1
|
Zuo C, Zhang Y, Zhang X, Liu J, Lyu L, Ma T, Chen L, Yu W, Li Y, Wen H, Qi X. Using transcriptome analysis to investigate the induction of vitellogenesis in female Japanese eels (Anguilla japonica). Gen Comp Endocrinol 2025; 367:114729. [PMID: 40228647 DOI: 10.1016/j.ygcen.2025.114729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Oogenesis, encompassing folliculogenesis, development, and maturation, is a complex physiological process that is not solely regulated by gonadotropins but is also actively influenced by multiple growth factors produced by the oocyte and its surrounding follicular cells. The Japanese eel (Anguilla japonica) has a complex life history, resulting in many uncertainties regarding its growth, development, and reproduction. Under artificial culture conditions, oocyte development in the Japanese eel is arrested and can only progress to the vitellogenic stage through artificial induction. In the present study, we observed that, despite receiving the same hormone treatment as normally developing individuals, a small proportion of female eels exhibited oocytes arrested at the perinucleolar stage. Transcriptome analysis revealed that differentially expressed genes are involved in multiple reproductive-related physiological processes and functional pathways, such as tachykinin system, MAPK signaling pathway, steroid-related pathways, oocyte meiosis, Wnt signaling pathway and GnRH signaling pathway. The abnormal expression of the two follicle-stimulating hormone (FSH) subunit genes may be a key factor contributing to this phenomenon. This study reveals the underlying causes of ovarian developmental arrest in hormonally induced female Japanese eels from the perspective of the brain-pituitary-gonad (BPG) axis, providing a research foundation for the artificial reproduction of Japanese eels.
Collapse
Affiliation(s)
- Chenpeng Zuo
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266603, China.
| | - Yonghang Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266603, China.
| | - Xuanhan Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266603, China
| | - Jiaqi Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266603, China
| | - Likang Lyu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266603, China
| | - Teng Ma
- Institute of Marine and Fisheries Research in Rizhao, Rizhao 276825, China
| | - Lingming Chen
- Institute of Marine and Fisheries Research in Rizhao, Rizhao 276825, China
| | - Weimin Yu
- Institute of Marine and Fisheries Research in Rizhao, Rizhao 276825, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266603, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266603, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266603, China.
| |
Collapse
|
2
|
Wang H, Liu Q, Cheng S, Li L, Shen W, Ge W. Single-Cell Transcriptomic Analysis of the Potential Mechanisms of Follicular Development in Stra8-Deficient Mice. Int J Mol Sci 2025; 26:3734. [PMID: 40332359 PMCID: PMC12027774 DOI: 10.3390/ijms26083734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/05/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Follicle development is a critical process in mammalian reproduction, with significant implications for ovarian reserve and fertility. Stra8 is a known key factor regulating the initiation of meiosis; however, oocyte-like cells still appear in Stra8-deficient mice. Nevertheless, the underlying mechanism remains unclear and requires further investigation. Therefore, we used single-cell RNA sequencing to construct a comprehensive transcriptional atlas of ovarian cells from both wild-type and Stra8-deficient mice at embryonic stages E14.5 and E16.5. With stringent quality control, we obtained a total of 14,755 single cells of six major cell types. A further fine-scale analysis of the germ cell clusters revealed notable heterogeneity between wild-type and Stra8-deficient mice. Compared to the wild-type mice, the deficiency in Stra8 led to the downregulation of meiosis-related genes (e.g., Pigp, Tex12, and Sycp3), and the upregulation of apoptosis-related genes (e.g., Fos, Jun, and Actb), thereby hindering the meiotic process. Notably, we observed that, following Stra8 deficiency, the expression levels of Sub1 and Stk31 remained elevated at this stage. Furthermore, an RNA interference analysis confirmed the potential role of these genes as regulatory factors in the formation of primordial follicle-like cells. Additionally, Stra8 deficiency disrupted the signaling between germ cells and pregranulosa cells that is mediated by Mdk-Sdc1, leading to the abnormal expression of the PI3K/AKT signaling pathway. Together, these results shed light on the molecular processes governing germ cell differentiation and folliculogenesis, emphasizing the complex role of Stra8 in ovarian function.
Collapse
Affiliation(s)
| | | | | | | | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China; (H.W.); (Q.L.); (S.C.); (L.L.)
| | - Wei Ge
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China; (H.W.); (Q.L.); (S.C.); (L.L.)
| |
Collapse
|
3
|
Hatkevich T, Tezak BM, Acemel RD, Yee Chung VW, Lupiáñez DG, Capel B. Gonadal sex and temperature independently influence germ cell differentiation and meiotic progression in Trachemys scripta. Proc Natl Acad Sci U S A 2025; 122:e2413191121. [PMID: 39793067 PMCID: PMC11725912 DOI: 10.1073/pnas.2413191121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/30/2024] [Indexed: 01/12/2025] Open
Abstract
In species with genetic sex determination (GSD), the sex identity of the soma determines germ cell fate. For example, in mice, XY germ cells that enter an ovary differentiate as oogonia, whereas XX germ cells that enter a testis initiate differentiation as spermatogonia. However, numerous species lack a GSD system and instead display temperature-dependent sex determination (TSD). In the red-eared slider turtle, Trachemys scripta, a TSD model species with a warm female promoting temperature (FPT) and cool male promoting temperature (MPT) system, temperature directly affects germ cell number. In this study, we examined whether temperature directly affects other aspects of germ cell differentiation/sex identity. We uncoupled temperature and the sexual fate of the gonad by incubating eggs at MPT and treating with 17β-estradiol, a scheme that invariably produces ovaries. Through analysis of meiotic spreads, we showed that germ cells in FPT ovaries follow the typical pattern of initiating meiosis and progress through prophase I. However, in E2-induced ovaries that incubated at MPT, germ cells entered prophase I yet fail to exhibit synapsis. These results, combined with our single-cell transcriptome analysis, reveal a direct effect of temperature on germ cell sexual differentiation independent of its effect on the gonadal soma. These results imply that not all events of meiosis are under somatic control, at least not in this TSD species.
Collapse
Affiliation(s)
- Talia Hatkevich
- Department of Cell Biology, Duke University Medical Center, Durham, NC27701
| | - Boris M. Tezak
- Department of Cell Biology, Duke University Medical Center, Durham, NC27701
- Biology Department, Wesleyan University, Middletown, CT06459
| | - Rafael D. Acemel
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Epigenetics and Sex Development Group, Berlin10115, Germany
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Junta de Andalucía, Seville41013, Spain
| | - Vicky Wai Yee Chung
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Epigenetics and Sex Development Group, Berlin10115, Germany
| | - Dario G. Lupiáñez
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Epigenetics and Sex Development Group, Berlin10115, Germany
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Junta de Andalucía, Seville41013, Spain
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC27701
| |
Collapse
|
4
|
Yang X, Zhang Y, Zhang H. Cellular and molecular regulations of oocyte selection and activation in mammals. Curr Top Dev Biol 2024; 162:283-315. [PMID: 40180512 DOI: 10.1016/bs.ctdb.2024.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Oocytes, a uniquely pivotal cell population, play a central role in species continuity. In mammals, oogenesis involves distinct processes characterized by sequential rounds of selection, arrest, and activation to produce a limited number of mature eggs, fitting their high-survival yet high-cost fertility. During the embryonic phase, oocytes undergo intensive selection via cytoplasmic and organelle enrichment, accompanied by the onset and arrest of meiosis, thereby establishing primordial follicles (PFs) as a finite reproductive reserve. Subsequently, the majority of primary oocytes enter a dormant state and are gradually recruited through a process termed follicle activation, essential for maintaining orderly fertility. Following activation, oocytes undergo rapid growth, experiencing cycles of arrest and activation regulated by endocrine and paracrine signals, ultimately forming fertilizable eggs. Over the past two decades, advancements in genetically modified animal models, high-resolution imaging, and omics technologies have significantly enhanced our understanding of the cellular and molecular mechanisms that govern mammalian oogenesis. These advances offer profound insights into the regulatory mechanisms of mammalian reproduction and associated female infertility disorders. In this chapter, we provide an overview of current knowledge in mammalian oogenesis, with a particular emphasis on oocyte selection and activation in vivo.
Collapse
Affiliation(s)
- Xuebing Yang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Yan Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Hua Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, P.R. China.
| |
Collapse
|
5
|
Perrotta G, Condrea D, Ghyselinck NB. Meiosis and retinoic acid in the mouse fetal gonads: An unforeseen twist. Curr Top Dev Biol 2024; 161:59-88. [PMID: 39870439 DOI: 10.1016/bs.ctdb.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
In mammals, differentiation of germ cells is crucial for sexual reproduction, involving complex signaling pathways and environmental cues defined by the somatic cells of the gonads. This review examines the long-standing model positing that all-trans retinoic acid (ATRA) acts as a meiosis-inducing substance (MIS) in the fetal ovary by inducing expression of STRA8 in female germ cells, while CYP26B1 serves as a meiosis-preventing substance (MPS) in the fetal testis by degrading ATRA and preventing STRA8 expression in the male germ cells until postnatal development. Recent genetic studies in the mouse challenge this paradigm, revealing that meiosis initiation in female germ cells can occur independently of ATRA signaling, with key roles played by other intrinsic factors like DAZL and DMRT1, and extrinsic signals such as BMPs and vitamin C. Thus, ATRA can no longer be considered as 'the' long-searched MIS. Furthermore, evidence indicates that CYP26B1 does not prevent meiosis by degrading ATRA in the fetal testis, but acts by degrading an unidentified MIS or synthesizing an equally unknown MPS. By emphasizing the necessity of genetic loss-of-function approaches to accurately delineate the roles of signaling molecules such ATRA in vivo, this chapter calls for a reevaluation of the mechanisms instructing and preventing meiosis initiation in the fetal ovary and testis, respectively. It highlights the need for further research into the molecular identities of the signals involved in these processes.
Collapse
Affiliation(s)
- Giulia Perrotta
- Université de Strasbourg, IGBMC UMR 7104, Illkirch, France; CNRS, UMR 7104, Illkirch, France; Inserm, UMR-S 1258, Illkirch, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Diana Condrea
- Université de Strasbourg, IGBMC UMR 7104, Illkirch, France; CNRS, UMR 7104, Illkirch, France; Inserm, UMR-S 1258, Illkirch, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Norbert B Ghyselinck
- Université de Strasbourg, IGBMC UMR 7104, Illkirch, France; CNRS, UMR 7104, Illkirch, France; Inserm, UMR-S 1258, Illkirch, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.
| |
Collapse
|
6
|
Kuhl H, Tan WH, Klopp C, Kleiner W, Koyun B, Ciorpac M, Feron R, Knytl M, Kloas W, Schartl M, Winkler C, Stöck M. A candidate sex determination locus in amphibians which evolved by structural variation between X- and Y-chromosomes. Nat Commun 2024; 15:4781. [PMID: 38839766 PMCID: PMC11153619 DOI: 10.1038/s41467-024-49025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
Most vertebrates develop distinct females and males, where sex is determined by repeatedly evolved environmental or genetic triggers. Undifferentiated sex chromosomes and large genomes have caused major knowledge gaps in amphibians. Only a single master sex-determining gene, the dmrt1-paralogue (dm-w) of female-heterogametic clawed frogs (Xenopus; ZW♀/ZZ♂), is known across >8740 species of amphibians. In this study, by combining chromosome-scale female and male genomes of a non-model amphibian, the European green toad, Bufo(tes) viridis, with ddRAD- and whole genome pool-sequencing, we reveal a candidate master locus, governing a male-heterogametic system (XX♀/XY♂). Targeted sequencing across multiple taxa uncovered structural X/Y-variation in the 5'-regulatory region of the gene bod1l, where a Y-specific non-coding RNA (ncRNA-Y), only expressed in males, suggests that this locus initiates sex-specific differentiation. Developmental transcriptomes and RNA in-situ hybridization show timely and spatially relevant sex-specific ncRNA-Y and bod1l-gene expression in primordial gonads. This coincided with differential H3K4me-methylation in pre-granulosa/pre-Sertoli cells, pointing to a specific mechanism of amphibian sex determination.
Collapse
Affiliation(s)
- Heiner Kuhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany
| | - Wen Hui Tan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Block S1A, Level 6, Singapore, 117543, Singapore
| | - Christophe Klopp
- SIGENAE, Plate-forme Bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRAe, 31326, Castanet-Tolosan, France
| | - Wibke Kleiner
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany
| | - Baturalp Koyun
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany
- Department of Molecular Biology and Genetics, Genetics, Faculty of Science, Bilkent University, SB Building, Ankara, 06800, Turkey
| | - Mitica Ciorpac
- Danube Delta National Institute for Research and Development, Tulcea, 820112, Romania
- Advanced Research and Development Center for Experimental Medicine-CEMEX, "Grigore T. Popa", University of Medicine and Pharmacy, Mihail Kogălniceanu Street 9-13, Iasi, 700259, Romania
| | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Martin Knytl
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, 12843, Czech Republic
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Ontario, ON, Canada
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074, Wuerzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Block S1A, Level 6, Singapore, 117543, Singapore.
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany.
| |
Collapse
|
7
|
Han C. Gene expression programs in mammalian spermatogenesis. Development 2024; 151:dev202033. [PMID: 38691389 DOI: 10.1242/dev.202033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Mammalian spermatogenesis, probably the most complex of all cellular developmental processes, is an ideal model both for studying the specific mechanism of gametogenesis and for understanding the basic rules governing all developmental processes, as it entails both cell type-specific and housekeeping molecular processes. Spermatogenesis can be viewed as a mission with many tasks to accomplish, and its success is genetically programmed and ensured by the collaboration of a large number of genes. Here, I present an overview of mammalian spermatogenesis and the mechanisms underlying each step in the process, covering the cellular and molecular activities that occur at each developmental stage and emphasizing their gene regulation in light of recent studies.
Collapse
Affiliation(s)
- Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101 Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
8
|
Yang M, Diaz F, Krause ART, Lei Y, Liu WS. Synergistic enhancement of the mouse Pramex1 and Pramel1 in repressing retinoic acid (RA) signaling during gametogenesis. Cell Biosci 2024; 14:28. [PMID: 38395975 PMCID: PMC10893636 DOI: 10.1186/s13578-024-01212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND PRAME constitutes one of the largest multi-copy gene families in Eutherians, encoding cancer-testis antigens (CTAs) with leucine-rich repeats (LRR) domains, highly expressed in cancer cells and gametogenic germ cells. This study aims to elucidate genetic interactions between two members, Pramex1 and Pramel1, in the mouse Prame family during gametogenesis using a gene knockout approach. RESULT Single-gene knockout (sKO) of either Pramex1 or Pramel1 resulted in approximately 7% of abnormal seminiferous tubules, characterized by a Sertoli-cell only (SCO) phenotype, impacting sperm count and fecundity significantly. Remarkably, sKO female mice displayed normal reproductive functions. In contrast, Pramex1/Pramel1 double knockout (dKO) mice exhibited reduced fecundity in both sexes. In dKO females, ovarian primary follicle count decreased by 50% compared to sKO and WT mice, correlating with a 50% fecundity decrease. This suggested compensatory roles during oogenesis in Pramex1 or Pramel1 sKO females. Conversely, dKO males showed an 18% frequency of SCO tubules, increased apoptotic germ cells, and decreased undifferentiated spermatogonia compared to sKO and WT testes. Western blot analysis with PRAMEX1- or PRAMEL1-specific antibodies on sKO testes revealed compensatory upregulation of each protein (30-50%) in response to the other gene's deletion. Double KO males exhibited more severe defects in sperm count and litter size, surpassing Pramex1 and Pramel1 sKO accumulative effects, indicating a synergistic enhancement interaction during spermatogenesis. Additional experiments administering trans-retinoic acid (RA) and its inhibitor (WIN18,446) in sKO, dKO, and WT mice suggested that PRAMEX1 and PRAMEL1 synergistically repress the RA signaling pathway during spermatogenesis. CONCLUSION Data from sKO and dKO mice unveil a synergistic interaction via the RA signaling pathway between Pramex1 and Pramel1 genes during gametogenesis. This discovery sets the stage for investigating interactions among other members within the Prame family, advancing our understanding of multi-copy gene families involved in germ cell formation and function.
Collapse
Affiliation(s)
- Mingyao Yang
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, 311 AVBS Building, University Park, PA, 16802, USA
| | - Francisco Diaz
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, 311 AVBS Building, University Park, PA, 16802, USA
| | - Ana Rita T Krause
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, 311 AVBS Building, University Park, PA, 16802, USA
| | - Yuguo Lei
- Department of Biomedical Engineering, College of Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Wan-Sheng Liu
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, 311 AVBS Building, University Park, PA, 16802, USA.
| |
Collapse
|
9
|
Shan X, Zhang X, Huang G, Lv J, Ye Z, Jiang C, Jiang X, Cheng J, Lin H, Jiang H, Yue H, Wang Z, Xu W. A novel SNP in HUWE1 promoter confers increased risk of NOA by affecting the RA/RARα pathway in Chinese individuals. Andrology 2024; 12:338-348. [PMID: 37290064 DOI: 10.1111/andr.13474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND The ubiquitin ligase HECT, UBA, and WWE domain-containing E3 ubiquitin protein ligase 1 is essential for the establishment and maintenance of spermatogonia. However, the role of HECT, UBA, and WWE domain-containing E3 ubiquitin protein ligase 1 in regulating germ cell differentiation remains unclear, and clinical evidence linking HECT, UBA, and WWE domain-containing E3 ubiquitin protein ligase 1 to male infertility pathogenesis is lacking. OBJECTIVE This study aims to investigate the role of HUWE1 in germ cell differentiation and the mechanism by which a HUWE1 single nucleotide polymorphism increases male infertility risk. MATERIALS AND METHODS We analyzed HUWE1 single nucleotide polymorphisms in 190 non-obstructive azoospermia patients of Han Chinese descent. We evaluated HECT, UBA, and WWE domain-containing E3 ubiquitin protein ligase 1 regulation by retinoic acid receptor alpha using chromatin immunoprecipitation assays, electrophoretic mobility shift assays, and siRNA-mediated RARα knockdown. Using C18-4 spermatogonial cells, we determined whether HECT, UBA, and WWE domain-containing E3 ubiquitin protein ligase 1 participated in retinoic acid-mediated retinoic acid receptor alpha signaling. We performed luciferase assays, cell counting kit-8 assays, immunofluorescence, quantitative real-time polymerase chain reaction, and western blotting. We quantified HUWE1 and retinoic acid receptor alpha in testicular biopsies from non-obstructive azoospermia and obstructive azoospermia patients using quantitative real-time polymerase chain reaction and immunofluorescence. RESULTS Three HUWE1 single nucleotide polymorphisms were significantly associated with spermatogenic failure in 190 non-obstructive azoospermia patients; one (rs34492591) was in the HUWE1 promoter. Retinoic acid receptor alpha regulates HUWE1 gene expression by binding to its promoter. HECT, UBA, and WWE domain-containing E3 ubiquitin protein ligase 1 participates in retinoic acid/retinoic acid receptor alpha signaling pathway and regulates the expression of germ cell differentiation genes STRA8 and SCP3 to inhibit cell proliferation and reduce γH2AX accumulation. Notably, significantly lower levels of HUWE1 and RARα were detected in testicular biopsy samples from non-obstructive azoospermia patients. CONCLUSIONS An HUWE1 promoter single nucleotide polymorphism significantly downregulates its expression in non-obstructive azoospermia patients. Mechanistically, HECT, UBA, and WWE domain-containing E3 ubiquitin protein ligase 1 regulates germ cell differentiation during meiotic prophase through its participation in retinoic acid/retinoic acid receptor alpha signaling and subsequent modulation of γH2AX. Taken together, these results strongly suggest that the genetic polymorphisms of HUWE1 are closely related to spermatogenesis and non-obstructive azoospermia pathogenesis.
Collapse
Affiliation(s)
- Xudong Shan
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
- Reproductive & Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xueguang Zhang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Gelin Huang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jiao Lv
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zixia Ye
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chuan Jiang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaohui Jiang
- Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Jianxing Cheng
- Department of Urology, Peking University Third Hospital, Peking University, Beijing, China
| | - Haocheng Lin
- Department of Urology, Peking University Third Hospital, Peking University, Beijing, China
| | - Hui Jiang
- Department of Urology, Peking University Third Hospital, Peking University, Beijing, China
| | - Huanxun Yue
- Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Zhengrong Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Wenming Xu
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Säflund M, Özata DM. The MYBL1/TCFL5 transcription network: two collaborative factors with central role in male meiosis. Biochem Soc Trans 2023; 51:2163-2172. [PMID: 38015556 PMCID: PMC10754281 DOI: 10.1042/bst20231007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
Male gametogenesis, spermatogenesis, is a stepwise developmental process to generate mature sperm. The most intricate process of spermatogenesis is meiosis during which two successive cell divisions ensue with dramatic cellular and molecular changes to produce haploid cells. After entry into meiosis, several forms of regulatory events control the orderly progression of meiosis and the timely entry into post-meiotic sperm differentiation. Among other mechanisms, changes to gene expression are controlled by key transcription factors. In this review, we will discuss the gene regulatory mechanisms underlying meiotic entry, meiotic progression, and post-meiotic differentiation with a particular emphasis on the MYBL1/TCFL5 regulatory architecture and how this architecture involves in various forms of transcription network motifs to regulate gene expression.
Collapse
Affiliation(s)
- Martin Säflund
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| | - Deniz M. Özata
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
11
|
Cao KX, Deng ZC, Liu M, Huang YX, Yang JC, Sun LH. Heat Stress Impairs Male Reproductive System with Potential Disruption of Retinol Metabolism and Microbial Balance in the Testis of Mice. J Nutr 2023; 153:3373-3381. [PMID: 37923224 DOI: 10.1016/j.tjnut.2023.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/20/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Heat stress (HS) has a harmful impact on the male reproductive system, primarily by reducing the sperm quality. The testicular microenvironment plays an important role in sperm quality. OBJECTIVES This study aimed to explore the underlying mechanism by which HS impairs the male reproductive system through the testicular microenvironment. METHODS Ten-week-old male mice (n = 8 mice/group) were maintained at a normal temperature (25°C, control) or subjected to HS (38°C for 2 h each day, HS) for 2 wk. The epididymides and testes were collected at week 2 to determine sperm quality, histopathology, retinol concentration, the expression of retinol metabolism-related genes, and the testicular microbiome. The testicular microbiome profiles were analyzed using biostatistics and bioinformatics; other data were analyzed using a 2-sided Student's t test. RESULTS Compared with the control, HS reduced (P < 0.05) sperm count (42.4%) and motility (97.7%) and disrupted the integrity of the blood-testis barrier. Testicular microbial profiling analysis revealed that HS increased the abundance of the genera Asticcacaulis, Enhydrobacter, and Stenotrophomonas (P < 0.05) and decreased the abundance of the genera Enterococcus and Pleomorphomonas (P < 0.05). Notably, the abundance of Asticcacaulis spp. showed a significant negative correlation with sperm count (P < 0.001) and sperm motility (P < 0.001). Moreover, Asticcacaulis spp. correlated significantly with most blood differential metabolites, particularly retinol (P < 0.05). Compared with the control, HS increased serum retinol concentrations (25.3%) but decreased the testis retinol concentration by 23.7%. Meanwhile, HS downregulated (P < 0.05) the expression of 2 genes (STRA6 and RDH10) and a protein (RDH10) involved in retinol metabolism by 27.3%-36.6% in the testis compared with the control. CONCLUSIONS HS reduced sperm quality, mainly because of an imbalance in the testicular microenvironment potentially caused by an increase in Asticcacaulis spp. and disturbed retinol metabolism. These findings may offer new strategies for improving male reproductive capacity under HS.
Collapse
Affiliation(s)
- Ke-Xin Cao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhang-Chao Deng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yu-Xuan Huang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jia-Cheng Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
12
|
Zhang X, Liu Y, Sosa F, Gunewardena S, Crawford PA, Zielen AC, Orwig KE, Wang N. Transcriptional metabolic reprogramming implements meiotic fate decision in mouse testicular germ cells. Cell Rep 2023; 42:112749. [PMID: 37405912 PMCID: PMC10529640 DOI: 10.1016/j.celrep.2023.112749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/24/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Nutrient starvation drives yeast meiosis, whereas retinoic acid (RA) is required for mammalian meiosis through its germline target Stra8. Here, by using single-cell transcriptomic analysis of wild-type and Stra8-deficient juvenile mouse germ cells, our data show that the expression of nutrient transporter genes, including Slc7a5, Slc38a2, and Slc2a1, is downregulated in germ cells during meiotic initiation, and this process requires Stra8, which binds to these genes and induces their H3K27 deacetylation. Consequently, Stra8-deficient germ cells sustain glutamine and glucose uptake in response to RA and exhibit hyperactive mTORC1/protein kinase A (PKA) activities. Importantly, expression of Slc38a2, a glutamine importer, is negatively correlated with meiotic genes in the GTEx dataset, and Slc38a2 knockdown downregulates mTORC1/PKA activities and induces meiotic gene expression. Thus, our study indicates that RA via Stra8, a chordate morphogen pathway, induces meiosis partially by generating a conserved nutrient restriction signal in mammalian germ cells by downregulating their nutrient transporter expression.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Center for Reproductive Sciences, Institute for Reproductive and Developmental Sciences (IRDS), University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Yan Liu
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Center for Reproductive Sciences, Institute for Reproductive and Developmental Sciences (IRDS), University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Froylan Sosa
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Center for Reproductive Sciences, Institute for Reproductive and Developmental Sciences (IRDS), University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sumedha Gunewardena
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Peter A Crawford
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN 55455, USA; Department of Molecular Biology, Biochemistry, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Amanda C Zielen
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ning Wang
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Center for Reproductive Sciences, Institute for Reproductive and Developmental Sciences (IRDS), University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
13
|
Kirsanov O, Johnson TA, Niedenberger BA, Malachowski TN, Hale BJ, Chen Q, Lackford B, Wang J, Singh A, Schindler K, Hermann BP, Hu G, Geyer CB. Retinoic acid is dispensable for meiotic initiation but required for spermiogenesis in the mammalian testis. Development 2023; 150:dev201638. [PMID: 37350382 PMCID: PMC10357014 DOI: 10.1242/dev.201638] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Retinoic acid (RA) is the proposed mammalian 'meiosis inducing substance'. However, evidence for this role comes from studies in the fetal ovary, where germ cell differentiation and meiotic initiation are temporally inseparable. In the postnatal testis, these events are separated by more than 1 week. Exploiting this difference, we discovered that, although RA is required for spermatogonial differentiation, it is dispensable for the subsequent initiation, progression and completion of meiosis. Indeed, in the absence of RA, the meiotic transcriptome program in both differentiating spermatogonia and spermatocytes entering meiosis was largely unaffected. Instead, transcripts encoding factors required during spermiogenesis were aberrant during preleptonema, and the subsequent spermatid morphogenesis program was disrupted such that no sperm were produced. Taken together, these data reveal a RA-independent model for male meiotic initiation.
Collapse
Affiliation(s)
- Oleksandr Kirsanov
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | - Taylor A. Johnson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | - Bryan A. Niedenberger
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | - Taylor N. Malachowski
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | - Benjamin J. Hale
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | - Qing Chen
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Brad Lackford
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Jiajia Wang
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Anukriti Singh
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Brian P. Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Guang Hu
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Christopher B. Geyer
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
- East Carolina Diabetes and Obesity Institute at East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
14
|
Wang F, Tang Y, Cai Y, Yang R, Wang Z, Wang X, Yang Q, Wang W, Tian J, An L. Intrafollicular Retinoic Acid Signaling Is Important for Luteinizing Hormone-Induced Oocyte Meiotic Resumption. Genes (Basel) 2023; 14:genes14040946. [PMID: 37107703 PMCID: PMC10137601 DOI: 10.3390/genes14040946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
It has been clear that retinoic acid (RA), the most active vitamin A (VA) derivative, plays a central role in governing oocyte meiosis initiation. However, it has not been functionally determined if RA participates in luteinizing hormone (LH)-induced resumption from long-lasting oocyte meiotic arrest, which is essential for haploid oocyte formation. In the present study, using well-established in vivo and in vitro models, we identified that intrafollicular RA signaling is important for normal oocyte meiotic resumption. A mechanistic study indicated that mural granulosa cells (MGCs) are the indispensable follicular compartment for RA-prompted meiotic resumption. Moreover, retinoic acid receptor (RAR) is essential for mediating RA signaling to regulate meiotic resumption. Furthermore, we found zinc finger protein 36 (ZFP36) is the transcriptional target of RAR. Both RA signaling and epidermal growth factor (EGF) signaling were activated in MGCs in response to LH surge, and two intrafollicular signalings cooperate to induce rapid Zfp36 upregulation and Nppc mRNA decrease, which is critical to LH-induced meiotic resumption. These findings extend our understanding of the role of RA in oocyte meiosis: RA not only governs meiotic initiation but also regulates LH-induced meiotic resumption. We also emphasize the importance of LH-induced metabolic changes in MGCs in this process.
Collapse
Affiliation(s)
- Fupeng Wang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yawen Tang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yijie Cai
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Ran Yang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Zongyu Wang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xiaodong Wang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Qianying Yang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Wenjing Wang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Jianhui Tian
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Lei An
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| |
Collapse
|
15
|
Wegner S, Workman T, Park JJ, Harris S, Wallace J, Stanaway I, Hong S, Hansen B, Griffith WC, Faustman EM. A Dynamic In vitro developing testis model reflects structures and functions of testicular development in vivo. Reprod Toxicol 2023; 118:108362. [PMID: 37011698 DOI: 10.1016/j.reprotox.2023.108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023]
Abstract
To better define appropriate applications of our 3-dimensional testicular co-culture as a model for reproductive toxicology, we evaluated the ability of the model to capture structural and functional elements that can be targeted by reproductive toxicants. Testicular co-cultures were prepared from postnatal day 5 male rats and cultured with a Matrigel overlay. Following a 2-day acclimation period, we characterized functional pathway dynamics by evaluating morphology, protein expression, testosterone concentrations, and global gene expression at a range of timepoints from experimental days 0 to 21. Western blotting confirmed expression of Sertoli cell, Leydig cell, and spermatogonial cell-specific protein markers. Testosterone detected in cell culture media indicates active testosterone production. Quantitative pathway analysis identified Gene Ontology biological processes enriched among genes significantly changing over the course of 21 days. Processes enriched among genes significantly increasing through time include general developmental processes (morphogenesis, tissue remodeling, etc.), steroid regulation, Sertoli cell development, immune response, and stress and apoptosis. Processes enriched among genes significantly decreasing over time include several related to male reproductive development (seminiferous tubule development, male gonad development, Leydig cell differentiation, Sertoli cell differentiation), all of which appear to peak in expression between days 1 and 5 before decreasing at later timepoints. This analysis provides a temporal roadmap for specific biological process of interest for reproductive toxicology in the model and anchors the model to sensitive phases of in vivo development, helping to define the relevance of the model for in vivo processes.
Collapse
Affiliation(s)
- Susanna Wegner
- Institute for Risk Analysis and Risk Communication, University of Washington School of Public Health, Seattle, WA, USA
| | - Tomomi Workman
- Institute for Risk Analysis and Risk Communication, University of Washington School of Public Health, Seattle, WA, USA
| | - Julie Juyoung Park
- Institute for Risk Analysis and Risk Communication, University of Washington School of Public Health, Seattle, WA, USA
| | - Sean Harris
- Institute for Risk Analysis and Risk Communication, University of Washington School of Public Health, Seattle, WA, USA
| | - James Wallace
- Institute for Risk Analysis and Risk Communication, University of Washington School of Public Health, Seattle, WA, USA
| | - Ian Stanaway
- Institute for Risk Analysis and Risk Communication, University of Washington School of Public Health, Seattle, WA, USA
| | - Sungwoo Hong
- Institute for Risk Analysis and Risk Communication, University of Washington School of Public Health, Seattle, WA, USA
| | - Brad Hansen
- Institute for Risk Analysis and Risk Communication, University of Washington School of Public Health, Seattle, WA, USA
| | - William C Griffith
- Institute for Risk Analysis and Risk Communication, University of Washington School of Public Health, Seattle, WA, USA
| | - Elaine M Faustman
- Institute for Risk Analysis and Risk Communication, University of Washington School of Public Health, Seattle, WA, USA.
| |
Collapse
|
16
|
Zheng X, Wei Y, Chen J, Wang X, Li D, Yu C, Hong Y, Shen L, Long C, Wei G, Wu S. Difenoconazole Exposure Induces Retinoic Acid Signaling Dysregulation and Testicular Injury in Mice Testes. TOXICS 2023; 11:328. [PMID: 37112555 PMCID: PMC10142862 DOI: 10.3390/toxics11040328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Difenoconazole (DFZ) is a broad-spectrum triazole fungicide that is widely utilized in agriculture. Although DFZ has been demonstrated to induce reproductive toxicity in aquatic species, its toxic effects on the mammalian reproductive system have yet to be fully elucidated. In vivo, male mice were administered 0, 20 or 40 mg/kg/d of DFZ via oral gavage for 35 days. Consequently, DFZ significantly decreased testicular organ coefficient, sperm count and testosterone levels, augmented sperm malformation rates, and elicited histopathological alterations in testes. TUNEL assay showed increased apoptosis in testis. Western blotting results suggested abnormally high expression of the sperm meiosis-associated proteins STRA8 and SCP3. The concentrations of retinoic acid (RA), retinaldehyde (RE), and retinol (ROL) were increased in the testicular tissues of DFZ-treated groups. The mRNA expression level of genes implicated in RA synthesis significantly increased while genes involved in RA catabolism significantly decreased. In vitro, DFZ reduced cell viability and increased RA, RE, and ROL levels in GC-2 cells. Transcriptome analysis revealed a significant enrichment of numerous terms associated with the RA pathway and apoptosis. The qPCR experiment verified the transcriptome results. In conclusion, our results indicate that DFZ exposure can disrupt RA signaling pathway homeostasis, and induce testicular injury in mice testes.
Collapse
|
17
|
Atalay N, Balci N, Toygar HU, Yardimci G, Gürsoy UK. Serum, saliva, and gingival tissue human β-defensin levels in relation to retinoic acid use. J Periodontol 2022; 94:597-605. [PMID: 36440958 DOI: 10.1002/jper.22-0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/10/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Retinoic acid is an active derivative of vitamin A and regulates the differentiation, proliferation, and antimicrobial peptide expression profiles of human cells. The aim of the present study was to analyze the effect of systemic retinoic acid use on serum, saliva, and gingival tissue levels of human β-defensin (hBD)-1, hBD-2, and hBD-3. METHODS A total of 69 participants (34 systemic retinoic acid users and 35 healthy controls) were enrolled in this study. Plaque index, probing pocket depth, bleeding on probing (BOP), and clinical attachment loss were measured. Saliva and serum hBD-1, hBD-2, and hBD-3 levels were quantified by enzyme-linked immunosorbent assay. Gingival tissue hBD-1, hBD-2, and hBD-3 levels were determined by immunohistochemistry. A univariate general linear model was used in adjusted comparisons of hBD1, hBD-2, and hBD-3. P values of < 0.05 were considered statistically significant. RESULTS Reduced salivary levels of hBD-2 (P = 0.042), but not hBD-1 or hBD-3, were detected in systemic retinoic acid users compared to non-user controls. There was a significant difference in the adjusted (for BOP%) salivary hBD-2 concentrations between retinoic acid and control groups (P = 0.031). No difference was observed in serum or tissue levels of hBD-1, hBD-2, or hBD-3 between the two study groups. CONCLUSION Systemic retinoic acid use was associated with suppressed salivary hBD-2 level, which was independent of gingival inflammation. KEY FINDINGS Systemic retinoic acid use associates with suppressed salivary hBD-2 levels.
Collapse
Affiliation(s)
- Nur Atalay
- Faculty of Dentistry, Department of Periodontology, Medipol University, Istanbul, Turkey.,Department of Periodontology, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.,Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Nur Balci
- Faculty of Dentistry, Department of Periodontology, Medipol University, Istanbul, Turkey
| | - Hilal Uslu Toygar
- Faculty of Dentistry, Department of Periodontology, Medipol University, Istanbul, Turkey
| | - Gurkan Yardimci
- Department of Dermatology, Medipol University Esenler Hospital, Istanbul, Turkey
| | - Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
18
|
Alhasnani MA, Loeb S, Hall SJ, Caruolo Z, Simmonds F, Solano AE, Spade DJ. Interaction between mono-(2-ethylhexyl) phthalate and retinoic acid alters Sertoli cell development during fetal mouse testis cord morphogenesis. Curr Res Toxicol 2022; 3:100087. [PMID: 36189433 PMCID: PMC9520016 DOI: 10.1016/j.crtox.2022.100087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/17/2022] [Accepted: 09/17/2022] [Indexed: 11/24/2022] Open
Abstract
Phthalic acid esters (phthalates) are a class of industrial chemicals that cause developmental and reproductive toxicity, but there are significant gaps in knowledge of phthalate toxicity mechanisms. There is evidence that phthalates disrupt retinoic acid signaling in the fetal testis, potentially disrupting control of spatial and temporal patterns of testis development. Our goal was to determine how a phthalate would interact with retinoic acid signaling during fetal mouse testis development. We hypothesized that mono-(2-ethylhexyl) phthalate (MEHP) would exacerbate the adverse effect of all-trans retinoic acid (ATRA) on seminiferous cord development in the mouse fetal testis. To test this hypothesis, gestational day (GD) 14 C57BL/6 mouse testes were isolated and cultured on media containing MEHP, ATRA, or a combination of both compounds. Cultured testes were collected for global transcriptome analysis after one day in culture and for histology and immunofluorescent analysis of Sertoli cell differentiation after three days in culture. ATRA disrupted seminiferous cord morphogenesis and induced aberrant FOXL2 expression. MEHP alone had no significant effect on cord development, but combined exposure to MEHP and ATRA increased the number of FOXL2-positive cells, reduced seminiferous cord number, and increased testosterone levels, beyond the effect of ATRA alone. In RNA-seq analysis, ATRA treatment and MEHP treatment resulted in differential expression of genes 510 and 134 genes, respectively, including 70 common differentially expressed genes (DEGs) between the two treatments, including genes with known roles in fetal testis development. MEHP DEGs included RAR target genes, genes involved in angiogenesis, and developmental patterning genes, including members of the homeobox superfamily. These results support the hypothesis that MEHP modulates retinoic acid signaling in the mouse fetal testis and provide insight into potential mechanisms by which phthalates disrupt seminiferous cord morphogenesis.
Collapse
Key Words
- ATRA, All-trans retinoic acid. CAS # 302-79-4
- DMSO, dimethyl sulfoxide
- Fetal testis development
- GD, gestational day
- GO, Gene Ontology
- IPA, Ingenuity Pathway Analysis
- ITCN, Image-based Tool for Counting Nuclei
- MEHP, mono-(2-ethylheyxl) phthalate. CAS # 4376-20-9
- MNGs, multinucleated germ cells
- PVC, polyvinyl chloride
- Phthalate toxicity
- Retinoic acid
- Sertoli cell
- TDS, testicular dysgenesis syndrome
Collapse
Affiliation(s)
- Maha A. Alhasnani
- Department of Pathology and Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912, USA
| | - Skylar Loeb
- Department of Pathology and Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912, USA
| | - Susan J. Hall
- Department of Pathology and Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912, USA
| | - Zachary Caruolo
- Department of Pathology and Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912, USA
| | - Faith Simmonds
- Department of Pathology and Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912, USA
| | - Amanda E. Solano
- Department of Pathology and Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912, USA
| | - Daniel J. Spade
- Department of Pathology and Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912, USA
| |
Collapse
|
19
|
Ceyhan Y, Zhang M, Sandoval CG, Agoulnik AI, Agoulnik IU. Expression pattern and the roles of phosphatidylinositol phosphatases in testis. Biol Reprod 2022; 107:902-915. [PMID: 35766372 DOI: 10.1093/biolre/ioac132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/02/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphoinositides (PIs) are relatively rare lipid components of the cellular membranes. Their homeostasis is tightly controlled by specific PI kinases and phosphatases. PIs play essential roles in cellular signaling, cytoskeletal organization, and secretory processes in various diseases and normal physiology. Gene targeting experiments strongly suggest that in mice with deficiency of several PI phosphatases such as Pten, Mtmrs, Inpp4b, and Inpp5b, spermatogenesis is affected, resulting in partial or complete infertility. Similarly, in men, loss of several of the PIP phosphatases is observed in infertility characterized by the lack of mature sperm. Using available gene expression databases, we compare expression of known PI phosphatases in various testicular cell types, infertility patients, and mouse age-dependent testicular gene expression, and discuss their potential roles in testis physiology and spermatogenesis.
Collapse
Affiliation(s)
- Yasemin Ceyhan
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Manqi Zhang
- Department of Medicine, Duke University, Durham, NC, USA
| | - Carlos G Sandoval
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,New York University Grossman School of Medicine, New York, NY, USA
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Irina U Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
20
|
Dai Y, Bo Y, Wang P, Xu X, Singh M, Jia L, Zhang S, Niu S, Cheng K, Liang J, Mu L, Geng K, Xia G, Wang C, Zhang Y, Zhang H. Asynchronous embryonic germ cell development leads to a heterogeneity of postnatal ovarian follicle activation and may influence the timing of puberty onset in mice. BMC Biol 2022; 20:109. [PMID: 35550124 PMCID: PMC9101839 DOI: 10.1186/s12915-022-01318-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 04/29/2022] [Indexed: 11/29/2022] Open
Abstract
Background Ovarian follicles, which are the basic units of female reproduction, are composed of oocytes and surrounding somatic (pre) granulosa cells (GCs). A recent study revealed that signaling in somatic preGCs controlled the activation (initial recruitment) of follicles in the adult ovaries, but it is also known that there are two waves of follicle with age-related heterogeneity in their developmental dynamics in mammals. Although this heterogeneity was proposed to be crucial for female reproduction, our understanding of how it arises and its significance is still elusive. Results In the current study, by deleting the key secreted factor KIT ligand from preGCs and analyzing the follicle cell developmental dynamics, we revealed distinct patterns of activation and growth associated with the two waves of follicles in mouse ovary. Our results confirmed that activation of adult wave follicles is initiated by somatic preGCs and dependent on the KIT ligand. By contrast, activation of first wave follicles, which are awakened from germ cells before follicle formation, can occur in the absence of preGC-secreted KIT ligand in postnatal ovaries and appears to be oocyte-initiated. We also found that the asynchronous activity of phosphatidylinositol 3 kinases (PI3K) signaling and meiotic process in embryonic germ cells lead to the follicle heterogeneity in postnatal ovaries. In addition, we supplied evidence that the time sequence of embryonic germ cell development and its related first wave follicle growth are correlated to the time of puberty onset in females. Conclusion Taken together, our study provides evidence that asynchronous development of embryonic oocytes leads to the heterogeneity of postnatal ovarian follicle activation and development, and affects the timing of onset of puberty in females. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01318-y.
Collapse
Affiliation(s)
- Yanli Dai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yingnan Bo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Peike Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueqiang Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Meenakshi Singh
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Longzhong Jia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuo Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shudong Niu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Kaixin Cheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jing Liang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lu Mu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Kaiying Geng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.,Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hua Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
21
|
Hu C, Zuo Q, Jin K, Zhao Z, Wu Y, Gao J, Wang C, Wang Y, Zhan W, Zhou J, Cheng F, Sun H, Niu Y, Zhang Y. Retinoic acid promotes formation of chicken (Gallus gallus) spermatogonial stem cells by regulating the ECM-receptor interaction signaling pathway. Gene 2022; 820:146227. [PMID: 35124150 DOI: 10.1016/j.gene.2022.146227] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/09/2021] [Accepted: 01/13/2022] [Indexed: 01/18/2023]
Abstract
Spermatogonial stem cells (SSCs) are the basis of spermatogenesis. Systematically exploring the critical factors associated with the formation of SSCs will provide new insight to improve the formation efficiency, and their practical application. Here we explore the regulatory mechanism of the ECM-receptor interaction signaling pathway and related genes during differentiation of SSCs in chicken. Firstly, the positive cell rate of SSCs protein marker was detected by immunofluorescence and flow cytometry and qRT-PCR was used to identify, the expression of related marker genes after 10 days of RA-induction. Secondly, the ESCs on 0d/ 4d /10d after RA- induction/self-differentiation were collected, and the total RNA was then extracted from cells. Finally, high-throughput analysis methods (RNA-seq) were used to sequence the transcriptome of these cells. After PCA analysis of the RNA-seq data, Venny analysis, GO and KEGG enrichment were further used to find the key signaling pathways and genes in the RA-induction process. The results showed that on day 10 of RA-induction, grape cluster growth cells expressed integrinβ1, the specific marker protein of SSCs cells, and the integrinβ1 positive rate was 35.1%. Also, SSCs marker genes CVH, Integrinβ1, Integrinα6 were significantly up-regulated during RA-induction. Moreover, the significantly enriched pathway, ECM-receptor interaction signaling, in current study may play a crucial role in RA-induction. Then, JASPAR was used to predict the differential gene transcription factors in the signaling pathway, finding that RA receptor was a transcription factor of COL5A1, COL5A2 and COL3A1. The qRT-PCR results showed that the expression levels of RA receptors (RXRA, RARA and RXRG) and the predicted genes (COL5A1, COL5A2 and COL3A1) were both significantly increased during RA-induction. Also, dual-luciferase reporter assay showed that RA could affect the luciferin activities of COL5A1, COL5A2 and COL3A1. These results suggest that RA plays a crucial role in the formation of chicken spermatogonial stem cells via the transcription levels of COL5A1, COL5A2 and COL3A1 to regulate the ECM-receptor interaction signaling pathway. Additionally, knockdown of COL5A1/COL5A2/COL3A1 could effectively reduce the formation efficiency of SSCs. This indicated that the interference of RA receptor binding genes in the ECM-receptor interaction signaling pathway could decrease the efficiency of RA induced SSCs formation. Therefore, this study concludes that RA promotes formation of chicken spermatogonial stem cells by regulating the ECM-receptor interaction signaling pathway.
Collapse
Affiliation(s)
- Cai Hu
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| | - Zongyi Zhao
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Yuhui Wu
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Jichang Gao
- Clinical Medical College of Yangzhou University, Yangzhou 225001, China.
| | - Chaoyong Wang
- Clinical Medical College of Yangzhou University, Yangzhou 225001, China; Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou 225001, China.
| | - Yingjie Wang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China.
| | - Wanda Zhan
- Clinical Medical College of Yangzhou University, Yangzhou 225001, China; Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou 225001, China.
| | - Jing Zhou
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Fufu Cheng
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Hongyan Sun
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Yingjie Niu
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| | - Yani Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
22
|
Wang R, Liu X, Li L, Yang M, Yong J, Zhai F, Wen L, Yan L, Qiao J, Tang F. Dissecting Human Gonadal Cell Lineage Specification and Sex Determination Using A Single-cell RNA-seq Approach. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:223-245. [PMID: 35513251 PMCID: PMC9684167 DOI: 10.1016/j.gpb.2022.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/24/2022] [Indexed: 01/05/2023]
Abstract
Gonadal somatic cells are the main players in gonad development and are important for sex determination and germ cell development. Here, using a time-series single-cell RNA sequencing (scRNA-seq) strategy, we analyzed fetal germ cells (FGCs) and gonadal somatic cells in human embryos and fetuses. Clustering analysis of testes and ovaries revealed several novel cell subsets, including POU5F1+SPARC+ FGCs and KRT19+ somatic cells. Furthermore, our data indicated that the bone morphogenetic protein (BMP) signaling pathway plays cell type-specific and developmental stage-specific roles in testis development and promotes the gonocyte-to-spermatogonium transition (GST) in late-stage testicular mitotic arrest FGCs. Intriguingly, testosterone synthesis function transitioned from fetal Sertoli cells to adult Leydig cells in a stepwise manner. In our study, potential interactions between gonadal somatic cells were systematically explored and we identified cell type-specific developmental defects in both FGCs and gonadal somatic cells in a Turner syndrome embryo (45, XO). Our work provides a blueprint of the complex yet highly ordered development of and the interactions among human FGCs and gonadal somatic cells.
Collapse
Affiliation(s)
- Rui Wang
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Third Hospital, School of Life Sciences, Peking University, Beijing 100871, China,Beijing Advanced Innovation Center for Genomics and Center for Reproductive Medicine, Third Hospital, Peking University, Beijing 100191, China,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xixi Liu
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Third Hospital, School of Life Sciences, Peking University, Beijing 100871, China,Beijing Advanced Innovation Center for Genomics and Center for Reproductive Medicine, Third Hospital, Peking University, Beijing 100191, China
| | - Li Li
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Third Hospital, School of Life Sciences, Peking University, Beijing 100871, China,Beijing Advanced Innovation Center for Genomics and Center for Reproductive Medicine, Third Hospital, Peking University, Beijing 100191, China,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ming Yang
- Key Laboratory of Assisted Reproduction and Key Laboratory of Cell Proliferation and Differentiation, Ministry of Education, Beijing 100191, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jun Yong
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Third Hospital, School of Life Sciences, Peking University, Beijing 100871, China
| | - Fan Zhai
- Key Laboratory of Assisted Reproduction and Key Laboratory of Cell Proliferation and Differentiation, Ministry of Education, Beijing 100191, China,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Lu Wen
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Third Hospital, School of Life Sciences, Peking University, Beijing 100871, China,Beijing Advanced Innovation Center for Genomics and Center for Reproductive Medicine, Third Hospital, Peking University, Beijing 100191, China
| | - Liying Yan
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Third Hospital, School of Life Sciences, Peking University, Beijing 100871, China,Key Laboratory of Assisted Reproduction and Key Laboratory of Cell Proliferation and Differentiation, Ministry of Education, Beijing 100191, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Jie Qiao
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Third Hospital, School of Life Sciences, Peking University, Beijing 100871, China,Beijing Advanced Innovation Center for Genomics and Center for Reproductive Medicine, Third Hospital, Peking University, Beijing 100191, China,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China,Key Laboratory of Assisted Reproduction and Key Laboratory of Cell Proliferation and Differentiation, Ministry of Education, Beijing 100191, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China,Corresponding authors.
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Third Hospital, School of Life Sciences, Peking University, Beijing 100871, China,Beijing Advanced Innovation Center for Genomics and Center for Reproductive Medicine, Third Hospital, Peking University, Beijing 100191, China,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China,Corresponding authors.
| |
Collapse
|
23
|
Spiller C, Bowles J. Instructing Mouse Germ Cells to Adopt a Female Fate. Sex Dev 2022:1-13. [PMID: 35320803 DOI: 10.1159/000523763] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/20/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Germ cells are critical for the survival of our species. They are the only cells that undergo meiosis - the reductive form of cell division that is necessary for genetic reassortment of chromosomes and production of the haploid gametes, the sperm and eggs. Remarkably, the initial female/male fate decision in fetal germ cells does not depend on whether they are chromosomally XX or XY; rather, initial sexual fate is imposed by influences from the surrounding tissue. In mammals, the female germline is particularly precious: despite recent suggestions that germline stem cells exist in the ovary, it is still generally accepted that the ovarian reserve is finite, and its size is dependant on germ cells of the fetal ovary initiating meiosis in a timely manner. SUMMARY Prior to 2006, evidence suggested that gonadal germ cells initiate meiotic prophase I by default, but more recent data support a key role for the signalling molecule retinoic acid (RA) in instructing female germ cell fate. Newer findings also support a key meiosis-inducing role for another signalling molecule, bone morphogenic protein (BMP). Nonetheless, many questions remain. KEY MESSAGES Here, we review knowledge thus far regarding extrinsic and intrinsic determinants of a female germ cell fate, focusing on the mouse model.
Collapse
Affiliation(s)
- Cassy Spiller
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Josephine Bowles
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
24
|
Schleif MC, Havel SL, Griswold MD. Function of Retinoic Acid in Development of Male and Female Gametes. Nutrients 2022; 14:1293. [PMID: 35334951 PMCID: PMC8951023 DOI: 10.3390/nu14061293] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023] Open
Abstract
Retinoic acid, an active metabolite of vitamin A, is necessary for many developmental processes in mammals. Much of the field of reproduction has looked toward retinoic acid as a key transcriptional regulator and catalyst of differentiation events. This review focuses on the effects of retinoic acid on male and female gamete formation and regulation. Within spermatogenesis, it has been well established that retinoic acid is necessary for the proper formation of the blood-testis barrier, spermatogonial differentiation, spermiation, and assisting in meiotic completion. While many of the roles of retinoic acid in male spermatogenesis are known, investigations into female oogenesis have provided differing results.
Collapse
Affiliation(s)
| | | | - Michael D. Griswold
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA 99163, USA; (M.C.S.); (S.L.H.)
| |
Collapse
|
25
|
Zhang T, Sun P, Geng Q, Fan H, Gong Y, Hu Y, Shan L, Sun Y, Shen W, Zhou Y. Disrupted spermatogenesis in a metabolic syndrome model: the role of vitamin A metabolism in the gut-testis axis. Gut 2022; 71:78-87. [PMID: 33504491 PMCID: PMC8666830 DOI: 10.1136/gutjnl-2020-323347] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Effects of the diet-induced gut microbiota dysbiosis reach far beyond the gut. We aim to uncover the direct evidence involving the gut-testis axis in the aetiology of impaired spermatogenesis. DESIGN An excessive-energy diet-induced metabolic syndrome (MetS) sheep model was established. The testicular samples, host metabolomes and gut microbiome were analysed. Faecal microbiota transplantation (FMT) confirmed the linkage between gut microbiota and spermatogenesis. RESULTS We demonstrated that the number of arrested spermatogonia was markedly elevated by using 10× single-cell RNA-seq in the MetS model. Furthermore, through using metabolomics profiling and 16S rDNA-seq, we discovered that the absorption of vitamin A in the gut was abolished due to a notable reduction of bile acid levels, which was significantly associated with reduced abundance of Ruminococcaceae_NK4A214_group. Notably, the abnormal metabolic effects of vitamin A were transferable to the testicular cells through the circulating blood, which contributed to abnormal spermatogenesis, as confirmed by FMT. CONCLUSION These findings define a starting point for linking the testicular function and regulation of gut microbiota via host metabolomes and will be of potential value for the treatment of male infertility in MetS.
Collapse
Affiliation(s)
- Teng Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Peng Sun
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Qi Geng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Haitao Fan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yutian Gong
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yanting Hu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Liying Shan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yuanchao Sun
- The Affiliated Hospital of Qingdao University and The Biomedical Sciences Institute of Qingdao University, Qingdao University, Qingdao, China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yang Zhou
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
26
|
Zhao ZH, Wang XY, Schatten H, Sun QY. Single cell RNA sequencing techniques and applications in research of ovary development and related diseases. Reprod Toxicol 2021; 107:97-103. [PMID: 34896591 DOI: 10.1016/j.reprotox.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/21/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
The ovary is a highly organized composite of germ cells and various types of somatic cells, whose communications dictate ovary development to generate functional oocytes. The differences between individual cells might have profound effects on ovary functions. Single cell RNA sequencing techniques are promising approaches to explore the cell type composition of organisms, the dynamics of transcriptomes, the regulatory network between genes and the signaling pathways between cell types at the single cell resolution. In this review, we provide an overview of the currently available single cell RNA sequencing techniques including Smart-seq2 and Drop-seq, as well as their applications in biological and clinical research to provide a better understanding on the molecular mechanisms underlying ovary development and associated diseases.
Collapse
Affiliation(s)
- Zheng-Hui Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao-Yu Wang
- School of Social Development and Public Policy, Beijing Normal University, Beijing, 100875, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, United States
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| |
Collapse
|
27
|
Sex-specific chromatin remodelling safeguards transcription in germ cells. Nature 2021; 600:737-742. [PMID: 34880491 DOI: 10.1038/s41586-021-04208-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 11/01/2021] [Indexed: 11/08/2022]
Abstract
Stability of the epigenetic landscape underpins maintenance of the cell-type-specific transcriptional profile. As one of the main repressive epigenetic systems, DNA methylation has been shown to be important for long-term gene silencing; its loss leads to ectopic and aberrant transcription in differentiated cells and cancer1. The developing mouse germ line endures global changes in DNA methylation in the absence of widespread transcriptional activation. Here, using an ultra-low-input native chromatin immunoprecipitation approach, we show that following DNA demethylation the gonadal primordial germ cells undergo remodelling of repressive histone modifications, resulting in a sex-specific signature in mice. We further demonstrate that Polycomb has a central role in transcriptional control in the newly hypomethylated germline genome as the genetic loss of Ezh2 leads to aberrant transcriptional activation, retrotransposon derepression and dramatic loss of developing female germ cells. This sex-specific effect of Ezh2 deletion is explained by the distinct landscape of repressive modifications observed in male and female germ cells. Overall, our study provides insight into the dynamic interplay between repressive chromatin modifications in the context of a developmental reprogramming system.
Collapse
|
28
|
Luo H, Li X, Tian GG, Li D, Hou C, Ding X, Hou L, Lyu Q, Yang Y, Cooney AJ, Xie W, Xiong J, Wang H, Zhao X, Wu J. Offspring production of ovarian organoids derived from spermatogonial stem cells by defined factors with chromatin reorganization. J Adv Res 2021; 33:81-98. [PMID: 34603780 PMCID: PMC8463929 DOI: 10.1016/j.jare.2021.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 11/30/2022] Open
Abstract
Introduction Fate determination of germline stem cells remains poorly understood at the chromatin structure level. Objectives Our research hopes to develop successful offspring production of ovarian organoids derived from spermatogonial stem cells (SSCs) by defined factors. Methods The offspring production from oocytes transdifferentiated from mouse SSCs with tracking of transplanted SSCs in vivo, single cell whole exome sequencing, and in 3D cell culture reconstitution of the process of oogenesis derived from SSCs. The defined factors were screened with ovarian organoids. We uncovered extensive chromatin reorganization during SSC conversion into induced germline stem cells (iGSCs) using high throughput chromosome conformation. Results We demonstrate successful production of offspring from oocytes transdifferentiated from mouse spermatogonial stem cells (SSCs). Furthermore, we demonstrate direct induction of germline stem cells (iGSCs) differentiated into functional oocytes by transduction of H19, Stella, and Zfp57 and inactivation of Plzf in SSCs after screening with ovarian organoids. We uncovered extensive chromatin reorganization during SSC conversion into iGSCs, which was highly similar to female germline stem cells. We observed that although topologically associating domains were stable during SSC conversion, chromatin interactions changed in a striking manner, altering 35% of inactive and active chromosomal compartments throughout the genome. Conclusion We demonstrate successful offspring production of ovarian organoids derived from SSCs by defined factors with chromatin reorganization. These findings have important implications in various areas including mammalian gametogenesis, genetic and epigenetic reprogramming, biotechnology, and medicine.
Collapse
Affiliation(s)
- Huacheng Luo
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Xiaoyong Li
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Geng G Tian
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Changliang Hou
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Xinbao Ding
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Lin Hou
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Qifeng Lyu
- Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University Schoolof Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yunze Yang
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Austin J Cooney
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wenhai Xie
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Ji Xiong
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Hu Wang
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Xiaodong Zhao
- Shanghai Center for Systems Biomedicine, Shanghai Jiao TongUniversity, Shanghai 200240, China
| | - Ji Wu
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China.,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
29
|
Porras-Gómez TJ, Villagrán-SantaCruz M, Moreno-Mendoza N. Biology of primordial germ cells in vertebrates with emphasis in urodeles amphibians. Mol Reprod Dev 2021; 88:773-792. [PMID: 34532913 DOI: 10.1002/mrd.23533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/08/2022]
Abstract
Primordial germ cells (PGCs) are highly specialized cells that play a relevant role in the maintenance and evolution of the species, since they create new combinations of genetic information between the organisms. Amphibians are a class of amniote vertebrates that are divided into three subclasses, the anurans (frogs and toads), the urodeles (salamanders and newts), and the gymnophiones (caecilians). The study of PGCs in amphibians has been addressed in more detail in anurans while little is known about the biology of this cell lineage in urodeles. Studies in some urodeles species have suggested that PGCs are of mesodermal origin, specifying in the lateral plate mesoderm at the late gastrula stage. With classical experiments it shown that, there is an induction of mesoderm, therefore most likely urodeles PGCs develop from unspecialized mesodermal tissue that responds to extracellular signals. However, some fundamental biological processes of PGCs such as the analysis of their specification, arrival, and colonization to the gonads, and their maintenance and differentiation into mature and fertile gametes remain to be elucidated. Therefore, knowledge about the biology of PGCs is of great importance to ensure the perpetuation of urodeles amphibians, as some species are in danger of becoming extinct.
Collapse
Affiliation(s)
- Tania J Porras-Gómez
- Laboratorio de Biología Tisular y Reproductora, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Maricela Villagrán-SantaCruz
- Laboratorio de Biología Tisular y Reproductora, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Norma Moreno-Mendoza
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
30
|
McCarrey JR, Cheng K. Germ cells: ENCODE's forgotten cell type†. Biol Reprod 2021; 105:761-766. [PMID: 34250539 PMCID: PMC8444701 DOI: 10.1093/biolre/ioab135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/15/2021] [Accepted: 07/06/2021] [Indexed: 11/12/2022] Open
Abstract
More than a decade ago, the ENCODE and NIH Epigenomics Roadmap consortia organized large multilaboratory efforts to profile the epigenomes of >110 different mammalian somatic cell types. This generated valuable publicly accessible datasets that are being mined to reveal genome-wide patterns of a variety of different epigenetic parameters. This consortia approach facilitated the powerful and comprehensive multiparametric integrative analysis of the epigenomes in each cell type. However, no germ cell types were included among the cell types characterized by either of these consortia. Thus, comprehensive epigenetic profiling data are not generally available for the most evolutionarily important cells, male and female germ cells. We discuss the need for reproductive biologists to generate similar multiparametric epigenomic profiling datasets for both male and female germ cells at different developmental stages and summarize our recent effort to derive such data for mammalian spermatogonial stem cells and progenitor spermatogonia.
Collapse
Affiliation(s)
- John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX USA
| | - Keren Cheng
- Department of Biology, University of Texas at San Antonio, San Antonio, TX USA
| |
Collapse
|
31
|
Figueiredo AFA, Wnuk NT, Vieira CP, Gonçalves MFF, Brener MRG, Diniz AB, Antunes MM, Castro-Oliveira HM, Menezes GB, Costa GMJ. Activation of C-C motif chemokine receptor 2 modulates testicular macrophages number, steroidogenesis, and spermatogenesis progression. Cell Tissue Res 2021; 386:173-190. [PMID: 34296344 DOI: 10.1007/s00441-021-03504-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/02/2021] [Indexed: 01/13/2023]
Abstract
The monocyte chemoattractant protein 1 (MCP-1) belongs to the CC chemokine family and acts in the recruitment of C-C motif chemokine receptor 2 (CCR2)-positive immune cell types to inflammation sites. In testis, the MCP-1/CCR2 axis has been associated with the macrophage population's functional regulation, which presents significant functions supporting germ cell development. In this context, herein, we aimed to investigate the role of the chemokine receptor CCR2 in mice testicular environment and its impact on male sperm production. Using adult transgenic mice strain that had the CCR2 gene replaced by a red fluorescent protein gene, we showed a stage-dependent expression of CCR2 in type B spermatogonia and early primary spermatocytes. Several parameters related to sperm production were reduced in the absence of CCR2 protein, such as Sertoli cell efficiency, meiotic index, and overall yield of spermatogenesis. Daily sperm production decreased by almost 40%, and several damages in the seminiferous tubules were observed. Significant reduction in the expression of important genes related to the Sertoli cell function (Cnx43, Vim, Ocln, Spna2) and meiosis initiation (Stra8, Pcna, Prdm9, Msh5) occurred in comparison to controls. Also, the number of macrophages significantly decreased in the absence of CCR2 protein, along with a disturbance in Leydig cell steroidogenic activity. In summary, our results show that the non-activation of the MCP-1/CCR2 axis disturbs the testicular homeostasis, interfering in macrophage population, meiosis initiation, blood-testis barrier function, and androgen synthesis, leading to the malfunction of seminiferous tubules, decreased testosterone levels, defective sperm production, and lower fertility index.
Collapse
Affiliation(s)
- A F A Figueiredo
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - N T Wnuk
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - C P Vieira
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - M F F Gonçalves
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - M R G Brener
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - A B Diniz
- Center for Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - M M Antunes
- Center for Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - H M Castro-Oliveira
- Center for Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - G B Menezes
- Center for Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - G M J Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
32
|
Adolfi MC, Herpin A, Schartl M. The replaceable master of sex determination: bottom-up hypothesis revisited. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200090. [PMID: 34247496 DOI: 10.1098/rstb.2020.0090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Different group of vertebrates and invertebrates demonstrate an amazing diversity of gene regulations not only at the top but also at the bottom of the sex determination genetic network. As early as 1995, based on emerging findings in Drosophila melanogaster and Caenorhabditis elegans, Wilkins suggested that the evolution of the sex determination pathway evolved from the bottom to the top of the hierarchy. Based on our current knowledge, this review revisits the 'bottom-up' hypothesis and applies its logic to vertebrates. The basic operation of the determination network is through the dynamics of the opposing male and female pathways together with a persistent need to maintain the sexual identity of the cells of the gonad up to the reproductive stage in adults. The sex-determining trigger circumstantially acts from outside the genetic network, but the regulatory network is not built around it as a main node, thus maintaining the genetic structure of the network. New sex-promoting genes arise either through allelic diversification or gene duplication and act specially at the sex-determination period, without integration into the complete network. Due to this peripheral position the new regulator is not an indispensable component of the sex-determining network and can be easily replaced. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Mateus Contar Adolfi
- Developmental Biochemistry, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Amaury Herpin
- INRA, UR 1037 Fish Physiology and Genomics, 35000 Rennes, France.,State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany.,Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX 78666, USA
| |
Collapse
|
33
|
Wang C, Qin H, Zhao C, Yang L, Yu T, Zhang Y, Luo X, Qin Q, Liu S. Whole-Genome Re-sequencing and Transcriptome Reveal Oogenesis-Related Genes in Autotetraploid Carassius auratus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:233-241. [PMID: 33675430 DOI: 10.1007/s10126-021-10018-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Oogenesis involves a series of biochemical and physiological transformations and numerous regulated genes. The autotetraploid Carassius auratus (4nRR) originated from whole-genome duplication of Carassius auratus red var. (RCC), which produces diploid eggs through pairing of diploid-like chromosome during female meiosis. To explore the molecular mechanisms underlying oogenesis in 4nRR, we used the Illumina sequencing platform to characterize the ovaries of 4nRR and RCC. Transcriptome and whole-genome re-sequencing were performed to uncover the key genes and potential genetic mutations related to oogenesis. Each sample produced paired-end reads in the range of 66.97 to 98.36 million via Illumina HiSeq™ 2500. After comparing of the transcriptome profiles between the 4nRR and RCC, we uncovered 8562 differentially expressed genes (DEGs). The DEGs were enriched in oogenesis-related processes, including oogenesis, oocyte development, ubiquitin-mediated proteolysis, the signaling pathways of MAPK and calcium, and oocyte meiosis as investigated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Additionally, whole-genome re-sequencing revealed 34,058,834 SNPs and 6,153,711 InDels, including 6,677,638 non-synonymous variations (SNPs) and 706,210 frame-shift InDels in the 8510 DEGs of 4nRR fish. Subsequently, whole-genome re-sequencing and transcriptomatic analyses revealed the genes that participate in oogenesis associated processes. Specifically, genes involved in ubiquitin-mediated proteolysis (SMURF1, UBE2I), calcium transport (CALM3, CAMK4), and meiosis (MAPK3, GRB2, CPEB1, CCNB2, YWHAE) were related to oogenesis in 4nRR. These findings enrich our understanding of oogenesis in the autopolyploid fish.
Collapse
Affiliation(s)
- Chongqing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Huan Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Chun Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Li Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Tingting Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Yuxin Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Xiang Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
| |
Collapse
|
34
|
Zhang X, Gunewardena S, Wang N. Nutrient restriction synergizes with retinoic acid to induce mammalian meiotic initiation in vitro. Nat Commun 2021; 12:1758. [PMID: 33741948 PMCID: PMC7979727 DOI: 10.1038/s41467-021-22021-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/23/2021] [Indexed: 02/08/2023] Open
Abstract
The molecular machinery and chromosome structures carrying out meiosis are frequently conserved from yeast to mammals. However, signals initiating meiosis appear divergent: while nutrient restriction induces meiosis in the yeast system, retinoic acid (RA) and its target Stra8 have been shown to be necessary but not sufficient to induce meiotic initiation in mammalian germ cells. Here, we use primary culture of mouse undifferentiated spermatogonia without the support of gonadal somatic cells to show that nutrient restriction in combination with RA is sufficient to induce Stra8- and Spo11-dependent meiotic gene and chromosome programs that recapitulate the transcriptomic and cytologic features of in vivo meiosis. We demonstrate that neither nutrient restriction nor RA alone exerts these effects. Moreover, we identify a distinctive network of 11 nutrient restriction-upregulated transcription factor genes, which are associated with early meiosis in vivo and whose expression does not require RA. Our study proposes a conserved model, in which nutrient restriction induces meiotic initiation by upregulating key transcription factor genes for the meiotic gene program and provides an in vitro platform for meiotic induction that could facilitate research and haploid gamete production.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ning Wang
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
35
|
He M, Zhang T, Yang Y, Wang C. Mechanisms of Oocyte Maturation and Related Epigenetic Regulation. Front Cell Dev Biol 2021; 9:654028. [PMID: 33842483 PMCID: PMC8025927 DOI: 10.3389/fcell.2021.654028] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
Meiosis is the basis of sexual reproduction. In female mammals, meiosis of oocytes starts before birth and sustains at the dictyate stage of meiotic prophase I before gonadotropins-induced ovulation happens. Once meiosis gets started, the oocytes undergo the leptotene, zygotene, and pachytene stages, and then arrest at the dictyate stage. During each estrus cycle in mammals, or menstrual cycle in humans, a small portion of oocytes within preovulatory follicles may resume meiosis. It is crucial for females to supply high quality mature oocytes for sustaining fertility, which is generally achieved by fine-tuning oocyte meiotic arrest and resumption progression. Anything that disturbs the process may result in failure of oogenesis and seriously affect both the fertility and the health of females. Therefore, uncovering the regulatory network of oocyte meiosis progression illuminates not only how the foundations of mammalian reproduction are laid, but how mis-regulation of these steps result in infertility. In order to provide an overview of the recently uncovered cellular and molecular mechanism during oocyte maturation, especially epigenetic modification, the progress of the regulatory network of oocyte meiosis progression including meiosis arrest and meiosis resumption induced by gonadotropins is summarized. Then, advances in the epigenetic aspects, such as histone acetylation, phosphorylation, methylation, glycosylation, ubiquitination, and SUMOylation related to the quality of oocyte maturation are reviewed.
Collapse
Affiliation(s)
- Meina He
- Department of Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, China
| | - Tuo Zhang
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, China
| | - Yi Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, China
| |
Collapse
|
36
|
Shojaeian A, Mehri-Ghahfarrokhi A, Banitalebi-Dehkordi M. Monophosphoryl Lipid A and Retinoic Acid Combinations Increased Germ Cell Differentiation Markers Expression in Human Umbilical Cord-derived Mesenchymal Stromal Cells in an In vitro Ovine Acellular Testis Scaffold. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 9:288-296. [PMID: 33688486 PMCID: PMC7936076 DOI: 10.22088/ijmcm.bums.9.4.288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/17/2021] [Indexed: 11/22/2022]
Abstract
Infertility is known as one of the most common problems among couples. In this regard, generation of male germ cells from adult stem ones are among the current promising priorities of researchers. Mesenchymal stromal cells (MSCs) were previously induced to differentiate into germ-like progenitors in vitro. Monophosphoryl lipid A (MPLA) is a detoxified derivative of lipopolysaccharides (LPS) that lacks many of the endotoxic properties of LPS. Our present study aimed to investigate the expression of migration genes (CXCR4, VCAM1, VEGF, MMP2, and VLA4), and differentiation markers during human umbilical mesenchymal stromal cells (hUMSCs) culture in the presence of retinoic acid (RA) and MPLA-treated acellular testis. Accordingly, the high expression levels of deleted in azoospermia-like (DAZL), piwi-like RNA-mediated gene silencing 2 (PIWIL2) transcripts as well as protein were consequently observed in treated hUMSCs. It was concluded that combination treatment (i.e., MPLA/RA) had more prominent results than each of the treatments alone, even though MPLA and RA could be regarded as inducer of migration and differentiation, respectively. Ultimately, it was suggested to introduce the use of combination treatment as a more effective strategy to improve therapies in regenerative medicine.
Collapse
Affiliation(s)
- Ali Shojaeian
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ameneh Mehri-Ghahfarrokhi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehdi Banitalebi-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
37
|
Zhao ZH, Meng TG, Zhang HY, Hou Y, Schatten H, Wang ZB, Sun QY. Single-cell RNA sequencing reveals species-specific time spans of cell cycle transitions in early oogenesis. Hum Mol Genet 2021; 30:525-535. [PMID: 33575778 DOI: 10.1093/hmg/ddab048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/16/2021] [Accepted: 02/04/2021] [Indexed: 11/14/2022] Open
Abstract
Oogenesis is a highly regulated process and its basic cellular events are evolutionarily conserved. However, the time spans of oogenesis differ substantially among species. To explore these interspecies differences in oogenesis, we performed single-cell RNA-sequencing on mouse and monkey female germ cells and downloaded the single-cell RNA-sequencing data of human female germ cells. The cell cycle analyses indicate that the period and extent of cell cycle transitions are significantly different between the species. Moreover, hierarchical clustering of critical cell cycle genes and the interacting network of cell cycle regulators also exhibit distinguished patterns across species. We propose that differences in the regulation of cell cycle transitions may underlie female germ cell developmental allochrony between species. A better understanding of the cell cycle transition machinery will provide new insights into the interspecies differences in female germ cell developmental time spans.
Collapse
Affiliation(s)
- Zheng-Hui Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tie-Gang Meng
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Hong-Yong Zhang
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| |
Collapse
|
38
|
Adolfi MC, Herpin A, Martinez-Bengochea A, Kneitz S, Regensburger M, Grunwald DJ, Schartl M. Crosstalk Between Retinoic Acid and Sex-Related Genes Controls Germ Cell Fate and Gametogenesis in Medaka. Front Cell Dev Biol 2021; 8:613497. [PMID: 33537305 PMCID: PMC7848095 DOI: 10.3389/fcell.2020.613497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Sex determination (SD) is a highly diverse and complex mechanism. In vertebrates, one of the first morphological differences between the sexes is the timing of initiation of the first meiosis, where its initiation occurs first in female and later in male. Thus, SD is intimately related to the responsiveness of the germ cells to undergo meiosis in a sex-specific manner. In some vertebrates, it has been reported that the timing for meiosis entry would be under control of retinoic acid (RA), through activation of Stra8. In this study, we used a fish model species for sex determination and lacking the stra8 gene, the Japanese medaka (Oryzias latipes), to investigate the connection between RA and the sex determination pathway. Exogenous RA treatments act as a stress factor inhibiting germ cell differentiation probably by activation of dmrt1a and amh. Disruption of the RA degrading enzyme gene cyp26a1 induced precocious meiosis and oogenesis in embryos/hatchlings of female and even some males. Transcriptome analyzes of cyp26a1–/–adult gonads revealed upregulation of genes related to germ cell differentiation and meiosis, in both ovaries and testes. Our findings show that germ cells respond to RA in a stra8 independent model species. The responsiveness to RA is conferred by sex-related genes, restricting its action to the sex differentiation period in both sexes.
Collapse
Affiliation(s)
- Mateus C Adolfi
- University of Wuerzburg, Developmental Biochemistry, Biocenter, Wuerzburg, Germany
| | - Amaury Herpin
- INRA, UR1037, Fish Physiology and Genomics, Rennes, France.,State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Anabel Martinez-Bengochea
- University of Wuerzburg, Developmental Biochemistry, Biocenter, Wuerzburg, Germany.,Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, Brazil
| | - Susanne Kneitz
- University of Wuerzburg, Developmental Biochemistry, Biocenter, Wuerzburg, Germany
| | - Martina Regensburger
- University of Wuerzburg, Developmental Biochemistry, Biocenter, Wuerzburg, Germany
| | - David J Grunwald
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| | - Manfred Schartl
- University of Wuerzburg, Developmental Biochemistry, Biocenter, Wuerzburg, Germany.,University of Wuerzburg, Developmental Biochemistry, Biocenter, Wuerzburg, Germany
| |
Collapse
|
39
|
Zhang MY, Tian Y, Yan ZH, Li WD, Zang CJ, Li L, Sun XF, Shen W, Cheng SF. Maternal Bisphenol S exposure affects the reproductive capacity of F1 and F2 offspring in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115382. [PMID: 32866863 DOI: 10.1016/j.envpol.2020.115382] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/10/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol S (BPS) is an endocrine disruptor which is widely used in commercial plastic products. Previous studies have shown that exposure to BPS has toxic effects on various aspects of mammalian, but there are few reports about reproductive toxicity. In order to investigate the effects of maternal BPS exposure on the reproductive of F1 and F2 female mice, the pregnant mice were orally administered with different dosages of BPS only once every day from 12.5 to 15.5 days post-coitus (dpc). The results showed that maternal BPS exposure to 2 μg per kg of body weight per day (2 μg/kg) and 10 μg/kg accelerated the meiotic prophase I (MPI) of F1 female mice and the expression of the genes related to meiotic were increased. Further studies showed that maternal BPS exposure resulted in a significant increase in the percentage of oocytes enclosed in primordial follicles in the 3 days post-partum (3 dpp) ovaries of F1 female mice. And at the time of 21 days post-partum (21 dpp) in F1 female mice, the number of antral follicles were significantly lower compare to controls. In the study of five-week female mice of F1, we found that BPS disturbed the folliculogenesis, and the maturation rates and fertilization rates of oocytes were significantly decreased. Of note, maternal BPS exposure disrupted H3K4 and H3K9 tri-methylation levels in F1 ovaries. Maternal BPS exposure only affected the cyst breakdown in F2 female mice. Taken together, our results suggest that, maternal BPS exposure impaired the process of meiosis and oogenesis of F1 and F2 offspring, resulting in abnormal follicular development and serious damage to the reproduction.
Collapse
Affiliation(s)
- Ming-Yu Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Tian
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zi-Hui Yan
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei-Dong Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chuan-Jie Zang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lan Li
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiao-Feng Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shun-Feng Cheng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
40
|
Nagahama Y, Chakraborty T, Paul-Prasanth B, Ohta K, Nakamura M. Sex determination, gonadal sex differentiation, and plasticity in vertebrate species. Physiol Rev 2020; 101:1237-1308. [PMID: 33180655 DOI: 10.1152/physrev.00044.2019] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A diverse array of sex determination (SD) mechanisms, encompassing environmental to genetic, have been found to exist among vertebrates, covering a spectrum from fixed SD mechanisms (mammals) to functional sex change in fishes (sequential hermaphroditic fishes). A major landmark in vertebrate SD was the discovery of the SRY gene in 1990. Since that time, many attempts to clone an SRY ortholog from nonmammalian vertebrates remained unsuccessful, until 2002, when DMY/dmrt1by was discovered as the SD gene of a small fish, medaka. Surprisingly, however, DMY/dmrt1by was found in only 2 species among more than 20 species of medaka, suggesting a large diversity of SD genes among vertebrates. Considerable progress has been made over the last 3 decades, such that it is now possible to formulate reasonable paradigms of how SD and gonadal sex differentiation may work in some model vertebrate species. This review outlines our current understanding of vertebrate SD and gonadal sex differentiation, with a focus on the molecular and cellular mechanisms involved. An impressive number of genes and factors have been discovered that play important roles in testicular and ovarian differentiation. An antagonism between the male and female pathway genes exists in gonads during both sex differentiation and, surprisingly, even as adults, suggesting that, in addition to sex-changing fishes, gonochoristic vertebrates including mice maintain some degree of gonadal sexual plasticity into adulthood. Importantly, a review of various SD mechanisms among vertebrates suggests that this is the ideal biological event that can make us understand the evolutionary conundrums underlying speciation and species diversity.
Collapse
Affiliation(s)
- Yoshitaka Nagahama
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Faculty of Biological Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Tapas Chakraborty
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan.,Karatsu Satellite of Aqua-Bioresource Innovation Center, Kyushu University, Karatsu, Japan
| | - Bindhu Paul-Prasanth
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidapeetham, Kochi, Kerala, India
| | - Kohei Ohta
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan
| | - Masaru Nakamura
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.,Research Center, Okinawa Churashima Foundation, Okinawa, Japan
| |
Collapse
|
41
|
Vernet N, Condrea D, Mayere C, Féret B, Klopfenstein M, Magnant W, Alunni V, Teletin M, Souali-Crespo S, Nef S, Mark M, Ghyselinck NB. Meiosis occurs normally in the fetal ovary of mice lacking all retinoic acid receptors. SCIENCE ADVANCES 2020; 6:eaaz1139. [PMID: 32917583 PMCID: PMC7244263 DOI: 10.1126/sciadv.aaz1139] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/13/2020] [Indexed: 05/27/2023]
Abstract
Gametes are generated through a specialized cell differentiation process, meiosis, which, in ovaries of most mammals, is initiated during fetal life. All-trans retinoic acid (ATRA) is considered as the molecular signal triggering meiosis initiation. In the present study, we analyzed female fetuses ubiquitously lacking all ATRA nuclear receptors (RAR), obtained through a tamoxifen-inducible cre recombinase-mediated gene targeting approach. Unexpectedly, mutant oocytes robustly expressed meiotic genes, including the meiotic gatekeeper STRA8. In addition, ovaries from mutant fetuses grafted into adult recipient females yielded offspring bearing null alleles for all Rar genes. Thus, our results show that RAR are fully dispensable for meiotic initiation, as well as for the production of functional oocytes. Assuming that the effects of ATRA all rely on RAR, our study goes against the current model according to which meiosis is triggered by endogenous ATRA in the developing ovary. It therefore revives the search for the meiosis-inducing substance.
Collapse
Affiliation(s)
- Nadège Vernet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 rue Laurent Fries, BP-10142, F-67404 Illkirch Cedex, France
| | - Diana Condrea
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 rue Laurent Fries, BP-10142, F-67404 Illkirch Cedex, France
| | - Chloé Mayere
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Betty Féret
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 rue Laurent Fries, BP-10142, F-67404 Illkirch Cedex, France
| | - Muriel Klopfenstein
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 rue Laurent Fries, BP-10142, F-67404 Illkirch Cedex, France
| | - William Magnant
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 rue Laurent Fries, BP-10142, F-67404 Illkirch Cedex, France
| | - Violaine Alunni
- GenomEast platform, France Génomique consortium, IGBMC, 1 rue Laurent Fries, F-67404 Illkirch Cedex, France
| | - Marius Teletin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 rue Laurent Fries, BP-10142, F-67404 Illkirch Cedex, France
- Service de Biologie de la Reproduction, Hôpitaux Universitaires de Strasbourg (HUS), France
| | - Sirine Souali-Crespo
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 rue Laurent Fries, BP-10142, F-67404 Illkirch Cedex, France
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Manuel Mark
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 rue Laurent Fries, BP-10142, F-67404 Illkirch Cedex, France
- Service de Biologie de la Reproduction, Hôpitaux Universitaires de Strasbourg (HUS), France
| | - Norbert B Ghyselinck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 rue Laurent Fries, BP-10142, F-67404 Illkirch Cedex, France.
| |
Collapse
|
42
|
Satirapod C, Wang N, MacDonald JA, Sun M, Woods DC, Tilly JL. Estrogen regulation of germline stem cell differentiation as a mechanism contributing to female reproductive aging. Aging (Albany NY) 2020; 12:7313-7333. [PMID: 32302290 PMCID: PMC7202493 DOI: 10.18632/aging.103080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/10/2020] [Indexed: 05/09/2023]
Abstract
Progressive loss of ovarian estrogen (E2) production is a hallmark feature of, if not a driving force behind, reproductive aging and the menopause. Recent genetic studies in mice have shown that female germline or oogonial stem cells (OSCs) contribute to maintenance of adult ovarian function and fertility under physiological conditions through support of de-novo oogenesis. Here we show that mouse OSCs express E2 receptor-α (ERα). In the presence of E2, ERα interacts with the stimulated by retinoic acid gene 8 (Stra8) promoter to drive Stra8 expression followed by oogenesis. Treatment of mice with E2 in vivo increases Stra8 expression and oogenesis, and these effects are nullified by ERα (Esr1), but not ERβ (Esr2), gene disruption. Although mice lacking ERα are born with a normal quota of oocytes, ERα-deficient females develop premature ovarian insufficiency in adulthood due to impaired oogenesis. Lastly, mice treated with reversible ER antagonists show a loss of Stra8 expression and oocyte numbers; however, both endpoints rebound to control levels after ceasing drug treatment. These findings establish a key physiological role for E2-ERα signaling in promoting OSC differentiation as a potential mechanism to maintain adequate numbers of ovarian follicles during reproductive life.
Collapse
Affiliation(s)
- Chonthicha Satirapod
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ning Wang
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
- Current address: Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Julie A. MacDonald
- Department of Biology, Laboratory of Aging and Infertility Research, Northeastern University, Boston, MA 02115, USA
- Current address: Department of Medical Oncology Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Minghan Sun
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Dori C. Woods
- Department of Biology, Laboratory of Aging and Infertility Research, Northeastern University, Boston, MA 02115, USA
| | - Jonathan L. Tilly
- Department of Biology, Laboratory of Aging and Infertility Research, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
43
|
Peng C, Wang Q, Chen J, Yang H, Zhang W, Wang D, Li S, Tao M, Shi H, Lin H, Zhao H, Zhang Y. Retinoic acid and androgen influence germ cells development and meiotic initiation in juvenile orange-spotted grouper, Epinephelus coioides. Gen Comp Endocrinol 2020; 289:113379. [PMID: 31891688 DOI: 10.1016/j.ygcen.2019.113379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/01/2019] [Accepted: 12/27/2019] [Indexed: 10/25/2022]
Abstract
Meiosis is essential for germ cells development for all sexually reproducing species. Retinoic acid (RA) is the key factor controlling the sex-specific timing of meiotic initiation in mammals, birds and tetrapods. Here, we investigated the effects of RA on meiotic initiation and sex determination in protogynous hermaphrodite orange-spotted grouper (Epinephelus coioides). Expression profile investigations of meiotic marker genes during gonadal development indicated that germ cells undergone meiosis approximately at 180 days after hatching in the orange-spotted grouper. RA synthase inhibitor treatments on juvenile orange-spotted groupers resulted in impeded germ cells development and delayed meiotic initiation with simultaneous down-regulation of vasa, dazl, sycp3 and rec8, which was rescued by exogenous RA administration. Additionally, exogenous androgen treated fish showed a delayed meiotic initiation consistent with decreased sycp3 and rec8 expression and were directed to a spermiogenesis fate. Our results imply that meiotic initiation in the orange-spotted grouper is strongly influenced by RA and androgen, and the regulation of meiotic initiation may involve in the spermatogenesis induced by exogenous androgen.
Collapse
Affiliation(s)
- Cheng Peng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou 510260, China; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qing Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jiaxing Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wenrui Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Dengdong Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Herong Shi
- Marine Fisheries Development Center of Guangdong Province, Huizhou 516081, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Huihong Zhao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; Marine Fisheries Development Center of Guangdong Province, Huizhou 516081, China; Southern Marine Science and Engineering Guangdong Laboratory (ZhanJiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
44
|
Gantchev J, Martínez Villarreal A, Gunn S, Zetka M, Ødum N, Litvinov IV. The ectopic expression of meiCT genes promotes meiomitosis and may facilitate carcinogenesis. Cell Cycle 2020; 19:837-854. [PMID: 32223693 DOI: 10.1080/15384101.2020.1743902] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer meiomitosis is defined as the concurrent activation of both mitotic and meiotic machineries in neoplastic cells that confer a selective advantage together with increased genomic instability. MeiCT (meiosis-specific cancer/testis) genes that perform specialized functions in the germline events required for the first meiotic division are ectopically expressed in several cancers. Here we describe the expression profiles of meiCT genes and proteins across a number of cancers and review the proposed mechanisms that increase aneuploidy and elicit reduction division in polyploid cells. These mechanisms are centered on the overexpression and function of meiCT proteins in cancers under various conditions that includes a response to genotoxic stress. Since meiCT genes are transcriptionally repressed in somatic cells, their target offers a promising therapeutic approach with limited toxicity to healthy tissues. Throughout the review, we provide a detailed description of the roles for each gene in the context of meiosis and we discuss proposed functions and outcomes resulting from their ectopic reactivation in cancer.
Collapse
Affiliation(s)
- Jennifer Gantchev
- Division of Dermatology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | | | - Scott Gunn
- Division of Dermatology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Monique Zetka
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Neils Ødum
- Department of Microbiology and Immunology, The University of Copenhagen, Copenhagen, Denmark
| | - Ivan V Litvinov
- Division of Dermatology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
45
|
Melatonin alleviates meiotic defects in fetal mouse oocytes induced by Di (2-ethylhexyl) phthalate in vitro. Aging (Albany NY) 2019; 10:4175-4187. [PMID: 30591620 PMCID: PMC6326675 DOI: 10.18632/aging.101715] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022]
Abstract
Di (2-ethylhexyl) phthalate (DEHP), an estrogen-like compound that is a ubiquitous environmental contaminant, has been reported to adversely affect human and mammalian reproduction. Many studies have found that exposure to DEHP during pregnancy perturbs female germ cell meiosis and is detrimental to oogenesis. Previous studies have demonstrated that melatonin (MLT) is beneficial to reproductive endocrinology, oogenesis, and embryonic development as the ability to antioxidative and antiapoptotic. However, whether the meiotic defect of germ cells exposed to DEHP could be rescued by MLT is not clear. Here, we cultured 12.5 days post coitum (dpc) fetal mouse ovaries for 6 days, exposed them to 100 μM DEHP with or without 1 μM MLT in vitro.. The results showed that DEHP exposure induced the abnormal formation of DNA double-strand breaks (DSBs), and inhibited the repair of DSBs during meiotic recombination. In addition, we found defective oocytes were prone to undergo apoptosis. Notably, this defect could be remarkably ameliorated by the addition of MLT via a reduction of the levels of reactive oxygen species and an inhibition of apoptosis. In conclusion, our data revealed that MLT had a protective action against the meiotic deterioration of fetal oocytes induced by DEHP in the mouse in vitro.
Collapse
|
46
|
Bowles J, Feng CW, Ineson J, Miles K, Spiller CM, Harley VR, Sinclair AH, Koopman P. Retinoic Acid Antagonizes Testis Development in Mice. Cell Rep 2019; 24:1330-1341. [PMID: 30067986 DOI: 10.1016/j.celrep.2018.06.111] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/26/2018] [Accepted: 06/27/2018] [Indexed: 12/29/2022] Open
Abstract
Mammalian sex determination depends on a complex interplay of signals that promote the bipotential fetal gonad to develop as either a testis or an ovary, but the details are incompletely understood. Here, we investigated whether removal of the signaling molecule retinoic acid (RA) by the degradative enzyme CYP26B1 is necessary for proper development of somatic cells of the testes. Gonadal organ culture experiments suggested that RA promotes expression of some ovarian markers and suppresses expression of some testicular markers, acting downstream of Sox9. XY Cyp26b1-null embryos, in which endogenous RA is not degraded, develop mild ovotestes, but more important, steroidogenesis is impaired and the reproductive tract feminized. Experiments involving purified gonadal cells showed that these effects are independent of germ cells and suggest the direct involvement of the orphan nuclear receptor DAX1. Our results reveal that active removal of endogenous RA is required for normal testis development in the mouse.
Collapse
Affiliation(s)
- Josephine Bowles
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Chun-Wei Feng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jessica Ineson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kim Miles
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cassy M Spiller
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Vincent R Harley
- Hudson Institute of Medical Research, Clayton, Melbourne, VIC 3168, Australia
| | - Andrew H Sinclair
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
47
|
Retinoic Acid and Germ Cell Development in the Ovary and Testis. Biomolecules 2019; 9:biom9120775. [PMID: 31771306 PMCID: PMC6995559 DOI: 10.3390/biom9120775] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 02/07/2023] Open
Abstract
Retinoic acid (RA), a derivative of vitamin A, is critical for the production of oocytes and sperm in mammals. These gametes derive from primordial germ cells, which colonize the nascent gonad, and later undertake sexual differentiation to produce oocytes or sperm. During fetal development, germ cells in the ovary initiate meiosis in response to RA, whereas those in the testis do not yet initiate meiosis, as they are insulated from RA, and undergo cell cycle arrest. After birth, male germ cells resume proliferation and undergo a transition to spermatogonia, which are destined to develop into haploid spermatozoa via spermatogenesis. Recent findings indicate that RA levels change periodically in adult testes to direct not only meiotic initiation, but also other key developmental transitions to ensure that spermatogenesis is precisely organized for the prodigious output of sperm. This review focuses on how female and male germ cells develop in the ovary and testis, respectively, and the role of RA in this process.
Collapse
|
48
|
Amini Mahabadi J, Karimian M, Aghighi F, Enderami SE, Seyyed Hosseini E, Talaei SA, Gheibi Hayat SM, Nikzad H. Retinoic acid and 17β-estradiol improve male germ cell differentiation from mouse-induced pluripotent stem cells. Andrologia 2019; 52:e13466. [PMID: 31736115 DOI: 10.1111/and.13466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/04/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022] Open
Abstract
This research aimed to explore the impacts of retinoic acid (RA)/17β-estradiol (E) induction and embryoid body formation to enhance differentiation of mouse-induced pluripotent stem cells (miPSCs) into male germ cells in vitro. Flow cytometry and qPCR were conducted to describe miPSCs differentiation process. Various temporal expression profiles of germ cell-related genes were traced. Stra8 gene expression increased in the RA group on the 4th day compared to other groups. The RA group experienced a more significant increase than E group. The expression of Sycp3 increased in RA + E group on 4th day compared with other groups. Expression of AKAP3 enhanced in the RA + E group than other groups on day 4. Moreover, miPSCs showed that this gene expression in the RA + E group was increased in comparison to RA and E groups on day 7. AKAP3 gene expression on day 7 of miPSCs decreased in RA and E groups. Flow cytometry data indicated that 3%-8% of the cells in sub-G1 stage were haploid after RA and E induction compared to other groups on day 4. This study showed that miPSCs possess the power for differentiating into male germ cells in vitro via formation of embryoid body by RA with/or E induction.
Collapse
Affiliation(s)
- Javad Amini Mahabadi
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Karimian
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Fatemeh Aghighi
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Ehsan Enderami
- Department of Medical Biotechnology, Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Sayyed Alireza Talaei
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Nikzad
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
49
|
Evolving Role of RING1 and YY1 Binding Protein in the Regulation of Germ-Cell-Specific Transcription. Genes (Basel) 2019; 10:genes10110941. [PMID: 31752312 PMCID: PMC6895862 DOI: 10.3390/genes10110941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022] Open
Abstract
Separation of germline cells from somatic lineages is one of the earliest decisions of embryogenesis. Genes expressed in germline cells include apoptotic and meiotic factors, which are not transcribed in the soma normally, but a number of testis-specific genes are active in numerous cancer types. During germ cell development, germ-cell-specific genes can be regulated by specific transcription factors, retinoic acid signaling and multimeric protein complexes. Non-canonical polycomb repressive complexes, like ncPRC1.6, play a critical role in the regulation of the activity of germ-cell-specific genes. RING1 and YY1 binding protein (RYBP) is one of the core members of the ncPRC1.6. Surprisingly, the role of Rybp in germ cell differentiation has not been defined yet. This review is focusing on the possible role of Rybp in this process. By analyzing whole-genome transcriptome alterations of the Rybp-/- embryonic stem (ES) cells and correlating this data with experimentally identified binding sites of ncPRC1.6 subunits and retinoic acid receptors in ES cells, we propose a model how germ-cell-specific transcription can be governed by an RYBP centered regulatory network, underlining the possible role of RYBP in germ cell differentiation and tumorigenesis.
Collapse
|
50
|
Zuo Q, Jin J, Jin K, Sun C, Song J, Zhang Y, Chen G, Li B. Distinct roles of retinoic acid and BMP4 pathways in the formation of chicken primordial germ cells and spermatogonial stem cells. Food Funct 2019; 10:7152-7163. [PMID: 31596288 DOI: 10.1039/c9fo01485c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study demonstrated different effects of bone morphogenetic protein 4 (BMP4) and retinoic acid (RA) signaling on the induction of germ cell formation in chickens. In vitro, BMP4 significantly promoted primordial germ cell (PGC) formation, while RA promoted spermatogonial stem cell (SSC) formation. Hematoxylin-Eosin (HE) staining of reproductive ridge and testicular slices showed that BMP4 signaling was activated during PGC formation but was inhibited during PGC differentiation into SSC. In contrast, RA signaling was significantly activated during PGC differentiation to SSC. Mechanistically, elevated expression of phosphorylated mothers against decapentaplegic homolog 5 (p-Smad5) activated BMP4 signaling, while inhibition of p-Smad5 significantly reduced the PGC formation. Additionally, BMP4 regulated the PGC formation through histone acetylation and DNA methylation in deleted in azoospermia-like (DAZL) gene. Luciferase report showed RA binding to RARα regulated stimulated by RA 8 (Stra8) promoter activity during SSC formation, while mutations in RAR binding sites inhibited the Stra8 expression and SSC formation. Further, both HAT and HDAC regulated the RARα isoform, and HAT binding to RARα activated the Stra8 transcription. RNA-seq of embryonic stem cells (ESC), PGC, and SSC showed inverse expression of genes related to the BMP4 and RA pathways during PGC and SSC formation. Additionally, Smad5 and Smurf were critical for the interactions between the two pathways. Specifically, through Smurf promotion of Smad5 ubiquitination, RA could inhibit the BMP4 signal transduction. In conclusion, the BMP4 and RA signaling pathways play opposing roles in germ cell formation, driven by epigenetic processes such as phosphorylation, ubiquitination, and histone acetylation.
Collapse
Affiliation(s)
- Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China. and Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jing Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China. and Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China. and Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Changhua Sun
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China. and Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jiuzhou Song
- Animal & Avian Sciences, University of Maryland, Baltimore, MD 20741, USA
| | - Yani Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China. and Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Guohong Chen
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China. and Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China. and Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|