; Tel.: +1-215-991-8289; Fax: +1-215-843-9082
| |
Collapse
|
9
|
Wali G, Berkovsky S, Whiten DR, Mackay-Sim A, Sue CM. Single cell morphology distinguishes genotype and drug effect in Hereditary Spastic Paraplegia. Sci Rep 2021; 11:16635. [PMID: 34404843 PMCID: PMC8371156 DOI: 10.1038/s41598-021-95995-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/03/2021] [Indexed: 11/09/2022] Open
Abstract
A central need for neurodegenerative diseases is to find curative drugs for the many clinical subtypes, the causative gene for most cases being unknown. This requires the classification of disease cases at the genetic and cellular level, an understanding of disease aetiology in the subtypes and the development of phenotypic assays for high throughput screening of large compound libraries. Herein we describe a method that facilitates these requirements based on cell morphology that is being increasingly used as a readout defining cell state. In patient-derived fibroblasts we quantified 124 morphological features in 100,000 cells from 15 people with two genotypes (SPAST and SPG7) of Hereditary Spastic Paraplegia (HSP) and matched controls. Using machine learning analysis, we distinguished between each genotype and separated them from controls. Cell morphologies changed with treatment with noscapine, a tubulin-binding drug, in a genotype-dependent manner, revealing a novel effect on one of the genotypes (SPG7). These findings demonstrate a method for morphological profiling in fibroblasts, an accessible non-neural cell, to classify and distinguish between clinical subtypes of neurodegenerative diseases, for drug discovery, and potentially for biomarkers of disease severity and progression.
Collapse
Affiliation(s)
- Gautam Wali
- Department of Neurogenetics, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW, 2065, Australia.
| | - Shlomo Berkovsky
- Centre for Health Informatics, Macquarie University, Sydney, Australia
| | - Daniel R Whiten
- Department of Neurogenetics, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW, 2065, Australia
| | - Alan Mackay-Sim
- Department of Neurogenetics, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW, 2065, Australia.,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Carolyn M Sue
- Department of Neurogenetics, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW, 2065, Australia
| |
Collapse
|
10
|
Analyzing Olfactory Neuron Precursors Non-Invasively Isolated through NADH FLIM as a Potential Tool to Study Oxidative Stress in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22126311. [PMID: 34204595 PMCID: PMC8231156 DOI: 10.3390/ijms22126311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 12/22/2022] Open
Abstract
Among all the proposed pathogenic mechanisms to understand the etiology of Alzheimer’s disease (AD), increased oxidative stress seems to be a robust and early disease feature where many of those hypotheses converge. However, despite the significant lines of evidence accumulated, an effective diagnosis and treatment of AD are not yet available. This limitation might be partially explained by the use of cellular and animal models that recapitulate partial aspects of the disease and do not account for the particular biology of patients. As such, cultures of patient-derived cells of peripheral origin may provide a convenient solution for this problem. Peripheral cells of neuronal lineage such as olfactory neuronal precursors (ONPs) can be easily cultured through non-invasive isolation, reproducing AD-related oxidative stress. Interestingly, the autofluorescence of key metabolic cofactors such as reduced nicotinamide adenine dinucleotide (NADH) can be highly correlated with the oxidative state and antioxidant capacity of cells in a non-destructive and label-free manner. In particular, imaging NADH through fluorescence lifetime imaging microscopy (FLIM) has greatly improved the sensitivity in detecting oxidative shifts with minimal intervention to cell physiology. Here, we discuss the translational potential of analyzing patient-derived ONPs non-invasively isolated through NADH FLIM to reveal AD-related oxidative stress. We believe this approach may potentially accelerate the discovery of effective antioxidant therapies and contribute to early diagnosis and personalized monitoring of this devastating disease.
Collapse
|
11
|
Cappelletti G, Calogero AM, Rolando C. Microtubule acetylation: A reading key to neural physiology and degeneration. Neurosci Lett 2021; 755:135900. [PMID: 33878428 DOI: 10.1016/j.neulet.2021.135900] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 02/02/2023]
Abstract
Neurons are the perfect example of cells where microtubules are essential to achieve an extraordinary degree of morphological and functional complexity. Different tubulin isoforms and associated post-translational modifications are the basis to establish the diversity in biochemical and biophysical properties of microtubules including their stability and the control of intracellular transport. Acetylation is one of the key tubulin modifications and it can influence important structural, mechanical and biological traits of the microtubule network. Here, we present the emerging evidence for the essential role of microtubule acetylation in the control of neuronal and glial function in healthy and degenerative conditions. In particular, we discuss the pathogenic role of tubulin acetylation in neurodegenerative disorders and focus on Parkinson's disease. We also provide a critical analysis about the possibility to target tubulin acetylation as a novel therapeutic intervention for neuroprotective strategies.
Collapse
Affiliation(s)
- Graziella Cappelletti
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy; Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milano, Italy.
| | | | - Chiara Rolando
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
12
|
Mackay-Sim A. Hereditary Spastic Paraplegia: From Genes, Cells and Networks to Novel Pathways for Drug Discovery. Brain Sci 2021; 11:brainsci11030403. [PMID: 33810178 PMCID: PMC8004882 DOI: 10.3390/brainsci11030403] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is a diverse group of Mendelian genetic disorders affecting the upper motor neurons, specifically degeneration of their distal axons in the corticospinal tract. Currently, there are 80 genes or genomic loci (genomic regions for which the causative gene has not been identified) associated with HSP diagnosis. HSP is therefore genetically very heterogeneous. Finding treatments for the HSPs is a daunting task: a rare disease made rarer by so many causative genes and many potential mutations in those genes in individual patients. Personalized medicine through genetic correction may be possible, but impractical as a generalized treatment strategy. The ideal treatments would be small molecules that are effective for people with different causative mutations. This requires identification of disease-associated cell dysfunctions shared across genotypes despite the large number of HSP genes that suggest a wide diversity of molecular and cellular mechanisms. This review highlights the shared dysfunctional phenotypes in patient-derived cells from patients with different causative mutations and uses bioinformatic analyses of the HSP genes to identify novel cell functions as potential targets for future drug treatments for multiple genotypes.
Collapse
Affiliation(s)
- Alan Mackay-Sim
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
13
|
Saputra L, Kumar KR. Challenges and Controversies in the Genetic Diagnosis of Hereditary Spastic Paraplegia. Curr Neurol Neurosci Rep 2021; 21:15. [PMID: 33646413 PMCID: PMC7921051 DOI: 10.1007/s11910-021-01099-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
Purpose of Review The hereditary spastic paraplegias (HSPs) are a group of disorders characterised by progressive lower limb weakness and spasticity. We address the challenges and controversies involved in the genetic diagnosis of HSP. Recent Findings There is a large and rapidly expanding list of genes implicated in HSP, making it difficult to keep gene testing panels updated. There is also a high degree of phenotypic overlap between HSP and other disorders, leading to problems in choosing the right panel to analyse. We discuss genetic testing strategies for overcoming these diagnostic hurdles, including the use of targeted sequencing gene panels, whole-exome sequencing and whole-genome sequencing. Personalised treatments for HSP are on the horizon, and a genetic diagnosis may hold the key to access these treatments. Summary Developing strategies to overcome the challenges and controversies in HSP may hold the key to a rapid and accurate genetic diagnosis.
Collapse
Affiliation(s)
- Lydia Saputra
- Northern Beaches Hospital, Frenchs Forest, New South Wales, Australia
| | - Kishore Raj Kumar
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia. .,Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, Sydney, New South Wales, Australia. .,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia. .,Institute of Precision Medicine & Bioinformatics, Sydney Local Health District, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.
| |
Collapse
|
14
|
Boiarska Z, Passarella D. Microtubule-targeting agents and neurodegeneration. Drug Discov Today 2020; 26:604-615. [PMID: 33279455 DOI: 10.1016/j.drudis.2020.11.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/17/2020] [Accepted: 11/28/2020] [Indexed: 11/25/2022]
Abstract
The association of microtubule (MT) breakdown with neurodegeneration and neurotoxicity has provided an emerging therapeutic approach for neurodegenerative diseases. Tubulin binders are able to modulate MT dynamics and, as a result, are of particular interest both as potential therapeutics and experimental tools used to validate this strategy. Here, we provide a comprehensive overview of current knowledge and recent advancements regarding MT-targeting approaches for neurodegeneration and evaluate the potential application of MT-targeting agents (MTAs) based on available preclinical and clinical data.
Collapse
Affiliation(s)
- Zlata Boiarska
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Daniele Passarella
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
15
|
Covill-Cooke C, Toncheva VS, Kittler JT. Regulation of peroxisomal trafficking and distribution. Cell Mol Life Sci 2020; 78:1929-1941. [PMID: 33141311 PMCID: PMC7966214 DOI: 10.1007/s00018-020-03687-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/02/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022]
Abstract
Peroxisomes are organelles that perform a wide range of essential metabolic processes. To ensure that peroxisomes are optimally positioned in the cell, they must be transported by both long- and short-range trafficking events in response to cellular needs. Here, we review our current understanding of the mechanisms by which the cytoskeleton and organelle contact sites alter peroxisomal distribution. Though the focus of the review is peroxisomal transport in mammalian cells, findings from flies and fungi are used for comparison and to inform the gaps in our understanding. Attention is given to the apparent overlap in regulatory mechanisms for mitochondrial and peroxisomal trafficking, along with the recently discovered role of the mitochondrial Rho-GTPases, Miro, in peroxisomal dynamics. Moreover, we outline and discuss the known pathological and pharmacological conditions that perturb peroxisomal positioning. We conclude by highlighting several gaps in our current knowledge and suggest future directions that require attention.
Collapse
Affiliation(s)
| | - Viktoriya S Toncheva
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
16
|
Sardina F, Pisciottani A, Ferrara M, Valente D, Casella M, Crescenzi M, Peschiaroli A, Casali C, Soddu S, Grierson AJ, Rinaldo C. Spastin recovery in hereditary spastic paraplegia by preventing neddylation-dependent degradation. Life Sci Alliance 2020; 3:3/12/e202000799. [PMID: 33106322 PMCID: PMC7652396 DOI: 10.26508/lsa.202000799] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 01/11/2023] Open
Abstract
Hereditary Spastic Paraplegia (HSP) is a neurodegenerative disease most commonly caused by autosomal dominant mutations in the SPG4 gene encoding the microtubule-severing protein spastin. We hypothesise that SPG4-HSP is attributable to reduced spastin function because of haploinsufficiency; thus, therapeutic approaches which elevate levels of the wild-type spastin allele may be an effective therapy. However, until now, how spastin levels are regulated is largely unknown. Here, we show that the kinase HIPK2 regulates spastin protein levels in proliferating cells, in differentiated neurons and in vivo. Our work reveals that HIPK2-mediated phosphorylation of spastin at S268 inhibits spastin K48-poly-ubiquitination at K554 and prevents its neddylation-dependent proteasomal degradation. In a spastin RNAi neuronal cell model, overexpression of HIPK2, or inhibition of neddylation, restores spastin levels and rescues neurite defects. Notably, we demonstrate that spastin levels can be restored pharmacologically by inhibiting its neddylation-mediated degradation in neurons derived from a spastin mouse model of HSP and in patient-derived cells, thus revealing novel therapeutic targets for the treatment of SPG4-HSP.
Collapse
Affiliation(s)
- Francesca Sardina
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Sapienza University, Rome, Italy
| | - Alessandra Pisciottani
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Sapienza University, Rome, Italy
| | - Manuela Ferrara
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Sapienza University, Rome, Italy
| | - Davide Valente
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Sapienza University, Rome, Italy.,Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | | | - Marco Crescenzi
- Core Facilities, Italian National Institute of Health, Rome, Italy
| | | | - Carlo Casali
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Andrew J Grierson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Cinzia Rinaldo
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Sapienza University, Rome, Italy .,Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
17
|
Miller JH, Das V. Potential for Treatment of Neurodegenerative Diseases with Natural Products or Synthetic Compounds that Stabilize Microtubules. Curr Pharm Des 2020; 26:4362-4372. [DOI: 10.2174/1381612826666200621171302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/08/2020] [Indexed: 01/04/2023]
Abstract
No effective therapeutics to treat neurodegenerative diseases exist, despite significant attempts to find
drugs that can reduce or rescue the debilitating symptoms of tauopathies such as Alzheimer’s disease, Parkinson’s
disease, frontotemporal dementia, amyotrophic lateral sclerosis, or Pick’s disease. A number of in vitro and in
vivo models exist for studying neurodegenerative diseases, including cell models employing induced-pluripotent
stem cells, cerebral organoids, and animal models of disease. Recent research has focused on microtubulestabilizing
agents, either natural products or synthetic compounds that can prevent the axonal destruction caused
by tau protein pathologies. Although promising results have come from animal model studies using brainpenetrant
natural product microtubule-stabilizing agents, such as paclitaxel analogs that can access the brain,
epothilones B and D, and other synthetic compounds such as davunetide or the triazolopyrimidines, early clinical
trials in humans have been disappointing. This review aims to summarize the research that has been carried out in
this area and discuss the potential for the future development of an effective microtubule stabilizing drug to treat
neurodegenerative disease.
Collapse
Affiliation(s)
- John H. Miller
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínska 5, 77900 Olomouc, Czech Republic
| |
Collapse
|
18
|
Microtubule Dysfunction: A Common Feature of Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21197354. [PMID: 33027950 PMCID: PMC7582320 DOI: 10.3390/ijms21197354] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
Neurons are particularly susceptible to microtubule (MT) defects and deregulation of the MT cytoskeleton is considered to be a common insult during the pathogenesis of neurodegenerative disorders. Evidence that dysfunctions in the MT system have a direct role in neurodegeneration comes from findings that several forms of neurodegenerative diseases are associated with changes in genes encoding tubulins, the structural units of MTs, MT-associated proteins (MAPs), or additional factors such as MT modifying enzymes which modulating tubulin post-translational modifications (PTMs) regulate MT functions and dynamics. Efforts to use MT-targeting therapeutic agents for the treatment of neurodegenerative diseases are underway. Many of these agents have provided several benefits when tested on both in vitro and in vivo neurodegenerative model systems. Currently, the most frequently addressed therapeutic interventions include drugs that modulate MT stability or that target tubulin PTMs, such as tubulin acetylation. The purpose of this review is to provide an update on the relevance of MT dysfunctions to the process of neurodegeneration and briefly discuss advances in the use of MT-targeting drugs for the treatment of neurodegenerative disorders.
Collapse
|
19
|
Shah AK, Wali G, Sue CM, Mackay-Sim A, Hill MM. Antibody-Free Targeted Proteomics Assay for Absolute Measurement of α-Tubulin Acetylation. Anal Chem 2020; 92:11204-11212. [PMID: 32639142 DOI: 10.1021/acs.analchem.0c01683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetylation of α-tubulin at conserved lysine 40 (K40) amino acid residue regulates microtubule dynamics and controls a wide range of cellular activities. Dysregulated microtubule dynamics characterized by differential α-tubulin acetylation is a hallmark of cancer, neurodegeneration, and other complex disorders. Hence, accurate quantitation of α-tubulin acetylation is required in human disease and animal model studies. We developed a novel antibody-free proteomics assay to measure α-tubulin acetylation targeting protease AspN-generated peptides harboring K40 site. Using the synthetic unmodified and acetylated stable isotope labeled peptides DKTIGGG and DKTIGGGD, we demonstrate assay linearity across 4 log magnitude and reproducibility of <10% coefficient of variation. The assay accuracy was validated by titration of 10-80% mixture of acetylated/nonacetylated α-tubulin peptides in the background of human olfactory neurosphere-derived stem (ONS) cell matrix. Furthermore, in agreement with antibody-based high content microscopy analysis, the targeted proteomics assay reported an induction of α-tubulin K40 acetylation upon Trichostatin A stimulation of ONS cells. Independently, we found 35.99% and 16.11% α-tubulin acetylation for mouse spinal cord and brain homogenate tissue, respectively, as measured by our assay. In conclusion, this simple, antibody-free proteomics assay enables quantitation of α-tubulin acetylation, and is applicable across various fields of biology and medicine.
Collapse
Affiliation(s)
- Alok K Shah
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland 4006, Australia
| | - Gautam Wali
- Department of Neurogenetics, Kolling Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales 2065, Australia
| | - Carolyn M Sue
- Department of Neurogenetics, Kolling Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales 2065, Australia
| | - Alan Mackay-Sim
- Department of Neurogenetics, Kolling Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales 2065, Australia.,Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Nathan, Queensland 4111, Australia
| | - Michelle M Hill
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland 4006, Australia.,Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland 4006, Australia
| |
Collapse
|
20
|
Wali G, Liyanage E, Blair NF, Sutharsan R, Park JS, Mackay-Sim A, Sue CM. Oxidative Stress-Induced Axon Fragmentation Is a Consequence of Reduced Axonal Transport in Hereditary Spastic Paraplegia SPAST Patient Neurons. Front Neurosci 2020; 14:401. [PMID: 32457567 PMCID: PMC7221066 DOI: 10.3389/fnins.2020.00401] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/01/2020] [Indexed: 01/01/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is a group of inherited disorders characterized by progressive spasticity and paralysis of the lower limbs. Autosomal dominant mutations in SPAST gene account for ∼40% of adult-onset patients. We have previously shown that SPAST patient cells have reduced organelle transport and are therefore more sensitive to oxidative stress. To test whether these effects are present in neuronal cells, we first generated 11 induced pluripotent stem (iPS) cell lines from fibroblasts of three healthy controls and three HSP patients with different SPAST mutations. These cells were differentiated into FOXG1-positive forebrain neurons and then evaluated for multiple aspects of axonal transport and fragmentation. Patient neurons exhibited reduced levels of SPAST encoded spastin, as well as a range of axonal deficits, including reduced levels of stabilized microtubules, lower peroxisome transport speed as a consequence of reduced microtubule-dependent transport, reduced number of peroxisomes, and higher density of axon swellings. Patient axons fragmented significantly more than controls following hydrogen peroxide exposure, suggesting for the first time that the SPAST patient axons are more sensitive than controls to the deleterious effects of oxidative stress. Treatment of patient neurons with tubulin-binding drugs epothilone D and noscapine rescued axon peroxisome transport and protected them against axon fragmentation induced by oxidative stress, showing that SPAST patient axons are vulnerable to oxidative stress-induced degeneration as a consequence of reduced axonal transport.
Collapse
Affiliation(s)
- Gautam Wali
- Department of Neurogenetics, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Erandhi Liyanage
- Department of Neurogenetics, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Nicholas F Blair
- Department of Neurogenetics, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Ratneswary Sutharsan
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jin-Sung Park
- Department of Neurogenetics, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia.,Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Alan Mackay-Sim
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Carolyn M Sue
- Department of Neurogenetics, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
21
|
Beijer D, Sisto A, Van Lent J, Baets J, Timmerman V. Defects in Axonal Transport in Inherited Neuropathies. J Neuromuscul Dis 2020; 6:401-419. [PMID: 31561383 PMCID: PMC6918914 DOI: 10.3233/jnd-190427] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Axonal transport is a highly complex process essential for sustaining proper neuronal functioning. Disturbances can result in an altered neuronal homeostasis, aggregation of cargoes, and ultimately a dying-back degeneration of neurons. The impact of dysfunction in axonal transport is shown by genetic defects in key proteins causing a broad spectrum of neurodegenerative diseases, including inherited peripheral neuropathies. In this review, we provide an overview of the cytoskeletal components, molecular motors and adaptor proteins involved in axonal transport mechanisms and their implication in neuronal functioning. In addition, we discuss the involvement of axonal transport dysfunction in neurodegenerative diseases with a particular focus on inherited peripheral neuropathies. Lastly, we address some recent scientific advances most notably in therapeutic strategies employed in the area of axonal transport, patient-derived iPSC models, in vivo animal models, antisense-oligonucleotide treatments, and novel chemical compounds.
Collapse
Affiliation(s)
- Danique Beijer
- Neurogenetics Research Group, Department of Medical Sciences, University of Antwerp, Antwerpen, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerpen, Belgium
| | - Angela Sisto
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerpen, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerpen, Belgium
| | - Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerpen, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerpen, Belgium
| | - Jonathan Baets
- Neurogenetics Research Group, Department of Medical Sciences, University of Antwerp, Antwerpen, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerpen, Belgium.,Neurology Department, University Hospital Antwerp, Antwerpen, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerpen, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerpen, Belgium
| |
Collapse
|
22
|
Zhu Z, Chuckowree JA, Musgrove R, Dickson TC, Blizzard CA. The pathologic outcomes and efficacy of epothilone treatment following traumatic brain injury is determined by age. Neurobiol Aging 2020; 93:85-96. [PMID: 32480164 DOI: 10.1016/j.neurobiolaging.2020.03.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 02/05/2023]
Abstract
Traumatic brain injury (TBI) can affect individuals at any age, with the potential of causing lasting neurologic consequences. The lack of effective therapeutic solutions and recommendations for patients that acquire a TBI can be attributed, at least in part, to an inability to confidently predict long-term outcomes following TBI, and how the response of the brain differs across the life span. The purpose of this study was to determine how age specifically affects TBI outcomes in a preclinical model. Male Thy1-YFPH mice, that express yellow fluorescent protein in the cytosol of a subset of Layer V pyramidal neurons in the neocortex, were subjected to a lateral fluid percussion injury over the right parietal cortex at distinct time points throughout the life span (1.5, 3, and 12 months of age). We found that the degree of neuronal injury, astrogliosis, and microglial activation differed depending on the age of the animal when the injury occurred. Furthermore, age affected the initial injury response and how it resolved over time. Using the microtubule stabilizing agent Epothilone D, to potentially protect against these pathologic outcomes, we found that the neuronal response was different depending on age. This study clearly shows that age must be taken into account in neurologic studies and preclinical trials involving TBI, and that future therapeutic interventions must be tailored to age.
Collapse
Affiliation(s)
- Zhendan Zhu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Jyoti A Chuckowree
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Ruth Musgrove
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Tracey C Dickson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Catherine A Blizzard
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| |
Collapse
|
23
|
Siow SF, Cameron Smail R, Ng K, Kumar KR, Sue CM. Motor Evoked Potentials in Hereditary Spastic Paraplegia-A Systematic Review. Front Neurol 2019; 10:967. [PMID: 31620065 PMCID: PMC6759520 DOI: 10.3389/fneur.2019.00967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Hereditary Spastic Paraplegia (HSP) is a slowly progressive neurodegenerative disorder with no disease modifying treatment. Potential therapeutic approaches are emerging and large-scale clinical drug trials for patients with HSP are imminent. A sensitive biomarker to measure the drug efficacy in these trials is required. Motor evoked potentials (MEPs) are a potential biomarker for HSP as they assess the central motor pathways and can be standardized with set protocols and guidelines. Objectives: We performed a systematic review to investigate the utility of MEPs as a diagnostic and disease severity biomarker for HSP. Search Methods: Systematic searches of PubMed, Embase, Medline, and Scopus were performed. Selection Criteria: Studies reporting on central motor conduction time measured with MEPs in adult and pediatric patients with HSP were included. We excluded studies in non-HSP patient cohorts, not in English, not original research, and unpublished journal articles. Data Collection and analysis: Search results were de-duplicated and screened according to the inclusion and exclusion criteria. The included papers were reviewed independently by two reviewers and data was collected on patient cohorts, test methods, results, and study quality. Results were analyzed using descriptive methods. Results: Of the 882 search results, 32 studies were included in the review. The most common finding was absent or prolonged lower limb (LL) central motor conduction time (CMCT) in patients with HSP (78% of patients studied). Quality assessment revealed variability in study methodology and reporting of results. Variations included patient cohorts of various genotypes as well as variations in equipment and techniques used. Aside from CMCT, none of the MEP parameter measures correlated with disease severity and many did not show significant difference between HSP patients and controls. Conclusion: Systematic review of MEP studies in HSP patient cohorts demonstrated mixed findings. Lower limb CMCT was the most promising parameter in terms of differentiating HSP patients from controls, with one study demonstrating a weak correlation with clinical disease severity. It is possible that the lack of consistency in study methodologies and small patient cohorts have contributed to the variable findings. A longitudinal study of MEPs in a large cohort of HSP patients with the same genotype will help clarify the utility of MEPs as a biomarker for disease severity and use in clinical trials.
Collapse
Affiliation(s)
- Sue-Faye Siow
- Department of Neurogenetics, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia.,Department of Neurology and Neurophysiology, Royal North Shore Hospital, St Leonards, NSW, Australia.,Northern Clinical School, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Ruaridh Cameron Smail
- Department of Neurology and Neurophysiology, Royal North Shore Hospital, St Leonards, NSW, Australia.,Northern Clinical School, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Karl Ng
- Department of Neurology and Neurophysiology, Royal North Shore Hospital, St Leonards, NSW, Australia.,Northern Clinical School, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Kishore R Kumar
- Department of Neurogenetics, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,Department of Neurology, Concord Hospital, Sydney, NSW, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Molecular Medicine Laboratory, Concord Hospital, Sydney, NSW, Australia
| | - Carolyn M Sue
- Department of Neurogenetics, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia.,Department of Neurology and Neurophysiology, Royal North Shore Hospital, St Leonards, NSW, Australia.,Northern Clinical School, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
24
|
Guo W, Stoklund Dittlau K, Van Den Bosch L. Axonal transport defects and neurodegeneration: Molecular mechanisms and therapeutic implications. Semin Cell Dev Biol 2019; 99:133-150. [PMID: 31542222 DOI: 10.1016/j.semcdb.2019.07.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/22/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Abstract
Because of the extremely polarized morphology, the proper functioning of neurons largely relies on the efficient cargo transport along the axon. Axonal transport defects have been reported in multiple neurodegenerative diseases as an early pathological feature. The discovery of mutations in human genes involved in the transport machinery provide a direct causative relationship between axonal transport defects and neurodegeneration. Here, we summarize the current genetic findings related to axonal transport in neurodegenerative diseases, and we discuss the relationship between axonal transport defects and other pathological changes observed in neurodegeneration. In addition, we summarize the therapeutic approaches targeting the axonal transport machinery in studies of neurodegenerative diseases. Finally, we review the technical advances in tracking axonal transport both in vivo and in vitro.
Collapse
Affiliation(s)
- Wenting Guo
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium; KU Leuven-Stem Cell Institute (SCIL), Leuven, Belgium
| | - Katarina Stoklund Dittlau
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| |
Collapse
|
25
|
Qiang L, Piermarini E, Muralidharan H, Yu W, Leo L, Hennessy LE, Fernandes S, Connors T, Yates PL, Swift M, Zholudeva LV, Lane MA, Morfini G, Alexander GM, Heiman-Patterson TD, Baas PW. Hereditary spastic paraplegia: gain-of-function mechanisms revealed by new transgenic mouse. Hum Mol Genet 2019; 28:1136-1152. [PMID: 30520996 DOI: 10.1093/hmg/ddy419] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/31/2018] [Accepted: 12/02/2018] [Indexed: 12/17/2022] Open
Abstract
Mutations of the SPAST gene, which encodes the microtubule-severing protein spastin, are the most common cause of hereditary spastic paraplegia (HSP). Haploinsufficiency is the prevalent opinion as to the mechanism of the disease, but gain-of-function toxicity of the mutant proteins is another possibility. Here, we report a new transgenic mouse (termed SPASTC448Y mouse) that is not haploinsufficient but expresses human spastin bearing the HSP pathogenic C448Y mutation. Expression of the mutant spastin was documented from fetus to adult, but gait defects reminiscent of HSP (not observed in spastin knockout mice) were adult onset, as is typical of human patients. Results of histological and tracer studies on the mouse are consistent with progressive dying back of corticospinal axons, which is characteristic of the disease. The C448Y-mutated spastin alters microtubule stability in a manner that is opposite to the expectations of haploinsufficiency. Neurons cultured from the mouse display deficits in organelle transport typical of axonal degenerative diseases, and these deficits were worsened by depletion of endogenous mouse spastin. These results on the SPASTC448Y mouse are consistent with a gain-of-function mechanism underlying HSP, with spastin haploinsufficiency exacerbating the toxicity of the mutant spastin proteins. These findings reveal the need for a different therapeutic approach than indicated by haploinsufficiency alone.
Collapse
Affiliation(s)
| | | | | | | | | | - Laura E Hennessy
- Department of Neurology, Drexel University College of Medicine, Queen Lane, Philadelphia, PA, USA
| | | | | | | | | | | | | | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Guillermo M Alexander
- Department of Neurology, Drexel University College of Medicine, Queen Lane, Philadelphia, PA, USA
| | - Terry D Heiman-Patterson
- Department of Neurology, Drexel University College of Medicine, Queen Lane, Philadelphia, PA, USA
| | | |
Collapse
|
26
|
Boutry M, Morais S, Stevanin G. Update on the Genetics of Spastic Paraplegias. Curr Neurol Neurosci Rep 2019; 19:18. [DOI: 10.1007/s11910-019-0930-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Trummer B, Haubenberger D, Blackstone C. Clinical Trial Designs and Measures in Hereditary Spastic Paraplegias. Front Neurol 2018; 9:1017. [PMID: 30627115 PMCID: PMC6309810 DOI: 10.3389/fneur.2018.01017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/12/2018] [Indexed: 01/19/2023] Open
Abstract
Hereditary spastic paraplegias (HSPs) are a large group of genetically-diverse neurologic disorders characterized clinically by a common feature of lower extremity spasticity and gait difficulties. Current therapies are predominantly symptomatic, and even then usually provide inadequate relief of symptoms. Going forward, HSP therapeutics development requires a systematic analysis of quantifiable measures and tools to assess treatment response. This review summarizes promising therapeutic targets, assessment measures, and previous clinical trials for the HSPs. Oxidative stress, signaling pathways, microtubule dynamics, and gene rescue/replacement have been proposed as potential treatment targets or modalities. Quantitative evaluation of pre-clinical rodent HSP models emphasize rotarod performance, foot base angle, grip strength, stride length, beam walking, critical speed, and body weight. Clinical measures of HSP in humans include 10-m gait velocity, the Spastic Paraplegia Rating Scale (SPRS), Ashworth Spasticity Scale, Fugl-Meyer Scale, timed up-and-go, and the Gillette Functional Assessment Questionnaire. We conducted a broad search for past clinical trials in HSPs and identified trials that investigated pharmacological agents including atorvastatin, gabapentin, L-threonine, botulinum toxin, dalfampridine, methylphenidate, and baclofen. We provide recommendations for future HSP treatment directions based on these prior research experiences as well as regulatory insight.
Collapse
Affiliation(s)
- Brian Trummer
- Neurogenetics Branch, Clinical Research Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- Clinical Trials Unit, Clinical Research Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Dietrich Haubenberger
- Clinical Trials Unit, Clinical Research Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Craig Blackstone
- Neurogenetics Branch, Clinical Research Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
28
|
Wali G, Sue CM, Mackay-Sim A. Patient-Derived Stem Cell Models in SPAST HSP: Disease Modelling and Drug Discovery. Brain Sci 2018; 8:E142. [PMID: 30065201 PMCID: PMC6120041 DOI: 10.3390/brainsci8080142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/18/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023] Open
Abstract
Hereditary spastic paraplegia is an inherited, progressive paralysis of the lower limbs first described by Adolph Strümpell in 1883 with a further detailed description of the disease by Maurice Lorrain in 1888. Today, more than 100 years after the first case of HSP was described, we still do not know how mutations in HSP genes lead to degeneration of the corticospinal motor neurons. This review describes how patient-derived stem cells contribute to understanding the disease mechanism at the cellular level and use this for discovery of potential new therapeutics, focusing on SPAST mutations, the most common cause of HSP.
Collapse
Affiliation(s)
- Gautam Wali
- Department of Neurogenetics, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW 2065, Australia.
| | - Carolyn M Sue
- Department of Neurogenetics, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW 2065, Australia.
| | - Alan Mackay-Sim
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| |
Collapse
|
29
|
A Patient-Specific Stem Cell Model to Investigate the Neurological Phenotype Observed in Ataxia-Telangiectasia. Methods Mol Biol 2018; 1599:391-400. [PMID: 28477134 DOI: 10.1007/978-1-4939-6955-5_28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The molecular pathogenesis of ataxia-telangiectasia (A-T) is not yet fully understood, and a versatile cellular model is required for in vitro studies. The occurrence of continuous neurogenesis and easy access make the multipotent adult stem cells from the olfactory mucosa within the nasal cavity a potential cellular model. We describe an efficient method to establish neuron-like cells from olfactory mucosa biopsies derived from A-T patients for the purpose of studying the cellular and molecular aspects of this debilitating disease.
Collapse
|
30
|
Okumoto K, Ono T, Toyama R, Shimomura A, Nagata A, Fujiki Y. New splicing variants of mitochondrial Rho GTPase-1 (Miro1) transport peroxisomes. J Cell Biol 2017; 217:619-633. [PMID: 29222186 PMCID: PMC5800816 DOI: 10.1083/jcb.201708122] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/27/2017] [Accepted: 11/06/2017] [Indexed: 01/31/2023] Open
Abstract
The mechanisms underlying microtubule-dependent long-distance movement of peroxisomes in mammalian cells are unclear. Okumoto et al. identify splicing variants of human mitochondrial Rho GTPase-1 (Miro1) that localize to peroxisomes and that link these organelles to microtubule-dependent transport complexes including TRAK2. Microtubule-dependent long-distance movement of peroxisomes occurs in mammalian cells. However, its molecular mechanisms remain undefined. In this study, we identified three distinct splicing variants of human mitochondrial Rho GTPase-1 (Miro1), each containing amino acid sequence insertions 1 (named Miro1-var2), 2 (Miro1-var3), and both 1 and 2 (Miro1-var4), respectively, at upstream of the transmembrane domain. Miro1-var4 and Miro1-var2 are localized to peroxisomes in a manner dependent on the insertion 1 that is recognized by the cytosolic receptor Pex19p. Exogenous expression of Miro1-var4 induces accumulation of peroxisomes at the cell periphery and augments long-range movement of peroxisomes along microtubules. Depletion of all Miro1 variants by knocking down MIRO1 suppresses the long-distance movement of peroxisomes. Such abrogated movement is restored by reexpression of peroxisomal Miro1 variants. Collectively, our findings identify for the first time peroxisome-localized Miro1 variants as adapter proteins that link peroxisomes to the microtubule-dependent transport complexes including TRAK2 in the intracellular translocation of peroxisomes in mammalian cells.
Collapse
Affiliation(s)
- Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan.,Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuaki Ono
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Ryusuke Toyama
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Ayako Shimomura
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Aiko Nagata
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
31
|
De Vos KJ, Hafezparast M. Neurobiology of axonal transport defects in motor neuron diseases: Opportunities for translational research? Neurobiol Dis 2017; 105:283-299. [PMID: 28235672 PMCID: PMC5536153 DOI: 10.1016/j.nbd.2017.02.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/26/2017] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Intracellular trafficking of cargoes is an essential process to maintain the structure and function of all mammalian cell types, but especially of neurons because of their extreme axon/dendrite polarisation. Axonal transport mediates the movement of cargoes such as proteins, mRNA, lipids, membrane-bound vesicles and organelles that are mostly synthesised in the cell body and in doing so is responsible for their correct spatiotemporal distribution in the axon, for example at specialised sites such as nodes of Ranvier and synaptic terminals. In addition, axonal transport maintains the essential long-distance communication between the cell body and synaptic terminals that allows neurons to react to their surroundings via trafficking of for example signalling endosomes. Axonal transport defects are a common observation in a variety of neurodegenerative diseases, and mutations in components of the axonal transport machinery have unequivocally shown that impaired axonal transport can cause neurodegeneration (reviewed in El-Kadi et al., 2007, De Vos et al., 2008; Millecamps and Julien, 2013). Here we review our current understanding of axonal transport defects and the role they play in motor neuron diseases (MNDs) with a specific focus on the most common form of MND, amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Kurt J De Vos
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Majid Hafezparast
- Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| |
Collapse
|
32
|
Modeling Axonal Defects in Hereditary Spastic Paraplegia with Human Pluripotent Stem Cells. ACTA ACUST UNITED AC 2016; 11:339-354. [PMID: 27956894 DOI: 10.1007/s11515-016-1416-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cortical motor neurons, also known as upper motor neurons, are large projection neurons whose axons convey signals to lower motor neurons to control the muscle movements. Degeneration of cortical motor neuron axons is implicated in several debilitating disorders, including hereditary spastic paraplegia (HSP) and amyotrophic lateral sclerosis (ALS). Since the discovery of the first HSP gene, SPAST that encodes spastin, over 70 distinct genetic loci associated with HSP have been identified. How the mutations of these functionally diverse genes result in axonal degeneration and why certain axons are affected in HSP remains largely unknown. The development of induced pluripotent stem cell (iPSC) technology has provided researchers an excellent resource to generate patient-specific human neurons to model human neuropathologic processes including axonal defects. METHODS In this article, we will frst review the pathology and pathways affected in the common forms of HSP subtypes by searching the PubMed database. We will then summurize the findings and insights gained from studies using iPSC-based models, and discuss the challenges and future directions. RESULTS HSPs, a heterogeneous group of genetic neurodegenerative disorders, are characterized by lower extremity weakness and spasticity that result from retrograde axonal degeneration of cortical motor neurons. Recently, iPSCs have been generated from several common forms of HSP including SPG4, SPG3A, and SPG11 patients. Neurons derived from HSP iPSCs exhibit disease-relevant axonal defects, such as impaired neurite outgrowth, increased axonal swellings, and reduced axonal transport. CONCLUSION These patient-derived neurons offer unique tools to study the pathogenic mechanisms and explore the treatments for rescuing axonal defects in HSP, as well as other diseases involving axonopathy.
Collapse
|
33
|
Mechanism of impaired microtubule-dependent peroxisome trafficking and oxidative stress in SPAST-mutated cells from patients with Hereditary Spastic Paraplegia. Sci Rep 2016; 6:27004. [PMID: 27229699 PMCID: PMC4882512 DOI: 10.1038/srep27004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/12/2016] [Indexed: 12/23/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is an inherited neurological condition that leads to progressive spasticity and gait abnormalities. Adult-onset HSP is most commonly caused by mutations in SPAST, which encodes spastin a microtubule severing protein. In olfactory stem cell lines derived from patients carrying different SPAST mutations, we investigated microtubule-dependent peroxisome movement with time-lapse imaging and automated image analysis. The average speed of peroxisomes in patient-cells was slower, with fewer fast moving peroxisomes than in cells from healthy controls. This was not because of impairment of peroxisome-microtubule interactions because the time-dependent saltatory dynamics of movement of individual peroxisomes was unaffected in patient-cells. Our observations indicate that average peroxisome speeds are less in patient-cells because of the lower probability of individual peroxisome interactions with the reduced numbers of stable microtubules: peroxisome speeds in patient cells are restored by epothilone D, a tubulin-binding drug that increases the number of stable microtubules to control levels. Patient-cells were under increased oxidative stress and were more sensitive than control-cells to hydrogen peroxide, which is primarily metabolised by peroxisomal catalase. Epothilone D also ameliorated patient-cell sensitivity to hydrogen-peroxide. Our findings suggest a mechanism for neurodegeneration whereby SPAST mutations indirectly lead to impaired peroxisome transport and oxidative stress.
Collapse
|
34
|
Connell JW, Allison R, Reid E. Quantitative Gait Analysis Using a Motorized Treadmill System Sensitively Detects Motor Abnormalities in Mice Expressing ATPase Defective Spastin. PLoS One 2016; 11:e0152413. [PMID: 27019090 PMCID: PMC4809716 DOI: 10.1371/journal.pone.0152413] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/14/2016] [Indexed: 11/25/2022] Open
Abstract
The hereditary spastic paraplegias (HSPs) are genetic conditions in which there is progressive axonal degeneration in the corticospinal tract. Autosomal dominant mutations, including nonsense, frameshift and missense changes, in the gene encoding the microtubule severing ATPase spastin are the most common cause of HSP in North America and northern Europe. In this study we report quantitative gait analysis using a motorized treadmill system, carried out on mice knocked-in for a disease-associated mutation affecting a critical residue in the Walker A motif of the spastin ATPase domain. At 4 months and at one year of age homozygous mutant mice had a number of abnormal gait parameters, including in stride length and stride duration, compared to heterozygous and wild-type littermates. Gait parameters in heterozygous animals did not differ from wild-type littermates. We conclude that quantitative gait analysis using the DigiGait system sensitively detects motor abnormalities in a hereditary spastic paraplegia model, and would be a useful method for analyzing the effects of pharmacological treatments for HSP.
Collapse
Affiliation(s)
- James W. Connell
- Department of Medical Genetics and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Rachel Allison
- Department of Medical Genetics and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Evan Reid
- Department of Medical Genetics and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Julien C, Lissouba A, Madabattula S, Fardghassemi Y, Rosenfelt C, Androschuk A, Strautman J, Wong C, Bysice A, O'sullivan J, Rouleau GA, Drapeau P, Parker JA, Bolduc FV. Conserved pharmacological rescue of hereditary spastic paraplegia-related phenotypes across model organisms. Hum Mol Genet 2016; 25:1088-99. [PMID: 26744324 PMCID: PMC4764191 DOI: 10.1093/hmg/ddv632] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 11/13/2015] [Accepted: 12/29/2015] [Indexed: 01/10/2023] Open
Abstract
Hereditary spastic paraplegias (HSPs) are a group of neurodegenerative diseases causing progressive gait dysfunction. Over 50 genes have now been associated with HSP. Despite the recent explosion in genetic knowledge, HSP remains without pharmacological treatment. Loss-of-function mutation of the SPAST gene, also known as SPG4, is the most common cause of HSP in patients. SPAST is conserved across animal species and regulates microtubule dynamics. Recent studies have shown that it also modulates endoplasmic reticulum (ER) stress. Here, utilizing null SPAST homologues in C. elegans, Drosophila and zebrafish, we tested FDA-approved compounds known to modulate ER stress in order to ameliorate locomotor phenotypes associated with HSP. We found that locomotor defects found in all of our spastin models could be partially rescued by phenazine, methylene blue, N-acetyl-cysteine, guanabenz and salubrinal. In addition, we show that established biomarkers of ER stress levels correlated with improved locomotor activity upon treatment across model organisms. Our results provide insights into biomarkers and novel therapeutic avenues for HSP.
Collapse
Affiliation(s)
| | | | - Surya Madabattula
- Institute for Neuroscience and Mental Health and Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada and
| | - Yasmin Fardghassemi
- CRCHUM and Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
| | - Cory Rosenfelt
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada and
| | - Alaura Androschuk
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada and
| | - Joel Strautman
- Institute for Neuroscience and Mental Health and Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada and
| | - Clement Wong
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada and
| | - Andrew Bysice
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada and
| | - Julia O'sullivan
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada and
| | - Guy A Rouleau
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec, Canada
| | | | | | - François V Bolduc
- Institute for Neuroscience and Mental Health and Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada and
| |
Collapse
|
36
|
Zempel H, Mandelkow EM. Tau missorting and spastin-induced microtubule disruption in neurodegeneration: Alzheimer Disease and Hereditary Spastic Paraplegia. Mol Neurodegener 2015; 10:68. [PMID: 26691836 PMCID: PMC4687341 DOI: 10.1186/s13024-015-0064-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/08/2015] [Indexed: 12/16/2022] Open
Abstract
In Alzheimer Disease (AD), the mechanistic connection of the two major pathological hallmarks, namely deposition of Amyloid-beta (Aβ) in the form of extracellular plaques, and the pathological changes of the intracellular protein Tau (such as phosphorylation, missorting, aggregation), is not well understood. Genetic evidence from AD and Down Syndrome (Trisomy 21), and animal models thereof, suggests that aberrant production of Aβ is upstream of Tau aggregation, but also points to Tau as a critical effector in the pathological process. Yet, the cascade of events leading from increased levels of Aβ to Tau-dependent toxicity remains a matter of debate. Using primary neurons exposed to oligomeric forms of Aβ, we have found that Tau becomes mislocalized (missorted) into the somatodendritic compartment. Missorting of Tau correlates with loss of microtubules and downstream consequences such as loss of mature spines, loss of synaptic activity, and mislocalization of mitochondria. In this cascade, missorting of Tau induces mislocalization of TTLL6 (Tubulin-Tyrosine-Ligase-Like 6) into the dendrites. TTLL6 induces polyglutamylation of microtubules, which acts as a trigger for spastin mediated severing of dendritic microtubules. Loss of microtubules makes cells unable to maintain transport of mitochondria, which in turn results in synaptic dysfunction and loss of mature spines. These pathological changes are absent in TauKO derived primary neurons. Thus, Tau mediated mislocalization of TTLL6 and spastin activation reveals a pathological gain of function for Tau and spastin in this cellular model system of AD. In contrast, in hereditary spastic paraplegia (HSP) caused by mutations of the gene encoding spastin (spg4 alias SPAST), spastin function in terms of microtubule severing is decreased at least for the gene product of the mutated allele, resulting in overstable microtubules in disease model systems. Whether total spastin severing activity or microtubule stability in human disease is also affected is not yet clear. No human disease has been associated so far with the long-chain polyglutamylation enzyme TTLL6, or the other TTLLs (1,5,11) possibly involved. Here we review the findings supporting a role for Tau, spastin and TTLL6 in AD and other tauopathies, HSP and neurodegeneration, and summarize possible therapeutic approaches for AD and HSP.
Collapse
Affiliation(s)
- Hans Zempel
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany. .,MPI for Metabolism Research, Hamburg Outstation, c/o DESY, Hamburg, Germany.
| | - Eva-Maria Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany. .,CAESAR Research Center, Bonn, Germany. .,MPI for Metabolism Research, Hamburg Outstation, c/o DESY, Hamburg, Germany.
| |
Collapse
|
37
|
Killinger BA, Moszczynska A. Epothilone D prevents binge methamphetamine-mediated loss of striatal dopaminergic markers. J Neurochem 2015; 136:510-25. [PMID: 26465779 DOI: 10.1111/jnc.13391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 09/12/2015] [Accepted: 09/21/2015] [Indexed: 02/06/2023]
Abstract
Exposure to binge methamphetamine (METH) can result in a permanent or transient loss of dopaminergic (DAergic) markers such as dopamine (DA), dopamine transporter, and tyrosine hydroxylase (TH) in the striatum. We hypothesized that the METH-induced loss of striatal DAergic markers was, in part, due to a destabilization of microtubules (MTs) in the nigrostriatal DA pathway that ultimately impedes anterograde axonal transport of these markers. To test this hypothesis, adult male Sprague-Dawley rats were treated with binge METH or saline in the presence or absence of epothilone D (EpoD), a MT-stabilizing compound, and assessed 3 days after the treatments for the levels of several DAergic markers as well as for the levels of tubulins and their post-translational modifications (PMTs). Binge METH induced a loss of stable long-lived MTs within the striatum but not within the substantia nigra pars compacta (SNpc). Treatment with a low dose of EpoD increased the levels of markers of stable MTs and prevented METH-mediated deficits in several DAergic markers in the striatum. In contrast, administration of a high dose of EpoD appeared to destabilize MTs and potentiated the METH-induced deficits in several DAergic markers. The low-dose EpoD also prevented the METH-induced increase in striatal DA turnover and increased behavioral stereotypy during METH treatment. Together, these results demonstrate that MT dynamics plays a role in the development of METH-induced losses of several DAergic markers in the striatum and may mediate METH-induced degeneration of terminals in the nigrostriatal DA pathway. Our study also demonstrates that MT-stabilizing drugs such as EpoD have a potential to serve as useful therapeutic agents to restore function of DAergic nerve terminals following METH exposure when administered at low doses. Administration of binge methamphetamine (METH) negatively impacts neurotransmission in the nigrostriatal dopamine (DA) system. The effects of METH include decreasing the levels of DAergic markers in the striatum. We have determined that high-dose METH destabilizes microtubules in this pathway, which is manifested by decreased levels of acetylated (Acetyl) and detyrosinated (Detyr) α-tubulin (I). A microtubule stabilizing agent epothilone D protects striatal microtubules form the METH-induced loss of DAergic markers (II). These findings provide a new strategy for protection form METH - restoration of proper axonal transport.
Collapse
Affiliation(s)
- Bryan A Killinger
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Anna Moszczynska
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|