1
|
Azbazdar Y, De Robertis EM. Molecular analysis of a self-organizing signaling pathway for Xenopus axial patterning from egg to tailbud. Proc Natl Acad Sci U S A 2024; 121:e2408346121. [PMID: 38968117 PMCID: PMC11252917 DOI: 10.1073/pnas.2408346121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/06/2024] [Indexed: 07/07/2024] Open
Abstract
Xenopus embryos provide a favorable material to dissect the sequential steps that lead to dorsal-ventral (D-V) and anterior-posterior (A-P) cell differentiation. Here, we analyze the signaling pathways involved in this process using loss-of-function and gain-of-function approaches. The initial step was provided by Hwa, a transmembrane protein that robustly activates early β-catenin signaling when microinjected into the ventral side of the embryo leading to complete twinned axes. The following step was the activation of Xenopus Nodal-related growth factors, which could rescue the depletion of β-catenin and were themselves blocked by the extracellular Nodal antagonists Cerberus-Short and Lefty. During gastrulation, the Spemann-Mangold organizer secretes a cocktail of growth factor antagonists, of which the BMP antagonists Chordin and Noggin could rescue simultaneously D-V and A-P tissues in β-catenin-depleted embryos. Surprisingly, this rescue occurred in the absence of any β-catenin transcriptional activity as measured by β-catenin activated Luciferase reporters. The Wnt antagonist Dickkopf (Dkk1) strongly synergized with the early Hwa signal by inhibiting late Wnt signals. Depletion of Sizzled (Szl), an antagonist of the Tolloid chordinase, was epistatic over the Hwa and Dkk1 synergy. BMP4 mRNA injection blocked Hwa-induced ectopic axes, and Dkk1 inhibited BMP signaling late, but not early, during gastrulation. Several unexpected findings were made, e.g., well-patterned complete embryonic axes are induced by Chordin or Nodal in β-catenin knockdown embryos, dorsalization by Lithium chloride (LiCl) is mediated by Nodals, Dkk1 exerts its anteriorizing and dorsalizing effects by regulating late BMP signaling, and the Dkk1 phenotype requires Szl.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095-1662
| | - Edward M. De Robertis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095-1662
| |
Collapse
|
2
|
Yoon J, Kumar S, Lee H, Rehman ZU, Park S, Lee U, Kim J. Sizzled (Frzb3) physically interacts with noncanonical Wnt ligands to inhibit gastrulation cell movement. Mol Cells 2024; 47:100068. [PMID: 38759887 PMCID: PMC11225558 DOI: 10.1016/j.mocell.2024.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/17/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024] Open
Abstract
The coordinated movement of germ layer progenitor cells reaches its peak at the dorsal side, where the Bmp signaling gradient is low, and minimum at the ventral side, where the Bmp gradient is high. This dynamic cell movement is regulated by the interplay of various signaling pathways. The noncanonical Wnt signaling cascade serves as a pivotal regulator of convergence and extension cell movement, facilitated by the activation of small GTPases such as Rho, Rab, and Rac. However, the underlying cause of limited cell movement at the ventral side remains elusive. To explore the functional role of a key regulator in constraining gastrulation cell movement at the ventral side, we investigated the Bmp4-direct target gene, sizzled (szl), to assess its potential role in inhibiting noncanonical Wnt signaling. In our current study, we demonstrated that ectopic expression of szl led to gastrulation defects in a dose-dependent manner without altering cell fate specification. Overexpression of szl resulted in decreased elongation of Activin-treated animal cap and Keller explants. Furthermore, our immunoprecipitation assay unveiled the physical interaction of Szl with noncanonical Wnt ligand proteins (Wnt5 and Wnt11). Additionally, the activation of small GTPases involved in Wnt signaling mediation (RhoA and Rac1) was diminished upon szl overexpression. In summary, our findings suggest that Bmp4 signaling negatively modulates cell movement from the ventral side of the embryo by inducing szl expression during early Xenopus gastrulation.
Collapse
Affiliation(s)
- Jaeho Yoon
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Santosh Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Haeryung Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - Zia Ur Rehman
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do 24252, Republic of Korea
| |
Collapse
|
3
|
Cheng T, Xing YY, Liu C, Li YF, Huang Y, Liu X, Zhang YJ, Zhao GQ, Dong Y, Fu XX, Tian YM, Shu LP, Megason SG, Xu PF. Nodal coordinates the anterior-posterior patterning of germ layers and induces head formation in zebrafish explants. Cell Rep 2023; 42:112351. [PMID: 37018074 DOI: 10.1016/j.celrep.2023.112351] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Much progress has been made toward generating analogs of early embryos, such as gastruloids and embryoids, in vitro. However, methods for how to fully mimic the cell movements of gastrulation and coordinate germ-layer patterning to induce head formation are still lacking. Here, we show that a regional Nodal gradient applied to zebrafish animal pole explant can generate a structure that recapitulates the key cell movements of gastrulation. Using single-cell transcriptome and in situ hybridization analysis, we assess the dynamics of the cell fates and patterning of this structure. The mesendoderm differentiates into the anterior endoderm, prechordal plate, notochord, and tailbud-like cells along an anterior-posterior axis, and an anterior-posterior-patterned head-like structure (HLS) progressively forms during late gastrulation. Among 105 immediate Nodal targets, 14 genes contain axis-induction ability, and 5 of them induce a complete or partial head structure when overexpressed in the ventral side of zebrafish embryos.
Collapse
Affiliation(s)
- Tao Cheng
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan-Yi Xing
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, Zhejiang, China
| | - Cong Liu
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yun-Fei Li
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Huang
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiang Liu
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying-Jie Zhang
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guo-Qin Zhao
- Department of Immunology, Guizhou Medical University, Guiyang 550004, China
| | - Yang Dong
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin-Xin Fu
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi-Meng Tian
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Li-Ping Shu
- Department of Immunology, Guizhou Medical University, Guiyang 550004, China
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| | - Peng-Fei Xu
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Yabe T, Uriu K, Takada S. Ripply suppresses Tbx6 to induce dynamic-to-static conversion in somite segmentation. Nat Commun 2023; 14:2115. [PMID: 37055428 PMCID: PMC10102234 DOI: 10.1038/s41467-023-37745-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/29/2023] [Indexed: 04/15/2023] Open
Abstract
The metameric pattern of somites is created based on oscillatory expression of clock genes in presomitic mesoderm. However, the mechanism for converting the dynamic oscillation to a static pattern of somites is still unclear. Here, we provide evidence that Ripply/Tbx6 machinery is a key regulator of this conversion. Ripply1/Ripply2-mediated removal of Tbx6 protein defines somite boundary and also leads to cessation of clock gene expression in zebrafish embryos. On the other hand, activation of ripply1/ripply2 mRNA and protein expression is periodically regulated by clock oscillation in conjunction with an Erk signaling gradient. Whereas Ripply protein decreases rapidly in embryos, Ripply-triggered Tbx6 suppression persists long enough to complete somite boundary formation. Mathematical modeling shows that a molecular network based on results of this study can reproduce dynamic-to-static conversion in somitogenesis. Furthermore, simulations with this model suggest that sustained suppression of Tbx6 caused by Ripply is crucial in this conversion.
Collapse
Affiliation(s)
- Taijiro Yabe
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
| | - Koichiro Uriu
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| | - Shinji Takada
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
5
|
Mansuri A, Kansara K, Raiyani D, Mazmudar D, Kumar A. New insight into long-term effects of phthalates microplastics in developing zebrafish: Evidence from genomic alteration and organ development. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104087. [PMID: 36841272 DOI: 10.1016/j.etap.2023.104087] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/19/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The plasticizer leaches from the microplastics are one of the significant concerns related to plastic pollution. These plasticizers are known to be endocrine disrupters; however, little is known about their long-term effect on the development of aquatic vertebrates. Hence, the present study has been conducted to provide a holistic understanding of the effect of the three most common plasticizers, dibutyl phthalate (DBP), diethyl phthalate (DEP), and di-ethylhexyl phthalate (DEHP) leaching out from the microplastics in zebrafish development. Zebrafish larvae were exposed to different phthalates at different concentrations. The phthalates have shown significantly higher mortality and morphological changes in the larva upon exposure compared to the control. A significant change in the genes related to cardiovascular development (krit1, fbn2b), dorsoventral axis development (chrd, smad5), tail formation (pkd2, wnt3a, wnt8a), and floorplate development (foxa2) were also observed under the effects of the phthalates in comparison to control.
Collapse
Affiliation(s)
- Abdulkhalik Mansuri
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Krupa Kansara
- Biological and Engineering Discipline, Indian Institute of Technology - Gandhinagar (IITGN), Palaj 382355, Gujarat, India.
| | - Dixit Raiyani
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Dhairya Mazmudar
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
6
|
Mizoguchi T, Mikami S, Yatou M, Kondo Y, Omaru S, Kuwabara S, Okura W, Noda S, Tenno T, Hiroaki H, Itoh M. Small-Molecule-Mediated Suppression of BMP Signaling by Selective Inhibition of BMP1-Dependent Chordin Cleavage. Int J Mol Sci 2023; 24:4313. [PMID: 36901744 PMCID: PMC10001940 DOI: 10.3390/ijms24054313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
BMP signaling is critical for many biological processes. Therefore, small molecules that modulate BMP signaling are useful for elucidating the function of BMP signaling and treating BMP signaling-related diseases. Here, we performed a phenotypic screening in zebrafish to examine the in vivo effects of N-substituted-2-amino-benzoic acid analogs NPL1010 and NPL3008 and found that they affect BMP signaling-dependent dorsal-ventral (D-V) patterning and bone formation in zebrafish embryos. Furthermore, NPL1010 and NPL3008 suppressed BMP signaling upstream of BMP receptors. BMP1 cleaves Chordin, an antagonist of BMP, and negatively regulates BMP signaling. Docking simulations demonstrated that NPL1010 and NPL3008 bind BMP1. We found that NPL1010 and NPL3008 partially rescued the disruptions in the D-V phenotype caused by bmp1 overexpression and selectively inhibited BMP1-dependent Chordin cleavage. Therefore, NPL1010 and NPL3008 are potentially valuable inhibitors of BMP signaling that act through selective inhibition of Chordin cleavage.
Collapse
Affiliation(s)
- Takamasa Mizoguchi
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Shohei Mikami
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Mari Yatou
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yui Kondo
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Shuhei Omaru
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Shuhei Kuwabara
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Wataru Okura
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Syouta Noda
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Aichi, Japan
| | - Takeshi Tenno
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Aichi, Japan
- BeCerllBar, LLC., Business Incubation Building, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
| | - Hidekazu Hiroaki
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Aichi, Japan
- BeCerllBar, LLC., Business Incubation Building, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
- Department of Biological Sciences, Faculty of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8602, Aichi, Japan
| | - Motoyuki Itoh
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
- Research Institute of Disaster Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
7
|
Sharma U, Vadon-Le Goff S, Harlos K, Zhao Y, Mariano N, Bijakowski C, Bourhis JM, Moali C, Hulmes DJS, Aghajari N. Dynamics of the secreted frizzled related protein Sizzled and potential implications for binding to bone morphogenetic protein-1 (BMP-1). Sci Rep 2022; 12:14850. [PMID: 36050373 PMCID: PMC9437010 DOI: 10.1038/s41598-022-18795-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/19/2022] [Indexed: 11/09/2022] Open
Abstract
Sizzled (Szl) is both a secreted frizzled related protein (sFRP) and a naturally occurring inhibitor of the zinc metalloproteinase bone morphogenetic protein-1 (BMP-1), a key regulator of extracellular matrix assembly and growth factor activation. Here we present a new crystal structure for Szl which differs from that previously reported by a large scale (90°) hinge rotation between its cysteine-rich and netrin-like domains. We also present results of a molecular docking analysis showing interactions likely to be involved in the inhibition of BMP-1 activity by Szl. When compared with known structures of BMP-1 in complex with small molecule inhibitors, this reveals features that may be helpful in the design of new inhibitors to prevent the excessive accumulation of extracellular matrix that is the hallmark of fibrotic diseases.
Collapse
Affiliation(s)
- Urvashi Sharma
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France
- National Institute of Biologicals, A-32, Institutional Area, Sector 62, Noida, 201309, India
| | - Sandrine Vadon-Le Goff
- Tissue Biology and Therapeutic Engineering Laboratory, UMR 5305 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Karl Harlos
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Yuguang Zhao
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Natacha Mariano
- Tissue Biology and Therapeutic Engineering Laboratory, UMR 5305 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Cecile Bijakowski
- Tissue Biology and Therapeutic Engineering Laboratory, UMR 5305 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Jean-Marie Bourhis
- Tissue Biology and Therapeutic Engineering Laboratory, UMR 5305 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Catherine Moali
- Tissue Biology and Therapeutic Engineering Laboratory, UMR 5305 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - David J S Hulmes
- Tissue Biology and Therapeutic Engineering Laboratory, UMR 5305 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Nushin Aghajari
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France.
| |
Collapse
|
8
|
Jones WD, Mullins MC. Cell signaling pathways controlling an axis organizing center in the zebrafish. Curr Top Dev Biol 2022; 150:149-209. [DOI: 10.1016/bs.ctdb.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Kumar V, Park S, Lee U, Kim J. The Organizer and Its Signaling in Embryonic Development. J Dev Biol 2021; 9:jdb9040047. [PMID: 34842722 PMCID: PMC8628936 DOI: 10.3390/jdb9040047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022] Open
Abstract
Germ layer specification and axis formation are crucial events in embryonic development. The Spemann organizer regulates the early developmental processes by multiple regulatory mechanisms. This review focuses on the responsive signaling in organizer formation and how the organizer orchestrates the germ layer specification in vertebrates. Accumulated evidence indicates that the organizer influences embryonic development by dual signaling. Two parallel processes, the migration of the organizer’s cells, followed by the transcriptional activation/deactivation of target genes, and the diffusion of secreting molecules, collectively direct the early development. Finally, we take an in-depth look at active signaling that originates from the organizer and involves germ layer specification and patterning.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea;
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Korea
- Correspondence: (U.L.); (J.K.); Tel.: +82-33-248-2544 (J.K.); Fax: +82-33-244-8425 (J.K.)
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea;
- Correspondence: (U.L.); (J.K.); Tel.: +82-33-248-2544 (J.K.); Fax: +82-33-244-8425 (J.K.)
| |
Collapse
|
10
|
Tuazon FB, Wang X, Andrade JL, Umulis D, Mullins MC. Proteolytic Restriction of Chordin Range Underlies BMP Gradient Formation. Cell Rep 2021; 32:108039. [PMID: 32814043 PMCID: PMC7731995 DOI: 10.1016/j.celrep.2020.108039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 04/22/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
A fundamental question in developmental biology is how morphogens, such as bone morphogenetic protein (BMP), form precise signaling gradients to impart positional and functional identity to the cells of the early embryo. We combine rigorous mutant analyses with quantitative immunofluorescence to determine that the proteases Bmp1a and Tolloid spatially restrict the BMP antagonist Chordin in dorsoventral (DV) axial patterning of the early zebrafish gastrula. We show that maternally deposited Bmp1a plays an unexpected and non-redundant role in establishing the BMP signaling gradient, while the Bmp1a/Tolloid antagonist Sizzled is surprisingly dispensable. Combining computational modeling and in vivo analyses with an immobile Chordin construct, we demonstrate that long-range Chordin diffusion is not necessary for BMP gradient formation and DV patterning. Our data do not support a counter-gradient of Chordin and instead favor a Chordin sink, established by Bmp1a and Tolloid, as the primary mechanism that drives BMP gradient formation. The BMP morphogen generates a precise signaling gradient during axial patterning. In the zebrafish embryo, Tuazon et al. find that proteases Bmp1a/Tolloid are key to this process, preventing the long-range diffusion of the BMP antagonist, Chordin. By regionally restricting Chordin, Bmp1a/Tolloid establish the signaling sink that drives BMP gradient formation.
Collapse
Affiliation(s)
- Francesca B Tuazon
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Xu Wang
- Department of Agriculture and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Jonathan Lee Andrade
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David Umulis
- Department of Agriculture and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Rogers KW, ElGamacy M, Jordan BM, Müller P. Optogenetic investigation of BMP target gene expression diversity. eLife 2020; 9:58641. [PMID: 33174840 PMCID: PMC7728441 DOI: 10.7554/elife.58641] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
Signaling molecules activate distinct patterns of gene expression to coordinate embryogenesis, but how spatiotemporal expression diversity is generated is an open question. In zebrafish, a BMP signaling gradient patterns the dorsal-ventral axis. We systematically identified target genes responding to BMP and found that they have diverse spatiotemporal expression patterns. Transcriptional responses to optogenetically delivered high- and low-amplitude BMP signaling pulses indicate that spatiotemporal expression is not fully defined by different BMP signaling activation thresholds. Additionally, we observed negligible correlations between spatiotemporal expression and transcription kinetics for the majority of analyzed genes in response to BMP signaling pulses. In contrast, spatial differences between BMP target genes largely collapsed when FGF and Nodal signaling were inhibited. Our results suggest that, similar to other patterning systems, combinatorial signaling is likely to be a major driver of spatial diversity in BMP-dependent gene expression in zebrafish.
Collapse
Affiliation(s)
- Katherine W Rogers
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Mohammad ElGamacy
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.,Modeling Tumorigenesis Group, Translational Oncology Division, Eberhard Karls University Tübingen, Tübingen, Germany.,Heliopolis Biotechnology Ltd, London, United Kingdom
| | - Benjamin M Jordan
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| | - Patrick Müller
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.,Modeling Tumorigenesis Group, Translational Oncology Division, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Vonica A, Bhat N, Phan K, Guo J, Iancu L, Weber JA, Karger A, Cain JW, Wang ECE, DeStefano GM, O'Donnell-Luria AH, Christiano AM, Riley B, Butler SJ, Luria V. Apcdd1 is a dual BMP/Wnt inhibitor in the developing nervous system and skin. Dev Biol 2020; 464:71-87. [PMID: 32320685 PMCID: PMC7307705 DOI: 10.1016/j.ydbio.2020.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 02/02/2023]
Abstract
Animal development and homeostasis depend on precise temporal and spatial intercellular signaling. Components shared between signaling pathways, generally thought to decrease specificity, paradoxically can also provide a solution to pathway coordination. Here we show that the Bone Morphogenetic Protein (BMP) and Wnt signaling pathways share Apcdd1 as a common inhibitor and that Apcdd1 is a taxon-restricted gene with novel domains and signaling functions. Previously, we showed that Apcdd1 inhibits Wnt signaling (Shimomura et al., 2010), here we find that Apcdd1 potently inhibits BMP signaling in body axis formation and neural differentiation in chicken, frog, zebrafish. Furthermore, we find that Apcdd1 has an evolutionarily novel protein domain. Our results from experiments and modeling suggest that Apcdd1 may coordinate the outputs of two signaling pathways that are central to animal development and human disease.
Collapse
Affiliation(s)
- Alin Vonica
- Departments of Genetics and Development, and Dermatology, Columbia University Medical Center, New York, NY, 10032, USA; Department of Biology, The Nazareth College, Rochester, NY, 14618, USA
| | - Neha Bhat
- Department of Biology, Texas A&M University, College Station, TX, 7783-3258, USA; Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Keith Phan
- Department of Neurobiology, University of California, Los Angeles, CA, 90095-7239, USA
| | - Jinbai Guo
- Department of Biology, Texas A&M University, College Station, TX, 7783-3258, USA
| | - Lăcrimioara Iancu
- Institut für Algebra und Zahlentheorie, Universität Stuttgart, D-70569, Stuttgart, Germany; Institute of Mathematics, University of Aberdeen, Aberdeen, AB24 3UE, Scotland, UK
| | - Jessica A Weber
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Amir Karger
- IT-Research Computing, Harvard Medical School, Boston, MA, 02115, USA
| | - John W Cain
- Department of Mathematics, Harvard University, Cambridge, MA, 02138, USA
| | - Etienne C E Wang
- Departments of Genetics and Development, and Dermatology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Gina M DeStefano
- Departments of Genetics and Development, and Dermatology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Anne H O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Angela M Christiano
- Departments of Genetics and Development, and Dermatology, Columbia University Medical Center, New York, NY, 10032, USA.
| | - Bruce Riley
- Department of Biology, Texas A&M University, College Station, TX, 7783-3258, USA.
| | - Samantha J Butler
- Department of Neurobiology, University of California, Los Angeles, CA, 90095-7239, USA.
| | - Victor Luria
- Departments of Genetics and Development, and Dermatology, Columbia University Medical Center, New York, NY, 10032, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
13
|
Abstract
Gastrulation is a critical early morphogenetic process of animal development, during which the three germ layers; mesoderm, endoderm and ectoderm, are rearranged by internalization movements. Concurrent epiboly movements spread and thin the germ layers while convergence and extension movements shape them into an anteroposteriorly elongated body with head, trunk, tail and organ rudiments. In zebrafish, gastrulation follows the proliferative and inductive events that establish the embryonic and extraembryonic tissues and the embryonic axis. Specification of these tissues and embryonic axes are controlled by the maternal gene products deposited in the egg. These early maternally controlled processes need to generate sufficient cell numbers and establish the embryonic polarity to ensure normal gastrulation. Subsequently, after activation of the zygotic genome, the zygotic gene products govern mesoderm and endoderm induction and germ layer patterning. Gastrulation is initiated during the maternal-to-zygotic transition, a process that entails both activation of the zygotic genome and downregulation of the maternal transcripts. Genomic studies indicate that gastrulation is largely controlled by the zygotic genome. Nonetheless, genetic studies that investigate the relative contributions of maternal and zygotic gene function by comparing zygotic, maternal and maternal zygotic mutant phenotypes, reveal significant contribution of maternal gene products, transcripts and/or proteins, that persist through gastrulation, to the control of gastrulation movements. Therefore, in zebrafish, the maternally expressed gene products not only set the stage for, but they also actively participate in gastrulation morphogenesis.
Collapse
Affiliation(s)
- Lilianna Solnica-Krezel
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
14
|
Kansara K, Kumar A, Karakoti AS. Combination of humic acid and clay reduce the ecotoxic effect of TiO 2 NPs: A combined physico-chemical and genetic study using zebrafish embryo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134133. [PMID: 31505348 DOI: 10.1016/j.scitotenv.2019.134133] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/06/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
The series of breakthroughs that have occurred within the realm of nanotechnology have been the source of several new products and technological interventions. One of the most salient examples in this regard is the widespread employment of titanium dioxide (TiO2) nanoparticles across a range of consumer goods. Given that waste is generated at every stage of the consumer-product cycle (from production to disposal), many items with TiO2 nanoparticles are likely to end up being discarded into water bodies. In order to understand the interaction of TiO2 NPs with aquatic ecosystem, the ecological fate and toxicity of TiO2 NPs was studied by exposing zebrafish embryos to a combination of abiotic factors (humic acid and clay) to assess its effect on the development of zebrafish embryos. The physiological changes were correlated with genetic marker analysis to holistically understand the effect on embryos development. Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was used to analyze the interaction energy between TiO2 NPs and natural organic matter (NOM) for understanding the aggregation behavior of engineered nanoparticles (ENPs) in media. The study revealed that combination of HA and clay stabilized TiO2 NPs, compared to bare TiO2 and HA or clay alone. TiO2 NPs and TiO2 NPs + Clay significantly altered the expression of genes involved in development of dorsoventral axis and neural network of zebrafish embryos. However, the presence of HA and HA + clay showed protective effect on zebrafish embryo development. The complete system analysis demonstrated the possible ameliorating effects of abiotic factors on the ecotoxicity of ENPs.
Collapse
Affiliation(s)
- Krupa Kansara
- Biological & Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Ashutosh Kumar
- Biological & Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Ajay S Karakoti
- Biological & Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
15
|
Kansara K, Paruthi A, Misra SK, Karakoti AS, Kumar A. Montmorillonite clay and humic acid modulate the behavior of copper oxide nanoparticles in aqueous environment and induces developmental defects in zebrafish embryo. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113313. [PMID: 31600709 DOI: 10.1016/j.envpol.2019.113313] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) is one of the most commonly used metal oxide nanoparticles for commercial and industrial products. An increase in the manufacturing and use of the CuO NPs based products has increased the likelihood of their release into the aquatic environment. This has attracted major attention among researchers to explore their impact in human as well as environmental systems. CuO NPs, once released into the environment interact with the biotic and abiotic constituents of the ecosystem. Hence the objective of the study was to provide a holistic understanding of the effect of abiotic factors on the stability and aggregation of CuO NPs and its correlation with their effect on the development of zebrafish embryo. It has been observed that the bioavailability of CuO NPs decrease in presence of humic acid (HA) and heteroagglomeration of CuO NPs occurs with clay minerals. CuO NPs, CuO NPs + HA and CuO NPs + Clay significantly altered the expression of genes involved in development of dorsoventral axis and neural network of zebrafish embryos. However, the presence of HA with clay showed protective effect on zebrafish embryo development. These findings provide new insights into the interaction of NPs with abiotic factors and combined effects of such complexes on developing zebrafish embryos genetic markers.
Collapse
Affiliation(s)
- Krupa Kansara
- Biological and Life Sciences, School of Arts and Science, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat, India
| | - Archini Paruthi
- Materials Science and Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, India
| | - Superb K Misra
- Materials Science and Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, India
| | - Ajay S Karakoti
- Biological and Life Sciences, School of Arts and Science, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat, India; School of Engineering, The University of Newcastle, Australia.
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts and Science, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat, India.
| |
Collapse
|
16
|
Abstract
Soon after fertilization the zebrafish embryo generates the pool of cells that will give rise to the germline and the three somatic germ layers of the embryo (ectoderm, mesoderm and endoderm). As the basic body plan of the vertebrate embryo emerges, evolutionarily conserved developmental signaling pathways, including Bmp, Nodal, Wnt, and Fgf, direct the nearly totipotent cells of the early embryo to adopt gene expression profiles and patterns of cell behavior specific to their eventual fates. Several decades of molecular genetics research in zebrafish has yielded significant insight into the maternal and zygotic contributions and mechanisms that pattern this vertebrate embryo. This new understanding is the product of advances in genetic manipulations and imaging technologies that have allowed the field to probe the cellular, molecular and biophysical aspects underlying early patterning. The current state of the field indicates that patterning is governed by the integration of key signaling pathways and physical interactions between cells, rather than a patterning system in which distinct pathways are deployed to specify a particular cell fate. This chapter focuses on recent advances in our understanding of the genetic and molecular control of the events that impart cell identity and initiate the patterning of tissues that are prerequisites for or concurrent with movements of gastrulation.
Collapse
Affiliation(s)
- Florence L Marlow
- Icahn School of Medicine Mount Sinai Department of Cell, Developmental and Regenerative Biology, New York, NY, United States.
| |
Collapse
|
17
|
Abe G, Lee SH, Li IJ, Ota KG. An alternative evolutionary pathway for the twin-tail goldfish via szl gene mutation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 330:234-241. [PMID: 29947476 PMCID: PMC6033011 DOI: 10.1002/jez.b.22811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 12/22/2022]
Abstract
The twin‐tail of ornamental goldfish provides unique evolutionary evidence that the highly conserved midline localization of axial skeleton components can be changed by artificial selection. This morphological change is known to be caused by a nonsense mutation in one of the recently duplicated chordin genes, which are key players in dorsal–ventral (DV) patterning. Since all of the multiple twin‐tail ornamental goldfish strains share the same mutation, it is reasonable to presume that this mutation occurred only once in domesticated goldfish. However, zebrafish with mutated szl gene (another DV patterning‐related gene) also exhibit twin‐tail morphology and higher viability than dino/chordin‐mutant zebrafish. This observation raises the question of whether the szl gene mutation could also reproduce the twin‐tail morphology in goldfish. Here we show that goldfish have at least two subfunctionalized szl genes, designated szlA and szlB, and depletion of these genes in single‐fin goldfish was able to reproduce the bifurcated caudal fin found in twin‐tail ornamental goldfish. Interestingly, several phenotypes were observed in szlA‐depleted fish, while low expressivity of the twin‐tail phenotype was observed in szlB‐depleted goldfish. Thus, even though szl gene mutations may produce twin‐tail goldfish, these szl gene mutations might not be favorable for selection in domestic breeding. These results highlight the uniqueness and rarity of mutations that are able to cause large‐scale morphological changes, such as a bifurcated axial skeleton, with high viability and expressivity in natural and domesticated populations.
Collapse
Affiliation(s)
- Gembu Abe
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan.,Laboratory of Organ Morphogenesis, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shu-Hua Lee
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Ing-Jia Li
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Kinya G Ota
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| |
Collapse
|
18
|
Guo DD, Sun YW, Cui WT, Guo HH, Du SK, Chen J, Zou SM. Insertional mutagenesis in ChordinA induced by endogenous ΔTgf2 transposon leads to bifurcation of axial skeletal systems in grass goldfish. Sci Rep 2019; 9:4098. [PMID: 30858477 PMCID: PMC6411756 DOI: 10.1038/s41598-019-40651-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 02/04/2019] [Indexed: 11/19/2022] Open
Abstract
The grass goldfish appeared early in the evolutionary history of goldfish, and shows heritable stability in the development of the caudal fin. The twin-tail phenotype is extremely rare, however, some twin-tail individuals were produced in the process of breeding for ornamental value. From mutations in the twin-tail goldfish genome, we identified two kinds of Tgf2 transposons. One type was completely sequenced Tgf2 and the other type was ΔTgf2, which had 858 bp missing. We speculate that the bifurcation of the axial skeletal system in goldfish may be caused by an endogenous ΔTgf2 insertion mutation in Chordin A, as ΔTgf2 has no transposition activity and blocks the expression of Chordin A. The twin-tail showed doubled caudal fin and accumulation of red blood cells in the tail. In addition, in situ hybridization revealed that ventral embryonic tissue markers (eve1, sizzled, and bmp4) were more widely and strongly expressed in the twin-tail than in the wild-type embryos during the gastrula stage, and bmp4 showed bifurcated expression patterns in the posterior region of the twin-tail embryos. These results provide new insights into the artificial breeding of genetically stable twin-tail grass goldfish families.
Collapse
Affiliation(s)
- Dan-Dan Guo
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China
| | - Yi-Wen Sun
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China
| | - Wen-Tao Cui
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China
| | - Hong-Hong Guo
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China
| | - Shang-Ke Du
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China
| | - Jie Chen
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China
| | - Shu-Ming Zou
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China.
| |
Collapse
|
19
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
20
|
Mucha BE, Hashiguchi M, Zinski J, Shore EM, Mullins MC. Variant BMP receptor mutations causing fibrodysplasia ossificans progressiva (FOP) in humans show BMP ligand-independent receptor activation in zebrafish. Bone 2018; 109:225-231. [PMID: 29307777 PMCID: PMC5866198 DOI: 10.1016/j.bone.2018.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/23/2017] [Accepted: 01/03/2018] [Indexed: 11/28/2022]
Abstract
The large majority of cases of the autosomal dominant human disease fibrodysplasia ossificans progressiva (FOP) are caused by gain-of-function Arg206His mutations in the BMP type I receptor ACVR1 (ALK2). The Arg206His mutation is located in the GS domain of the type I receptor. This region is normally phosphorylated by the BMP type II receptor, which activates the type I receptor to phosphorylate its substrate, the signal transducer Smad1/5/8. A small subset of patients with FOP carry variant mutations in ACVR1 altering Gly328 to Trp, Glu or Arg. Since these mutations lie outside the GS domain, the mechanism through which ACVR1 Gly328 mutations cause disease remains unclear. We used a zebrafish embryonic development assay to test the signaling of human ACVR1 Gly328 mutant receptors comparing them to the Arg206His mutant. In this assay increased or decreased BMP pathway activation alters dorsal-ventral axial patterning, providing a sensitive assay for altered BMP signaling levels. We expressed the human ACVR1 Gly328 mutant receptors in zebrafish embryos to investigate their signaling activities. We found that all ACVR1 Gly328 human mutations ventralized wild-type embryos and could partially rescue Bmp7-deficient embryos, indicating that these mutant receptors can activate BMP signaling in a BMP ligand-independent manner. The degree of ventralization or rescue was similar among all three Gly328 mutants. Smad1/5 phosphorylation, a readout of BMP receptor signaling, was mildly increased by ACVR1 Gly328 mutations. Gene expression analyses demonstrate expanded ventral and reciprocal loss of dorsal cell fate markers. This study demonstrates that Gly328 mutants increase receptor activation and BMP ligand-independent signaling through Smad phosphorylation.
Collapse
Affiliation(s)
- Bettina E Mucha
- Division of Human Genetics and Molecular Biology, and Division of Biochemical Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Universite de Montreal, Montreal, QC, Canada
| | - Megumi Hashiguchi
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph Zinski
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Eileen M Shore
- Department of Orthopedic Surgery, and the Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, and the Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mary C Mullins
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Vincent KM, Postovit LM. Matricellular proteins in cancer: a focus on secreted Frizzled-related proteins. J Cell Commun Signal 2018; 12:103-112. [PMID: 28589318 PMCID: PMC5842174 DOI: 10.1007/s12079-017-0398-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/02/2017] [Indexed: 12/31/2022] Open
Abstract
Tumours are complex entities, wherein cancer cells interact with myriad soluble, insoluble and cell associated factors. These microenvironmental mediators regulate tumour growth, progression and metastasis, and are produced by cancer cells and by stromal components such as fibroblast, adipocytes and immune cells. Through their ability to bind to extracellular matrix proteins, cell surface receptors and growth factors, matricellular proteins enable a dynamic reciprocity between cancer cells and their microenvironment. Hence, matricellular proteins play a critical role in tumour progression by regulating where and when cancer cells are exposed to key growth factors and regulatory proteins. Recent studies suggest that, in addition to altering Wingless (Wnt) signalling, certain members of the Secreted Frizzled Related Protein (sFRP) family are matricellular in nature. In this review, we outline the importance of matricellular proteins in cancer, and discuss how sFRPs may function to both inhibit and promote cancer progression in a context-dependent manner. By considering the matricellular functionality of sFRPs, we may better understand their apparently paradoxical roles in cancers.
Collapse
Affiliation(s)
- Krista Marie Vincent
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 114th St and 87th Ave, Edmonton, AB T6G 2E1 Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7 Canada
| | - Lynne-Marie Postovit
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 114th St and 87th Ave, Edmonton, AB T6G 2E1 Canada
| |
Collapse
|
22
|
Dasgupta S, Vliet SM, Kupsco A, Leet JK, Altomare D, Volz DC. Tris(1,3-dichloro-2-propyl) phosphate disrupts dorsoventral patterning in zebrafish embryos. PeerJ 2017; 5:e4156. [PMID: 29259843 PMCID: PMC5733366 DOI: 10.7717/peerj.4156] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/21/2017] [Indexed: 12/02/2022] Open
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is a high-production volume organophosphate flame retardant widely used within the United States. Within zebrafish, initiation of TDCIPP exposure at 0.75 h post-fertilization (hpf) results in genome-wide alterations in methylation during cleavage (2 hpf) as well as epiboly delay or arrest (at higher concentrations) during late-blastula and early-gastrula (4–6 hpf). To determine whether these TDCIPP-induced effects were associated with impacts on the transcriptome, embryos were exposed to vehicle (0.1% DMSO) or 2 µM TDCIPP from 0.75 hpf to 6 hpf, and total RNA was extracted from triplicate embryo pools per treatment and hybridized onto duplicate Affymetrix Zebrafish Gene 1.0 ST Arrays per RNA sample. Based on transcriptome-wide profiling, TDCIPP resulted in a significant impact on biological processes involved in dorsoventral patterning and bone morphogenetic protein (BMP) signaling. Consistent with these responses, TDCIPP exposure also resulted in strongly dorsalized embryos by 24 hpf—a phenotype that mimicked the effects of dorsomorphin, a potent and selective BMP inhibitor. Moreover, the majority of dorsalized embryos were preceded by epiboly arrest at 6 hpf. Our microarray data also revealed that the expression of sizzled (szl)—a gene encoding a secreted Frizzled-related protein that limits BMP signaling—was significantly decreased by nearly 4-fold at 6 hpf. Therefore, we used a splice-blocking morpholino to test the hypothesis that knockdown of szl phenocopies TDCIPP-induced delays in epiboly progression. Interestingly, contrary to our hypothesis, injection of szl MOs did not affect epiboly progression but, similar to chordin (chd) morphants, resulted in mildly ventralized embryos by 24 hpf. Overall, our findings suggest that TDCIPP-induced epiboly delay may not be driven by decreased szl expression, and that TDCIPP-induced dorsalization may—similar to dorsomorphin—be due to interference with BMP signaling during early zebrafish development.
Collapse
Affiliation(s)
- Subham Dasgupta
- Department of Environmental Sciences, University of California, Riverside, CA, United States of America
| | - Sara M Vliet
- Department of Environmental Sciences, University of California, Riverside, CA, United States of America.,Environmental Toxicology Graduate Program, University of California, Riverside, CA, United States of America
| | - Allison Kupsco
- Department of Environmental Sciences, University of California, Riverside, CA, United States of America
| | - Jessica K Leet
- University of South Carolina, Columbia, SC, United States of America
| | - Diego Altomare
- University of South Carolina, Columbia, SC, United States of America
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA, United States of America
| |
Collapse
|
23
|
Genthe JR, Min J, Farmer DM, Shelat AA, Grenet JA, Lin W, Finkelstein D, Vrijens K, Chen T, Guy RK, Clements WK, Roussel MF. Ventromorphins: A New Class of Small Molecule Activators of the Canonical BMP Signaling Pathway. ACS Chem Biol 2017; 12:2436-2447. [PMID: 28787124 DOI: 10.1021/acschembio.7b00527] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here, we describe three new small-molecule activators of BMP signaling found by high throughput screening of a library of ∼600 000 small molecules. Using a cell-based luciferase assay in the BMP4-responsive human cervical carcinoma clonal cell line, C33A-2D2, we identified three compounds with similar chemotypes that each ventralize zebrafish embryos and stimulate increased expression of the BMP target genes, bmp2b and szl. Because these compounds ventralize zebrafish embryos, we have termed them "ventromorphins." As expected for a BMP pathway activator, they induce the differentiation of C2C12 myoblasts to osteoblasts. Affymetrix RNA analysis confirmed the differentiation results and showed that ventromorphins treatment elicits a genetic response similar to BMP4 treatment. Unlike isoliquiritigenin (SJ000286237), a flavone that maximally activates the pathway after 24 h of treatment, all three ventromorphins induced SMAD1/5/8 phosphorylation within 30 min of treatment and achieved peak activity within 1 h, indicating that their responses are consistent with directly activating BMP signaling.
Collapse
Affiliation(s)
- Jamie R. Genthe
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Jaeki Min
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Dana M. Farmer
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Anang A. Shelat
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Jose A. Grenet
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Wenwei Lin
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - David Finkelstein
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Karen Vrijens
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Taosheng Chen
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - R. Kiplin Guy
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Wilson K. Clements
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Martine F. Roussel
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
24
|
De Robertis EM, Moriyama Y, Colozza G. Generation of animal form by the Chordin/Tolloid/BMP gradient: 100 years after D'Arcy Thompson. Dev Growth Differ 2017; 59:580-592. [PMID: 28815565 DOI: 10.1111/dgd.12388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 12/30/2022]
Abstract
The classic book "On Growth and Form" by naturalist D'Arcy Thompson was published 100 years ago. To celebrate this landmark, we present experiments in the Xenopus embryo that provide a framework for understanding how simple, quantitative transformations of a morphogen gradient might have affected evolution and morphological diversity of organisms. D'Arcy Thompson proposed that different morphologies might be generated by modifying physical parameters in an underlying system of Cartesian coordinates that pre-existed in Nature and arose during evolutionary history. Chordin is a BMP antagonist secreted by the Spemann organizer located on the dorsal side of the gastrula. Chordin generates a morphogen gradient as first proposed by mathematician Alan Turing. The rate-limiting step of this dorsal-ventral (D-V) morphogen is the degradation of Chordin by the Tolloid metalloproteinase in the ventral side. Chordin is expressed at gastrula on the dorsal side where BMP signaling is low, while at the opposite side peak levels of BMP signaling are reached. In fishes, amphibians, reptiles and birds, high BMP signaling in the ventral region induces transcription of a secreted inhibitor of Tolloid called Sizzled. By depleting Sizzled exclusively in the ventral half of the embryo we were able to expand the ventro-posterior region in an otherwise normal embryo. Conversely, ventral depletion of Tolloid, which stabilizes Chordin, decreased ventral and tail structures, phenocopying the tolloid zebrafish mutation. We explain how historical constraints recorded in the language of DNA become subject to the universal laws of physics when an ancestral reaction-diffusion morphogen gradient dictates form.
Collapse
Affiliation(s)
- Edward M De Robertis
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095-1662, USA
| | - Yuki Moriyama
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095-1662, USA
| | - Gabriele Colozza
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095-1662, USA
| |
Collapse
|
25
|
Bu Q, Li Z, Zhang J, Xu F, Liu J, Liu H. The crystal structure of full-length Sizzled from Xenopus laevis yields insights into Wnt-antagonistic function of secreted Frizzled-related proteins. J Biol Chem 2017; 292:16055-16069. [PMID: 28808056 DOI: 10.1074/jbc.m117.791756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/13/2017] [Indexed: 01/05/2023] Open
Abstract
The Wnt-signaling pathway is crucial to cell proliferation, differentiation, and migration. The secreted Frizzled-related proteins (sFRPs) represent the largest family of secreted Wnt inhibitors. However, their function in antagonizing Wnt signaling has remained somewhat controversial. Here, we report the crystal structure of Sizzled from Xenopus laevis, the first full-length structure of an sFRP. Tethered by an inter-domain disulfide bond and a linker, the N-terminal cysteine-rich domain (CRD) and the C-terminal netrin-like domain (NTR) of Sizzled are arranged in a tandem fashion, with the NTR domain occluding the groove of CRD for Wnt accessibility. A Dual-Luciferase assay demonstrated that removing the NTR domain and replacing the CRD groove residues His-116 and His-118 with aromatic residues may significantly enhance antagonistic function of Sizzled in inhibiting Wnt3A signaling. Sizzled is a monomer in solution, and Sizzled CRD exhibited different packing in the crystal, suggesting that sFRPs do not have a conserved CRD dimerization mode. Distinct from the canonical NTR domain, the Sizzled NTR adopts a novel α/β folding with two perpendicular helices facing the central mixed β-sheet. The subgroup of human sFRP1/2/5 and Sizzled should have a similar NTR domain that features a highly positively charged region, opposite the NTR-CRD interface, suggesting that the NTR domain in human sFRPs, at least sFRP1/2/5, is unlikely to bind to Wnt but is likely involved in biphasic Wnt signaling modulation. In summary, the Sizzled structure provides the first insights into how the CRD and the NTR domains relate to each other for modulating Wnt-antagonistic function of sFRPs.
Collapse
Affiliation(s)
- Qixin Bu
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Zhiqiang Li
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Junying Zhang
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Fei Xu
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jianmei Liu
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Heli Liu
- From the State Key Laboratory of Natural and Biomimetic Drugs and .,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
26
|
Meyers EA, Kessler JA. TGF-β Family Signaling in Neural and Neuronal Differentiation, Development, and Function. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022244. [PMID: 28130363 DOI: 10.1101/cshperspect.a022244] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Signaling by the transforming growth factor β (TGF-β) family is necessary for proper neural development and function throughout life. Sequential waves of activation, inhibition, and reactivation of TGF-β family members regulate numerous elements of the nervous system from the earliest stages of embryogenesis through adulthood. This review discusses the expression, regulation, and function of TGF-β family members in the central nervous system at various developmental stages, beginning with induction and patterning of the nervous system to their importance in the adult as modulators of inflammatory response and involvement in degenerative diseases.
Collapse
Affiliation(s)
- Emily A Meyers
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - John A Kessler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
27
|
Abe G, Ota KG. Evolutionary developmental transition from median to paired morphology of vertebrate fins: Perspectives from twin-tail goldfish. Dev Biol 2017; 427:251-257. [DOI: 10.1016/j.ydbio.2016.11.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/26/2016] [Accepted: 11/30/2016] [Indexed: 01/18/2023]
|
28
|
Houston DW. Vertebrate Axial Patterning: From Egg to Asymmetry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:209-306. [PMID: 27975274 PMCID: PMC6550305 DOI: 10.1007/978-3-319-46095-6_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of the bilateral embryonic body axis from a symmetrical egg has been a long-standing question in developmental biology. Historical and modern experiments point to an initial symmetry-breaking event leading to localized Wnt and Nodal growth factor signaling and subsequent induction and formation of a self-regulating dorsal "organizer." This organizer forms at the site of notochord cell internalization and expresses primarily Bone Morphogenetic Protein (BMP) growth factor antagonists that establish a spatiotemporal gradient of BMP signaling across the embryo, directing initial cell differentiation and morphogenesis. Although the basics of this model have been known for some time, many of the molecular and cellular details have only recently been elucidated and the extent that these events remain conserved throughout vertebrate evolution remains unclear. This chapter summarizes historical perspectives as well as recent molecular and genetic advances regarding: (1) the mechanisms that regulate symmetry-breaking in the vertebrate egg and early embryo, (2) the pathways that are activated by these events, in particular the Wnt pathway, and the role of these pathways in the formation and function of the organizer, and (3) how these pathways also mediate anteroposterior patterning and axial morphogenesis. Emphasis is placed on comparative aspects of the egg-to-embryo transition across vertebrates and their evolution. The future prospects for work regarding self-organization and gene regulatory networks in the context of early axis formation are also discussed.
Collapse
Affiliation(s)
- Douglas W Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA, 52242, USA.
| |
Collapse
|
29
|
Jermusyk AA, Murphy NP, Reeves GT. Analyzing negative feedback using a synthetic gene network expressed in the Drosophila melanogaster embryo. BMC SYSTEMS BIOLOGY 2016; 10:85. [PMID: 27576572 PMCID: PMC5006508 DOI: 10.1186/s12918-016-0330-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/20/2016] [Indexed: 12/29/2022]
Abstract
Background A complex network of gene interactions controls gene regulation throughout development and the life of the organisms. Insights can be made into these processes by studying the functional interactions (or “motifs”) which make up these networks. Results We sought to understand the functionality of one of these network motifs, negative feedback, in a multi-cellular system. This was accomplished using a synthetic network expressed in the Drosophila melanogaster embryo using the yeast proteins Gal4 (a transcriptional activator) and Gal80 (an inhibitor of Gal4 activity). This network is able to produce an attenuation or shuttling phenotype depending on the Gal80/Gal4 ratio. This shuttling behavior was validated by expressing Gal3, which inhibits Gal80, to produce a localized increase in free Gal4 and therefore signaling. Mathematical modeling was used to demonstrate the capacity for negative feedback to produce these varying outputs. Conclusions The capacity of a network motif to exhibit different phenotypes due to minor changes to the network in multi-cellular systems was shown. This work demonstrates the importance of studying network motifs in multi-cellular systems. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0330-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ashley A Jermusyk
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Nicholas P Murphy
- Department of Chemical Engineering, University of Virginia, 102 Engineers' Way, Charlottesville, USA
| | - Gregory T Reeves
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27606, USA.
| |
Collapse
|
30
|
Abstract
The discovery of the transforming growth factor β (TGF-β) family ligands and the realization that their bioactivities need to be tightly controlled temporally and spatially led to intensive research that has identified a multitude of extracellular modulators of TGF-β family ligands, uncovered their functions in developmental and pathophysiological processes, defined the mechanisms of their activities, and explored potential modulator-based therapeutic applications in treating human diseases. These studies revealed a diverse repertoire of extracellular and membrane-associated molecules that are capable of modulating TGF-β family signals via control of ligand availability, processing, ligand-receptor interaction, and receptor activation. These molecules include not only soluble ligand-binding proteins that were conventionally considered as agonists and antagonists of TGF-β family of growth factors, but also extracellular matrix (ECM) proteins and proteoglycans that can serve as "sink" and control storage and release of both the TGF-β family ligands and their regulators. This extensive network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of TGF-β family signals. This article reviews our knowledge of extracellular modulation of TGF-β growth factors by diverse proteins and their molecular mechanisms to regulate TGF-β family signaling.
Collapse
Affiliation(s)
- Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
31
|
Osteogenesis induced by frizzled-related protein (FRZB) is linked to the netrin-like domain. J Transl Med 2016; 96:570-80. [PMID: 26927515 DOI: 10.1038/labinvest.2016.38] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/05/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022] Open
Abstract
Abnormal Wnt signaling is associated with bone mass disorders. Frizzled-related protein (FRZB, also known as secreted frizzled-related protein-3 (SFRP3)) is a Wnt modulator that contains an amino-terminal cysteine-rich domain (CRD) and a carboxy-terminal Netrin-like (NTN) motif. Frzb(-/-) mice show increased cortical thickness. However, the direct effect of FRZB on osteogenic differentiation and the involvement of the structural domains herein are not fully understood. In this study, we observed that stable overexpression of Frzb in MC3T3-E1 cells increased calcium deposition and osteoblast markers compared with control. Western blot analysis showed that the increased osteogenesis was associated with reduced canonical, but increased non-canonical Wnt signaling. On the contrary, loss of Frzb induced the opposite effects on osteogenesis and Wnt signaling. To translationally validate the positive effects of FRZB on primary human cells, we treated human periosteal and human bone marrow stromal cells with conditioned medium from MC3T3-E1 cells overexpressing Frzb and observed an increase in Alizarin red staining. We further studied the effect of the domains. FrzbNTN overexpression induced similar effects on osteogenesis as full-length Frzb, whereas FrzbCRD overexpressing cells mimicked loss of Frzb experiments. The CRD is considered as the Wnt binding domain, but the NTN domain also has important effects on bone biology. FRZB and other SFRPs or their specific domains may hold surprising potential as therapeutics for bone and joint disorders considering that excess of SFRPs has effects that are not expected under physiological, endogenous expression conditions.
Collapse
|
32
|
Ota KG, Abe G. Goldfish morphology as a model for evolutionary developmental biology. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2016; 5:272-95. [PMID: 26952007 PMCID: PMC6680352 DOI: 10.1002/wdev.224] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 12/06/2015] [Accepted: 12/07/2015] [Indexed: 12/11/2022]
Abstract
Morphological variation of the goldfish is known to have been established by artificial selection for ornamental purposes during the domestication process. Chinese texts that date to the Song dynasty contain descriptions of goldfish breeding for ornamental purposes, indicating that the practice originated over one thousand years ago. Such a well-documented goldfish breeding process, combined with the phylogenetic and embryological proximities of this species with zebrafish, would appear to make the morphologically diverse goldfish strains suitable models for evolutionary developmental (evodevo) studies. However, few modern evodevo studies of goldfish have been conducted. In this review, we provide an overview of the historical background of goldfish breeding, and the differences between this teleost and zebrafish from an evolutionary perspective. We also summarize recent progress in the field of molecular developmental genetics, with a particular focus on the twin-tail goldfish morphology. Furthermore, we discuss unanswered questions relating to the evolution of the genome, developmental robustness, and morphologies in the goldfish lineage, with the goal of blazing a path toward an evodevo study paradigm using this teleost species as a new model species. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Kinya G Ota
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Gembu Abe
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| |
Collapse
|
33
|
|
34
|
Rogler A, Kendziorra E, Giedl J, Stoehr C, Taubert H, Goebell PJ, Wullich B, Stöckle M, Lehmann J, Petsch S, Hartmann A, Stoehr R. Functional analyses and prognostic significance of SFRP1 expression in bladder cancer. J Cancer Res Clin Oncol 2015; 141:1779-90. [PMID: 25732201 DOI: 10.1007/s00432-015-1942-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/16/2015] [Indexed: 12/13/2022]
Abstract
PURPOSE We previously showed that the Wnt-signaling antagonist SFRP1 (secreted frizzled-related protein 1) is a promising marker in bladder cancer. The aim of this study was to validate the prognostic role and analyze the functional significance of SFRP1. METHODS Four bladder cancer cell lines (RT112, RT4, J82 and BFTC905) and one urothelial cell line (UROtsa) were used for functional characterization of SFRP1 expression. Effects on viability, proliferation and wound healing were investigated, and canonical Wnt-pathway activity as well as Wnt-signaling target gene expression was analyzed. Additionally, tissue micro-arrays from two different bladder tumor cohorts were evaluated for SFRP1 expression, and associations with survival and histopathological parameters were analyzed. RESULTS The cell lines RT112, RT4, J82 and UROtsa showed SFRP1 expression. In BFTC905, SFRP1 expression was inhibited by promoter hypermethylation. Wnt-pathway activity was absent in all cell lines and independent from SFRP1 expression. RT112 and BFTC905 were used for further functional characterization. SFRP1 overexpression resulted in decreased viability and migration in BFTC905 cells. Knockdown of SFRP1 expression in RT112 cells resulted only in marginal effects. In bladder tumors, SFRP1 expression was associated with lower tumor grade, but not with progression in patients with papillary bladder cancer. SFRP1 expressing papillary bladder cancer tumors also demonstrated a tendency to longer overall survival. CONCLUSIONS SFRP1 is reducing malignant potential of BFTC905 cells, but not by regulation of canonical Wnt-signaling pathway. Other pathways, like non-canonical Wnt or the MAPK pathway, could be activated via SFRP1-expression loss. In bladder tumors, SFRP1 has the potential to predict outcome for a subset of papillary bladder tumors.
Collapse
Affiliation(s)
- Anja Rogler
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Krankenhausstr. 8-10, 91054, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tuazon FB, Mullins MC. Temporally coordinated signals progressively pattern the anteroposterior and dorsoventral body axes. Semin Cell Dev Biol 2015; 42:118-33. [PMID: 26123688 PMCID: PMC4562868 DOI: 10.1016/j.semcdb.2015.06.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
The vertebrate body plan is established through the precise spatiotemporal coordination of morphogen signaling pathways that pattern the anteroposterior (AP) and dorsoventral (DV) axes. Patterning along the AP axis is directed by posteriorizing signals Wnt, fibroblast growth factor (FGF), Nodal, and retinoic acid (RA), while patterning along the DV axis is directed by bone morphogenetic proteins (BMP) ventralizing signals. This review addresses the current understanding of how Wnt, FGF, RA and BMP pattern distinct AP and DV cell fates during early development and how their signaling mechanisms are coordinated to concomitantly pattern AP and DV tissues.
Collapse
Affiliation(s)
- Francesca B Tuazon
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States.
| |
Collapse
|
36
|
Abe G, Lee SH, Chang M, Liu SC, Tsai HY, Ota KG. The origin of the bifurcated axial skeletal system in the twin-tail goldfish. Nat Commun 2014; 5:3360. [PMID: 24569511 PMCID: PMC3948052 DOI: 10.1038/ncomms4360] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/31/2014] [Indexed: 11/09/2022] Open
Abstract
Twin-tail goldfish possess a bifurcated caudal axial skeleton. The scarcity of this trait in nature suggests that a rare mutation, which drastically altered the mechanisms underlying axial skeleton formation, may have occurred during goldfish domestication. However, little is known about the molecular development of twin-tail goldfish. Here we show that the bifurcated caudal skeleton arises from a mutation in the chordin gene, which affects embryonic dorsal–ventral (DV) patterning. We demonstrate that formation of the bifurcated caudal axial skeleton requires a stop-codon mutation in one of two recently duplicated chordin genes; this mutation may have occurred within approximately 600 years of domestication. We also report that the ventral tissues of the twin-tail strain are enlarged, and form the embryonic bifurcated fin fold. However, unlike previously described chordin-deficient embryos, this is not accompanied by a reduction in anterior–dorsal neural tissues. These results provide insight into large-scale evolution arising from artificial selection. The ornamental twin-tail goldfish has a bifurcated caudal skeleton that arose during domestication, but the developmental mechanisms that generate this tail are unknown. Here, Abe et al. show that a mutation in the chordin gene affects embryonic dorsal–ventral patterning causing the bifurcated tail skeleton.
Collapse
Affiliation(s)
- Gembu Abe
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan 26242, Taiwan
| | - Shu-Hua Lee
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan 26242, Taiwan
| | - Mariann Chang
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan 26242, Taiwan
| | - Shih-Chieh Liu
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan 26242, Taiwan
| | - Hsin-Yuan Tsai
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan 26242, Taiwan
| | - Kinya G Ota
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan 26242, Taiwan
| |
Collapse
|
37
|
Wei CY, Wang HP, Zhu ZY, Sun YH. Transcriptional factors smad1 and smad9 act redundantly to mediate zebrafish ventral specification downstream of smad5. J Biol Chem 2014; 289:6604-6618. [PMID: 24488494 DOI: 10.1074/jbc.m114.549758] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are multifunctional growth factors that play crucial roles during embryonic development and cell fate determination. Nuclear transduction of BMP signals requires the receptor type Smad proteins, Smad1, Smad5, and Smad9. However, how these Smad proteins cooperate in vivo to regulate various developmental processes is largely unknown. In zebrafish, it was widely believed that the maternally expressed smad5 is essential for dorso-ventral (DV) patterning, and the zygotically transcribed smad1 is not required for normal DV axis establishment. In the present study, we have identified zygotically expressed smad9, which cooperates with smad1 downstream of smad5, to mediate zebrafish early DV patterning in a functional redundant manner. Although knockdown of smad1 or smad9 alone does not lead to visible dorsalization, double knockdown strongly dorsalizes zebrafish embryos, which cannot be efficiently rescued by smad5 overexpression, whereas the dorsalization induced by smad5 knockdown can be fully rescued by overexpression of smad1 or smad9. We have further revealed that the transcription initiations of smad1 and smad9 are repressed by each other, that they are direct transcriptional targets of Smad5, and that smad9, like smad1, is required for myelopoiesis. In conclusion, our study uncovers that smad1 and smad9 act redundantly to each other downstream of smad5 to mediate ventral specification and to regulate embryonic myelopoiesis.
Collapse
Affiliation(s)
- Chang-Yong Wei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan 430072, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hou-Peng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan 430072, China
| | - Zuo-Yan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan 430072, China
| | - Yong-Hua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan 430072, China.
| |
Collapse
|
38
|
A gene network that coordinates preplacodal competence and neural crest specification in zebrafish. Dev Biol 2012; 373:107-17. [PMID: 23078916 DOI: 10.1016/j.ydbio.2012.10.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 09/23/2012] [Accepted: 10/09/2012] [Indexed: 11/20/2022]
Abstract
Preplacodal ectoderm (PPE) and neural crest (NC) are specified at the interface of neural and nonneural ectoderm and together contribute to the peripheral nervous system in all vertebrates. Bmp activates early steps for both fates during late blastula stage. Low Bmp activates expression of transcription factors Tfap2a and Tfap2c in the lateral neural plate, thereby specifying neural crest fate. Elevated Bmp establishes preplacodal competence throughout the ventral ectoderm by coinducing Tfap2a, Tfap2c, Foxi1 and Gata3. PPE specification occurs later at the end of gastrulation and requires complete attenuation of Bmp, yet expression of PPE competence factors continues well past gastrulation. Here we show that competence factors positively regulate each other's expression during gastrulation, forming a self-sustaining network that operates independently of Bmp. Misexpression of Tfap2a in embryos blocked for Bmp from late blastula stage can restore development of both PPE and NC. However, Tfap2a alone is not sufficient to activate any other competence factors nor does it rescue individual placodes. On the other hand, misexpression of any two competence factors in Bmp-blocked embryos can activate the entire transcription factor network and support the development of NC, PPE and some individual placodes. We also show that while these factors are partially redundant with respect to PPE specification, they later provide non-redundant functions needed for development of specific placodes. Thus, we have identified a gene regulatory network that coordinates development of NC, PPE and individual placodes in zebrafish.
Collapse
|
39
|
Flowers GP, Topczewska JM, Topczewski J. A zebrafish Notum homolog specifically blocks the Wnt/β-catenin signaling pathway. Development 2012; 139:2416-25. [PMID: 22669824 DOI: 10.1242/dev.063206] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multiple developmental processes require tightly controlled Wnt signaling, and its misregulation leads to congenital abnormalities and diseases. Glypicans are extracellular proteins that modulate the Wnt pathway. In addition to interacting with Wnts, these glycosophosphotidylinositol (GPI)-anchored, heparan-sulfate proteoglycans bind ligands of several other signaling pathways in both vertebrates and invertebrates. In Drosophila, Notum, a secreted α/β-hydrolase, antagonizes the signaling of the prototypical Wnt Wingless (Wg), by releasing glypicans from the cell surface. Studies of mammalian Notum indicate promiscuous target specificity in cell culture, but the role of Notum in vertebrate development has not been studied. Our work shows that zebrafish Notum 1a, an ortholog of mammalian Notum, contributes to a self-regulatory loop that restricts Wnt/β-catenin signaling. Notum 1a does not interact with Glypican 4, an essential component of the Wnt/planar cell polarity (PCP) pathway. Our results suggest a surprising specific role of Notum in the developing vertebrate embryo.
Collapse
Affiliation(s)
- G Parker Flowers
- Northwestern University Feinberg School of Medicine, Department of Pediatrics, Children's Memorial Research Center, Children's Plaza 2300, Box 204, Chicago, IL 60614, USA
| | | | | |
Collapse
|
40
|
Kenny AP, Rankin SA, Allbee AW, Prewitt AR, Zhang Z, Tabangin ME, Shifley ET, Louza MP, Zorn AM. Sizzled-tolloid interactions maintain foregut progenitors by regulating fibronectin-dependent BMP signaling. Dev Cell 2012; 23:292-304. [PMID: 22863744 DOI: 10.1016/j.devcel.2012.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 04/03/2012] [Accepted: 07/03/2012] [Indexed: 12/28/2022]
Abstract
The liver, pancreas, and lungs are induced from endoderm progenitors by a series of dynamic growth factor signals from the mesoderm, but how the temporal-spatial activity of these signals is controlled is poorly understood. We have identified an extracellular regulatory loop required for robust bone morphogenetic protein (BMP) signaling in the Xenopus foregut. We show that BMP signaling is required to maintain foregut progenitors and induce expression of the secreted frizzled related protein Sizzled (Szl) and the extracellular metalloprotease Tolloid-like 1 (Tll1). Szl negatively regulates Tll activity to control deposition of a fibronectin (FN) matrix between the mesoderm and endoderm, which is required to maintain BMP signaling. Foregut-specific Szl depletion results in a loss of the FN matrix and failure to maintain robust pSmad1 levels, causing a loss of foregut gene expression and organ agenesis. These results have implications for BMP signaling in diverse contexts and the differentiation of foregut tissue from stem cells.
Collapse
Affiliation(s)
- Alan P Kenny
- Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bijakowski C, Vadon-Le Goff S, Delolme F, Bourhis JM, Lécorché P, Ruggiero F, Becker-Pauly C, Yiallouros I, Stöcker W, Dive V, Hulmes DJS, Moali C. Sizzled is unique among secreted frizzled-related proteins for its ability to specifically inhibit bone morphogenetic protein-1 (BMP-1)/tolloid-like proteinases. J Biol Chem 2012; 287:33581-93. [PMID: 22825851 DOI: 10.1074/jbc.m112.380816] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BMP-1/tolloid-like proteinases (BTPs) are major enzymes involved in extracellular matrix assembly and activation of bioactive molecules, both growth factors and anti-angiogenic molecules. Although the control of BTP activity by several enhancing molecules is well established, the possibility that regulation also occurs through endogenous inhibitors is still debated. Secreted frizzled-related proteins (sFRPs) have been studied as possible candidates, with highly contradictory results, after the demonstration that sizzled, a sFRP found in Xenopus and zebrafish, was a potent inhibitor of Xenopus and zebrafish tolloid-like proteases. In this study, we demonstrate that mammalian sFRP-1, -2, and -4 do not modify human BMP-1 activity on several of its known substrates including procollagen I, procollagen III, pN-collagen V, and prolysyl oxidase. In contrast, Xenopus sizzled appears as a tight binding inhibitor of human BMP-1, with a K(i) of 1.5 ± 0.5 nM, and is shown to strongly inhibit other human tolloid isoforms mTLD and mTLL-1. Because sizzled is the most potent inhibitor of human tolloid-like proteinases known to date, we have studied its mechanism of action in detail and shown that the frizzled domain of sizzled is both necessary and sufficient for inhibitory activity and that it acts directly on the catalytic domain of BMP-1. Residues in sizzled required for inhibition include Asp-92, which is shared by sFRP-1 and -2, and also Phe-94, Ser-43, and Glu-44, which are specific to sizzled, thereby providing a rational basis for the absence of inhibitory activity of human sFRPs.
Collapse
Affiliation(s)
- Cécile Bijakowski
- Institut de Biologie et Chimie des Protéines, CNRS/Université de Lyon FRE3310/FR3302, 69367 Lyon cedex 7, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Shi J, Zhang H, Dowell RD, Klymkowsky MW. sizzled function and secreted factor network dynamics. Biol Open 2012; 1:286-94. [PMID: 23213419 PMCID: PMC3507283 DOI: 10.1242/bio.2012019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies on the role of the E-box binding transcription factor Snail2 (Slug) in the induction of neural crest by mesoderm (Shi et al., 2011) revealed an unexpected increase in the level of sizzled RNA in the dorsolateral mesodermal zone (DMLZ) of morphant Xenopus embryos. sizzled encodes a secreted protein with both Wnt and BMP inhibitor activities. Morpholino-mediated down-regulation of sizzled expression in one cell of two cell embryos or the C2/C3 blastomeres of 32-cell embryos, which give rise to the DLMZ, revealed decreased expression of the mesodermal marker brachyury and subsequent defects in neural crest induction, pronephros formation, and muscle patterning. Loss of sizzled expression led to decreases in RNAs encoding the secreted Wnt inhibitor SFRP2 and the secreted BMP inhibitor Noggin; the sizzled morphant phenotype could be rescued by co-injection of RNAs encoding Noggin and either SFRP2 or Dickkopf (a mechanistically distinct Wnt inhibitor). Together, these observations reveal that sizzled, in addition to its established role in dorsal-ventral patterning, is also part of a dynamic BMP and Wnt signaling network involved in both mesodermal patterning and neural crest induction.
Collapse
Affiliation(s)
- Jianli Shi
- Molecular, Cellular and Developmental Biology, University of Colorado , Boulder, CO 80309-0347 , USA
| | | | | | | |
Collapse
|
43
|
Abstract
Vertebrate development begins with precise molecular, cellular, and morphogenetic controls to establish the basic body plan of the embryo. In zebrafish, these tightly regulated processes begin during oogenesis and proceed through gastrulation to establish and pattern the axes of the embryo. During oogenesis a maternal factor is localized to the vegetal pole of the oocyte that is a determinant of dorsal tissues. Following fertilization this vegetally localized dorsal determinant is asymmetrically translocated in the egg and initiates formation of the dorsoventral axis. Dorsoventral axis formation and patterning is then mediated by maternal and zygotic factors acting through Wnt, BMP (bone morphogenetic protein), Nodal, and FGF (fibroblast growth factor) signaling pathways, each of which is required to establish and/or pattern the dorsoventral axis. This review addresses recent advances in our understanding of the molecular factors and mechanisms that establish and pattern the dorsoventral axis of the zebrafish embryo, including establishment of the animal-vegetal axis as it relates to formation of the dorsoventral axis.
Collapse
Affiliation(s)
- Yvette G Langdon
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
44
|
Li D, Sun H, Deng W, Tao D, Liu Y, Ma Y. Zili Antagonizes Bmp Signaling to Regulate Dorsal-Ventral Patterning during Zebrafish Early Embryogenesis. Zoolog Sci 2011; 28:397-402. [DOI: 10.2108/zsj.28.397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Dorsal-ventral patterning: Crescent is a dorsally secreted Frizzled-related protein that competitively inhibits Tolloid proteases. Dev Biol 2011; 352:317-28. [PMID: 21295563 DOI: 10.1016/j.ydbio.2011.01.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/25/2011] [Accepted: 01/26/2011] [Indexed: 11/20/2022]
Abstract
In Xenopus, dorsal-ventral (D-V) patterning can self-regulate after embryo bisection. This is mediated by an extracellular network of proteins secreted by the dorsal and ventral centers of the gastrula. Different proteins of similar activity can be secreted at these two poles, but under opposite transcriptional control. Here we show that Crescent, a dorsal protein, can compensate for the loss of Sizzled, a ventral protein. Crescent is a secreted Frizzled-Related Protein (sFRP) known to regulate Wnt8 and Wnt11 activity. We now find that Crescent also regulates the BMP pathway. Crescent expression was increased by the BMP antagonist Chordin and repressed by BMP4, while the opposite was true for Sizzled. Crescent knock-down increased the expression of BMP target genes, and synergized with Sizzled morpholinos. Thus, Crescent loss-of-function is compensated by increased expression of its ventral counterpart Sizzled. Crescent overexpression dorsalized whole embryos but not ventral half-embryos, indicating that Crescent requires a dorsal component to exert its anti-BMP activity. Crescent protein lost its dorsalizing activity in Chordin-depleted embryos. When co-injected, Crescent and Chordin proteins greatly synergized in the dorsalization of Xenopus embryos. The molecular mechanism of these phenotypes is explained by the ability of Crescent to inhibit Tolloid metalloproteinases, which normally degrade Chordin. Enzyme kinetic studies showed that Crescent was a competitive inhibitor of Tolloid activity, which bound to Tolloid/BMP1 with a K(D) of 11 nM. In sum, Crescent is a new component of the D-V pathway, which functions as the dorsal counterpart of Sizzled, through the regulation of chordinases of the Tolloid family.
Collapse
|
46
|
Yao S, Qian M, Deng S, Xie L, Yang H, Xiao C, Zhang T, Xu H, Zhao X, Wei YQ, Mo X. Kzp controls canonical Wnt8 signaling to modulate dorsoventral patterning during zebrafish gastrulation. J Biol Chem 2010; 285:42086-96. [PMID: 20978132 DOI: 10.1074/jbc.m110.161554] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During vertebrate embryonic development, the body axis formation requires the action of Wnt signals and their antagonists. Zygotic canonical wnt8 expression appears exclusively at the ventrolateral margin and mediates Wnt/β-catenin activities to promote posterior and ventral cell fate. However, the mechanisms involved in the initiation of zygotic wnt8 signals are poorly understood. Here, we identify a novel, maternally derived transcription factor, Kzp (Kaiso zinc finger-containing protein), as an important determinant for the initiation of zygotic Wnt signals in zebrafish. Kzp is a DNA-binding transcription factor that recognizes specific consensus DNA sequences, 5'-(t/a/g)t(a/t/g)nctgcca-3', through zinc fingers and controls the initiation of zygotic wnt8 expression by directly binding to the wnt8 promoter during zebrafish embryonic development. Depletion of Kzp strongly dorsalized embryos, which was characterized by the expansion of dorsal gene expression. Overexpression of Kzp caused posteriorization. These phenotypes were highly similar to ones induced by wnt8 depletion or overexpression and were rescued by alteration of wnt8 activity. Thus, our results provide the first insight into the mechanism involved in the initiation of zygotic canonical Wnt signals by a maternally derived transcription factor.
Collapse
Affiliation(s)
- Shaohua Yao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kwon HJ, Bhat N, Sweet EM, Cornell RA, Riley BB. Identification of early requirements for preplacodal ectoderm and sensory organ development. PLoS Genet 2010; 6:e1001133. [PMID: 20885782 PMCID: PMC2944784 DOI: 10.1371/journal.pgen.1001133] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 08/22/2010] [Indexed: 11/25/2022] Open
Abstract
Preplacodal ectoderm arises near the end of gastrulation as a narrow band of cells surrounding the anterior neural plate. This domain later resolves into discrete cranial placodes that, together with neural crest, produce paired sensory structures of the head. Unlike the better-characterized neural crest, little is known about early regulation of preplacodal development. Classical models of ectodermal patterning posit that preplacodal identity is specified by readout of a discrete level of Bmp signaling along a DV gradient. More recent studies indicate that Bmp-antagonists are critical for promoting preplacodal development. However, it is unclear whether Bmp-antagonists establish the proper level of Bmp signaling within a morphogen gradient or, alternatively, block Bmp altogether. To begin addressing these issues, we treated zebrafish embryos with a pharmacological inhibitor of Bmp, sometimes combined with heat shock-induction of Chordin and dominant-negative Bmp receptor, to fully block Bmp signaling at various developmental stages. We find that preplacodal development occurs in two phases with opposing Bmp requirements. Initially, Bmp is required before gastrulation to co-induce four transcription factors, Tfap2a, Tfap2c, Foxi1, and Gata3, which establish preplacodal competence throughout the nonneural ectoderm. Subsequently, Bmp must be fully blocked in late gastrulation by dorsally expressed Bmp-antagonists, together with dorsally expressed Fgf and Pdgf, to specify preplacodal identity within competent cells abutting the neural plate. Localized ventral misexpression of Fgf8 and Chordin can activate ectopic preplacodal development anywhere within the zone of competence, whereas dorsal misexpression of one or more competence factors can activate ectopic preplacodal development in the neural plate. Conversely, morpholino-knockdown of competence factors specifically ablates preplacodal development. Our work supports a relatively simple two-step model that traces regulation of preplacodal development to late blastula stage, resolves two distinct phases of Bmp dependence, and identifies the main factors required for preplacodal competence and specification. Cranial placodes, which produce sensory structures in the head, arise from a contiguous band of preplacodal ectoderm surrounding the anterior neural plate during gastrulation. Little is known about early regulation of preplacodal ectoderm, but modulation of signaling through Bone Morphogenetic Protein (Bmp) is clearly involved. Recent studies show that dorsally expressed Bmp-antagonists help establish preplacodal ectoderm, but it is not clear whether antagonists titrate Bmp to a discrete low level that actively induces preplacodal fate or, alternatively, whether Bmp must be fully blocked to permit preplacodal development. We show that in zebrafish preplacodal development occurs in distinct phases with differing Bmp requirements. Initially, Bmp is required before gastrulation to render all ventral ectoderm competent to form preplacodal tissue. We further show that four transcription factors, Foxi1, Gata3, Tfap2a, and Tfap2c, specifically mediate preplacodal competence. Once induced, these factors no longer require Bmp. Thereafter, Bmp must be fully blocked by dorsally expressed Bmp-antagonists to permit preplacodal development. In addition, dorsally expressed Fgf and/or Pdgf are also required, activating preplacodal development in competent cells abutting the neural plate. Thus, we have resolved the role of Bmp and traced the regulation of preplacodal development to pre-gastrula stage.
Collapse
Affiliation(s)
- Hye-Joo Kwon
- Biology Department, Texas A&M University, College Station, Texas, United States of America
| | - Neha Bhat
- Biology Department, Texas A&M University, College Station, Texas, United States of America
| | - Elly M. Sweet
- Biology Department, Texas A&M University, College Station, Texas, United States of America
| | - Robert A. Cornell
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Bruce B. Riley
- Biology Department, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
48
|
Baker KD, Ramel MC, Lekven AC. A direct role for Wnt8 in ventrolateral mesoderm patterning. Dev Dyn 2010; 239:2828-36. [DOI: 10.1002/dvdy.22419] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
49
|
Alev C, Wu Y, Kasukawa T, Jakt LM, Ueda HR, Sheng G. Transcriptomic landscape of the primitive streak. Development 2010; 137:2863-74. [PMID: 20667916 DOI: 10.1242/dev.053462] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In birds and mammals, all mesoderm cells are generated from the primitive streak. Nascent mesoderm cells contain unique dorsoventral (D/V) identities according to their relative ingression position along the streak. Molecular mechanisms controlling this initial phase of mesoderm diversification are not well understood. Using the chick model, we generated high-quality transcriptomic datasets of different streak regions and analyzed their molecular heterogeneity. Fifteen percent of expressed genes exhibit differential expression levels, as represented by two major groups (dorsal to ventral and ventral to dorsal). A complete set of transcription factors and many novel genes with strong and region-specific expression were uncovered. Core components of BMP, Wnt and FGF pathways showed little regional difference, whereas their positive and negative regulators exhibited both dorsal-to-ventral and ventral-to-dorsal gradients, suggesting that robust D/V positional information is generated by fine-tuned regulation of key signaling pathways at multiple levels. Overall, our study provides a comprehensive molecular resource for understanding mesoderm diversification in vivo and targeted mesoderm lineage differentiation in vitro.
Collapse
Affiliation(s)
- Cantas Alev
- Laboratory for Early Embryogenesis, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Lee CH, Hung YJ, Lin CY, Hung PH, Hung HW, Shieh YS. Loss of SFRP1 expression is associated with aberrant beta-catenin distribution and tumor progression in mucoepidermoid carcinoma of salivary glands. Ann Surg Oncol 2010; 17:2237-46. [PMID: 20162454 DOI: 10.1245/s10434-010-0961-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cytoplasmic and nuclear accumulation of beta-catenin in mucoepidermoid carcinoma (MEC) is frequently noted, but the mechanism is unknown. METHODS The methylation status of adenomatous polyposis coli (APC) and secreted frizzled-related proteins (SFRPs) was examined by methylation-specific polymerase chain reaction (MSP) assay. The association of SFRP1, beta-catenin, and cyclin D1 expression in MEC was evaluated by immunohistochemical staining. RESULTS A high percentage of methylation in APC and the SFRP genes was found in MEC compared with adjacent normal tissues, in which SFRP1 (58.6%) was the most frequent methylated gene. Moreover, abundant expression of SFRP1 was noted in normal tissues, whereas reduced SFRP1 expression was detected in 71.7% (33/46) of MECs. There was significant association between methylation and reduced expression of SFRP1. Cytoplasmic/nuclear (C/N) beta-catenin and high cyclin D1 expression were found in 13/55 (23.6%) and 36/55 (65.5%) of cases, respectively. There was significant correlation between C/N beta-catenin expression and reduced SFRP1 expression (P = 0.009). In addition, SFRP1 and beta-catenin expression correlated with tumor malignancy index such as tumor grade and stage. Overall patient survival was significantly worse in patients with reduced SFRP1 and C/N beta-catenin expression (P = 0.009 and P = 0.002, respectively). CONCLUSIONS Methylation of the SFRP1 gene was the major cause of reduced SFRP1 expression. Reduced SFRP1 led to C/N accumulation of beta-catenin and was associated with tumor malignancy. Therefore, examination of SFRP1 expression and beta-catenin location could be useful predictors of tumor progression and prognosis in patients with MEC.
Collapse
Affiliation(s)
- Chien-Hsing Lee
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|