1
|
Williams RM. Leveraging chicken embryos for studying human enhancers. Dev Biol 2025; 524:123-131. [PMID: 40368318 DOI: 10.1016/j.ydbio.2025.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 04/30/2025] [Accepted: 05/12/2025] [Indexed: 05/16/2025]
Abstract
The dynamic activity of complex gene regulatory networks stands at the core of all cellular functions that define cell identity and behaviour. Gene regulatory networks comprise transcriptional enhancers, acted upon by cell-specific transcription factors to control gene expression in a spatial and temporal specific manner. Enhancers are found in the non-coding genome; pathogenic variants can disrupt enhancer activity and lead to disease. Correlating non-coding variants with aberrant enhancer activity remains a significant challenge. Due to their clinical significance, there is a longstanding interest in understanding enhancer function during early embryogenesis. With the onset of the omics era, it is now feasible to identify putative tissue-specific enhancers from epigenome data. However, such predictions in vivo require validation. The early stages of chick embryogenesis closely parallel those of human, offering an accessible in vivo model in which to assess the activity of putative human enhancer sequences. This review explores the unique advantages and recent advancements in employing chicken embryos to elucidate the activity of human transcriptional enhancers and the potential implications of these findings in human disease.
Collapse
Affiliation(s)
- Ruth M Williams
- University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester, United Kingdom.
| |
Collapse
|
2
|
Shylo NA, Smith SE, Price AJ, Guo F, McClain M, Trainor PA. Morphological changes and two Nodal paralogs drive left-right asymmetry in the squamate veiled chameleon ( C. calyptratus). Front Cell Dev Biol 2023; 11:1132166. [PMID: 37113765 PMCID: PMC10126504 DOI: 10.3389/fcell.2023.1132166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/23/2023] [Indexed: 04/29/2023] Open
Abstract
The ancestral mode of left-right (L-R) patterning involves cilia in the L-R organizer. However, the mechanisms regulating L-R patterning in non-avian reptiles remains an enigma, since most squamate embryos are undergoing organogenesis at oviposition. In contrast, veiled chameleon (Chamaeleo calyptratus) embryos are pre-gastrula at oviposition, making them an excellent organism for studying L-R patterning evolution. Here we show that veiled chameleon embryos lack motile cilia at the time of L-R asymmetry establishment. Thus, the loss of motile cilia in the L-R organizers is a synapomorphy of all reptiles. Furthermore, in contrast to avians, geckos and turtles, which have one Nodal gene, veiled chameleon exhibits expression of two paralogs of Nodal in the left lateral plate mesoderm, albeit in non-identical patterns. Using live imaging, we observed asymmetric morphological changes that precede, and likely trigger, asymmetric expression of the Nodal cascade. Thus, veiled chameleons are a new and unique model for studying the evolution of L-R patterning.
Collapse
Affiliation(s)
- Natalia A. Shylo
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Sarah E. Smith
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Andrew J. Price
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Fengli Guo
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Melainia McClain
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, MO, United States
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, MO, United States
- *Correspondence: Paul A. Trainor,
| |
Collapse
|
3
|
Ganapathi M, Buchovecky CM, Cristo F, Ahimaz P, Ruzal-Shapiro C, Wou K, Inácio JM, Iglesias A, Belo JA, Jobanputra V. A novel biallelic loss-of-function variant in DAND5 causes heterotaxy syndrome. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006248. [PMID: 36316122 PMCID: PMC9808554 DOI: 10.1101/mcs.a006248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022] Open
Abstract
The majority of heterotaxy cases do not obtain a molecular diagnosis, although pathogenic variants in more than 50 genes are known to cause heterotaxy. A heterozygous missense variant in DAND5, a nodal inhibitor, which functions in early development for establishment of right-left patterning, has been implicated in heterotaxy. Recently, the first case was reported of a DAND5 biallelic loss-of-function (LoF) variant in an individual with heterotaxy. Here, we describe a second unrelated individual with heterotaxy syndrome and a homozygous frameshift variant in DAND5 (NM_152654.2:c.197del [p.Leu66ArgfsTer22]). Using an in vitro assay, we demonstrate that the DAND5 c.197del variant is unable to inhibit nodal signaling when compared with the wild-type expression construct. This work strengthens the genetic and functional evidence for biallelic LoF variants in DAND5 causing an autosomal recessive heterotaxy syndrome.
Collapse
Affiliation(s)
- Mythily Ganapathi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Christie M Buchovecky
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Fernando Cristo
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal
| | - Priyanka Ahimaz
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Carrie Ruzal-Shapiro
- Department of Radiology, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Karen Wou
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - José M Inácio
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal
| | - Alejandro Iglesias
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - José A Belo
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal
| | - Vaidehi Jobanputra
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
4
|
Prummel KD, Crowell HL, Nieuwenhuize S, Brombacher EC, Daetwyler S, Soneson C, Kresoja-Rakic J, Kocere A, Ronner M, Ernst A, Labbaf Z, Clouthier DE, Firulli AB, Sánchez-Iranzo H, Naganathan SR, O'Rourke R, Raz E, Mercader N, Burger A, Felley-Bosco E, Huisken J, Robinson MD, Mosimann C. Hand2 delineates mesothelium progenitors and is reactivated in mesothelioma. Nat Commun 2022; 13:1677. [PMID: 35354817 PMCID: PMC8967825 DOI: 10.1038/s41467-022-29311-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
The mesothelium lines body cavities and surrounds internal organs, widely contributing to homeostasis and regeneration. Mesothelium disruptions cause visceral anomalies and mesothelioma tumors. Nonetheless, the embryonic emergence of mesothelia remains incompletely understood. Here, we track mesothelial origins in the lateral plate mesoderm (LPM) using zebrafish. Single-cell transcriptomics uncovers a post-gastrulation gene expression signature centered on hand2 in distinct LPM progenitor cells. We map mesothelial progenitors to lateral-most, hand2-expressing LPM and confirm conservation in mouse. Time-lapse imaging of zebrafish hand2 reporter embryos captures mesothelium formation including pericardium, visceral, and parietal peritoneum. We find primordial germ cells migrate with the forming mesothelium as ventral migration boundary. Functionally, hand2 loss disrupts mesothelium formation with reduced progenitor cells and perturbed migration. In mouse and human mesothelioma, we document expression of LPM-associated transcription factors including Hand2, suggesting re-initiation of a developmental program. Our data connects mesothelium development to Hand2, expanding our understanding of mesothelial pathologies.
Collapse
Affiliation(s)
- Karin D Prummel
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Helena L Crowell
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Susan Nieuwenhuize
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Eline C Brombacher
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephan Daetwyler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, United States
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Charlotte Soneson
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Jelena Kresoja-Rakic
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, University Hospital Zurich, Zürich, Switzerland
| | - Agnese Kocere
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Manuel Ronner
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, University Hospital Zurich, Zürich, Switzerland
| | | | - Zahra Labbaf
- Institute for Cell Biology, ZMBE, Muenster, Germany
| | - David E Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN, USA
| | - Héctor Sánchez-Iranzo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
- Institute of Biological and Chemical System - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Sundar R Naganathan
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Rebecca O'Rourke
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Erez Raz
- Institute for Cell Biology, ZMBE, Muenster, Germany
| | - Nadia Mercader
- Institute of Anatomy, University of Bern, Bern, Switzerland
- Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
| | - Alexa Burger
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, University Hospital Zurich, Zürich, Switzerland
| | - Jan Huisken
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Morgridge Institute for Research, Madison, WI, USA
| | - Mark D Robinson
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
5
|
Identification of Novel Hemangioblast Genes in the Early Chick Embryo. Cells 2018; 7:cells7020009. [PMID: 29385069 PMCID: PMC5850097 DOI: 10.3390/cells7020009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/17/2018] [Accepted: 01/27/2018] [Indexed: 12/20/2022] Open
Abstract
During early vertebrate embryogenesis, both hematopoietic and endothelial lineages derive from a common progenitor known as the hemangioblast. Hemangioblasts derive from mesodermal cells that migrate from the posterior primitive streak into the extraembryonic yolk sac. In addition to primitive hematopoietic cells, recent evidence revealed that yolk sac hemangioblasts also give rise to tissue-resident macrophages and to definitive hematopoietic stem/progenitor cells. In our previous work, we used a novel hemangioblast-specific reporter to isolate the population of chick yolk sac hemangioblasts and characterize its gene expression profile using microarrays. Here we report the microarray profile analysis and the identification of upregulated genes not yet described in hemangioblasts. These include the solute carrier transporters SLC15A1 and SCL32A1, the cytoskeletal protein RhoGap6, the serine protease CTSG, the transmembrane receptor MRC1, the transcription factors LHX8, CITED4 and PITX1, and the previously uncharacterized gene DIA1R. Expression analysis by in situ hybridization showed that chick DIA1R is expressed not only in yolk sac hemangioblasts but also in particular intraembryonic populations of hemogenic endothelial cells, suggesting a potential role in the hemangioblast-derived hemogenic lineage. Future research into the function of these newly identified genes may reveal novel important regulators of hemangioblast development.
Collapse
|
6
|
Abstract
The discovery of the transforming growth factor β (TGF-β) family ligands and the realization that their bioactivities need to be tightly controlled temporally and spatially led to intensive research that has identified a multitude of extracellular modulators of TGF-β family ligands, uncovered their functions in developmental and pathophysiological processes, defined the mechanisms of their activities, and explored potential modulator-based therapeutic applications in treating human diseases. These studies revealed a diverse repertoire of extracellular and membrane-associated molecules that are capable of modulating TGF-β family signals via control of ligand availability, processing, ligand-receptor interaction, and receptor activation. These molecules include not only soluble ligand-binding proteins that were conventionally considered as agonists and antagonists of TGF-β family of growth factors, but also extracellular matrix (ECM) proteins and proteoglycans that can serve as "sink" and control storage and release of both the TGF-β family ligands and their regulators. This extensive network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of TGF-β family signals. This article reviews our knowledge of extracellular modulation of TGF-β growth factors by diverse proteins and their molecular mechanisms to regulate TGF-β family signaling.
Collapse
Affiliation(s)
- Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
7
|
Mulloy B, Rider CC. The Bone Morphogenetic Proteins and Their Antagonists. VITAMINS AND HORMONES 2015; 99:63-90. [PMID: 26279373 DOI: 10.1016/bs.vh.2015.06.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The bone morphogenetic proteins (BMPs) and the growth and differentiation factors comprise a single family of some 20 homologous, dimeric cytokines which share the cystine-knot domain typical of the TGF-β superfamily. They control the differentiation and activity of a range of cell types, including many outside bone and cartilage. They serve as developmental morphogens, but are also important in chronic pathologies, including tissue fibrosis and cancer. One mechanism for enabling tight spatiotemporal control of their activities is through a number of antagonist proteins, including Noggin, Follistatin, Chordin, Twisted gastrulation (TSG), and the seven members of the Cerberus and Dan family. These antagonists are secreted proteins that bind selectively to particular BMPs with high affinity, thereby blocking receptor engagement and signaling. Most of these antagonists also possess a TGF-β cystine-knot domain. Here, we discuss current knowledge and understanding of the structures and activities of the BMPs and their antagonists, with a particular focus on the latter proteins. Recent advances in structural biology of BMP antagonists have begun the process of elucidating the molecular basis of their activity, displaying a surprising variety between the modes of action of these closely related proteins. We also discuss the interactions of the antagonists with the glycosaminoglycan heparan sulfate, which is found ubiquitously on cell surfaces and in the extracellular matrix.
Collapse
Affiliation(s)
- Barbara Mulloy
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, United Kingdom
| | - Chris C Rider
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, United Kingdom.
| |
Collapse
|
8
|
Furtado J, Bento M, Correia E, Inácio JM, Belo JA. Expression and function of Ccbe1 in the chick early cardiogenic regions are required for correct heart development. PLoS One 2014; 9:e115481. [PMID: 25545279 PMCID: PMC4278723 DOI: 10.1371/journal.pone.0115481] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/24/2014] [Indexed: 11/25/2022] Open
Abstract
During the course of a differential screen to identify transcripts specific for chick heart/hemangioblast precursor cells, we have identified Ccbe1 (Collagen and calcium-binding EGF-like domain 1). While the importance of Ccbe1 for the development of the lymphatic system is now well demonstrated, its role in cardiac formation remained unknown. Here we show by whole-mount in situ hybridization analysis that cCcbe1 mRNA is initially detected in early cardiac progenitors of the two bilateral cardiogenic fields (HH4), and at later stages on the second heart field (HH9-18). Furthermore, cCcbe1 is expressed in multipotent and highly proliferative cardiac progenitors. We characterized the role of cCcbe1 during early cardiogenesis by performing functional studies. Upon morpholino-induced cCcbe1 knockdown, the chick embryos displayed heart malformations, which include aberrant fusion of the heart fields, leading to incomplete terminal differentiation of the cardiomyocytes. cCcbe1 overexpression also resulted in severe heart defects, including cardia bifida. Altogether, our data demonstrate that although cardiac progenitors cells are specified in cCcbe1 morphants, the migration and proliferation of cardiac precursors cells are impaired, suggesting that cCcbe1 is a key gene during early heart development.
Collapse
Affiliation(s)
- João Furtado
- Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Faro, Portugal
- IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular. e Estrutural, Universidade do Algarve, Campus de Gambelas, 8005-135 Faro, Portugal
| | - Margaret Bento
- Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Faro, Portugal
- IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular. e Estrutural, Universidade do Algarve, Campus de Gambelas, 8005-135 Faro, Portugal
| | - Elizabeth Correia
- Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Faro, Portugal
- IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular. e Estrutural, Universidade do Algarve, Campus de Gambelas, 8005-135 Faro, Portugal
| | - José Manuel Inácio
- Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Faro, Portugal
- IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular. e Estrutural, Universidade do Algarve, Campus de Gambelas, 8005-135 Faro, Portugal
- CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal
| | - José António Belo
- Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Faro, Portugal
- IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular. e Estrutural, Universidade do Algarve, Campus de Gambelas, 8005-135 Faro, Portugal
- CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal
- * E-mail:
| |
Collapse
|
9
|
Abstract
Many aspects of heart development are determined by the left right axis and as a result several congenital diseases have their origins in aberrant left-right patterning. Establishment of this axis occurs early in embryogenesis before formation of the linear heart tube yet impacts upon much later morphogenetic events. In this review I discuss the differing mechanisms by which left-right polarity is achieved in the mouse and chick embryos and comment on the evolution of this system. I then discus three major classes of cardiovascular defect associated with aberrant left-right patterning seen in mouse mutants and human disease. I describe phenotypes associated with the determination of atrial identity and venous connections, looping morphogenesis of the heart tube and finally the asymmetric remodelling of the embryonic branchial arch arterial system to form the leftward looped arch of aorta and associated great arteries. Where appropriate, I consider left right patterning defects from an evolutionary perspective, demonstrating how developmental processes have been modified in species over time and illustrating how comparative embryology can aide in our understanding of congenital heart disease.
Collapse
Affiliation(s)
- Iain M Dykes
- Department of Cardiovascular Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK
| |
Collapse
|
10
|
Fleming BM, Yelin R, James RG, Schultheiss TM. A role for Vg1/Nodal signaling in specification of the intermediate mesoderm. Development 2013; 140:1819-29. [PMID: 23533180 PMCID: PMC3621495 DOI: 10.1242/dev.093740] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2013] [Indexed: 11/20/2022]
Abstract
The intermediate mesoderm (IM) is the embryonic source of all kidney tissue in vertebrates. The factors that regulate the formation of the IM are not yet well understood. Through investigations in the chick embryo, the current study identifies and characterizes Vg1/Nodal signaling (henceforth referred to as 'Nodal-like signaling') as a novel regulator of IM formation. Excess Nodal-like signaling at gastrulation stages resulted in expansion of the IM at the expense of the adjacent paraxial mesoderm, whereas inhibition of Nodal-like signaling caused repression of IM gene expression. IM formation was sensitive to levels of the Nodal-like pathway co-receptor Cripto and was inhibited by a truncated form of the secreted molecule cerberus, which specifically blocks Nodal, indicating that the observed effects are specific to the Nodal-like branch of the TGFβ signaling pathway. The IM-promoting effects of Nodal-like signaling were distinct from the known effects of this pathway on mesoderm formation and left-right patterning, a finding that can be attributed to specific time windows for the activities of these Nodal-like functions. Finally, a link was observed between Nodal-like and BMP signaling in the induction of IM. Activation of IM genes by Nodal-like signaling required an active BMP signaling pathway, and Nodal-like signals induced phosphorylation of Smad1/5/8, which is normally associated with activation of BMP signaling pathways. We postulate that Nodal-like signaling regulates IM formation by modulating the IM-inducing effects of BMP signaling.
Collapse
Affiliation(s)
- Britannia M. Fleming
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ronit Yelin
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Richard G. James
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - Thomas M. Schultheiss
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
11
|
Inácio JM, Marques S, Nakamura T, Shinohara K, Meno C, Hamada H, Belo JA. The dynamic right-to-left translocation of Cerl2 is involved in the regulation and termination of Nodal activity in the mouse node. PLoS One 2013; 8:e60406. [PMID: 23544137 PMCID: PMC3609817 DOI: 10.1371/journal.pone.0060406] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/25/2013] [Indexed: 11/18/2022] Open
Abstract
The determination of left-right body asymmetry in mouse embryos depends on the interplay of molecules in a highly sensitive structure, the node. Here, we show that the localization of Cerl2 protein does not correlate to its mRNA expression pattern, from 3-somite stage onwards. Instead, Cerl2 protein displays a nodal flow-dependent dynamic behavior that controls the activity of Nodal in the node, and the transmission of the laterality information to the left lateral plate mesoderm (LPM). Our results indicate that Cerl2 initially localizes and prevents the activation of Nodal genetic circuitry on the right side of the embryo, and later its right-to-left translocation shutdowns Nodal activity in the node. The consequent prolonged Nodal activity in the node by the absence of Cerl2 affects local Nodal expression and prolongs its expression in the LPM. Simultaneous genetic removal of both Nodal node inhibitors, Cerl2 and Lefty1, sustains even longer and bilateral this LPM expression.
Collapse
Affiliation(s)
- José Manuel Inácio
- Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Faro, Portugal
- IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Sara Marques
- Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Faro, Portugal
- IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Tetsuya Nakamura
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, and Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Osaka, Japan
| | - Kyosuke Shinohara
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, and Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Osaka, Japan
| | - Chikara Meno
- Graduate School of Medical Sciences, Dept Dev Biol, Kyushu University, Fukuoka, Japan
| | - Hiroshi Hamada
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, and Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Osaka, Japan
| | - José António Belo
- Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Faro, Portugal
- IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- * E-mail:
| |
Collapse
|
12
|
Cruciat CM, Niehrs C. Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb Perspect Biol 2013; 5:a015081. [PMID: 23085770 DOI: 10.1101/cshperspect.a015081] [Citation(s) in RCA: 494] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signaling by the Wnt family of secreted glycoproteins plays important roles in embryonic development and adult homeostasis. Wnt signaling is modulated by a number of evolutionarily conserved inhibitors and activators. Wnt inhibitors belong to small protein families, including sFRP, Dkk, WIF, Wise/SOST, Cerberus, IGFBP, Shisa, Waif1, APCDD1, and Tiki1. Their common feature is to antagonize Wnt signaling by preventing ligand-receptor interactions or Wnt receptor maturation. Conversely, the Wnt activators, R-spondin and Norrin, promote Wnt signaling by binding to Wnt receptors or releasing a Wnt-inhibitory step. With few exceptions, these antagonists and agonists are not pure Wnt modulators, but also affect additional signaling pathways, such as TGF-β and FGF signaling. Here we discuss their interactions with Wnt ligands and Wnt receptors, their role in developmental processes, as well as their implication in disease.
Collapse
Affiliation(s)
- Cristina-Maria Cruciat
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | |
Collapse
|
13
|
Abstract
Gastrulation, the process that puts the three major germlayers, the ectoderm, mesoderm and endoderm in their correct topological position in the developing embryo, is characterised by extensive highly organised collective cell migration of epithelial and mesenchymal cells. We discuss current knowledge and insights in the mechanisms controlling these cell behaviours during gastrulation in the chick embryo. We discuss several ideas that have been proposed to explain the observed large scale vortex movements of epithelial cells in the epiblast during formation of the primitive streak. We review current insights in the control and execution of the epithelial to mesenchymal transition (EMT) underlying the formation of the hypoblast and the ingression of the mesendoderm cells through the streak. We discuss the mechanisms by which the mesendoderm cells move, the nature and dynamics of the signals that guide these movements, as well as the interplay between signalling and movement that result in tissue patterning and morphogenesis. We argue that instructive cell-cell signaling and directed chemotactic movement responses to these signals are instrumental in the execution of all phases of gastrulation.
Collapse
Affiliation(s)
- Manli Chuai
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | | | | |
Collapse
|
14
|
Katsu K, Tatsumi N, Niki D, Yamamura KI, Yokouchi Y. Multi-modal effects of BMP signaling on Nodal expression in the lateral plate mesoderm during left-right axis formation in the chick embryo. Dev Biol 2012. [PMID: 23206893 DOI: 10.1016/j.ydbio.2012.11.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During development of left-right asymmetry in the vertebrate embryo, Nodal plays a central role for determination of left-handedness. Bone morphogenetic protein (BMP) signaling has an important role for regulation of Nodal expression, although there is controversy over whether BMP signaling has a positive or negative effect on Nodal expression in the chick embryo. As BMP is a morphogen, we speculated that different concentrations might induce different responses in the cells of the lateral plate mesoderm (LPM). To test this hypothesis, we analyzed the effects of various concentrations of BMP4 and NOGGIN on Nodal expression in the LPM. We found that the effect on Nodal expression varied in a complex fashion with the concentration of BMP. In agreement with previous reports, we found that a high level of BMP signaling induced Nodal expression in the LPM, whereas a low level inhibited expression. However, a high intermediate level of BMP signaling was found to suppress Nodal expression in the left LPM, whereas a low intermediate level induced Nodal expression in the right LPM. Thus, the high and the low intermediate levels of BMP signaling up-regulated Nodal expression, but the high intermediate and low levels of BMP signaling down-regulated Nodal expression. Next, we sought to identify the mechanisms of this complex regulation of Nodal expression by BMP signaling. At the low intermediate level of BMP signaling, regulation depended on a NODAL positive-feedback loop suggesting the possibility of crosstalk between BMP and NODAL signaling. Overexpression of a constitutively active BMP receptor, a constitutively active ACTIVIN/NODAL receptor and SMAD4 indicated that SMAD1 and SMAD2 competed for binding to SMAD4 in the cells of the LPM. Nodal regulation by the high and low levels of BMP signaling was dependent on Cfc up-regulation or down-regulation, respectively. We propose a model for the variable effects of BMP signaling on Nodal expression in which different levels of BMP signaling regulate Nodal expression by a balance between BMP-pSMAD1/4 signaling and NODAL-pSMAD2/4 signaling.
Collapse
Affiliation(s)
- Kenjiro Katsu
- Division of Pattern Formation, Department of Organogenesis, Institute of Molecular Embryology and Genetics, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | | | | | |
Collapse
|
15
|
Paraxial left-sided nodal expression and the start of left-right patterning in the early chick embryo. Differentiation 2012; 84:380-91. [PMID: 23142734 DOI: 10.1016/j.diff.2012.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 09/08/2012] [Accepted: 09/10/2012] [Indexed: 11/20/2022]
Abstract
A common element during early left-right patterning of the vertebrate body is left-sided nodal expression in the early-somite stage lateral plate mesoderm. Leftward cell movements near the node of the gastrulating chick embryo recently offered a plausible mechanism for breaking the presomite-stage molecular symmetry in those vertebrates which lack rotating cilia on the notochord or equivalent tissues. However, the temporal and functional relationships between generation of the known morphological node asymmetry, onset of leftward cell movements and establishment of stable molecular asymmetry in the chick remain unresolved. This study uses high-resolution light microscopy and in situ gene expression analysis to show that intranodal cell rearrangement during the phase of counter-clockwise node torsion at stage 4+ is immediately followed by symmetry loss and rearrangement of shh and fgf8 expression in node epiblast between stages 5- and 5+. Surprisingly, left-sided nodal expression starts at stage 5-, too, but lies in the paraxial mesoderm next to the forming notochordal plate, and can be rendered symmetrical by minimal mechanical disturbance of distant tissue integrity at stage 4. The "premature" paraxial nodal expression together with morphological and molecular asymmetries in, and near, midline compartments occurring at defined substages of early gastrulation help to identify a new narrow time window for early steps in left-right patterning in the chick and support the concept of a causal relationship between a-still enigmatic-chiral (motor) protein, cell movements and incipient left-right asymmetry in the amniote embryo.
Collapse
|
16
|
Teixeira V, Arede N, Gardner R, Rodríguez-León J, Tavares AT. Targeting the hemangioblast with a novel cell type-specific enhancer. BMC DEVELOPMENTAL BIOLOGY 2011; 11:76. [PMID: 22204590 PMCID: PMC3273444 DOI: 10.1186/1471-213x-11-76] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 12/28/2011] [Indexed: 12/27/2022]
Abstract
BACKGROUND Hemangioblasts are known as the common precursors for primitive hematopoietic and endothelial lineages. Their existence has been supported mainly by the observation that both cell types develop in close proximity and by in vitro differentiation and genetic studies. However, more compelling evidence will arise from tracking their cell fates using a lineage-specific marker. RESULTS We report the identification of a hemangioblast-specific enhancer (Hb) located in the cis-regulatory region of chick Cerberus gene (cCer) that is able to direct the expression of enhanced green fluorescent protein (eGFP) to the precursors of yolk sac blood and endothelial cells in electroporated chick embryos. Moreover, we present the Hb-eGFP reporter as a powerful live imaging tool for visualizing hemangioblast cell fate and blood island morphogenesis. CONCLUSIONS We hereby introduce the Hb enhancer as a valuable resource for genetically targeting the hemangioblast population as well as for studying the dynamics of vascular and blood cell development.
Collapse
Affiliation(s)
- Vera Teixeira
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | | | | | | | | |
Collapse
|
17
|
Katsu K, Tokumori D, Tatsumi N, Suzuki A, Yokouchi Y. BMP inhibition by DAN in Hensen's node is a critical step for the establishment of left-right asymmetry in the chick embryo. Dev Biol 2011; 363:15-26. [PMID: 22202776 DOI: 10.1016/j.ydbio.2011.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 11/28/2022]
Abstract
During left-right (L-R) axis formation, Nodal is expressed in the node and has a central role in the transfer of L-R information in the vertebrate embryo. Bone morphogenetic protein (BMP) signaling also has an important role for maintenance of gene expression around the node. Several members of the Cerberus/Dan family act on L-R patterning by regulating activity of the transforming growth factor-β (TGF-β) family. We demonstrate here that chicken Dan plays a critical role in L-R axis formation. Chicken Dan is expressed in the left side of the node shortly after left-handed Shh expression and before the appearance of asymmetrically expressed genes in the lateral plate mesoderm (LPM). In vitro experiments revealed that DAN inhibited BMP signaling but not NODAL signaling. SHH had a positive regulatory effect on Dan expression while BMP4 had a negative effect. Using overexpression and RNA interference-mediated knockdown strategies, we demonstrate that Dan is indispensable for Nodal expression in the LPM and for Lefty-1 expression in the notochord. In the perinodal region, expression of Dan and Nodal was independent of each other. Nodal up-regulation by DAN required NODAL signaling, suggesting that DAN might act synergistically with NODAL. Our data indicate that Dan plays an essential role in the establishment of the L-R axis by inhibiting BMP signaling around the node.
Collapse
Affiliation(s)
- Kenjiro Katsu
- Division of Pattern Formation, Department of Organogenesis, Institute of Molecular Embryology and Genetics, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | | | | | |
Collapse
|
18
|
Bento M, Correia E, Tavares AT, Becker JD, Belo JA. Identification of differentially expressed genes in the heart precursor cells of the chick embryo. Gene Expr Patterns 2011; 11:437-47. [PMID: 21767665 DOI: 10.1016/j.gep.2011.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/19/2011] [Accepted: 07/04/2011] [Indexed: 02/04/2023]
Abstract
Genetic evidence has implicated several genes as being critical for heart development. However, the inducers of these genes as well as their targets and pathways they are involved with, remain largely unknown. Previous studies in the avian embryo showed that at HH4 Cerberus (cCer) transcripts are detected in the anterior endomesoderm including the heart precursor cells and later in the left lateral plate mesoderm. We have identified a promoter element of chick cCer able to drive EGFP expression in a population of cells that consistently exit from the anterior primitive streak region, from as early as stage HH3+, and that later will populate the heart. Using this promoter element as a tool allowed us to identify novel genes previously not known to potentially play a role in heart development. In order to identify and study genes expressed and involved in the correct development and differentiation of the vertebrate heart precursor cell (HPC) lineages, a differential screening using Affymetrix GeneChip system technologies was performed. Remarkably, this screening led to the identification of more than 700 transcripts differentially expressed in the heart forming regions (HFR). Bioinformatic tools allowed us to filter the large amount of data generated from this approach and to select a few transcripts for in vivo validation. Whole-mount in situ hybridization and sectioning of selected genes showed heart and vascular expression patterns for these transcripts during early chick development. We have developed an effective strategy to specifically identify genes that are differentially expressed in the HPC lineages. Within this set we have identified several genes that are expressed in the heart, blood and vascular lineages, which are likely to play a role in their development. These genes are potential candidates for future functional studies on early embryonic patterning.
Collapse
Affiliation(s)
- Margaret Bento
- Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Portugal.
| | | | | | | | | |
Collapse
|
19
|
Silva AC, Filipe M, Steinbeisser H, Belo JA. Characterization of Cer-1 cis-regulatory region during early Xenopus development. Dev Genes Evol 2011; 221:29-41. [PMID: 21509535 DOI: 10.1007/s00427-011-0357-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 03/08/2011] [Indexed: 01/07/2023]
Abstract
Cerberus-related molecules are well-known Wnt, Nodal, and BMP inhibitors that have been implicated in different processes including anterior–posterior patterning and left–right asymmetry. In both mouse and frog, two Cerberus-related genes have been isolated, mCer-1 and mCer-2, and Xcer and Xcoco, respectively. Until now, little is known about the mechanisms involved in their transcriptional regulation. Here, we report a heterologous analysis of the mouse Cerberus-1 gene upstream regulatory regions, responsible for its expression in the visceral endodermal cells. Our analysis showed that the consensus sequences for a TATA, CAAT, or GC boxes were absent but a TGTGG sequence was present at position -172 to -168 bp, relative to the ATG. Using a series of deletion constructs and transient expression in Xenopus embryos, we found that a fragment of 1.4 kb of Cer-1 promoter sequence could reproduce the endogenous expression pattern of Xenopus cerberus. A 0.7-kb mcer-1 upstream region was able to drive reporter expression to the involuting mesendodermal cells, while further deletions abolished reporter gene expression. Our results suggest that although no sequence similarity was found between mouse and Xenopus cerberus cis-regulatory regions, the signaling cascades regulating cerberus expression, during gastrulation, is conserved.
Collapse
|
20
|
Abstract
Nodal signals belong to the TGF-beta superfamily and are essential for the induction of mesoderm and endoderm and the determination of the left-right axis. Nodal signals can act as morphogens-they have concentration-dependent effects and can act at a distance from their source of production. Nodal and its feedback inhibitor Lefty form an activator/inhibitor pair that behaves similarly to postulated reaction-diffusion models of tissue patterning. Nodal morphogen activity is also regulated by microRNAs, convertases, TGF-beta signals, coreceptors, and trafficking factors. This article describes how Nodal morphogens pattern embryonic fields and discusses how Nodal morphogen signaling is modulated.
Collapse
|
21
|
Nifuji A, Ideno H, Takanabe R, Noda M. Extracellular Modulators Regulate Bone Morphogenic Proteins in Skeletal Tissue. J Oral Biosci 2010. [DOI: 10.1016/s1349-0079(10)80011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Schlueter J, Brand T. A right-sided pathway involving FGF8/Snai1 controls asymmetric development of the proepicardium in the chick embryo. Proc Natl Acad Sci U S A 2009; 106:7485-90. [PMID: 19365073 PMCID: PMC2678653 DOI: 10.1073/pnas.0811944106] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Indexed: 01/30/2023] Open
Abstract
The proepicardium (PE) is a transient structure that forms at the venous pole of the embryonic vertebrate heart. This cardiac progenitor cell population gives rise to the epicardium, coronary vasculature, and fibroblasts. In the chicken embryo, the PE displays left-right (L-R) asymmetry and develops only on the right side, while on the left only a vestigial PE is formed, which subsequently gets lost by apoptosis. In this study, we analyzed how the L-R asymmetry pathway affects PE formation. Experimental manipulation of left-side determinants such as Shh, Nodal, and Cfc as well as forced expression of Pitx2 had no effect on the sidedness of PE development. In contrast, inhibition of early-acting regulators of L-R axis formation such as H(+)/K(+)-ATPase or primitive streak apoptosis affected the sidedness of PE development. Experimental interference with the right-side determinants Fgf8 or Snai1 prevented PE formation, whereas ectopic left-sided expression of Fgf8 or Snai1 resulted in bilateral PE development. These data provide novel insight into the molecular control of asymmetric morphogenesis suggesting that also the right side harbors an instructive signaling pathway that is involved in the control of PE development. This pathway might be of general relevance for setting up L-R asymmetries at the venous pole of the heart.
Collapse
Affiliation(s)
- Jan Schlueter
- Cell and Developmental Biology, University of Würzburg, Biocenter, Am Hubland, 97974 Würzburg, Germany
| | - Thomas Brand
- Cell and Developmental Biology, University of Würzburg, Biocenter, Am Hubland, 97974 Würzburg, Germany
| |
Collapse
|
23
|
Abstract
Bone morphogenetic proteins (BMPs) are phylogenetically conserved signaling molecules that belong to the transforming growth factor (TGF)-beta superfamily and are involved in the cascades of body patterning and morphogenesis. The activities of BMPs are precisely regulated at various stages, and extracellulary, mainly regulated by certain classes of molecules termed as BMP antagonists and pro-BMP factors. BMP antagonists inhibit BMP function by prohibiting them from binding their cognate receptors, whereas pro-BMP factors stimulate BMP function. In this review, the functions of these BMP regulators will be discussed. (c) 2009 International Union of Biochemistry and Molecular Biology, Inc.
Collapse
Affiliation(s)
- Motoko Yanagita
- Career-Path Promotion Unit for Young Life Scientists, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
24
|
Yu X, He F, Zhang T, Espinoza-Lewis RA, Lin L, Yang J, Chen Y. Cerberus functions as a BMP agonist to synergistically induce nodal expression during left-right axis determination in the chick embryo. Dev Dyn 2009; 237:3613-23. [PMID: 18985739 DOI: 10.1002/dvdy.21769] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Left-sided expression of Nodal in the lateral plate mesoderm (LPM) during early embryogenesis is a crucial step in establishing the left-right (L-R) axis in vertebrates. In the chick, it was suggested that chick Cerberus (cCer), a Cerberus/Dan family member, induces Nodal expression by antagonizing bone morphogenetic protein (BMP) activity in the left LPM. In contrast, it has also been shown that BMPs positively regulate Nodal expression in the left LPM in the chick embryo. Thus, it is still unclear how the bilaterally expressed BMPs induce Nodal expression only in the left LPM. In this study, we demonstrate that BMP signaling is necessary and sufficient for the induction of Nodal expression in the chick LPM where the type I BMP receptor-IB (BMPR-IB) likely mediates this induction. Tissue grafting experiments indicate the existence of a Nodal inductive factor in the left LPM rather than the presence of a Nodal inhibitory factor in the right LPM. We demonstrate that cCer functions as a BMP agonist instead of antagonist, being able to enhance BMP signaling in cell culture. This conclusion is further supported by the immunoprecipitation assays that provide convincing biochemical evidence for a direct interaction between cCer and BMP receptor. Because cCer is expressed restrictedly in the left LPM, BMPs and cCer appear to act synergistically to activate Nodal expression in the left LPM in the chick.
Collapse
Affiliation(s)
- Xueyan Yu
- Section of Oral Biology, The Ohio State University College of Dentistry, Columbus, Ohio 43210, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Arede N, Tavares AT. Modified whole-mount in situ hybridization protocol for the detection of transgene expression in electroporated chick embryos. PLoS One 2008; 3:e2638. [PMID: 18612382 PMCID: PMC2441435 DOI: 10.1371/journal.pone.0002638] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 06/11/2008] [Indexed: 11/23/2022] Open
Abstract
Background In vivo electroporation has been extensively used as an effective means of DNA transfer for analyzing gene function as well as gene regulation in developmental systems. In any of these two types of studies, the correct spatial and temporal expression of the electroporated transgene can only be accurately assessed by in situ hybridization. Methodology/Principal Findings While analyzing transgene expression in electroporated chicken embryos, we verified that transgene riboprobes cross-hybridized with the exogenous plasmid DNA when embryos were processed by conventional whole-mount in situ hybridization (WISH). Conclusions/Significance Here we describe a modification to the WISH protocol that is essential to prevent DNA cross-hybridization and to specifically detect transgene mRNA transcripts in electroporated embryos. Our optimized WISH procedure can be applied not only to electroporated chick embryos but also to other embryos or adult tissues that have been transfected with large amounts of reporter- or expression construct DNA.
Collapse
Affiliation(s)
| | - Ana T. Tavares
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail:
| |
Collapse
|