1
|
Huber PB, LaBonne C. Small molecule-mediated reprogramming of Xenopus blastula stem cells to a neural crest state. Dev Biol 2024; 505:34-41. [PMID: 37890713 PMCID: PMC11541498 DOI: 10.1016/j.ydbio.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Neural crest cells are a stem cell population unique to vertebrates that give rise to a diverse array of derivatives, including much of the peripheral nervous system, pigment cells, cartilage, mesenchyme, and bone. Acquisition of these cells drove the evolution of vertebrates and defects in their development underlies a broad set of neurocristopathies. Moreover, studies of neural crest can inform differentiation protocols for pluripotent stem cells and regenerative medicine applications. Xenopus embryos are an important system for studies of the neural crest and have provided numerous insights into the signals and transcription factors that control the formation and later lineage diversification of these stem cells. Pluripotent animal pole explants are a particularly powerful tool in this system as they can be cultured in simple salt solution and instructed to give rise to any cell type including the neural crest. Here we report a protocol for small molecule-mediated induction of the neural crest state from blastula stem cells and validate it using transcriptome analysis and grafting experiments. This is an powerful new tool for generating this important cell type that will facilitate future studies of neural crest development and mutations and variants linked to neurocristopathies.
Collapse
Affiliation(s)
- Paul B Huber
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
| | - Carole LaBonne
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
2
|
Azbazdar Y, Pera EM, De Robertis EM. Head organizer: Cerberus and IGF cooperate in brain induction in Xenopus embryos. Cells Dev 2023:203897. [PMID: 38109998 DOI: 10.1016/j.cdev.2023.203897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
Neural induction by cell-cell signaling was discovered a century ago by the organizer transplantations of Spemann and Mangold in amphibians. Spemann later found that early dorsal blastopore lips induced heads and late organizers trunk-tail structures. Identifying region-specific organizer signals has been a driving force in the progress of animal biology. Head induction in the absence of trunk is designated archencephalic differentiation. Two specific head inducers, Cerberus and Insulin-like growth factors (IGFs), that induce archencephalic brain but not trunk-tail structures have been described previously. However, whether these two signals interact with each other had not been studied to date and was the purpose of the present investigation. It was found that Cerberus, a multivalent growth factor antagonist that inhibits Nodal, BMP and Wnt signals, strongly cooperated with IGF2, a growth factor that provides a positive signal through tyrosine kinase IGF receptors that activate MAPK and other pathways. The ectopic archencephalic structures induced by the combination of Cerberus and IGF2 are of higher frequency and larger than either one alone. They contain brain, a cyclopic eye and multiple olfactory placodes, without trace of trunk structures such as notochord or somites. A dominant-negative secreted IGF receptor 1 blocked Cerberus activity, indicating that endogenous IGF signals are required for ectopic brain formation. In a sensitized embryonic system, in which embryos were depleted of β-catenin, IGF2 did not by itself induce neural tissue while in combination with Cerberus it greatly enhanced formation of circular brain structures expressing the anterior markers Otx2 and Rx2a, but not spinal cord or notochord markers. The main conclusion of this work is that IGF provides a positive signal initially uniformly expressed throughout the embryo that potentiates the effect of an organizer-specific negative signal mediated by Cerberus. The results are discussed in the context of the history of neural induction.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095-1662, USA
| | - Edgar M Pera
- Vertebrate Developmental Biology Laboratory, Department of Laboratory Medicine, Lund Stem Cell Center, University of Lund, 22184 Lund, Sweden
| | - Edward M De Robertis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095-1662, USA.
| |
Collapse
|
3
|
Hongo I, Okamoto H. FGF/MAPK/Ets signaling in Xenopus ectoderm contributes to neural induction and patterning in an autonomous and paracrine manner, respectively. Cells Dev 2022; 170:203769. [DOI: 10.1016/j.cdev.2022.203769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 01/16/2022] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
|
4
|
Abstract
This review reports recent findings on the specification and patterning of neurons that establish the larval nervous system of the sea urchin embryo. Neurons originate in three regions of the embryo. Perturbation analyses enabled construction of gene regulatory networks controlling the several neural cell types. Many of the mechanisms described reflect shared features of all metazoans and others are conserved among deuterostomes. This nervous system with a very small number of neurons supports the feeding and swimming behaviors of the larva until metamorphosis when an adult nervous system replaces that system.
Collapse
Affiliation(s)
- David R McClay
- Department of Biology, Duke University, Durham, NC, United States.
| |
Collapse
|
5
|
Min KD, Asakura M, Shirai M, Yamazaki S, Ito S, Fu HY, Asanuma H, Asano Y, Minamino T, Takashima S, Kitakaze M. ASB2 is a novel E3 ligase of SMAD9 required for cardiogenesis. Sci Rep 2021; 11:23056. [PMID: 34845242 PMCID: PMC8630118 DOI: 10.1038/s41598-021-02390-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022] Open
Abstract
Cardiogenesis requires the orchestrated spatiotemporal tuning of BMP signalling upon the balance between induction and counter-acting suppression of the differentiation of the cardiac tissue. SMADs are key intracellular transducers and the selective degradation of SMADs by the ubiquitin-proteasome system is pivotal in the spatiotemporal tuning of BMP signalling. However, among three SMADs for BMP signalling, SMAD1/5/9, only the specific E3 ligase of SMAD9 remains poorly investigated. Here, we report for the first time that SMAD9, but not the other SMADs, is ubiquitylated by the E3 ligase ASB2 and targeted for proteasomal degradation. ASB2, as well as Smad9, is conserved among vertebrates. ASB2 expression was specific to the cardiac region from the very early stage of cardiac differentiation in embryogenesis of mouse. Knockdown of Asb2 in zebrafish resulted in a thinned ventricular wall and dilated ventricle, which were rescued by simultaneous knockdown of Smad9. Abundant Smad9 protein leads to dysregulated cardiac differentiation through a mechanism involving Tbx2, and the BMP signal conducted by Smad9 was downregulated under quantitative suppression of Smad9 by Asb2. Our findings demonstrate that ASB2 is the E3 ligase of SMAD9 and plays a pivotal role in cardiogenesis through regulating BMP signalling.
Collapse
Affiliation(s)
- Kyung-Duk Min
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibe- Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Masanori Asakura
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibe- Shimmachi, Suita, Osaka, 564-8565, Japan
- Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Manabu Shirai
- Department of Bioscience, National Cerebral and Cardiovascular Center, Osaka, Japan
- Omics Research Center, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Satoru Yamazaki
- Department of Cell Biology, National Cerebral and Cardiovascular Center, Osaka, Japan
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Shin Ito
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibe- Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Hai Ying Fu
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibe- Shimmachi, Suita, Osaka, 564-8565, Japan
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hiroshi Asanuma
- Department of Internal Medicine, Meiji University of Integrative Medicine, Kyoto, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tetsuo Minamino
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masafumi Kitakaze
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibe- Shimmachi, Suita, Osaka, 564-8565, Japan.
- Hanwa Daini Senboku Hospital, Sakai, Osaka, Japan.
| |
Collapse
|
6
|
Kumar V, Park S, Lee U, Kim J. The Organizer and Its Signaling in Embryonic Development. J Dev Biol 2021; 9:jdb9040047. [PMID: 34842722 PMCID: PMC8628936 DOI: 10.3390/jdb9040047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022] Open
Abstract
Germ layer specification and axis formation are crucial events in embryonic development. The Spemann organizer regulates the early developmental processes by multiple regulatory mechanisms. This review focuses on the responsive signaling in organizer formation and how the organizer orchestrates the germ layer specification in vertebrates. Accumulated evidence indicates that the organizer influences embryonic development by dual signaling. Two parallel processes, the migration of the organizer’s cells, followed by the transcriptional activation/deactivation of target genes, and the diffusion of secreting molecules, collectively direct the early development. Finally, we take an in-depth look at active signaling that originates from the organizer and involves germ layer specification and patterning.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea;
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Korea
- Correspondence: (U.L.); (J.K.); Tel.: +82-33-248-2544 (J.K.); Fax: +82-33-244-8425 (J.K.)
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea;
- Correspondence: (U.L.); (J.K.); Tel.: +82-33-248-2544 (J.K.); Fax: +82-33-244-8425 (J.K.)
| |
Collapse
|
7
|
Gradari S, Herrera A, Tezanos P, Fontán-Lozano Á, Pons S, Trejo JL. The Role of Smad2 in Adult Neuroplasticity as Seen through Hippocampal-Dependent Spatial Learning/Memory and Neurogenesis. J Neurosci 2021; 41:6836-6849. [PMID: 34210778 PMCID: PMC8360684 DOI: 10.1523/jneurosci.2619-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/21/2022] Open
Abstract
Adult neural plasticity is an important and intriguing phenomenon in the brain, and adult hippocampal neurogenesis is directly involved in modulating neural plasticity by mechanisms that are only partially understood. We have performed gain-of-function and loss-of-function experiments to study Smad2, a transcription factor selected from genes that are demethylated after exercise through the analysis of an array of physical activity-induced factors, and their corresponding gene expression, and an efficient inducer of plasticity. In these studies, changes in cell number and morphology were analyzed in the hippocampal dentate gyrus (cell proliferation and survival, including regional distribution, and structural maturation/differentiation, including arborization, dendritic spines, and neurotransmitter-specific vesicles) of sedentary male mice, after evaluation in a battery of behavioral tests. As a result, we reveal a role for Smad2 in the balance of proliferation versus maturation of differentiating immature cells (Smad2 silencing increases both the proliferation and survival of cycling cells in the dentate granule cell layer), and in the plasticity of both newborn and mature neurons in mice (by decreasing dendritic arborization and dendritic spine number). Moreover, Smad2 silencing specifically compromises spatial learning in mice (through impairments of spatial tasks acquisition both in long-term learning and working memory). These data suggest that Smad2 participates in adult neural plasticity by influencing the proliferation and maturation of dentate gyrus neurons.SIGNIFICANCE STATEMENT Smad2 is one of the main components of the transforming growth factor-β (TGF-β) pathway. The commitment of cell fate in the nervous system is tightly coordinated by SMAD2 signaling, as are further differentiation steps (e.g., dendrite and axon growth, myelination, and synapse formation). However, there are no studies that have directly evaluated the role of Smad2 gene in hippocampus of adult animals. Modulation of these parameters in the adult hippocampus can affect hippocampal-dependent behaviors, which may shed light on the mechanisms that regulate adult neurogenesis and behavior. We demonstrate here a role for Smad2 in the maturation of differentiating immature cells and in the plasticity of mature neurons. Moreover, Smad2 silencing specifically compromises the spatial learning abilities of adult male mice.
Collapse
Affiliation(s)
- Simona Gradari
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | - Antonio Herrera
- Institute of Molecular Biology, Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain
| | - Patricia Tezanos
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | - Ángela Fontán-Lozano
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
- Department of Physiology, School of Biology, University of Sevilla, 41004 Sevilla, Spain
| | - Sebastián Pons
- Institute of Molecular Biology, Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain
| | - José Luis Trejo
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| |
Collapse
|
8
|
Limnios IJ, Chau YQ, Skabo SJ, Surrao DC, O'Neill HC. Efficient differentiation of human embryonic stem cells to retinal pigment epithelium under defined conditions. Stem Cell Res Ther 2021; 12:248. [PMID: 33883023 PMCID: PMC8058973 DOI: 10.1186/s13287-021-02316-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/30/2021] [Indexed: 11/11/2022] Open
Abstract
Age-related macular degeneration (AMD) is a highly prevalent form of blindness caused by loss death of cells of the retinal pigment epithelium (RPE). Transplantation of pluripotent stem cell (PSC)-derived RPE cells is considered a promising therapy to regenerate cell function and vision. OBJECTIVE The objective of this study is to develop a rapid directed differentiation method for production of RPE cells from PSC which is rapid, efficient, and fully defined and produces cells suitable for clinical use. DESIGN A protocol for cell growth and differentiation from hESCs was developed to induce differentiation through screening small molecules which regulated a primary stage of differentiation to the eyefield progenitor, and then, a subsequent set of molecules to drive differentiation to RPE cells. Methods for cell plating and maintenance have been optimized to give a homogeneous population of cells in a short 14-day period, followed by a procedure to support maturation of cell function. RESULTS We show here the efficient production of RPE cells from human embryonic stem cells (hESCs) using small molecules in a feeder-free system using xeno-free/defined medium. Flow cytometry at day 14 showed ~ 90% of cells expressed the RPE markers MITF and PMEL17. Temporal gene analysis confirmed differentiation through defined cell intermediates. Mature hESC-RPE cell monolayers exhibited key morphological, molecular, and functional characteristics of the endogenous RPE. CONCLUSION This study identifies a novel cell differentiation process for rapid and efficient production of retinal RPE cells directly from hESCs. The described protocol has utility for clinical-grade cell production for human therapy to treat AMD.
Collapse
Affiliation(s)
- Ioannis J Limnios
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, Queensland, 4229, Australia.
| | - Yu-Qian Chau
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, Queensland, 4229, Australia
| | - Stuart J Skabo
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, Queensland, 4229, Australia
| | - Denver C Surrao
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, Queensland, 4229, Australia
| | - Helen C O'Neill
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, Queensland, 4229, Australia.
| |
Collapse
|
9
|
Stojkovic M, Han D, Jeong M, Stojkovic P, Stankovic KM. Human induced pluripotent stem cells and CRISPR/Cas-mediated targeted genome editing: Platforms to tackle sensorineural hearing loss. STEM CELLS (DAYTON, OHIO) 2021; 39:673-696. [PMID: 33586253 DOI: 10.1002/stem.3353] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/13/2020] [Indexed: 11/09/2022]
Abstract
Hearing loss (HL) is a major global health problem of pandemic proportions. The most common type of HL is sensorineural hearing loss (SNHL) which typically occurs when cells within the inner ear are damaged. Human induced pluripotent stem cells (hiPSCs) can be generated from any individual including those who suffer from different types of HL. The development of new differentiation protocols to obtain cells of the inner ear including hair cells (HCs) and spiral ganglion neurons (SGNs) promises to expedite cell-based therapy and screening of potential pharmacologic and genetic therapies using human models. Considering age-related, acoustic, ototoxic, and genetic insults which are the most frequent causes of irreversible damage of HCs and SGNs, new methods of genome editing (GE), especially the CRISPR/Cas9 technology, could bring additional opportunities to understand the pathogenesis of human SNHL and identify novel therapies. However, important challenges associated with both hiPSCs and GE need to be overcome before scientific discoveries are correctly translated to effective and patient-safe applications. The purpose of the present review is (a) to summarize the findings from published reports utilizing hiPSCs for studies of SNHL, hence complementing recent reviews focused on animal studies, and (b) to outline promising future directions for deciphering SNHL using disruptive molecular and genomic technologies.
Collapse
Affiliation(s)
- Miodrag Stojkovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Dongjun Han
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Minjin Jeong
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Petra Stojkovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Konstantina M Stankovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, Massachusetts, USA.,Harvard Program in Therapeutic Science, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
10
|
Tien CL, Mohammadparast S, Chang C. Heterochromatin protein 1 beta regulates neural and neural crest development by repressing pluripotency-associated gene pou5f3.2/oct25 in Xenopus. Dev Dyn 2021; 250:1113-1124. [PMID: 33595886 DOI: 10.1002/dvdy.319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Heterochromatin protein 1 (HP1) is associated with and plays a role in compact chromatin conformation, but the function of HP1 in vertebrate embryogenesis is not understood completely. RESULTS Here, we explore the activity of HP1 in early neural development in the frog Xenopus laevis. We show that the three isoforms of HP1, HP1α, β, and γ, are expressed in similar patterns in the neural and neural crest derivatives in early embryos. Despite this, knockdown of HP1β and HP1γ, but not HP1α, in presumptive neural tissues leads to head defects. Late pan-neural markers and neural crest specifier genes are reduced, but early neural and neural plate border genes are less affected in the morphant embryos. Further investigation reveals that neuronal differentiation is impaired and a pluripotency-associated gene, pou5f3.2/oct25, is expanded in HP1β morphants. Ectopic expression of pou5f3.2/oct25 mimics the effect of HP1β knockdown on marker expression, whereas simultaneous knockdown of HP1β and pou5f3.2/oct25 partially rescues expression of these genes. CONCLUSION Taken together, the data suggest that HP1β regulates transition from precursor to more differentiated cell types during neural and neural crest development in Xenopus, and it does so at least partially via repression of the pluripotency-associated transcription regulator pou5f3.2/oct25.
Collapse
Affiliation(s)
- Chih-Liang Tien
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Saeid Mohammadparast
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
11
|
Development and Differentiation of Midbrain Dopaminergic Neuron: From Bench to Bedside. Cells 2020; 9:cells9061489. [PMID: 32570916 PMCID: PMC7349799 DOI: 10.3390/cells9061489] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/29/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s Disease (PD) is a neurodegenerative disorder affecting the motor system. It is primarily due to substantial loss of midbrain dopamine (mDA) neurons in the substantia nigra pars compacta and to decreased innervation to the striatum. Although existing drug therapy available can relieve the symptoms in early-stage PD patients, it cannot reverse the pathogenic progression of PD. Thus, regenerating functional mDA neurons in PD patients may be a cure to the disease. The proof-of-principle clinical trials showed that human fetal graft-derived mDA neurons could restore the release of dopamine neurotransmitters, could reinnervate the striatum, and could alleviate clinical symptoms in PD patients. The invention of human-induced pluripotent stem cells (hiPSCs), autologous source of neural progenitors with less ethical consideration, and risk of graft rejection can now be generated in vitro. This advancement also prompts extensive research to decipher important developmental signaling in differentiation, which is key to successful in vitro production of functional mDA neurons and the enabler of mass manufacturing of the cells required for clinical applications. In this review, we summarize the biology and signaling involved in the development of mDA neurons and the current progress and methodology in driving efficient mDA neuron differentiation from pluripotent stem cells.
Collapse
|
12
|
Zhao D, Chen S, Liu X. Lateral neural borders as precursors of peripheral nervous systems: A comparative view across bilaterians. Dev Growth Differ 2018; 61:58-72. [DOI: 10.1111/dgd.12585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Di Zhao
- School of Life Sciences; Capital Normal University; Beijing China
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; School of Life Sciences; Tsinghua University; Beijing China
| | - Siyu Chen
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; School of Life Sciences; Tsinghua University; Beijing China
| | - Xiao Liu
- School of Life Sciences; Capital Normal University; Beijing China
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; School of Life Sciences; Tsinghua University; Beijing China
| |
Collapse
|
13
|
Ding Y, Colozza G, Sosa EA, Moriyama Y, Rundle S, Salwinski L, De Robertis EM. Bighead is a Wnt antagonist secreted by the Xenopus Spemann organizer that promotes Lrp6 endocytosis. Proc Natl Acad Sci U S A 2018; 115:E9135-E9144. [PMID: 30209221 PMCID: PMC6166843 DOI: 10.1073/pnas.1812117115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Xenopus laevis embryo has been subjected to almost saturating screens for molecules specifically expressed in dorsal Spemann organizer tissue. In this study, we performed high-throughput RNA sequencing of ectodermal explants, called animal caps, which normally give rise to epidermis. We analyzed dissociated animal cap cells that, through sustained activation of MAPK, differentiate into neural tissue. We also microinjected mRNAs for Cerberus, Chordin, FGF8, BMP4, Wnt8, and Xnr2, which induce neural or other germ layer differentiations. The searchable database provided here represents a valuable resource for the early vertebrate cell differentiation. These analyses resulted in the identification of a gene present in frog and fish, which we call Bighead. Surprisingly, at gastrula, it was expressed in the Spemann organizer and endoderm, rather than in ectoderm as we expected. Despite the plethora of genes already mined from Spemann organizer tissue, Bighead encodes a secreted protein that proved to be a potent inhibitor of Wnt signaling in a number of embryological and cultured cell signaling assays. Overexpression of Bighead resulted in large head structures very similar to those of the well-known Wnt antagonists Dkk1 and Frzb-1. Knockdown of Bighead with specific antisense morpholinos resulted in embryos with reduced head structures, due to increased Wnt signaling. Bighead protein bound specifically to the Wnt coreceptor lipoprotein receptor-related protein 6 (Lrp6), leading to its removal from the cell surface. Bighead joins two other Wnt antagonists, Dkk1 and Angptl4, which function as Lrp6 endocytosis regulators. These results suggest that endocytosis plays a crucial role in Wnt signaling.
Collapse
Affiliation(s)
- Yi Ding
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095-1662
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662
| | - Gabriele Colozza
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095-1662
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662
| | - Eric A Sosa
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095-1662
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662
| | - Yuki Moriyama
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095-1662
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662
| | - Samantha Rundle
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095-1662
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662
| | - Lukasz Salwinski
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095-1662
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095-1662
| | - Edward M De Robertis
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095-1662;
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662
| |
Collapse
|
14
|
Tecalco-Cruz AC, Ríos-López DG, Vázquez-Victorio G, Rosales-Alvarez RE, Macías-Silva M. Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease. Signal Transduct Target Ther 2018; 3:15. [PMID: 29892481 PMCID: PMC5992185 DOI: 10.1038/s41392-018-0015-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/16/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family plays major pleiotropic roles by regulating many physiological processes in development and tissue homeostasis. The TGF-β signaling pathway outcome relies on the control of the spatial and temporal expression of >500 genes, which depend on the functions of the Smad protein along with those of diverse modulators of this signaling pathway, such as transcriptional factors and cofactors. Ski (Sloan-Kettering Institute) and SnoN (Ski novel) are Smad-interacting proteins that negatively regulate the TGF-β signaling pathway by disrupting the formation of R-Smad/Smad4 complexes, as well as by inhibiting Smad association with the p300/CBP coactivators. The Ski and SnoN transcriptional cofactors recruit diverse corepressors and histone deacetylases to repress gene transcription. The TGF-β/Smad pathway and coregulators Ski and SnoN clearly regulate each other through several positive and negative feedback mechanisms. Thus, these cross-regulatory processes finely modify the TGF-β signaling outcome as they control the magnitude and duration of the TGF-β signals. As a result, any alteration in these regulatory mechanisms may lead to disease development. Therefore, the design of targeted therapies to exert tight control of the levels of negative modulators of the TGF-β pathway, such as Ski and SnoN, is critical to restore cell homeostasis under the specific pathological conditions in which these cofactors are deregulated, such as fibrosis and cancer. Proteins that repress molecular signaling through the transforming growth factor-beta (TGF-β) pathway offer promising targets for treating cancer and fibrosis. Marina Macías-Silva and colleagues from the National Autonomous University of Mexico in Mexico City review the ways in which a pair of proteins, called Ski and SnoN, interact with downstream mediators of TGF-β to inhibit the effects of this master growth factor. Aberrant levels of Ski and SnoN have been linked to diverse range of diseases involving cell proliferation run amok, and therapies that regulate the expression of these proteins could help normalize TGF-β signaling to healthier physiological levels. For decades, drug companies have tried to target the TGF-β pathway, with limited success. Altering the activity of these repressors instead could provide a roundabout way of remedying pathogenic TGF-β activity in fibrosis and oncology.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- 1Instituto de Investigaciones Biomédicas at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Diana G Ríos-López
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | | | - Reyna E Rosales-Alvarez
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Marina Macías-Silva
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| |
Collapse
|
15
|
Neurocristopathies: New insights 150 years after the neural crest discovery. Dev Biol 2018; 444 Suppl 1:S110-S143. [PMID: 29802835 DOI: 10.1016/j.ydbio.2018.05.013] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
Abstract
The neural crest (NC) is a transient, multipotent and migratory cell population that generates an astonishingly diverse array of cell types during vertebrate development. These cells, which originate from the ectoderm in a region lateral to the neural plate in the neural fold, give rise to neurons, glia, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies (NCP) are a class of pathologies occurring in vertebrates, especially in humans that result from the abnormal specification, migration, differentiation or death of neural crest cells during embryonic development. Various pigment, skin, thyroid and hearing disorders, craniofacial and heart abnormalities, malfunctions of the digestive tract and tumors can also be considered as neurocristopathies. In this review we revisit the current classification and propose a new way to classify NCP based on the embryonic origin of the affected tissues, on recent findings regarding the molecular mechanisms that drive NC formation, and on the increased complexity of current molecular embryology techniques.
Collapse
|
16
|
Takebayashi-Suzuki K, Konishi H, Miyamoto T, Nagata T, Uchida M, Suzuki A. Coordinated regulation of the dorsal-ventral and anterior-posterior patterning ofXenopusembryos by the BTB/POZ zinc finger protein Zbtb14. Dev Growth Differ 2018; 60:158-173. [DOI: 10.1111/dgd.12431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/09/2018] [Accepted: 02/22/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Kimiko Takebayashi-Suzuki
- Amphibian Research Center; Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Hidenori Konishi
- Amphibian Research Center; Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Tatsuo Miyamoto
- Amphibian Research Center; Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Tomoko Nagata
- Amphibian Research Center; Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Misa Uchida
- Amphibian Research Center; Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Atsushi Suzuki
- Amphibian Research Center; Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| |
Collapse
|
17
|
Yu Y, Wang X, Zhang X, Zhai Y, Lu X, Ma H, Zhu K, Zhao T, Jiao J, Zhao ZA, Li L. ERK inhibition promotes neuroectodermal precursor commitment by blocking self-renewal and primitive streak formation of the epiblast. Stem Cell Res Ther 2018; 9:2. [PMID: 29304842 PMCID: PMC5756365 DOI: 10.1186/s13287-017-0750-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 12/27/2022] Open
Abstract
Background Pluripotent stem cells hold great promise for regenerative medicine. However, before clinical application, reproducible protocols for pluripotent stem cell differentiation should be established. Extracellular signal-regulated protein kinase (ERK) signaling plays a central role for the self-renewal of epiblast stem cells (EpiSCs), but its role for subsequent germ layer differentiation is still ambiguous. We proposed that ERK could modulate differentiation of the epiblast. Methods PD0325901 was used to inhibit ERK activation during the differentiation of embryonic stem cells and EpiSCs. Immunofluorescence, western blot analysis, real-time PCR and flow cytometry were used to detect germ layer markers and pathway activation. Results We demonstrate that the ERK phosphorylation level is lower in neuroectoderm of mouse E7.5 embryos than that in the primitive streak. ERK inhibition results in neural lineage commitment of epiblast. Mechanistically, PD0325901 abrogates the expression of primitive streak markers by β-catenin retention in the cytoplasm, and inhibits the expression of OCT4 and NANOG during EpiSC differentiation. Thus, EpiSCs differentiate into neuroectodermal lineage efficiently under PD0325901 treatment. These results suggest that neuroectoderm differentiation does not require extrinsic signals, supporting the default differentiation of neural lineage. Conclusions We report that a single ERK inhibitor, PD0325901, can specify epiblasts and EpiSCs into neural-like cells, providing an efficient strategy for neural differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0750-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxiao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Yanhua Zhai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Xukun Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haixia Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Zhen-Ao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China. .,Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, 708 Renmin Rd, Suzhou, Jiangsu, 215007, China.
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
Cao Y. Tumorigenesis as a process of gradual loss of original cell identity and gain of properties of neural precursor/progenitor cells. Cell Biosci 2017; 7:61. [PMID: 29177029 PMCID: PMC5693707 DOI: 10.1186/s13578-017-0188-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023] Open
Abstract
Cancer is a complex disease without a unified explanation for its cause so far. Our recent work demonstrates that cancer cells share similar regulatory networks and characteristics with embryonic neural cells. Based on the study, I will address the relationship between tumor and neural cells in more details. I collected the evidence from various aspects of cancer development in many other studies, and integrated the information from studies on cancer cell properties, cell fate specification during embryonic development and evolution. Synthesis of the information strongly supports that cancer cells share much more similarities with neural progenitor/stem cells than with mesenchymal-type cells and that tumorigenesis represents a process of gradual loss of cell or lineage identity and gain of characteristics of neural cells. I also discuss cancer EMT, a concept having been under intense debate, and possibly the true meaning of EMT in cancer initiation and development. This synthesis provides fresh insights into a unified explanation for and a previously unrecognized nature of tumorigenesis, which might not be revealed by studies on individual molecular events. The review will also present some brief suggestions for cancer research based on the proposed model of tumorigenesis.
Collapse
Affiliation(s)
- Ying Cao
- Model Animal Research Center and MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing, 210061 China
| |
Collapse
|
19
|
Abstract
Neural induction is the process through which pluripotent cells are committed to a neural fate. This first step of Central Nervous System formation is triggered by the "Spemann organizer" in amphibians and by homologous embryonic regions in other vertebrates. Studies in classical vertebrate models have produced contrasting views about the molecular nature of neural inducers and no unifying scheme could be drawn. Moreover, how this process evolved in the chordate lineage remains an unresolved issue. In this work, by using graft and micromanipulation experiments, we definitively establish that the dorsal blastopore lip of the cephalochordate amphioxus is homologous to the vertebrate organizer and is able to trigger the formation of neural tissues in a host embryo. In addition, we demonstrate that Nodal/Activin is the main signal eliciting neural induction in amphioxus, and that it also functions as a bona fide neural inducer in the classical vertebrate model Xenopus. Altogether, our results allow us to propose that Nodal/Activin was a major player of neural induction in the ancestor of chordates. This study further reveals the diversity of neural inducers deployed during chordate evolution and advocates against a universally conserved molecular explanation for this process.
Collapse
|
20
|
Zhang Z, Lei A, Xu L, Chen L, Chen Y, Zhang X, Gao Y, Yang X, Zhang M, Cao Y. Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells. J Biol Chem 2017. [PMID: 28634230 DOI: 10.1074/jbc.m117.785865] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cancer cells are immature cells resulting from cellular reprogramming by gene misregulation, and redifferentiation is expected to reduce malignancy. It is unclear, however, whether cancer cells can undergo terminal differentiation. Here, we show that inhibition of the epigenetic modification enzyme enhancer of zeste homolog 2 (EZH2), histone deacetylases 1 and 3 (HDAC1 and -3), lysine demethylase 1A (LSD1), or DNA methyltransferase 1 (DNMT1), which all promote cancer development and progression, leads to postmitotic neuron-like differentiation with loss of malignant features in distinct solid cancer cell lines. The regulatory effect of these enzymes in neuronal differentiation resided in their intrinsic activity in embryonic neural precursor/progenitor cells. We further found that a major part of pan-cancer-promoting genes and the signal transducers of the pan-cancer-promoting signaling pathways, including the epithelial-to-mesenchymal transition (EMT) mesenchymal marker genes, display neural specific expression during embryonic neurulation. In contrast, many tumor suppressor genes, including the EMT epithelial marker gene that encodes cadherin 1 (CDH1), exhibited non-neural or no expression. This correlation indicated that cancer cells and embryonic neural cells share a regulatory network, mediating both tumorigenesis and neural development. This observed similarity in regulatory mechanisms suggests that cancer cells might share characteristics of embryonic neural cells.
Collapse
Affiliation(s)
- Zan Zhang
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Anhua Lei
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Liyang Xu
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Lu Chen
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Yonglong Chen
- Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Xuena Zhang
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Yan Gao
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Xiaoli Yang
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Min Zhang
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Ying Cao
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China.
| |
Collapse
|
21
|
Houston DW. Vertebrate Axial Patterning: From Egg to Asymmetry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:209-306. [PMID: 27975274 PMCID: PMC6550305 DOI: 10.1007/978-3-319-46095-6_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of the bilateral embryonic body axis from a symmetrical egg has been a long-standing question in developmental biology. Historical and modern experiments point to an initial symmetry-breaking event leading to localized Wnt and Nodal growth factor signaling and subsequent induction and formation of a self-regulating dorsal "organizer." This organizer forms at the site of notochord cell internalization and expresses primarily Bone Morphogenetic Protein (BMP) growth factor antagonists that establish a spatiotemporal gradient of BMP signaling across the embryo, directing initial cell differentiation and morphogenesis. Although the basics of this model have been known for some time, many of the molecular and cellular details have only recently been elucidated and the extent that these events remain conserved throughout vertebrate evolution remains unclear. This chapter summarizes historical perspectives as well as recent molecular and genetic advances regarding: (1) the mechanisms that regulate symmetry-breaking in the vertebrate egg and early embryo, (2) the pathways that are activated by these events, in particular the Wnt pathway, and the role of these pathways in the formation and function of the organizer, and (3) how these pathways also mediate anteroposterior patterning and axial morphogenesis. Emphasis is placed on comparative aspects of the egg-to-embryo transition across vertebrates and their evolution. The future prospects for work regarding self-organization and gene regulatory networks in the context of early axis formation are also discussed.
Collapse
Affiliation(s)
- Douglas W Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA, 52242, USA.
| |
Collapse
|
22
|
Masserdotti G, Gascón S, Götz M. Direct neuronal reprogramming: learning from and for development. Development 2016; 143:2494-510. [DOI: 10.1242/dev.092163] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The key signalling pathways and transcriptional programmes that instruct neuronal diversity during development have largely been identified. In this Review, we discuss how this knowledge has been used to successfully reprogramme various cell types into an amazing array of distinct types of functional neurons. We further discuss the extent to which direct neuronal reprogramming recapitulates embryonic development, and examine the particular barriers to reprogramming that may exist given a cell's unique developmental history. We conclude with a recently proposed model for cell specification called the ‘Cook Islands’ model, and consider whether it is a fitting model for cell specification based on recent results from the direct reprogramming field.
Collapse
Affiliation(s)
- Giacomo Masserdotti
- Institute of Stem Cell Research, Helmholtz Center Munich, Ingolstädter Landstrasse 1, Neuherberg/Munich D-85764, Germany
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, Großhadernerstrasse 9, Martinsried 82154, Germany
| | - Sergio Gascón
- Institute of Stem Cell Research, Helmholtz Center Munich, Ingolstädter Landstrasse 1, Neuherberg/Munich D-85764, Germany
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, Großhadernerstrasse 9, Martinsried 82154, Germany
| | - Magdalena Götz
- Institute of Stem Cell Research, Helmholtz Center Munich, Ingolstädter Landstrasse 1, Neuherberg/Munich D-85764, Germany
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, Großhadernerstrasse 9, Martinsried 82154, Germany
- Excellence Cluster of Systems Neurology, Großhadernerstrasse 9, Martinsried 82154, Germany
| |
Collapse
|
23
|
Kiecker C, Bates T, Bell E. Molecular specification of germ layers in vertebrate embryos. Cell Mol Life Sci 2016; 73:923-47. [PMID: 26667903 PMCID: PMC4744249 DOI: 10.1007/s00018-015-2092-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/11/2015] [Accepted: 11/09/2015] [Indexed: 11/17/2022]
Abstract
In order to generate the tissues and organs of a multicellular organism, different cell types have to be generated during embryonic development. The first step in this process of cellular diversification is the formation of the three germ layers: ectoderm, endoderm and mesoderm. The ectoderm gives rise to the nervous system, epidermis and various neural crest-derived tissues, the endoderm goes on to form the gastrointestinal, respiratory and urinary systems as well as many endocrine glands, and the mesoderm will form the notochord, axial skeleton, cartilage, connective tissue, trunk muscles, kidneys and blood. Classic experiments in amphibian embryos revealed the tissue interactions involved in germ layer formation and provided the groundwork for the identification of secreted and intracellular factors involved in this process. We will begin this review by summarising the key findings of those studies. We will then evaluate them in the light of more recent genetic studies that helped clarify which of the previously identified factors are required for germ layer formation in vivo, and to what extent the mechanisms identified in amphibians are conserved across other vertebrate species. Collectively, these studies have started to reveal the gene regulatory network (GRN) underlying vertebrate germ layer specification and we will conclude our review by providing examples how our understanding of this GRN can be employed to differentiate stem cells in a targeted fashion for therapeutic purposes.
Collapse
Affiliation(s)
- Clemens Kiecker
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK
| | - Thomas Bates
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Esther Bell
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK.
| |
Collapse
|
24
|
Sivasankaran A, Srikanth A, Kulshreshtha PS, Anuradha D, Kadandale JS, Samuel CR. Split Hand/Foot Malformation Associated with 7q21.3 Microdeletion: A Case Report. Mol Syndromol 2016; 6:287-96. [PMID: 27022330 DOI: 10.1159/000443708] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2015] [Indexed: 11/19/2022] Open
Abstract
Split hand/foot malformation (SHFM) or ectrodactyly is a rare genetic condition affecting limb development. SHFM shows clinical and genetic heterogeneity. It can present as an isolated form or in combination with additional anomalies affecting the long bones (nonsyndromic form) or other organ systems including the craniofacial, genitourinary and ectodermal structures (syndromic ectrodactyly). This study reports a girl with SHFM who also exhibited developmental delay, mild dysmorphic facial features and sensorineural hearing loss. High-resolution banding analysis indicated an interstitial deletion within the 7q21 band. FISH using locus-specific BAC probes confirmed the microdeletion of 7q21.3. Chromosomal microarray analysis also revealed a microdeletion of 1.856 Mb in 7q21.3. However, a larger 8.44-Mb deletion involving bands 7q21.11q21.2 was observed, and the breakpoints were refined. The phenotype and the candidate genes underlying the pathogenesis of this disorder are discussed.
Collapse
Affiliation(s)
- Aswini Sivasankaran
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, India
| | - Ambika Srikanth
- Center for Human Genetics, Biotech Park, Electronic City Phase I, Bangalore, India
| | - Pooja S Kulshreshtha
- Center for Human Genetics, Biotech Park, Electronic City Phase I, Bangalore, India
| | - Deenadayalu Anuradha
- Department of Medical Genetics, Institute of Obstetrics and Gynecology, Government Hospital for Women and Children, Madras Medical College, Chennai, India
| | - Jayarama S Kadandale
- Center for Human Genetics, Biotech Park, Electronic City Phase I, Bangalore, India
| | - Chandra R Samuel
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, India
| |
Collapse
|
25
|
Luo SX, Huang EJ. Dopaminergic Neurons and Brain Reward Pathways: From Neurogenesis to Circuit Assembly. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:478-88. [PMID: 26724386 DOI: 10.1016/j.ajpath.2015.09.023] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/01/2015] [Accepted: 09/23/2015] [Indexed: 11/26/2022]
Abstract
Midbrain dopaminergic (DA) neurons in the substantia nigra pars compacta and ventral tegmental area regulate extrapyramidal movement and important cognitive functions, including motivation, reward associations, and habit learning. Dysfunctions in DA neuron circuitry have been implicated in several neuropsychiatric disorders, including addiction and schizophrenia, whereas selective degeneration of DA neurons in substantia nigra pars compacta is a key neuropathological feature in Parkinson disease. Efforts to understand these disorders have focused on dissecting the underlying causes, as well as developing therapeutic strategies to replenish dopamine deficiency. In particular, the promise of cell replacement therapies for clinical intervention has led to extensive research in the identification of mechanisms involved in DA neuron development. It is hoped that a comprehensive understanding of these mechanisms will lead to therapeutic strategies that improve the efficiency of DA neuron production, engraftment, and function. This review provides a comprehensive discussion on how Wnt/β-catenin and sonic hedgehog-Smoothened signaling mechanisms control the specification and expansion of DA progenitors and the differentiation of DA neurons. We also discuss how mechanisms involving transforming growth factor-β and transcriptional cofactor homeodomain interacting protein kinase 2 regulate the survival and maturation of DA neurons in early postnatal life. These results not only reveal fundamental mechanisms regulating DA neuron development, but also provide important insights to their potential contributions to neuropsychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarah X Luo
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, California; Department of Pathology, University of California San Francisco, San Francisco, California
| | - Eric J Huang
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, California; Department of Pathology, University of California San Francisco, San Francisco, California; Pathology Service 113B, San Francisco Veterans Affairs Medical Center, San Francisco, California.
| |
Collapse
|
26
|
Hegarty SV, Sullivan AM, O'Keeffe GW. Zeb2: A multifunctional regulator of nervous system development. Prog Neurobiol 2015; 132:81-95. [PMID: 26193487 DOI: 10.1016/j.pneurobio.2015.07.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 12/19/2022]
Abstract
Zinc finger E-box binding homeobox (Zeb) 2 is a transcription factor, identified due its ability to bind Smad proteins, and consists of multiple functional domains which interact with a variety of transcriptional co-effectors. The complex nature of the Zeb2, both at its genetic and protein levels, underlie its multifunctional properties, with Zeb2 capable of acting individually or as part of a transcriptional complex to repress, and occasionally activate, target gene expression. This review introduces Zeb2 as an essential regulator of nervous system development. Zeb2 is expressed in the nervous system throughout its development, indicating its importance in neurogenic and gliogenic processes. Indeed, mutation of Zeb2 has dramatic neurological consequences both in animal models, and in humans with Mowat-Wilson syndrome, which results from heterozygous ZEB2 mutations. The mechanisms by which Zeb2 regulates the induction of the neuroectoderm (CNS primordium) and the neural crest (PNS primordium) are reviewed herein. We then describe how Zeb2 acts to direct the formation, delamination, migration and specification of neural crest cells. Zeb2 regulation of the development of a number of cerebral regions, including the neocortex and hippocampus, are then described. The diverse molecular mechanisms mediating Zeb2-directed development of various neuronal and glial populations are reviewed. The role of Zeb2 in spinal cord and enteric nervous system development is outlined, while its essential function in CNS myelination is also described. Finally, this review discusses how the neurodevelopmental defects of Zeb2 mutant mice delineate the developmental dysfunctions underpinning the multiple neurological defects observed in Mowat-Wilson syndrome patients.
Collapse
Affiliation(s)
- Shane V Hegarty
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland.
| | - Aideen M Sullivan
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Gerard W O'Keeffe
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
27
|
Vega‐López GA, Bonano M, Tríbulo C, Fernández JP, Agüero TH, Aybar MJ. Functional analysis of
Hairy
genes in
Xenopus
neural crest initial specification and cell migration. Dev Dyn 2015; 244:988-1013. [DOI: 10.1002/dvdy.24295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 04/25/2015] [Accepted: 05/14/2015] [Indexed: 01/28/2023] Open
Affiliation(s)
| | - Marcela Bonano
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
| | - Celeste Tríbulo
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
- Instituto de Biología “Dr. Francisco D. Barbieri”, Facultad de Bioquímica, Química y FarmaciaUniversidad Nacional de TucumánChacabuco San Miguel de Tucumán Argentina
| | - Juan P. Fernández
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
| | - Tristán H. Agüero
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
| | - Manuel J. Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
- Instituto de Biología “Dr. Francisco D. Barbieri”, Facultad de Bioquímica, Química y FarmaciaUniversidad Nacional de TucumánChacabuco San Miguel de Tucumán Argentina
| |
Collapse
|
28
|
Wong KA, Trembley M, Abd Wahab S, Viczian AS. Efficient retina formation requires suppression of both Activin and BMP signaling pathways in pluripotent cells. Biol Open 2015; 4:573-83. [PMID: 25750435 PMCID: PMC4400599 DOI: 10.1242/bio.20149977] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Retina formation requires the correct spatiotemporal patterning of key regulatory factors. While it is known that repression of several signaling pathways lead to specification of retinal fates, addition of only Noggin, a known BMP antagonist, can convert pluripotent Xenopus laevis animal cap cells to functional retinal cells. The aim of this study is to determine the intracellular molecular events that occur during this conversion. Surprisingly, blocking BMP signaling alone failed to mimic Noggin treatment. Overexpressing Noggin in pluripotent cells resulted in a concentration-dependent suppression of both Smad1 and Smad2 phosphorylation, which act downstream of BMP and Activin signaling, respectively. This caused a decrease in downstream targets: endothelial marker, xk81, and mesodermal marker, xbra. We treated pluripotent cells with dominant-negative receptors or the chemical inhibitors, dorsomorphin and SB431542, which each target either the BMP or Activin signaling pathway. We determined the effect of these treatments on retina formation using the Animal Cap Transplant (ACT) assay; in which treated pluripotent cells were transplanted into the eye field of host embryos. We found that inhibition of Activin signaling, in the presence of BMP signaling inhibition, promotes efficient retinal specification in Xenopus tissue, mimicking the affect of adding Noggin alone. In whole embryos, we found that the eye field marker, rax, expanded when adding both dominant-negative Smad1 and Smad2, as did treating the cells with both dorsomorphin and SB431542. Future studies could translate these findings to a mammalian culture assay, in order to more efficiently produce retinal cells in culture.
Collapse
Affiliation(s)
- Kimberly A Wong
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA The Center for Vision Research, SUNY Eye Institute, Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael Trembley
- Department of Pharmacology and Physiology, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Syafiq Abd Wahab
- Department of Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA
| | - Andrea S Viczian
- Department of Ophthalmology, SUNY Upstate Medical University, Syracuse, NY 13210, USA Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA The Center for Vision Research, SUNY Eye Institute, Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
29
|
An otx/nodal regulatory signature for posterior neural development in ascidians. PLoS Genet 2014; 10:e1004548. [PMID: 25121599 PMCID: PMC4133040 DOI: 10.1371/journal.pgen.1004548] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/18/2014] [Indexed: 12/25/2022] Open
Abstract
In chordates, neural induction is the first step of a complex developmental process through which ectodermal cells acquire a neural identity. In ascidians, FGF-mediated neural induction occurs at the 32-cell stage in two blastomere pairs, precursors respectively of anterior and posterior neural tissue. We combined molecular embryology and cis-regulatory analysis to unveil in the ascidian Ciona intestinalis the remarkably simple proximal genetic network that controls posterior neural fate acquisition downstream of FGF. We report that the combined action of two direct FGF targets, the TGFβ factor Nodal, acting via Smad- and Fox-binding sites, and the transcription factor Otx suffices to trigger ascidian posterior neural tissue formation. Moreover, we found that this strategy is conserved in the distantly related ascidian Phallusia mammillata, in spite of extreme sequence divergence in the cis-regulatory sequences involved. Our results thus highlight that the modes of gene regulatory network evolution differ with the evolutionary scale considered. Within ascidians, developmental regulatory networks are remarkably robust to genome sequence divergence. Between ascidians and vertebrates, major fate determinants, such as Otx and Nodal, can be co-opted into different networks. Comparative developmental studies in ascidians with divergent genomes will thus uncover shared ascidian strategies, and contribute to a better understanding of the diversity of developmental strategies within chordates.
Collapse
|
30
|
From pluripotency to forebrain patterning: an in vitro journey astride embryonic stem cells. Cell Mol Life Sci 2014; 71:2917-30. [PMID: 24643740 PMCID: PMC4098049 DOI: 10.1007/s00018-014-1596-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/17/2014] [Accepted: 02/26/2014] [Indexed: 02/07/2023]
Abstract
Embryonic stem cells (ESCs) have been used extensively as in vitro models of neural development and disease, with special efforts towards their conversion into forebrain progenitors and neurons. The forebrain is the most complex brain region, giving rise to several fundamental structures, such as the cerebral cortex, the hypothalamus, and the retina. Due to the multiplicity of signaling pathways playing different roles at distinct times of embryonic development, the specification and patterning of forebrain has been difficult to study in vivo. Research performed on ESCs in vitro has provided a large body of evidence to complement work in model organisms, but these studies have often been focused more on cell type production than on cell fate regulation. In this review, we systematically reassess the current literature in the field of forebrain development in mouse and human ESCs with a focus on the molecular mechanisms of early cell fate decisions, taking into consideration the specific culture conditions, exogenous and endogenous molecular cues as described in the original studies. The resulting model of early forebrain induction and patterning provides a useful framework for further studies aimed at reconstructing forebrain development in vitro for basic research or therapy.
Collapse
|
31
|
Andoniadou CL, Martinez-Barbera JP. Developmental mechanisms directing early anterior forebrain specification in vertebrates. Cell Mol Life Sci 2013; 70:3739-52. [PMID: 23397132 PMCID: PMC3781296 DOI: 10.1007/s00018-013-1269-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 12/14/2022]
Abstract
Research from the last 15 years has provided a working model for how the anterior forebrain is induced and specified during the early stages of embryogenesis. This model relies on three basic processes: (1) induction of the neural plate from naive ectoderm requires the inhibition of BMP/TGFβ signaling; (2) induced neural tissue initially acquires an anterior identity (i.e., anterior forebrain); (3) maintenance and expansion of the anterior forebrain depends on the antagonism of posteriorizing signals that would otherwise transform this tissue into posterior neural fates. In this review, we present a historical perspective examining some of the significant experiments that have helped to delineate this molecular model. In addition, we discuss the function of the relevant tissues that act prior to and during gastrulation to ensure proper anterior forebrain formation. Finally, we elaborate data, mainly obtained from the analyses of mouse mutants, supporting a role for transcriptional repressors in the regulation of cell competence within the anterior forebrain. The aim of this review is to provide the reader with a general overview of the signals as well as the signaling centers that control the development of the anterior neural plate.
Collapse
Affiliation(s)
- Cynthia Lilian Andoniadou
- Birth Defects Research Centre, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | | |
Collapse
|
32
|
Ozair MZ, Noggle S, Warmflash A, Krzyspiak JE, Brivanlou AH. SMAD7 directly converts human embryonic stem cells to telencephalic fate by a default mechanism. Stem Cells 2013; 31:35-47. [PMID: 23034881 DOI: 10.1002/stem.1246] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 08/01/2012] [Indexed: 12/12/2022]
Abstract
Human embryonic stem cells (hESCs) provide a valuable window into the dissection of the molecular circuitry underlying the early formation of the human forebrain. However, dissection of signaling events in forebrain development using current protocols is complicated by non-neural contamination and fluctuation of extrinsic influences. Here, we show that SMAD7, a cell-intrinsic inhibitor of transforming growth factor-β (TGFβ) signaling, is sufficient to directly convert pluripotent hESCs to an anterior neural fate. Time course gene expression revealed downregulation of MAPK components, and combining MEK1/2 inhibition with SMAD7-mediated TGFβ inhibition promoted telencephalic conversion. Fibroblast growth factor-MEK and TGFβ-SMAD signaling maintain hESCs by promoting pluripotency genes and repressing neural genes. Our findings suggest that in the absence of these cues, pluripotent cells simply revert to a program of neural conversion. Hence, the "primed" state of hESCs requires inhibition of the "default" state of neural fate acquisition. This has parallels in amphibians, suggesting an evolutionarily conserved mechanism.
Collapse
Affiliation(s)
- Mohammad Zeeshan Ozair
- Laboratory of Molecular Embryology, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
33
|
Lupo G, Novorol C, Smith JR, Vallier L, Miranda E, Alexander M, Biagioni S, Pedersen RA, Harris WA. Multiple roles of Activin/Nodal, bone morphogenetic protein, fibroblast growth factor and Wnt/β-catenin signalling in the anterior neural patterning of adherent human embryonic stem cell cultures. Open Biol 2013; 3:120167. [PMID: 23576785 PMCID: PMC3718331 DOI: 10.1098/rsob.120167] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Several studies have successfully produced a variety of neural cell types from human embryonic stem cells (hESCs), but there has been limited systematic analysis of how different regional identities are established using well-defined differentiation conditions. We have used adherent, chemically defined cultures to analyse the roles of Activin/Nodal, bone morphogenetic protein (BMP), fibroblast growth factor (FGF) and Wnt/β-catenin signalling in neural induction, anteroposterior patterning and eye field specification in hESCs. We show that either BMP inhibition or activation of FGF signalling is required for effective neural induction, but these two pathways have distinct outcomes on rostrocaudal patterning. While BMP inhibition leads to specification of forebrain/midbrain positional identities, FGF-dependent neural induction is associated with strong posteriorization towards hindbrain/spinal cord fates. We also demonstrate that Wnt/β-catenin signalling is activated during neural induction and promotes acquisition of neural fates posterior to forebrain. Therefore, inhibition of this pathway is needed for efficient forebrain specification. Finally, we provide evidence that the levels of Activin/Nodal and BMP signalling have a marked influence on further forebrain patterning and that constitutive inhibition of these pathways represses expression of eye field genes. These results show that the key mechanisms controlling neural patterning in model vertebrate species are preserved in adherent, chemically defined hESC cultures and reveal new insights into the signals regulating eye field specification.
Collapse
Affiliation(s)
- Giuseppe Lupo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kidwai FK, Liu H, Toh WS, Fu X, Jokhun DS, Movahednia MM, Li M, Zou Y, Squier CA, Phan TT, Cao T. Differentiation of human embryonic stem cells into clinically amenable keratinocytes in an autogenic environment. J Invest Dermatol 2012; 133:618-628. [PMID: 23235526 DOI: 10.1038/jid.2012.384] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Human embryonic stem cells (hESCs)-derived keratinocytes hold great clinical and research potential. However, the current techniques are hampered by the use of xenogenic components that limits their clinical application. Here we demonstrated an efficient differentiation of H9 hESCs (H9-hESCs) into keratinocytes (H9-Kert) with the minimum use of animal-derived materials. For differentiation, we established two microenvironment systems originated from H9-hESCs (autogenic microenvironment). These autogenic microenvironment systems consist of an autogenic coculture system (ACC) and an autogenic feeder-free system (AFF). In addition, we showed a stage-specific effect of Activin in promoting keratinocyte differentiation from H9-hESCs while repressing the expression of early neural markers in the ACC system. Furthermore, we also explained the effect of Activin in construction of the AFF system made up of extracellular matrix similar to basement membrane extracted from H9-hESC-derived fibroblasts. H9-Kert differentiated in both systems expressed keratinocyte markers at mRNA and protein levels. H9-Kert were also able to undergo terminal differentiation in high Ca(2+) medium. These findings support the transition toward the establishment of an animal-free microenvironment for successful differentiation of hESCs into keratinocytes for potential clinical application.
Collapse
Affiliation(s)
- Fahad K Kidwai
- Oral Sciences Disciplines, Faculty of Dentistry, National University of Singapore, Singapore
| | - Hua Liu
- Oral Sciences Disciplines, Faculty of Dentistry, National University of Singapore, Singapore; Centre for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Wei Seong Toh
- Oral Sciences Disciplines, Faculty of Dentistry, National University of Singapore, Singapore
| | - Xin Fu
- Oral Sciences Disciplines, Faculty of Dentistry, National University of Singapore, Singapore; Plastic Surgery Hospital (Institute), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Doorgesh S Jokhun
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Mohammad M Movahednia
- Oral Sciences Disciplines, Faculty of Dentistry, National University of Singapore, Singapore
| | - Mingming Li
- Oral Sciences Disciplines, Faculty of Dentistry, National University of Singapore, Singapore
| | - Yu Zou
- Oral Sciences Disciplines, Faculty of Dentistry, National University of Singapore, Singapore
| | - Christopher A Squier
- Department of Oral Pathology, Radiology and Medicine, and Dows, College of Dentistry, The University of Iowa, Iowa City, Iowa, USA
| | - Toan T Phan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tong Cao
- Oral Sciences Disciplines, Faculty of Dentistry, National University of Singapore, Singapore.
| |
Collapse
|
35
|
Colas AR, McKeithan WL, Cunningham TJ, Bushway PJ, Garmire LX, Duester G, Subramaniam S, Mercola M. Whole-genome microRNA screening identifies let-7 and mir-18 as regulators of germ layer formation during early embryogenesis. Genes Dev 2012; 26:2567-79. [PMID: 23152446 DOI: 10.1101/gad.200758.112] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tight control over the segregation of endoderm, mesoderm, and ectoderm is essential for normal embryonic development of all species, yet how neighboring embryonic blastomeres can contribute to different germ layers has never been fully explained. We postulated that microRNAs, which fine-tune many biological processes, might modulate the response of embryonic blastomeres to growth factors and other signals that govern germ layer fate. A systematic screen of a whole-genome microRNA library revealed that the let-7 and miR-18 families increase mesoderm at the expense of endoderm in mouse embryonic stem cells. Both families are expressed in ectoderm and mesoderm, but not endoderm, as these tissues become distinct during mouse and frog embryogenesis. Blocking let-7 function in vivo dramatically affected cell fate, diverting presumptive mesoderm and ectoderm into endoderm. siRNA knockdown of computationally predicted targets followed by mutational analyses revealed that let-7 and miR-18 down-regulate Acvr1b and Smad2, respectively, to attenuate Nodal responsiveness and bias blastomeres to ectoderm and mesoderm fates. These findings suggest a crucial role for the let-7 and miR-18 families in germ layer specification and reveal a remarkable conservation of function from amphibians to mammals.
Collapse
|
36
|
Ozair MZ, Kintner C, Brivanlou AH. Neural induction and early patterning in vertebrates. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:479-98. [PMID: 24014419 DOI: 10.1002/wdev.90] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In vertebrates, the development of the nervous system is triggered by signals from a powerful 'organizing' region of the early embryo during gastrulation. This phenomenon--neural induction--was originally discovered and given conceptual definition by experimental embryologists working with amphibian embryos. Work on the molecular circuitry underlying neural induction, also in the same model system, demonstrated that elimination of ongoing transforming growth factor-β (TGFβ) signaling in the ectoderm is the hallmark of anterior neural-fate acquisition. This observation is the basis of the 'default' model of neural induction. Endogenous neural inducers are secreted proteins that act to inhibit TGFβ ligands in the dorsal ectoderm. In the ventral ectoderm, where the signaling ligands escape the inhibitors, a non-neural fate is induced. Inhibition of the TGFβ pathway has now been demonstrated to be sufficient to directly induce neural fate in mammalian embryos as well as pluripotent mouse and human embryonic stem cells. Hence the molecular process that delineates neural from non-neural ectoderm is conserved across a broad range of organisms in the evolutionary tree. The availability of embryonic stem cells from mouse, primates, and humans will facilitate further understanding of the role of signaling pathways and their downstream mediators in neural induction in vertebrate embryos.
Collapse
Affiliation(s)
- Mohammad Zeeshan Ozair
- Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, NY, USA
| | | | | |
Collapse
|
37
|
Das S, Chang C. Regulation of early xenopus embryogenesis by Smad ubiquitination regulatory factor 2. Dev Dyn 2012; 241:1260-73. [PMID: 22674516 DOI: 10.1002/dvdy.23811] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2012] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Smad ubiquitination regulatory factor (Smurf) 1 and 2 are E3 ubiquitin ligases originally identified as inhibitors of transforming growth factor beta signaling and are shown to modulate multiple cellular activities. The roles of Smurfs in vertebrate embryogenesis, however, are not completely understood. RESULTS Here we investigate the function of Smurf2 during early Xenopus development. We show that distinctly from Smurf1, overexpression of Smurf2 in presumptive mesoderm interfered with mesoderm induction and caused axial defects, whereas knockdown of Smurf2 with antisense morpholino oligonucleotides resulted in expansion of the mesoderm. These results imply that Smurf2 may modulate nodal-mediated mesodermal induction. Consistently, ventral expression of Smurf2 induced a partial secondary axis with head structures. In the ectoderm, Smurf2 resembled Smurf1 in controlling neural and epidermal marker expression and influencing head formation. Smurf1, but not Smurf2, additionally affected neural tube closure. Interestingly, both Smurfs could enhance as well as repress neural crest markers, implying that they modulate their targets dynamically during neural plate border specification. CONCLUSION Our data demonstrate that Smurf1 and Smurf2 have overlapping and distinct functionalities during early frog embryogenesis; collectively, they regulate ectodermal and mesodermal induction and patterning to ensure normal development of Xenopus embryos.
Collapse
Affiliation(s)
- Shaonli Das
- Department of Cell Biology, University of Alabama, Birmingham, Alabama, USA
| | | |
Collapse
|
38
|
Pegoraro C, Monsoro-Burq AH. Signaling and transcriptional regulation in neural crest specification and migration: lessons from xenopus embryos. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:247-59. [PMID: 24009035 DOI: 10.1002/wdev.76] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The neural crest is a population of highly migratory and multipotent cells, which arises from the border of the neural plate in vertebrate embryos. In the last few years, the molecular actors of neural crest early development have been intensively studied, notably by using the frog embryo, as a prime model for the analysis of the earliest embryonic inductions. In addition, tremendous progress has been made in understanding the molecular and cellular basis of Xenopus cranial neural crest migration, by combining in vitro and in vivo analysis. In this review, we examine how the action of previously known neural crest-inducing signals [bone morphogenetic protein (BMP), wingless-int (Wnt), fibroblast growth factor (FGF)] is controlled by newly discovered modulators during early neural plate border patterning and neural crest specification. This regulation controls the induction of key transcription factors that cooperate to pattern the premigratory neural crest progenitors. These data are discussed in the perspective of the gene regulatory network that controls neural and neural crest patterning. We then address recent findings on noncanonical Wnt signaling regulation, cell polarization, and collective cell migration which highlight how cranial neural crest cells populate their target tissue, the branchial arches, in vivo. More than ever, the neural crest stands as a powerful and attractive model to decipher complex vertebrate regulatory circuits in vivo.
Collapse
Affiliation(s)
- Caterina Pegoraro
- Institut Curie, INSERM U1021, CNRS UMR 3347, F-91405 Orsay, France; Université Paris Sud-11, F-91405 Orsay, France
| | | |
Collapse
|
39
|
Benchoua A, Onteniente B. Intracerebral transplantation for neurological disorders. Lessons from developmental, experimental, and clinical studies. Front Cell Neurosci 2012; 6:2. [PMID: 22319470 PMCID: PMC3267364 DOI: 10.3389/fncel.2012.00002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/09/2012] [Indexed: 01/24/2023] Open
Abstract
The use of human pluripotent stem cells (PSCs) for cell therapy faces a number of challenges that are progressively answered by results from clinical trials and experimental research. Among these is the control of differentiation before transplantation and the prediction of cell fate after administration into the human brain, two aspects that condition both the safety and efficacy of the approach. For neurological disorders, this includes two steps: firstly, the identification of the optimal maturation stage for transplantation along the continuum that transforms PSCs into fully differentiated neural cell types, together with the derivation of robust protocols for large-scale production of biological products, and, secondly, the understanding of the effects of environmental cues and their possible interference with transplanted cells commitment. This review will firstly summarize our knowledge on developmental processes that have been applied to achieve robust in vitro differentiation of PSCs into neural progenitors. In a second part, we summarize results from experimental and clinical transplantation studies that help understanding the dialogue that establishes between transplanted cells and their host brain.
Collapse
|
40
|
Milet C, Monsoro-Burq AH. Neural crest induction at the neural plate border in vertebrates. Dev Biol 2012; 366:22-33. [PMID: 22305800 DOI: 10.1016/j.ydbio.2012.01.013] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 01/13/2012] [Indexed: 12/11/2022]
Abstract
The neural crest is a transient and multipotent cell population arising at the edge of the neural plate in vertebrates. Recent findings highlight that neural crest patterning is initiated during gastrulation, i.e. earlier than classically described, in a progenitor domain named the neural border. This chapter reviews the dynamic and complex molecular interactions underlying neural border formation and neural crest emergence.
Collapse
Affiliation(s)
- Cécile Milet
- Institut Curie, INSERM U1021, CNRS, UMR 3347, F-91405 Orsay, France
| | | |
Collapse
|
41
|
Rogers CD, Ferzli GS, Casey ES. The response of early neural genes to FGF signaling or inhibition of BMP indicate the absence of a conserved neural induction module. BMC DEVELOPMENTAL BIOLOGY 2011; 11:74. [PMID: 22172147 PMCID: PMC3271986 DOI: 10.1186/1471-213x-11-74] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 12/15/2011] [Indexed: 01/06/2023]
Abstract
BACKGROUND The molecular mechanism that initiates the formation of the vertebrate central nervous system has long been debated. Studies in Xenopus and mouse demonstrate that inhibition of BMP signaling is sufficient to induce neural tissue in explants or ES cells respectively, whereas studies in chick argue that instructive FGF signaling is also required for the expression of neural genes. Although additional signals may be involved in neural induction and patterning, here we focus on the roles of BMP inhibition and FGF8a. RESULTS To address the question of necessity and sufficiency of BMP inhibition and FGF signaling, we compared the temporal expression of the five earliest genes expressed in the neuroectoderm and determined their requirements for induction at the onset of neural plate formation in Xenopus. Our results demonstrate that the onset and peak of expression of the genes vary and that they have different regulatory requirements and are therefore unlikely to share a conserved neural induction regulatory module. Even though all require inhibition of BMP for expression, some also require FGF signaling; expression of the early-onset pan-neural genes sox2 and foxd5α requires FGF signaling while other early genes, sox3, geminin and zicr1 are induced by BMP inhibition alone. CONCLUSIONS We demonstrate that BMP inhibition and FGF signaling induce neural genes independently of each other. Together our data indicate that although the spatiotemporal expression patterns of early neural genes are similar, the mechanisms involved in their expression are distinct and there are different signaling requirements for the expression of each gene.
Collapse
Affiliation(s)
- Crystal D Rogers
- Department of Biology, Georgetown University, Washington DC, USA
| | - George S Ferzli
- Department of Biology, Georgetown University, Washington DC, USA
| | - Elena S Casey
- Department of Biology, Georgetown University, Washington DC, USA
| |
Collapse
|
42
|
Mesnard D, Donnison M, Fuerer C, Pfeffer PL, Constam DB. The microenvironment patterns the pluripotent mouse epiblast through paracrine Furin and Pace4 proteolytic activities. Genes Dev 2011; 25:1871-80. [PMID: 21896659 DOI: 10.1101/gad.16738711] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The fate of pluripotent cells in early mouse embryos is controlled by graded Nodal signals that are activated by the endoproteases Furin and Pace4. Soluble forms of Furin and Pace4 cleave proNodal in vitro and after secretion in transfected cells, but direct evidence for paracrine activity in vivo is elusive. Here, we show that Furin and Pace4 are released by the extraembryonic microenvironment, and that they cleave a membrane-bound reporter substrate in adjacent epiblast cells and activate Nodal to maintain pluripotency. Secreted Pace4 and Furin also stimulated mesoderm formation, whereas endoderm was only induced by Pace4, correlating with a difference in the spatiotemporal distribution of these proteolytic activities. Our analysis of paracrine Furin and Pace4 activities and their in vivo functions significantly advances our understanding of how the epiblast is patterned by its microenvironment. Adding cell-cell communication to the pleiotropic portfolio of these proteases provides a new framework to study proprotein processing also in other relevant contexts.
Collapse
Affiliation(s)
- Daniel Mesnard
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
43
|
Angerer LM, Yaguchi S, Angerer RC, Burke RD. The evolution of nervous system patterning: insights from sea urchin development. Development 2011; 138:3613-23. [PMID: 21828090 PMCID: PMC3152920 DOI: 10.1242/dev.058172] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent studies of the sea urchin embryo have elucidated the mechanisms that localize and pattern its nervous system. These studies have revealed the presence of two overlapping regions of neurogenic potential at the beginning of embryogenesis, each of which becomes progressively restricted by separate, yet linked, signals, including Wnt and subsequently Nodal and BMP. These signals act to specify and localize the embryonic neural fields - the anterior neuroectoderm and the more posterior ciliary band neuroectoderm - during development. Here, we review these conserved nervous system patterning signals and consider how the relationships between them might have changed during deuterostome evolution.
Collapse
Affiliation(s)
- Lynne M Angerer
- National Institute for Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
44
|
Wu MY, Ramel MC, Howell M, Hill CS. SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos. PLoS Biol 2011; 9:e1000593. [PMID: 21358802 PMCID: PMC3039673 DOI: 10.1371/journal.pbio.1000593] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 12/31/2010] [Indexed: 11/18/2022] Open
Abstract
Bone morphogenetic protein (BMP) gradients provide positional information to direct cell fate specification, such as patterning of the vertebrate ectoderm into neural, neural crest, and epidermal tissues, with precise borders segregating these domains. However, little is known about how BMP activity is regulated spatially and temporally during vertebrate development to contribute to embryonic patterning, and more specifically to neural crest formation. Through a large-scale in vivo functional screen in Xenopus for neural crest fate, we identified an essential regulator of BMP activity, SNW1. SNW1 is a nuclear protein known to regulate gene expression. Using antisense morpholinos to deplete SNW1 protein in both Xenopus and zebrafish embryos, we demonstrate that dorsally expressed SNW1 is required for neural crest specification, and this is independent of mesoderm formation and gastrulation morphogenetic movements. By exploiting a combination of immunostaining for phosphorylated Smad1 in Xenopus embryos and a BMP-dependent reporter transgenic zebrafish line, we show that SNW1 regulates a specific domain of BMP activity in the dorsal ectoderm at the neural plate border at post-gastrula stages. We use double in situ hybridizations and immunofluorescence to show how this domain of BMP activity is spatially positioned relative to the neural crest domain and that of SNW1 expression. Further in vivo and in vitro assays using cell culture and tissue explants allow us to conclude that SNW1 acts upstream of the BMP receptors. Finally, we show that the requirement of SNW1 for neural crest specification is through its ability to regulate BMP activity, as we demonstrate that targeted overexpression of BMP to the neural plate border is sufficient to restore neural crest formation in Xenopus SNW1 morphants. We conclude that through its ability to regulate a specific domain of BMP activity in the vertebrate embryo, SNW1 is a critical regulator of neural plate border formation and thus neural crest specification.
Collapse
Affiliation(s)
- Mary Y. Wu
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, London, United Kingdom
| | - Marie-Christine Ramel
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, London, United Kingdom
| | - Michael Howell
- High-Throughput Screening Facility, Cancer Research UK London Research Institute, London, United Kingdom
| | - Caroline S. Hill
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Saudemont A, Haillot E, Mekpoh F, Bessodes N, Quirin M, Lapraz F, Duboc V, Röttinger E, Range R, Oisel A, Besnardeau L, Wincker P, Lepage T. Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm. PLoS Genet 2010; 6:e1001259. [PMID: 21203442 PMCID: PMC3009687 DOI: 10.1371/journal.pgen.1001259] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Accepted: 11/22/2010] [Indexed: 12/13/2022] Open
Abstract
Echinoderms, which are phylogenetically related to vertebrates and produce large numbers of transparent embryos that can be experimentally manipulated, offer many advantages for the analysis of the gene regulatory networks (GRN) regulating germ layer formation. During development of the sea urchin embryo, the ectoderm is the source of signals that pattern all three germ layers along the dorsal-ventral axis. How this signaling center controls patterning and morphogenesis of the embryo is not understood. Here, we report a large-scale analysis of the GRN deployed in response to the activity of this signaling center in the embryos of the Mediterranean sea urchin Paracentrotus lividus, in which studies with high spatial resolution are possible. By using a combination of in situ hybridization screening, overexpression of mRNA, recombinant ligand treatments, and morpholino-based loss-of-function studies, we identified a cohort of transcription factors and signaling molecules expressed in the ventral ectoderm, dorsal ectoderm, and interposed neurogenic ("ciliary band") region in response to the known key signaling molecules Nodal and BMP2/4 and defined the epistatic relationships between the most important genes. The resultant GRN showed a number of striking features. First, Nodal was found to be essential for the expression of all ventral and dorsal marker genes, and BMP2/4 for all dorsal genes. Second, goosecoid was identified as a central player in a regulatory sub-circuit controlling mouth formation, while tbx2/3 emerged as a critical factor for differentiation of the dorsal ectoderm. Finally, and unexpectedly, a neurogenic ectoderm regulatory circuit characterized by expression of "ciliary band" genes was triggered in the absence of TGF beta signaling. We propose a novel model for ectoderm regionalization, in which neural ectoderm is the default fate in the absence of TGF beta signaling, and suggest that the stomodeal and neural subcircuits that we uncovered may represent ancient regulatory pathways controlling embryonic patterning.
Collapse
Affiliation(s)
- Alexandra Saudemont
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Emmanuel Haillot
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Flavien Mekpoh
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Nathalie Bessodes
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Magali Quirin
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - François Lapraz
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Véronique Duboc
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Eric Röttinger
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Ryan Range
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Arnaud Oisel
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Lydia Besnardeau
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Patrick Wincker
- Génoscope (CEA), UMR8030, CNRS and Université d'Evry, Evry, France
| | - Thierry Lepage
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
- * E-mail:
| |
Collapse
|
46
|
Lim JW, Hummert P, Mills JC, Kroll KL. Geminin cooperates with Polycomb to restrain multi-lineage commitment in the early embryo. Development 2010; 138:33-44. [PMID: 21098561 DOI: 10.1242/dev.059824] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Transient maintenance of a pluripotent embryonic cell population followed by the onset of multi-lineage commitment is a fundamental aspect of development. However, molecular regulation of this transition is not well characterized in vivo. Here, we demonstrate that the nuclear protein Geminin is required to restrain commitment and spatially restrict mesoderm, endoderm and non-neural ectoderm to their proper locations in the Xenopus embryo. We used microarray analyses to demonstrate that Geminin overexpression represses many genes associated with cell commitment and differentiation, while elevating expression levels of genes that maintain pluripotent early and immature neurectodermal cell states. We characterized the relationship of Geminin to cell signaling and found that Geminin broadly represses Activin-, FGF- and BMP-mediated cell commitment. Conversely, Geminin knockdown enhances commitment responses to growth factor signaling and causes ectopic mesodermal, endodermal and epidermal fate commitment in the embryo. We also characterized the functional relationship of Geminin with transcription factors that had similar activities and found that Geminin represses commitment independent of Oct 4 ortholog (Oct25/60) activities, but depends upon intact Polycomb repressor function. Consistent with this, chromatin immunoprecipitation assays directed at mesodermal genes demonstrate that Geminin promotes Polycomb binding and Polycomb-mediated repressive histone modifications, while inhibiting modifications associated with gene activation. This work defines Geminin as an essential regulator of the embryonic transition from pluripotency through early multi-lineage commitment, and demonstrates that functional cooperativity between Geminin and Polycomb contributes to this process.
Collapse
Affiliation(s)
- Jong-Won Lim
- Departments of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO 63110, USA
| | | | | | | |
Collapse
|
47
|
Opposing Nodal/Vg1 and BMP signals mediate axial patterning in embryos of the basal chordate amphioxus. Dev Biol 2010; 344:377-89. [PMID: 20488174 DOI: 10.1016/j.ydbio.2010.05.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Revised: 05/10/2010] [Accepted: 05/11/2010] [Indexed: 12/12/2022]
Abstract
The basal chordate amphioxus resembles vertebrates in having a dorsal, hollow nerve cord, a notochord and somites. However, it lacks extensive gene duplications, and its embryos are small and gastrulate by simple invagination. Here we demonstrate that Nodal/Vg1 signaling acts from early cleavage through the gastrula stage to specify and maintain dorsal/anterior development while, starting at the early gastrula stage, BMP signaling promotes ventral/posterior identity. Knockdown and gain-of-function experiments show that these pathways act in opposition to one another. Signaling by these pathways is modulated by dorsally and/or anteriorly expressed genes including Chordin, Cerberus, and Blimp1. Overexpression and/or reporter assays in Xenopus demonstrate that the functions of these proteins are conserved between amphioxus and vertebrates. Thus, a fundamental genetic mechanism for axial patterning involving opposing Nodal and BMP signaling is present in amphioxus and probably also in the common ancestor of amphioxus and vertebrates or even earlier in deuterostome evolution.
Collapse
|
48
|
Robust Enhancement of Neural Differentiation from Human ES and iPS Cells Regardless of their Innate Difference in Differentiation Propensity. Stem Cell Rev Rep 2010; 6:270-81. [DOI: 10.1007/s12015-010-9138-1] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
49
|
McCullar JS, Ty S, Campbell S, Oesterle EC. Activin potentiates proliferation in mature avian auditory sensory epithelium. J Neurosci 2010; 30:478-90. [PMID: 20071511 PMCID: PMC2975606 DOI: 10.1523/jneurosci.5154-09.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 11/12/2009] [Indexed: 01/17/2023] Open
Abstract
Humans and other mammals are highly susceptible to permanent hearing and balance deficits due to an inability to regenerate sensory hair cells lost to inner ear trauma. In contrast, nonmammalian vertebrates, such as birds, robustly regenerate replacement hair cells and restore hearing and balance functions to near-normal levels. There is considerable interest in understanding the cellular mechanisms responsible for this difference in regenerative capacity. Here we report on involvement of the TGFbeta superfamily type II activin receptors, Acvr2a and Acvr2b, in regulating proliferation in mature avian auditory sensory epithelium. Cultured, posthatch avian auditory sensory epithelium treated with Acvr2a and Acvr2b inhibitors shows decreased proliferation of support cells, the cell type that gives rise to new hair cells. Conversely, addition of activin A, an Acvr2a/b ligand, potentiates support cell proliferation. Neither treatment (inhibitor or ligand) affected hair cell survival, suggesting a specific effect of Acvr2a/b signaling on support cell mitogenicity. Using immunocytochemistry, Acvr2a, Acvr2b, and downstream Smad effector proteins were differentially localized in avian and mammalian auditory sensory epithelia. Collectively, these data suggest that signaling through Acvr2a/b promotes support cell proliferation in mature avian auditory sensory epithelium and that this signaling pathway may be incomplete, or actively blocked, in the adult mammalian ear.
Collapse
Affiliation(s)
- Jennifer S. McCullar
- Department of Otolaryngology-Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington 98195-7923
| | - Sidya Ty
- Department of Otolaryngology-Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington 98195-7923
| | - Sean Campbell
- Department of Otolaryngology-Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington 98195-7923
| | - Elizabeth C. Oesterle
- Department of Otolaryngology-Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington 98195-7923
| |
Collapse
|
50
|
Wills AE, Choi VM, Bennett MJ, Khokha MK, Harland RM. BMP antagonists and FGF signaling contribute to different domains of the neural plate in Xenopus. Dev Biol 2009; 337:335-50. [PMID: 19913009 DOI: 10.1016/j.ydbio.2009.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 10/29/2009] [Accepted: 11/03/2009] [Indexed: 01/30/2023]
Abstract
In ectodermal explants from Xenopus embryos, inhibition of BMP signaling is sufficient for neural induction, leading to the idea that neural fate is the default state in the ectoderm. Many of these experiments assayed the action of BMP antagonists on animal caps, which are relatively naïve explants of prospective ectoderm, and different results have led to debate regarding both the mechanism of neural induction and the appropriateness of animal caps as an assay system. Here we address whether BMP antagonists are only able to induce neural fates in pre-patterned explants, and the extent to which neural induction requires FGF signaling. We suggest that some discrepancies in conclusion depend on the interpretations of sox gene expression, which we show not only marks definitive neural tissue, but also tissue that is not yet committed to neural fates. Part of the early sox2 domain requires FGF signaling, but in the absence of organizer signaling, this domain reverts to epidermal fates. We also reinforce the evidence that ectodermal explants are naïve, and that explants that lack any dorsal prepattern are readily neuralized by BMP antagonists, even when FGF signaling is inhibited.
Collapse
Affiliation(s)
- Andrea E Wills
- Department of Molecular and Cell Biology and Center for Integrative Genomics, University of California, Berkeley, CA 94720-3200, USA
| | | | | | | | | |
Collapse
|