1
|
Rock AQ, Srivastava M. Totipotency and high plasticity in an embryo with a stereotyped, invariant cleavage program. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637942. [PMID: 39990477 PMCID: PMC11844520 DOI: 10.1101/2025.02.12.637942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Animal embryos begin as totipotent zygotes, which undergo cell divisions and produce progeny with restricted fate potentials over time. However, the timing of when totipotency is lost and the processes through which embryonic cells acquire fates vary across species. Embryos with invariant cleavage programs, e.g. of nematodes and spiralians, tend to show early restriction of blastomere potency and limited robustness to perturbation, particularly after asymmetric cleavages have occurred. In contrast, embryos with variant cleavage programs, e.g. of vertebrates, tend to specify fates later in development and correspondingly show higher plasticity at early stages. Here, we investigate the embryos of the acoel Hofstenia miamia , which represents an understudied phylum (Xenacoelomorpha) that is distantly related to well-studied developmental systems. Given the invariant 'duet' cleavage program observed in H. miamia embryos, we found unexpected robustness in this species. Isolated 4-cell stage macromeres, the products of an asymmetric, fate specifying cleavage, were totipotent, forming whole organisms upon isolation. Notably, these isolated macromeres produced pharyngeal and neuronal tissues, which they do not produce during normal development. This assay is highly reproducible and can be done at high throughput in H. miamia , making this species an ideal system to investigate the causes of totipotency after specification. Photoconversion-based lineage tracing revealed that rescued cell types are not merely replaced by neoblasts, the adult pluripotent stem cells in H. miamia , suggesting that the macromere's totipotency is the result of changes in the fate potentials of early embryonic cells. Remarkably, all blastomeres at the 8-cell stage were capable of reprogramming their fates in embryo reconstitution assays. By assembling different subsets of 8-cell stage blastomeres, none of which are totipotent on their own, we determined that a minimal unit of two blastomeres, one macromere that produces gut and neoblasts and one micromere that is specified to produce muscle and epidermis, was sufficient to develop into a hatchling worm. Future studies of this system could identify the precise mechanisms that can enable tremendous plasticity, including post-zygotic totipotency, in an embryo with well-defined cellular lineages.
Collapse
|
2
|
Hudson C, Yasuo H. Neuromesodermal Lineage Contribution to CNS Development in Invertebrate and Vertebrate Chordates. Genes (Basel) 2021; 12:genes12040592. [PMID: 33920662 PMCID: PMC8073528 DOI: 10.3390/genes12040592] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Ascidians are invertebrate chordates and the closest living relative to vertebrates. In ascidian embryos a large part of the central nervous system arises from cells associated with mesoderm rather than ectoderm lineages. This seems at odds with the traditional view of vertebrate nervous system development which was thought to be induced from ectoderm cells, initially with anterior character and later transformed by posteriorizing signals, to generate the entire anterior-posterior axis of the central nervous system. Recent advances in vertebrate developmental biology, however, show that much of the posterior central nervous system, or spinal cord, in fact arises from cells that share a common origin with mesoderm. This indicates a conserved role for bi-potential neuromesoderm precursors in chordate CNS formation. However, the boundary between neural tissue arising from these distinct neural lineages does not appear to be fixed, which leads to the notion that anterior-posterior patterning and neural fate formation can evolve independently.
Collapse
|
3
|
Zheng T, Nakamoto A, Kumano G. H3K27me3 suppresses sister-lineage somatic gene expression in late embryonic germline cells of the ascidian, Halocynthia roretzi. Dev Biol 2020; 460:200-214. [PMID: 31904374 DOI: 10.1016/j.ydbio.2019.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/21/2019] [Accepted: 12/29/2019] [Indexed: 10/25/2022]
Abstract
Protection of the germline from somatic differentiation programs is crucial for germ cell development. In many animals, whose germline development relies on the maternally inherited germ plasm, such protection in particular at early stages of embryogenesis is achieved by maternally localized global transcriptional repressors, such as PIE-1 of Caenorhabditis elegans, Pgc of Drosophila melanogaster and Pem of ascidians. However, zygotic gene expression starts in later germline cells eventually and mechanisms by which somatic gene expression is selectively kept under repression in the transcriptionally active cells are poorly understood. By using the ascidian species Halocynthia roretzi, we found that H3K27me3, a repressive transcription-related chromatin mark, became enriched in germline cells starting at the 64-cell stage when Pem protein level and its contribution to transcriptional repression decrease. Interestingly, inhibition of H3K27me3 together with Pem knockdown resulted in ectopic expression in germline cells of muscle developmental genes Muscle actin (MA4) and Snail, and of Clone 22 (which is expressed in all somatic but not germline cells), but not of other tissue-specific genes such as the notochord gene Brachyury, the nerve cord marker ETR-1 and a heart precursor gene Mesp, at the 110-cell stage. Importantly, these ectopically expressed genes are normally expressed in the germline sister cells (B7.5), the last somatic lineage separated from the germline. Also, the ectopic expression of MA4 was dependent on a maternally localized muscle determinant Macho-1. Taken together, we propose that H3K27me3 may be responsible for selective transcriptional repression for somatic genes in later germline cells in Halocynthia embryos and that the preferential repression of germline sister-lineage genes may be related to the mechanism of germline segregation in ascidian embryos, where the germline is segregated progressively by successive asymmetric cell divisions during cell cleavage stages. Together with findings from C. elegans and D. melanogaster, our data for this urochordate animal support the proposal for a mechanism, conserved widely throughout the animal kingdom, where germline transcriptional repression is mediated initially by maternally localized factors and subsequently by a chromatin-based mechanism.
Collapse
Affiliation(s)
- Tao Zheng
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Japan.
| | - Ayaki Nakamoto
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Japan
| | - Gaku Kumano
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Japan
| |
Collapse
|
4
|
Prünster MM, Ricci L, Brown FD, Tiozzo S. Modular co-option of cardiopharyngeal genes during non-embryonic myogenesis. EvoDevo 2019; 10:3. [PMID: 30867897 PMCID: PMC6399929 DOI: 10.1186/s13227-019-0116-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/15/2019] [Indexed: 01/03/2023] Open
Abstract
Background In chordates, cardiac and body muscles arise from different embryonic origins. In addition, myogenesis can be triggered in adult organisms, during asexual development or regeneration. In non-vertebrate chordates like ascidians, muscles originate from embryonic precursors regulated by a conserved set of genes that orchestrate cell behavior and dynamics during development. In colonial ascidians, besides embryogenesis and metamorphosis, an adult can propagate asexually via blastogenesis, skipping embryo and larval stages, and form anew the adult body, including the complete body musculature. Results To investigate the cellular origin and mechanisms that trigger non-embryonic myogenesis, we followed the expression of ascidian myogenic genes during Botryllus schlosseri blastogenesis and reconstructed the dynamics of muscle precursors. Based on the expression dynamics of Tbx1/10, Ebf, Mrf, Myh3 for body wall and of FoxF, Tbx1/10, Nk4, Myh2 for heart development, we show that the embryonic factors regulating myogenesis are only partially co-opted in blastogenesis, and that markers for muscle precursors are expressed in two separate domains: the dorsal tube and the ventral mesenchyma. Conclusions Regardless of the developmental pathway, non-embryonic myogenesis shares a similar molecular and anatomical setup as embryonic myogenesis, but implements a co-option and loss of molecular modules. We then propose that the cellular precursors contributing to heart and body muscles may have different origins and may be coordinated by different developmental pathways. Electronic supplementary material The online version of this article (10.1186/s13227-019-0116-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Mandela Prünster
- 1Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), CNRS, Sorbonne Université, 06230 Villefranche sur Mer, France
| | - Lorenzo Ricci
- 1Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), CNRS, Sorbonne Université, 06230 Villefranche sur Mer, France.,2Department of Organismic and Evolutionary Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138 USA
| | - Federico D Brown
- 3Departamento de Zoologia, Instituto Biociências, Universidade de São Paulo, São Paulo, SP CEP 05508-090 Brazil.,4Centro de Biologia Marinha (CEBIMar), Universidade de São Paulo, São Sebastião, SP CEP 11612-109 Brazil
| | - Stefano Tiozzo
- 1Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), CNRS, Sorbonne Université, 06230 Villefranche sur Mer, France
| |
Collapse
|
5
|
Initiation of the zygotic genetic program in the ascidian embryo. Semin Cell Dev Biol 2018; 84:111-117. [DOI: 10.1016/j.semcdb.2018.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 12/26/2022]
|
6
|
Abstract
Ascidians are tunicates, which constitute the sister group of vertebrates. The ascidian genome contains two Zic genes, called Zic-r.a (also called Macho-1) and Zic-r.b (ZicL). The latter is a multi-copy gene, and the precise copy number has not yet been determined. Zic-r.a is maternally expressed, and soon after fertilization Zic-r.a mRNA is localized in the posterior pole of the zygote. Zic-r.a protein is translated there and is involved in specification of posterior fate; in particular it is important for specification of muscle fate. Zic-r.a is also expressed zygotically in neural cells of the tailbud stage. On the other hand, Zic-r.b is first expressed in marginal cells of the vegetal hemisphere of 32-cell embryos and then in neural cells that contribute to the central nervous system during gastrulation. Zic-r.b is required first for specification of mesodermal tissues and then for specification of the central nervous system. Their upstream and downstream genetic pathways have been studied extensively by functional assays, which include gene knockdown and chromatin immunoprecipitation assays. Thus, ascidian Zic genes play central roles in specification of mesodermal and neural fates.
Collapse
Affiliation(s)
- Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan.
| | - Kaoru S Imai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
7
|
Tokuoka M, Kobayashi K, Satou Y. Distinct regulation of Snail in two muscle lineages of the ascidian embryo achieves temporal coordination of muscle development. Development 2018; 145:dev.163915. [PMID: 29764858 DOI: 10.1242/dev.163915] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 05/03/2018] [Indexed: 01/29/2023]
Abstract
The transcriptional repressor Snail is required for proper differentiation of the tail muscle of ascidian tadpole larvae. Two muscle lineages (B5.1 and B6.4) contribute to the anterior tail muscle cells, and are consecutively separated from a transcriptionally quiescent germ cell lineage at the 16- and 32-cell stages. Concomitantly, cells of these lineages begin to express Tbx6.b (Tbx6-r.b) at the 16- and 32-cell stages, respectively. Meanwhile, Snail expression begins in these two lineages simultaneously at the 32-cell stage. Here, we show that Snail expression is regulated differently between these two lineages. In the B5.1 lineage, Snail was activated through Tbx6.b, which is activated by maternal factors, including Zic-r.a. In the B6.4 lineage, the MAPK pathway was cell-autonomously activated by a constitutively active form of Raf, enabling Zic-r.a to activate Snail independently of Tbx6.b As a result, Snail begins to be expressed at the 32-cell stage simultaneously in these two lineages. Such shortcuts might be required for coordinating developmental programs in embryos in which cells become separated progressively from stem cells, including germline cells.
Collapse
Affiliation(s)
- Miki Tokuoka
- Department of Zoology, Graduate School of Science, Kyoto University Sakyo, Kyoto, 606-8502, Japan
| | - Kenji Kobayashi
- Department of Zoology, Graduate School of Science, Kyoto University Sakyo, Kyoto, 606-8502, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University Sakyo, Kyoto, 606-8502, Japan
| |
Collapse
|
8
|
Control of Pem protein level by localized maternal factors for transcriptional regulation in the germline of the ascidian, Halocynthia roretzi. PLoS One 2018; 13:e0196500. [PMID: 29709000 PMCID: PMC5927453 DOI: 10.1371/journal.pone.0196500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/13/2018] [Indexed: 12/04/2022] Open
Abstract
Localized maternal mRNAs play important roles in embryogenesis, e.g. the establishment of embryonic axes and the developmental cell fate specification, in various animal species. In ascidians, a group of maternal mRNAs, called postplasmic/PEM RNAs, is localized to a subcellular structure, called the Centrosome-Attracting Body (CAB), which contains the ascidian germ plasm, and is inherited by the germline cells during embryogenesis. Posterior end mark (Pem), a postplasmic/PEM RNAs member, represses somatic gene expression in the germline during cleavage stages by inhibition of RNA polymerase II activity. However, the functions of other postplasmic/ PEM RNAs members in germline formation are largely unknown. In this study, we analyzed the functions of two postplasmic/PEM RNAs, Popk-1 and Zf-1, in transcriptional regulation in the germline cells. We show that Popk-1 contributes to transcriptional quiescence by controlling the size of the CAB and amount of Pem protein translated at the CAB. Our studies also indicated that zygotic expression of a germline gene starts around the onset of gastrulation and that the decrease of Pem protein is necessary and sufficient for the zygotic germline gene expression. Finally, further studies showed that the decrease of the Pem protein level is facilitated by Zf-1. Taken together, we propose that postplasmic/PEM RNAs such as Popk-1 and Zf-1 control the protein level of the transcriptional repressor Pem and regulate its transcriptional state in the ascidian germline.
Collapse
|
9
|
Kumano G. Microinjection of Exogenous DNA into Eggs of Halocynthia roretzi. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 29542078 DOI: 10.1007/978-981-10-7545-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Exogenous gene expression assays during development, including reporters under the control of 5' upstream enhancer regions of genes, constitute a powerful technique for understanding the mechanisms of tissue-specific gene expression regulation and determining the characteristics, behaviors, and functions of cells that express these genes. The simple marine chordate Halocynthia roretzi has been used for these transgenic analyses for a long time and is an excellent model system for such studies, especially in comparative analyses with other ascidians. In this study, I describe simple methods for microinjecting H. roretzi eggs with exogenous DNA, such as a promoter construct consisting of a 5' upstream region and a reporter gene, which are prerequisites for transgenic analyses. I also describe basic knowledge regarding this ascidian species, providing reasons why it is an ideal subject for developmental biology studies.
Collapse
Affiliation(s)
- Gaku Kumano
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Asamushi, Aomori, Japan.
| |
Collapse
|
10
|
Kodama H, Miyata Y, Kuwajima M, Izuchi R, Kobayashi A, Gyoja F, Onuma TA, Kumano G, Nishida H. Redundant mechanisms are involved in suppression of default cell fates during embryonic mesenchyme and notochord induction in ascidians. Dev Biol 2016; 416:162-172. [PMID: 27265866 DOI: 10.1016/j.ydbio.2016.05.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/28/2016] [Accepted: 05/30/2016] [Indexed: 11/30/2022]
Abstract
During embryonic induction, the responding cells invoke an induced developmental program, whereas in the absence of an inducing signal, they assume a default uninduced cell fate. Suppression of the default fate during the inductive event is crucial for choice of the binary cell fate. In contrast to the mechanisms that promote an induced cell fate, those that suppress the default fate have been overlooked. Upon induction, intracellular signal transduction results in activation of genes encoding key transcription factors for induced tissue differentiation. It is elusive whether an induced key transcription factor has dual functions involving suppression of the default fates and promotion of the induced fate, or whether suppression of the default fate is independently regulated by other factors that are also downstream of the signaling cascade. We show that during ascidian embryonic induction, default fates were suppressed by multifold redundant mechanisms. The key transcription factor, Twist-related.a, which is required for mesenchyme differentiation, and another independent transcription factor, Lhx3, which is dispensable for mesenchyme differentiation, sequentially and redundantly suppress the default muscle fate in induced mesenchyme cells. Similarly in notochord induction, Brachyury, which is required for notochord differentiation, and other factors, Lhx3 and Mnx, are likely to suppress the default nerve cord fate redundantly. Lhx3 commonly suppresses the default fates in two kinds of induction. Mis-activation of the autonomously executed default program in induced cells is detrimental to choice of the binary cell fate. Multifold redundant mechanisms would be required for suppression of the default fate to be secure.
Collapse
Affiliation(s)
- Hitoshi Kodama
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yoshimasa Miyata
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Mami Kuwajima
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Ryoichi Izuchi
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Ayumi Kobayashi
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Fuki Gyoja
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Takeshi A Onuma
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
11
|
Varela N, Aranguiz A, Lizama C, Sepulveda H, Antonelli M, Thaler R, Moreno RD, Montecino M, Stein GS, van Wijnen AJ, Galindo M. Mitotic Inheritance of mRNA Facilitates Translational Activation of the Osteogenic-Lineage Commitment Factor Runx2 in Progeny of Osteoblastic Cells. J Cell Physiol 2016; 231:1001-14. [PMID: 26381402 PMCID: PMC5812339 DOI: 10.1002/jcp.25188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 12/24/2022]
Abstract
Epigenetic mechanisms mediate the acquisition of specialized cellular phenotypes during tissue development, maintenance and repair. When phenotype-committed cells transit through mitosis, chromosomal condensation counteracts epigenetic activation of gene expression. Subsequent post-mitotic re-activation of transcription depends on epigenetic DNA and histone modifications, as well as other architecturally bound proteins that "bookmark" the genome. Osteogenic lineage commitment, differentiation and progenitor proliferation require the bone-related runt-related transcription factor Runx2. Here, we characterized a non-genomic mRNA mediated mechanism by which osteoblast precursors retain their phenotype during self-renewal. We show that osteoblasts produce maximal levels of Runx2 mRNA, but not protein, prior to mitotic cell division. Runx2 mRNA partitions symmetrically between daughter cells in a non-chromosomal tubulin-containing compartment. Subsequently, transcription-independent de novo synthesis of Runx2 protein in early G1 phase results in increased functional interactions of Runx2 with a representative osteoblast-specific target gene (osteocalcin/BGLAP2) in chromatin. Somatic transmission of Runx2 mRNAs in osteoblasts and osteosarcoma cells represents a versatile mechanism for translational rather than transcriptional induction of this principal gene regulator to maintain osteoblast phenotype identity after mitosis.
Collapse
Affiliation(s)
- Nelson Varela
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile
| | - Alejandra Aranguiz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile
| | - Carlos Lizama
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo Sepulveda
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Marcelo Antonelli
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Roman Thaler
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street S.W., MSB 3-69, Rochester, MN 55905
| | - Ricardo D. Moreno
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martin Montecino
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Gary S. Stein
- Department of Biochemistry, HSRF 326, Vermont Cancer Center for Basic and Translational Research, University of Vermont Medical School, Burlington, VT
| | - Andre J. van Wijnen
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street S.W., MSB 3-69, Rochester, MN 55905
| | - Mario Galindo
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile
| |
Collapse
|
12
|
Rondeau G, Abedinpour P, Desai P, Baron VT, Borgstrom P, Welsh J. Effects of different tissue microenvironments on gene expression in breast cancer cells. PLoS One 2014; 9:e101160. [PMID: 25004123 PMCID: PMC4086928 DOI: 10.1371/journal.pone.0101160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/02/2014] [Indexed: 01/01/2023] Open
Abstract
In metastasis, circulating tumor cells penetrate the walls of blood vessels and enter the metastatic target tissue, thereby becoming exposed to novel and relatively unsupportive microenvironments. In the new microenvironments, the tumor cells often remain in a dormant state indefinitely and must adapt before they are able to successfully colonize the tissue. Very little is known about this adaptive process. We studied temporal changes in gene expression when breast cancer cells adapt to survive and grow on brain, bone marrow, and lung tissue maintained in an in vivo culture system, as models of the metastatic colonization of these tissues. We observed the transient activation of genes typically associated with homeostasis and stress during the initial stages of adaptation, followed by the activation of genes that mediate more advanced functions, such as elaboration of cell morphology and cell division, as the cells adapted to thrive in the host tissue microenvironment. We also observed the temporary induction of genes characteristic of the host tissue, which was particularly evident when tumor cells were grown on brain tissue. These early transient gene expression events suggest potential points of therapeutic intervention that are not evident in data from well-established tumors.
Collapse
Affiliation(s)
- Gaelle Rondeau
- Vaccine Research Institute of San Diego, San Diego, California, United States of America
| | - Parisa Abedinpour
- Vaccine Research Institute of San Diego, San Diego, California, United States of America
| | - Prerak Desai
- Vaccine Research Institute of San Diego, San Diego, California, United States of America
| | - Veronique T. Baron
- Vaccine Research Institute of San Diego, San Diego, California, United States of America
| | - Per Borgstrom
- Vaccine Research Institute of San Diego, San Diego, California, United States of America
| | - John Welsh
- Vaccine Research Institute of San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Kumano G, Negoro N, Nishida H. Transcription factor Tbx6 plays a central role in fate determination between mesenchyme and muscle in embryos of the ascidian,Halocynthia roretzi. Dev Growth Differ 2014; 56:310-22. [DOI: 10.1111/dgd.12133] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/09/2014] [Accepted: 03/12/2014] [Indexed: 01/27/2023]
Affiliation(s)
- Gaku Kumano
- Asamushi Research Center for Marine Biology; Graduate School of Life Science; Tohoku University; 9 Sakamoto Asamushi Aomori 039-3501 Japan
| | - Nobue Negoro
- Department of Biological Sciences; Graduate School of Science; Osaka University; 1-1 Machikaneyama-cho Toyonaka Osaka 560-0043 Japan
| | - Hiroki Nishida
- Department of Biological Sciences; Graduate School of Science; Osaka University; 1-1 Machikaneyama-cho Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
14
|
Ogura Y, Sasakura Y. Ascidians as excellent models for studying cellular events in the chordate body plan. THE BIOLOGICAL BULLETIN 2013; 224:227-236. [PMID: 23995746 DOI: 10.1086/bblv224n3p227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The larvae of non-vertebrate chordate ascidians consist of countable numbers of cells. With this feature, ascidians provide us with excellent models for studying cellular events in the construction of the chordate body. This review discusses the recent observations of morphogenetic movements and cell cycles and divisions along with tissue specifications during ascidian embryogenesis. Unequal cleavages take place at the posterior blastomeres during the early cleavage stages of ascidians, and the structure named the centrosome-attracting body restricts the position of the nuclei near the posterior pole to achieve the unequal cleavages. The most-posterior cells differentiate into the primordial germ cells. The gastrulation of ascidians starts as early as the 110-cell stage. During gastrulation, the endodermal cells show two-step changes in cell shape that are crucial for gastrulation. The ascidian notochord is composed of only 40 cells. The 40 cells align to form a single row by an event named the convergent extension, and then the notochord cells undergo vacuolation to transform the notochord into a single hollowed tube. The strictly restricted number of notochord cells is achieved by the regulated number of cell divisions coupled with the differentiation of the cells conducted by a key transcription factor, Brachyury. The dorsally located neural tube is a characteristic of chordates. During the closure of the ascidian neural tube, the epidermis surrounding the neural plate moves toward the midline to close the neural fold. This morphogenetic movement is allowed by an elongation of interphase in the epidermal cell cycles.
Collapse
Affiliation(s)
- Yosuke Ogura
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | | |
Collapse
|
15
|
Makabe KW, Nishida H. Cytoplasmic localization and reorganization in ascidian eggs: role of postplasmic/PEM RNAs in axis formation and fate determination. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:501-18. [PMID: 23801532 DOI: 10.1002/wdev.54] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Localization of maternal molecules in eggs and embryos and cytoplasmic movements to relocalize them are fundamental for the orderly cellular and genetic processes during early embryogenesis. Ascidian embryos have been known as 'mosaic eggs' because of their autonomous differentiation abilities based on localized cell fate determinants. This review gives a historical overview of the concept of cytoplasmic localization, and then explains the key features such as ooplasmic movements and cell lineages that are essential to grasp the process of ascidian development mediated by localized determinant activities. These activities are partly executed by localized molecules named postplasmic/PEM RNAs, originating from approximately 50 genes, of which the muscle determinant, macho-1, is an example. The cortical domain containing these RNAs is relocalized to the posterior-vegetal region of the egg by cytoskeletal movements after fertilization, and plays crucial roles in axis formation and cell fate determination. The cortical domain contains endoplasmic reticulum and characteristic granules, and gives rise to a subcellular structure called the centrosome-attracting body (CAB), in which postplasmic/PEM RNAs are highly concentrated. The CAB is responsible for a series of unequal partitionings of the posterior-vegetal cytoplasmic domain and the postplasmic/PEM RNAs at the posterior pole during cleavage. Some components of this domain, which is rich in granules, are eventually inherited by prospective germline cells with particular postplasmic/PEM RNAs such as vasa. The postplasmic/PEM RNAs are classified into two groups according to their final cellular destinations and localization pathways. Localization of these RNAs is regulated by specific nucleotide sequences in the 3' untranslated regions (3'UTRs).
Collapse
Affiliation(s)
- Kazuhiro W Makabe
- Institute of Socio-Arts and Sciences, University of Tokushima, Tokushima, Japan
| | | |
Collapse
|
16
|
Wang YB, Chen SH, Lin CY, Yu JK. EST and transcriptome analysis of cephalochordate amphioxus--past, present and future. Brief Funct Genomics 2012; 11:96-106. [PMID: 22308056 DOI: 10.1093/bfgp/els002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cephalochordates, commonly known as amphioxus or lancelets, are now considered the most basal chordate group, and the studies of these organisms therefore offer important insights into various levels of evolutionary biology. In the past two decades, the investigation of amphioxus developmental biology has provided key knowledge for understanding the basic patterning mechanisms of chordates. Comparative genome studies of vertebrates and amphioxus have uncovered clear evidence supporting the hypothesis of two-round whole-genome duplication thought to have occurred early in vertebrate evolution and have shed light on the evolution of morphological novelties in the complex vertebrate body plan. Complementary to the amphioxus genome-sequencing project, a large collection of expressed sequence tags (ESTs) has been generated for amphioxus in recent years; this valuable collection represents a rich resource for gene discovery, expression profiling and molecular developmental studies in the amphioxus model. Here, we review previous EST analyses and available cDNA resources in amphioxus and discuss their value for use in evolutionary and developmental studies. We also discuss the potential advantages of applying high-throughput, next-generation sequencing (NGS) technologies to the field of amphioxus research.
Collapse
Affiliation(s)
- Yu-Bin Wang
- Institute of Information Science, Academia Sinica, College of Life Science, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
17
|
Nishida H. The maternal muscle determinant in the ascidian egg. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:425-33. [DOI: 10.1002/wdev.22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Chen JS, Pedro MS, Zeller RW. miR-124 function during Ciona intestinalis neuronal development includes extensive interaction with the Notch signaling pathway. Development 2011; 138:4943-53. [DOI: 10.1242/dev.068049] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nervous system-enriched microRNA miR-124 is necessary for proper nervous system development, although the mechanism remains poorly understood. Here, through a comprehensive analysis of miR-124 and its gene targets, we demonstrate that, in the chordate ascidian Ciona intestinalis, miR-124 plays an extensive role in promoting nervous system development. We discovered that feedback interaction between miR-124 and Notch signaling regulates the epidermal-peripheral nervous system (PNS) fate choice in tail midline cells. Notch signaling silences miR-124 in epidermal midline cells, whereas in PNS midline cells miR-124 silences Notch, Neuralized and all three Ciona Hairy/Enhancer-of-Split genes. Furthermore, ectopic expression of miR-124 is sufficient to convert epidermal midline cells into PNS neurons, consistent with a role in modulating Notch signaling. More broadly, genome-wide target extraction with validation using an in vivo tissue-specific sensor assay indicates that miR-124 shapes neuronal progenitor fields by downregulating non-neural genes, notably the muscle specifier Macho-1 and 50 Brachyury-regulated notochord genes, as well as several anti-neural factors including SCP1 and PTBP1. 3′UTR conservation analysis reveals that miR-124 targeting of SCP1 is likely to have arisen as a shared, derived trait in the vertebrate/tunicate ancestor and targeting of PTBP1 is conserved among bilaterians except for ecdysozoans, while extensive Notch pathway targeting appears to be Ciona specific. Altogether, our results provide a comprehensive insight into the specific mechanisms by which miR-124 promotes neuronal development.
Collapse
Affiliation(s)
- Jerry S. Chen
- Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Matthew San Pedro
- Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Robert W. Zeller
- Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
- Center for Applied and Experimental Genomics, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| |
Collapse
|
19
|
Hashimoto H, Enomoto T, Kumano G, Nishida H. The transcription factor FoxB mediates temporal loss of cellular competence for notochord induction in ascidian embryos. Development 2011; 138:2591-600. [DOI: 10.1242/dev.053082] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In embryos of the ascidian Halocynthia roretzi, the competence of isolated presumptive notochord blastomeres to respond to fibroblast growth factor (FGF) for induction of the primary notochord decays by 1 hour after cleavage from the 32- to 64-cell stage. This study analyzes the molecular mechanisms responsible for this loss of competence and provides evidence for a novel mechanism. A forkhead family transcription factor, FoxB, plays a role in competence decay by preventing the induction of notochord-specific Brachyury (Bra) gene expression by the FGF/MAPK signaling pathway. Unlike the mechanisms reported previously in other animals, no component in the FGF signal transduction cascade appeared to be lost or inactivated at the time of competence loss. Knockdown of FoxB functions allowed the isolated cells to retain their competence for a longer period, and to respond to FGF with expression of Bra beyond the stage at which competence was normally lost. FoxB acts as a transcription repressor by directly binding to the cis-regulatory element of the Bra gene. Our results suggest that FoxB prevents ectopic induction of the notochord fate within the cells that assume a default nerve cord fate, after the stage when notochord induction has been completed. The merit of this system is that embryos can use the same FGF signaling cascade again for another purpose in the same cell lineage at later stages by keeping the signaling cascade itself available. Temporally and spatially regulated FoxB expression in nerve cord cells was promoted by the ZicN transcription factor and absence of FGF/MAPK signaling.
Collapse
Affiliation(s)
- Hidehiko Hashimoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043, Osaka, Japan
| | - Takashi Enomoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043, Osaka, Japan
| | - Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043, Osaka, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043, Osaka, Japan
| |
Collapse
|
20
|
Fujikawa T, Takatori N, Kuwajima M, Kim GJ, Nishida H. Tissue-specific regulation of the number of cell division rounds by inductive cell interaction and transcription factors during ascidian embryogenesis. Dev Biol 2011; 355:313-23. [PMID: 21575623 DOI: 10.1016/j.ydbio.2011.04.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 04/06/2011] [Accepted: 04/28/2011] [Indexed: 11/16/2022]
Abstract
Mechanisms that regulate the number of cells constituting the body have remained largely elusive. We approached this issue in the ascidian, Halocynthia roretzi, which develops into a tadpole larva with a small number of cells. The embryonic cells divide 11 times on average from fertilization to hatching. The number of cell division rounds varies among tissue types. For example, notochord cells divide 9 times and give rise to large postmitotic cells in the tadpole. The number of cell division rounds in partial embryos derived from tissue-precursor blastomeres isolated at the 64-cell stage also varied between tissues and coincided with their counterparts in the intact whole embryos to some extent, suggesting tissue-autonomous regulation of cell division. Manipulation of cell fates in notochord, nerve cord, muscle, and mesenchyme lineage cells by inhibition or ectopic activation of the inductive FGF signal changed the number of cell divisions according to the altered fate. Knockdown and missexpression of Brachyury (Bra), an FGF-induced notochord-specific key transcription factor for notochord differentiation, indicated that Bra is also responsible for regulation of the number of cell division rounds, suggesting that Bra activates a putative mechanism to halt cell division at a specific stage. The outcome of precocious expression of Bra suggests that the mechanism involves a putative developmental clock that is likely shared in blastomeres other than those of notochord and functions to terminate cell division at three rounds after the 64-cell stage. Precocious expression of Bra has no effect on progression of the developmental clock itself.
Collapse
Affiliation(s)
- Tetsuya Fujikawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | |
Collapse
|
21
|
Kumano G, Kawai N, Nishida H. Macho-1 regulates unequal cell divisions independently of its function as a muscle determinant. Dev Biol 2010; 344:284-92. [PMID: 20478299 DOI: 10.1016/j.ydbio.2010.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 03/30/2010] [Accepted: 05/08/2010] [Indexed: 02/05/2023]
Abstract
The anterior-posterior (A-P) axis in ascidian embryos is established through the posteriorizing activities of a localized egg region known as the posterior vegetal cortex/cytoplasm (PVC). Here we describe a novel function of macho-1, a maternally-localized muscle determinant, in establishment of the A-P axis in the Halocynthia roretzi embryo. Macho-1, in addition to its known function in the formation of posterior tissue such as muscle and mesenchyme, and suppression of the anterior-derived notochord fate, acts independently of its transcriptional activity as a regulator of posterior-specific unequal cell divisions, in cooperation with beta-catenin. Our results suggest that macho-1 and beta-catenin regulate the formation of a microtubule bundle that shortens and pulls the centrosome toward a sub-cellular cortical structure known as centrosome-attracting body (CAB), which is located at the posterior pole of the embryo during unequal cell divisions, and act upstream of PEM, a recently-identified regulator of unequal cell divisions. We also present data that suggest that PEM localization to the CAB may not be required for unequal cleavage regulation. The present study provides an important and novel insight into the role of the zinc-finger-containing transcription factor and indicates that it constitutes a major part of the PVC activity.
Collapse
Affiliation(s)
- Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | | | | |
Collapse
|
22
|
Noda T, Hamada M, Hamaguchi M, Fujie M, Satoh N. Early zygotic expression of transcription factors and signal molecules in fully dissociated embryonic cells of Ciona intestinalis: A microarray analysis. Dev Growth Differ 2009; 51:639-55. [PMID: 19712267 DOI: 10.1111/j.1440-169x.2009.01124.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Specification of early embryonic cells of animals is established by maternally provided factors and interactions of neighboring cells. The present study addressed a question of autonomous versus non-autonomous specification of embryonic cells by using the Ciona intestinalis embryo, in particular the genetic cascade of zygotic expression of transcription factor genes responsible for notochord specification. To examine this issue, we combined the classic experiment of continuous dissociation of embryonic cells with the modern technique of oligonucleotide-based microarrays. We measured early zygotic expression of 389 core transcription factors genes and 118 major signal molecule genes in embryonic cells that were fully dissociated from the first cleavage. Our results indicated that even if cells are free from contact with neighbors, the major transcription factor genes that have primary roles in embryonic cell specification commence their zygotic expression at the same time as in normal embryos. Dissociation of embryonic cells did not affect extracellular signal-regulated kinases (ERK) activity. Although normal embryos treated with U0126 failed to express Bra and Twist-like-1, dissociated embryonic cells treated with U0126 expressed the genes. These results are discussed in relation to the grade of autonomous versus non-autonomous genetic cascades that are responsible for the specification of early Ciona embryonic cells.
Collapse
Affiliation(s)
- Takeshi Noda
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
23
|
Unfolding a chordate developmental program, one cell at a time: Invariant cell lineages, short-range inductions and evolutionary plasticity in ascidians. Dev Biol 2009; 332:48-60. [DOI: 10.1016/j.ydbio.2009.05.540] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 04/27/2009] [Accepted: 05/03/2009] [Indexed: 12/25/2022]
|
24
|
Patterning of an ascidian embryo along the anterior–posterior axis through spatial regulation of competence and induction ability by maternally localized PEM. Dev Biol 2009; 331:78-88. [DOI: 10.1016/j.ydbio.2009.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 04/02/2009] [Accepted: 04/22/2009] [Indexed: 11/21/2022]
|
25
|
Abstract
Little is known about the ancient chordates that gave rise to the first vertebrates, but the descendants of other invertebrate chordates extant at the time still flourish in the ocean. These invertebrates include the cephalochordates and tunicates, whose larvae share with vertebrate embryos a common body plan with a central notochord and a dorsal nerve cord. Tunicates are now thought to be the sister group of vertebrates. However, research based on several species of ascidians, a diverse and wide-spread class of tunicates, revealed that the molecular strategies underlying their development appear to diverge greatly from those found in vertebrates. Furthermore, the adult body plan of most tunicates, which arises following an extensive post-larval metamorphosis, shows little resemblance to the body plan of any other chordate. In this review, we compare the developmental strategies of ascidians and vertebrates and argue that the very divergence of these strategies reveals the surprising level of plasticity of the chordate developmental program and is a rich resource to identify core regulatory mechanisms that are evolutionarily conserved in chordates. Further, we propose that the comparative analysis of the architecture of ascidian and vertebrate gene regulatory networks may provide critical insight into the origin of the chordate body plan.
Collapse
|
26
|
|
27
|
Prodon F, Yamada L, Shirae-Kurabayashi M, Nakamura Y, Sasakura Y. Postplasmic/PEM RNAs: a class of localized maternal mRNAs with multiple roles in cell polarity and development in ascidian embryos. Dev Dyn 2007; 236:1698-715. [PMID: 17366574 DOI: 10.1002/dvdy.21109] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ascidian is a good model to understand the cellular and molecular mechanisms responsible for mRNA localization with the discovery of a large family of localized maternal mRNAs, called postplasmic/PEM RNAs, which includes more than 40 members in three different ascidian species (Halocynthia roretzi, Ciona intestinalis, and C. savignyi). Among these mRNAs, two types (Type I and Type II) have been identified and show two different localization patterns from fertilization to the eight-cell stage. At the eight-cell stage, both types concentrate to a macromolecular cortical structure called CAB (for Centrosome Attracting Body) in the posterior-vegetal B4.1 blastomeres. The CAB is responsible for unequal cleavages and the partitioning of postplasmic/PEM RNAs at the posterior pole of embryos during cleavage stages. It has also been suggested that the CAB region could contain putative germ granules. In this review, we discuss recent data obtained on the distribution of Type I postplasmic/PEM RNAs from oogenesis to late development, in relation to their localization and translational control. We have first regrouped localization patterns for Type I and Type II into a comparative diagram and included all important definitions in the field. We also have made an exhaustive classification of their embryonic expression profiles (Type I or Type II), and analyzed their functions after knockdown and/or overexpression experiments and the role of the 3'-untranslated region (3'UTR) controlling both their localization and translation. Finally, we propose a speculative model integrating recent data, and we also discuss the relationship between postplasmic/PEM RNAs, posterior specification, and germ cell formation in ascidians.
Collapse
Affiliation(s)
- François Prodon
- Department of Biology, Graduate School of Science, Osaka University, Osaka, Japan.
| | | | | | | | | |
Collapse
|
28
|
Matsumoto J, Kumano G, Nishida H. Direct activation by Ets and Zic is required for initial expression of the Brachyury gene in the ascidian notochord. Dev Biol 2007; 306:870-82. [PMID: 17459364 DOI: 10.1016/j.ydbio.2007.03.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 03/20/2007] [Accepted: 03/23/2007] [Indexed: 11/22/2022]
Abstract
Extrinsic fibroblast growth factor (FGF) signal and intrinsic factors that determine the response of the signal-receiving blastomeres to FGF regulate mesoderm patterning in embryos of the ascidian Halocynthia roretzi. To investigate how cells integrate information from extrinsic and intrinsic inputs, we examined Brachyury (Hr-Bra) promoter activity in the early embryo. Hr-Bra, which encodes a key transcription factor for notochord development, is expressed exclusively in notochord precursors in a manner dependent on the FGF-MEK-MAPK-Ets signaling pathway and on the intrinsic factors Zic and FoxA. Reporter gene expression driven by the 900-bp upstream region of the Hr-Bra promoter was detected as early as the 110-cell stage in notochord precursors by in situ hybridization with a LacZ probe. Deletion analysis combined with MEK inhibitor treatment demonstrated that the -598/-499 region carries FGF-responsiveness. Electrophoretic mobility shift assay identified three Ets-binding sites in this region that were required for promoter activity. Further deletion analysis conducted by injecting eggs with reporter constructs at higher concentration suggested that the -398/-289 region also has enhancer activity, although ectopic reporter expression was detected in nerve cord and endoderm precursors. The -398/-289 region has a Zic-binding site that was also essential for the enhancer activity. These results indicate that Ets- and Zic-binding sites are critical for the initiation of Hr-Bra expression. In conclusion, information from both extrinsic and intrinsic factors is integrated at the level of enhancer of the target gene by direct binding of the transcription factors to the enhancer region.
Collapse
Affiliation(s)
- Jun Matsumoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | | | | |
Collapse
|
29
|
Miyazaki Y, Nishida H, Kumano G. Brain induction in ascidian embryos is dependent on juxtaposition of FGF9/16/20-producing and -receiving cells. Dev Genes Evol 2007; 217:177-88. [PMID: 17216525 DOI: 10.1007/s00427-006-0129-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 11/30/2006] [Indexed: 10/23/2022]
Abstract
Coordinated regulation of inductive events, both spatially and temporally, during animal development ensures that tissues are induced at their specific positions within the embryo. The ascidian brain is induced in cells at the anterior edge of the animal hemisphere by fibroblast growth factor (FGF) signals secreted from vegetal cells. To clarify how this process is spatially regulated, we first identified the sources of the FGF signal by examining the expression of brain markers Hr-Otx and Hr-ETR-1 in embryos in which FGF signaling is locally inhibited by injecting individual blastomeres with morpholino oligonucleotide against Hr-FGF9/16/20, which encodes an endogenous brain inducer. The blastomeres identified as the inducing sources are A5.1 and A5.2 at the 16-cell stage and A6.2 and A6.4 at the 24-cell stage, which are juxtaposed with brain precursors at the anterior periphery of the embryo at the respective stages. We also showed that all the cells of the animal hemisphere are capable of expressing Hr-Otx in response to the FGF signal. These results suggest that the position of inducers, rather than competence, plays an important role in determining which animal cells are induced to become brain tissues during ascidian embryogenesis. This situation in brain induction contrasts with that in mesoderm induction, where the positions at which the notochord and mesenchyme are induced are determined mainly by intrinsic competence factors that are inherited by signal-receiving cells.
Collapse
Affiliation(s)
- Yuriko Miyazaki
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | | | | |
Collapse
|
30
|
Kumano G, Nishida H. Ascidian embryonic development: An emerging model system for the study of cell fate specification in chordates. Dev Dyn 2007; 236:1732-47. [PMID: 17366575 DOI: 10.1002/dvdy.21108] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ascidian tadpole larva represents the basic body plan of all chordates in a relatively small number of cells and tissue types. Although it had been considered that ascidians develop largely in a determinative way, whereas vertebrates develop in an inductive way, recent studies at the molecular and cellular levels have uncovered several similarities in the way developmental fates are specified. In this review, we describe ascidian embryogenesis and its cell lineages, introduce several characteristics of ascidian embryos, describe recent advances in understanding of the mechanisms of cell fate specification, and discuss them in the context of what is known in vertebrates and other organisms.
Collapse
Affiliation(s)
- Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| | | |
Collapse
|
31
|
Lamy C, Rothbächer U, Caillol D, Lemaire P. Ci-FoxA-a is the earliest zygotic determinant of the ascidian anterior ectoderm and directly activates Ci-sFRP1/5. Development 2006; 133:2835-44. [PMID: 16835437 DOI: 10.1242/dev.02448] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This work focuses on the anteroposterior patterning of the ectoderm in the invertebrate chordate Ciona intestinalis. Previous work indicated that, by the eight-cell stage, the anterior and posterior animal blastomeres have acquired different properties, including a differential responsiveness to inducing signals from the underlying mesendoderm. Here, we investigated the molecular basis of this distinction. For this, we studied the regulation of the earliest marker specific for the anterior ectoderm, Ci-sFRP1/5, which is activated at the 64-cell stage. We first found that the activation of this marker in the anterior ectoderm does not involve communication with other lineages. We then identified, by phylogenetic footprinting and deletion analysis, a short conserved minimal enhancer driving the onset of expression of Ci-sFRP1/5. We showed that this enhancer was a direct target of the Ci-FoxA-a gene, a FoxA/HNF3 orthologue expressed in anterior ectodermal and mesendodermal lineages from the eight-cell stage. Gain- and loss-of-function experiments revealed that Ci-FoxA-a is necessary and sufficient within the ectoderm to impose an ectodermal anterior identity, and to repress the posterior programme. Thus, Ci-FoxA-a constitutes a major early zygotic anterior determinant for the ascidian ectoderm, acting autonomously in this territory, prior to the onset of vegetal inductions. Interestingly, while vertebrate FoxA2 are also involved in the regionalization of the ectoderm, they are thought to act during gastrulation to control, in the mesendoderm, the expression of organizer signals. We discuss the evolution of chordate ectodermal patterning in light of our findings.
Collapse
Affiliation(s)
- Clement Lamy
- Institut de Biologie du Développement de Marseille, UMR 6216, CNRS/Université de la Méditerranée, Parc Scientifique de Luminy, Case 907, F-13288 Marseille Cedex 9, France.
| | | | | | | |
Collapse
|
32
|
Shirae-Kurabayashi M, Nishikata T, Takamura K, Tanaka KJ, Nakamoto C, Nakamura A. Dynamic redistribution of vasa homolog and exclusion of somatic cell determinants during germ cell specification in Ciona intestinalis. Development 2006; 133:2683-93. [PMID: 16794033 DOI: 10.1242/dev.02446] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ascidian embryos sequester a specific cytoplasm, called the postplasm, at the posterior pole, where many maternal RNAs and proteins accumulate. Although the postplasm is thought to act as the germ plasm, it is also highly enriched in several factors essential for somatic cell development, and how the postplasm components regulate both germ and somatic cell differentiation remains elusive. Using a vasa homolog, CiVH, and other postplasmic components as markers, we found that the postplasm-containing blastomeres, the B7.6 cells, undergo an asymmetric cell division during gastrulation to produce two distinct daughter cells: B8.11 and B8.12. Most of the postplasmic components segregate only into the B8.11 cells, which never coalesce into the gonad. By contrast, the maternal CiVH RNA and protein are specifically distributed into the B8.12 cells, which divide further and are incorporated into the gonad in juveniles. In the B8.12 cells, CiVH production is upregulated from the maternal RNA source, resulting in the formation of perinuclear CiVH granules, which may be the nuage, a hallmark of germ cells in many animal species. We propose that the redistribution of specific maternal molecules into the B8.12 cells is essential for germ-cell specification in ascidians.
Collapse
Affiliation(s)
- Maki Shirae-Kurabayashi
- Laboratory for Germline Development, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Kumano G, Yamaguchi S, Nishida H. Overlapping expression of FoxA and Zic confers responsiveness to FGF signaling to specify notochord in ascidian embryos. Dev Biol 2006; 300:770-84. [PMID: 16950241 DOI: 10.1016/j.ydbio.2006.07.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 07/18/2006] [Accepted: 07/26/2006] [Indexed: 10/24/2022]
Abstract
Differences in cell responsiveness to an inductive signal contribute to the emergence of a variety of tissue types during animal development. In ascidian embryos, the Fibroblast Growth Factor (FGF) signal secreted from endoderm cells induces several different tissue types, such as notochord, mesenchyme and brain, at different positions in the embryo at the 32-cell stage. We show here in Halocynthia roretzi that FoxA and Zic are required for notochord formation in cells that receive the FGF signal. We also show that these transcription factors, only when both are supplied, are able to induce ectopic expression of the brachyury gene, a notochord-specific marker, in cells of all the three germ layers in an FGF-dependent manner. These results suggest that FoxA and Zic confer notochord-specific responsiveness to FGF signaling. Further analyses including knockdown and over-expression experiments showed that combinatorial inputs from maternally supplied and zigotically activated factors lead to overlapping expression of FoxA and Zic in the presumptive notochord cells, which eventually activate the expression of the brachyury gene in cooperation with FGF signaling. Our data illustrate how a complex gene network specifies the notochord at its specific position within the embryo.
Collapse
Affiliation(s)
- Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | | | | |
Collapse
|
34
|
Yamada L. Embryonic expression profiles and conserved localization mechanisms of pem/postplasmic mRNAs of two species of ascidian, Ciona intestinalis and Ciona savignyi. Dev Biol 2006; 296:524-36. [PMID: 16797000 DOI: 10.1016/j.ydbio.2006.05.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 05/12/2006] [Accepted: 05/13/2006] [Indexed: 11/17/2022]
Abstract
In many animals, the first cue for development is transcripts and/or proteins that are provided maternally and are localized at specific regions of fertilized eggs and early embryos. The ascidian is known to exhibit a mosaic mode of development, which is largely dependent on localized maternal factors. In early Ciona intestinalis embryos, the posterior-most localization appears to be the major specialized pattern of maternal transcripts. The present study examined the temporal and spatial expression pattern of 40 genes known as pem/postplasmic genes, for which maternal mRNAs are localized at the posterior-most region during early Ciona embryogenesis. Ten of these genes showed redistribution to B8.12-line cells, which are known to give rise to germ cells in ascidians. In addition 23 orthologues were newly identified in a related ascidian species, Ciona savignyi, and 16 of them showed the mRNA localization pattern at the posterior-most region. Furthermore, the localized pattern of exogenous mRNA, which comprised the 3' UTR of C. intestinalis pem/postplasmic genes conjugated with the LacZ ORF, showed the localization at the posterior-most region in C. savignyi embryos. Likewise, the 3' UTR of C. savignyi pem/postplasmic genes conjugated with the LacZ ORF showed localization at the posterior most region in C. intestinalis embryos, suggesting that localization mechanisms are conserved between the two species. The present study therefore provides basic information for future functional analyses of these pem/postplasmic genes and for exploring the mechanisms of localization of mRNAs.
Collapse
Affiliation(s)
- Lixy Yamada
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
35
|
Munro E, Robin F, Lemaire P. Cellular morphogenesis in ascidians: how to shape a simple tadpole. Curr Opin Genet Dev 2006; 16:399-405. [PMID: 16782323 DOI: 10.1016/j.gde.2006.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Accepted: 06/08/2006] [Indexed: 11/30/2022]
Abstract
Ascidians are invertebrate chordates that form tadpole larvae with a surprisingly small number of cells. Recently, the emergence of powerful molecular tools to study cell fate determination in ascidians has been complemented by studies, often at cellular resolution, of morphogenetic processes. These studies point to a complex interplay among mechanisms that control cell fate and polarity and those that govern cell shape change and morphogenesis. The relative simplicity and stereotypy of ascidian development suggests that it will be possible to understand, and possibly to mathematically model, this dynamic coupling between cell fate and shape change.
Collapse
Affiliation(s)
- Edwin Munro
- Center for Cell Dynamics, Friday Harbor Labs, Friday Harbor, WA, USA.
| | | | | |
Collapse
|
36
|
|
37
|
Nakamura Y, Makabe KW, Nishida H. The functional analysis of Type I postplasmic/PEM mRNAs in embryos of the ascidian Halocynthia roretzi. Dev Genes Evol 2006; 216:69-80. [PMID: 16369806 DOI: 10.1007/s00427-005-0035-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Accepted: 09/29/2005] [Indexed: 10/25/2022]
Abstract
Maternal factors, such as a muscle determinant macho-1 mRNA that is localized to the posterior-vegetal cortex (PVC) of fertilized ascidian eggs, are crucial for embryonic axis formation and cell fate specification. Maternal mRNAs that show an identical posterior localization pattern to that of macho-1 in eggs and embryos are called Type I postplasmic/PEM mRNAs. We investigated the functions of five of the nine Type I mRNAs so far known in Halocynthia roretzi: Hr-Wnt-5, Hr-GLUT, Hr-PEM3, Hr-PEN1, and Hr-PEN2. Suppression of their functions with specific antisense morpholino oligonucleotides (MOs) had effects on the formation of various tissues: Hr-Wnt-5 on notochord, muscle, and mesenchyme, although zygotic function of Hr-Wnt-5 is responsible for notochord formation; Hr-GLUT on notochord, mesenchyme, and endoderm; and Hr-PEN2 on muscle, mesenchyme, and endoderm. On the other hand, Hr-PEM3 and Hr-PEN1 MOs seemed to have no effect. We conclude that the functions of at least some localized maternal Type I postplasmic/PEM mRNAs are necessary for early embryonic patterning in ascidians.
Collapse
MESH Headings
- Animals
- Body Patterning/genetics
- Egg Proteins/antagonists & inhibitors
- Egg Proteins/genetics
- Egg Proteins/physiology
- Embryo, Nonmammalian/chemistry
- Embryo, Nonmammalian/metabolism
- Glucose Transporter Type 1/antagonists & inhibitors
- Glucose Transporter Type 1/genetics
- Glucose Transporter Type 1/physiology
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Oligoribonucleotides, Antisense/genetics
- Oligoribonucleotides, Antisense/pharmacology
- RNA, Messenger, Stored/analysis
- RNA, Messenger, Stored/antagonists & inhibitors
- RNA, Messenger, Stored/physiology
- Urochordata/chemistry
- Urochordata/embryology
- Urochordata/genetics
- Wnt Proteins/antagonists & inhibitors
- Wnt Proteins/genetics
- Wnt Proteins/physiology
Collapse
Affiliation(s)
- Yoriko Nakamura
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan.
| | | | | |
Collapse
|
38
|
Abstract
Setting up future body axes is the first important event before and at the beginning of embryogenesis. The ascidian embryo is a classic model that has been used to gain insight into developmental processes for over a century. This review summarizes advances made in this decade in our understanding of the developmental processes involved in the specification of the embryonic axes and cell fates during early ascidian embryogenesis. Maternal factors, including mRNAs, are translocated to specific regions of the egg by cytoplasmic and cortical reorganization, so-called ooplasmic segregation, and specify the animal-vegetal axis and the one perpendicular to it, which is defined as the anteroposterior axis in ascidians. Some postplasmic/PEM RNAs that are anchored to cortical endoplasmic reticulum are brought to the future posterior pole of fertilized eggs, and play crucial roles in posterior development. Following specification of the animal-vegetal axis, nuclear localization of beta-catenin takes place in the vegetal blastomeres; this occurrence is important for the acquisition of the vegetal character of the blastomeres in later development. Positioning of these maternal factors lead to subsequent cell interactions and zygotic gene expression responsible for axis establishment and for cell fate specification. We describe how endoderm blastomeres in the vegetal pole region emanate inductive signals mainly attributable to fibroblast growth factor. Marginal blastomeres next to endoderm blastomeres respond differently in ways that are determined by intrinsic competence factors. Expression patterns of developmentally important genes, including key transcription factors of each tissue type, are also summarized.
Collapse
Affiliation(s)
- Hiroki Nishida
- Department of Biology, Graduate School of Science, Osaka University, Osaka, Japan.
| |
Collapse
|
39
|
Nakamura Y, Makabe KW, Nishida H. POPK-1/Sad-1 kinase is required for the proper translocation of maternal mRNAs and putative germ plasm at the posterior pole of the ascidian embryo. Development 2005; 132:4731-42. [PMID: 16207760 DOI: 10.1242/dev.02049] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Maternal mRNAs localized to specific regions in eggs play important roles in the establishment of embryonic axes and germ layers in various species. Type I postplasmic/PEM mRNAs, which are localized to the posterior-vegetal cortex (PVC) of fertilized ascidian eggs, such as the muscle determinant macho-1 mRNA, play key roles in embryonic development. In the present study, we analyzed the function of the postplasmic/PEM RNA Hr-POPK-1, which encodes a kinase of Halocynthia roretzi. When the function of POPK-1 was suppressed by morpholino antisense oligonucleotides, the resulting malformed larvae did not form muscle or mesenchyme, as in macho-1-deficient embryos. Epistatic analysis indicated that POPK-1 acts upstream of macho-1. When POPK-1 was knocked down, localization of every Type I postplasmic/PEM mRNA examined, including macho-1, was perturbed, showing diffuse early distribution and eventual concentration into a smaller area. This is the probable reason for the macho-1 dysfunction. The postplasmic/PEM mRNAs such as macho-1 and Hr-PEM1 are co-localized with the cortical endoplasmic reticulum (cER) and move with it after fertilization. Eventually they become highly concentrated into a subcellular structure, the centrosome-attracting body (CAB), at the posterior pole of the cleaving embryos. The suppression of POPK-1 function reduced the size of the domain of concentrated cER at the posterior pole, indicating that POPK-1 is involved in the movement of postplasmic/PEM RNAs via relocalization of cER. The CAB also shrank. These results suggest that Hr-POPK-1 plays roles in concentration and positioning of the cER, as well as in the concentration of CAB materials, such as putative germ plasm, in the posterior blastomeres.
Collapse
Affiliation(s)
- Yoriko Nakamura
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | | | | |
Collapse
|
40
|
Abstract
Thanks to their transparent and rapidly developing mosaic embryos, ascidians (or sea squirts) have been a model system for embryological studies for over a century. Recently, ascidians have entered the postgenomic era, with the sequencing of the Ciona intestinalis genome and the accumulation of molecular resources that rival those available for fruit flies and mice. One strength of ascidians as a model system is their close similarity to vertebrates. Literature reporting molecular homologies between vertebrate and ascidian tissues has flourished over the past 15 years, since the first ascidian genes were cloned. However, it should not be forgotten that ascidians diverged from the lineage leading to vertebrates over 500 million years ago. Here, we review the main similarities and differences so far identified, at the molecular level, between ascidian and vertebrate tissues and discuss the evolution of the compact ascidian genome.
Collapse
Affiliation(s)
- Yale J Passamaneck
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
41
|
Yagi K, Takatori N, Satou Y, Satoh N. Ci-Tbx6b and Ci-Tbx6c are key mediators of the maternal effect gene Ci-macho1 in muscle cell differentiation in Ciona intestinalis embryos. Dev Biol 2005; 282:535-49. [PMID: 15950616 DOI: 10.1016/j.ydbio.2005.03.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 03/02/2005] [Accepted: 03/22/2005] [Indexed: 11/18/2022]
Abstract
Maternally deposited mRNA encoding the Zic family zinc-finger protein Ci-macho1 is a determinant responsible for muscle cell differentiation in Ciona intestinalis embryos. In a previous study, we identified possible Ci-macho1 downstream genes, which include seven transcription factor genes and seven signaling molecule genes (Yagi, K., Satoh, N., Satou, Y., 2004. Identification of downstream genes of the ascidian muscle determinant gene Ci-macho1. Dev. Biol. 274, 478-489), suggesting complex Ci-macho1 downstream cascades. Here, we show that of the Ci-macho1 downstream genes, only Ci-Tbx6b and Ci-Tbx6c promote ectopic differentiation of muscle cells when misexpressed in non-muscle blastomeres. Overexpression of Ci-Tbx6b or Ci-Tbx6c in Ci-macho1 knockdown embryos is able to compensate for the functional loss of Ci-macho1 and promote differentiation of muscle cells. In addition, we show that knockdown of each of Ci-Tbx6b or Ci-Tbx6c suppresses the initiation of muscle protein gene expression, and both gene products appear to recognize a similar binding sequence. However, later expression of muscle protein genes at the tailbud stage is only reduced in Ci-Tbx6b knockdown embryos and undisturbed in Ci-Tbx6c knockdown embryos. Although ectopic expression or knockdown of Ci-ZicL alone does not affect muscle cell differentiation, simultaneous knockdown of Ci-Tbx6b, Ci-Tbx6c, and Ci-ZicL completely abolishes muscle cell differentiation, as in the case of knockdown of Ci-macho1 and Ci-ZicL. These results strongly suggest that muscle cell differentiation in Ciona embryos is controlled by four key factors: maternal macho1 and zygotic Tbx6b, Tbx6c, and ZicL. The two T-box genes are primary mediators of macho1 function, and cooperation between the zygotically expressed transcription factors is indispensable for muscle cell differentiation in Ciona embryos.
Collapse
Affiliation(s)
- Kasumi Yagi
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
42
|
Yamada L, Kobayashi K, Satou Y, Satoh N. Microarray analysis of localization of maternal transcripts in eggs and early embryos of the ascidian, Ciona intestinalis. Dev Biol 2005; 284:536-50. [PMID: 16040026 DOI: 10.1016/j.ydbio.2005.05.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 05/11/2005] [Accepted: 05/18/2005] [Indexed: 11/26/2022]
Abstract
The establishment of body axes and specification of early embryonic cells depend on maternally supplied transcripts and/or proteins, several of which are localized at specific regions of fertilized eggs and early embryos. The ascidian is known to exhibit a mosaic mode of development, and this mode is largely dependent on localized maternal factors. Using blastomere isolation, microarray and whole-mount in situ hybridization, the present study of Ciona intestinalis demonstrates that maternal transcripts of a total of 17 genes are localized at the posterior-most region of fertilized eggs and early embryos. Ten of them are newly identified in the present study, while the remaining seven genes have already been characterized in previous studies. In addition, maternal transcripts of two genes, in addition to 14 genes encoded by the mitochondrial genome, showed a mitochondria-like distribution. Despite the present comprehensive approach, we could not identify maternal transcripts that are clearly localized to the animal-pole side, the vegetal-pole side, the anterior-side or other specific regions of the early embryo. Therefore, we concluded that the posterior-most localization and mitochondria-like distribution appear to be major specialized patterns of maternal transcripts in early Ciona embryos.
Collapse
Affiliation(s)
- Lixy Yamada
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
43
|
Sawada K, Fukushima Y, Nishida H. Macho-1 functions as transcriptional activator for muscle formation in embryos of the ascidian Halocynthia roretzi. Gene Expr Patterns 2005; 5:429-37. [PMID: 15661650 DOI: 10.1016/j.modgep.2004.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 07/27/2004] [Accepted: 09/06/2004] [Indexed: 11/29/2022]
Abstract
Various kinds of maternal factor that play crucial roles in embryogenesis are present and localized in the ascidian egg cytoplasm. Localized maternal mRNA of the macho-1 gene is a muscle determinant in the embryo of the ascidian Halocynthia roretzi. The macho-1 protein has a zinc-finger domain and accumulates in nuclei, being expected to function as a DNA-binding transcription factor. In the present study, we show that macho-1 is, indeed, a DNA-binding transcriptional activator, and directly or indirectly regulates the expression of six downstream genes. Macho-1 was required and sufficient for expression of the muscle actin, myosin, calcium transporter, myogenic factor, Tbx6, and snail genes, whose expression is initiated in muscle blastomeres at the cleavage stages in normal embryos. Furthermore, when macho-1 conjugated with a transcription-repression domain of Drosophila engrailed (En(R)) was expressed in embryos, it repressed expression of these downstream genes. In contrast, expression of macho-1 fused with a transcription-activation domain of VP16 caused ectopic expression of these muscle genes in non-muscle blastomeres. PCR-assisted binding-site selection and gel-retardation assay showed that macho-1 protein binds to the consensus target sequence (TGGGTGGTC) for GLI/Zic-family proteins, and that three guanine residues with underlines are crucial for the specificity. The 5' promoter region of the muscle actin gene supported expression of the reporter gene only in muscle cells at late stage. By contrast, when the target sequence was added to the promoter, it well reproduced early expression of muscle actin at the cleavage stage, indicating that macho-1 can recognize the target sequence in vivo. In conclusion, the maternal muscle determinant macho-1 functions as a transcription factor that positively regulates gene expression for muscle formation in ascidian embryos.
Collapse
Affiliation(s)
- Kaichiro Sawada
- Department of Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | | | | |
Collapse
|
44
|
Prodon F, Dru P, Roegiers F, Sardet C. Polarity of the ascidian egg cortex and relocalization of cER and mRNAs in the early embryo. J Cell Sci 2005; 118:2393-404. [PMID: 15923652 DOI: 10.1242/jcs.02366] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The mature ascidian oocyte is a large cell containing cytoplasmic and cortical domains polarized along a primary animal-vegetal (a-v) axis. The oocyte cortex is characterized by a gradient distribution of a submembrane monolayer of cortical rough endoplasmic reticulum (cER) and associated maternal postplasmic/PEM mRNAs (cER-mRNA domain). Between fertilization and first cleavage, this cER-mRNA domain is first concentrated vegetally and then relocated towards the posterior pole via microfilament-driven cortical contractions and spermaster-microtubule-driven translocations. The cER-mRNA domain further concentrates in a macroscopic cortical structure called the centrosome attracting body (CAB), which mediates a series of asymmetric divisions starting at the eight-cell stage. This results in the segregation of determinant mRNAs and their products in posterior cells of the embryo precursors of the muscle and germ line.Using two species of ascidians (Ciona intestinalis and Phallusia mammillata), we have pursued and amplified the work initiated in Halocynthia roretzi. We have analysed the cortical reorganizations in whole cells and in cortical fragments isolated from oocytes and from synchronously developing zygotes and embryos. After fertilization, we observe that a cortical patch rich in microfilaments encircles the cER-mRNA domain, concentrated into a cortical cap at the vegetal/contraction pole (indicating the future dorsal pole). Isolated cortices also retain microtubule asters rich in cER (indicating the future posterior pole). Before mitosis, parts of the cER-mRNA domain are detected, together with short microtubules, in isolated posterior (but not anterior) cortices. At the eight-cell stage, the posteriorly located cER-mRNA domain undergoes a cell-cycle-dependant compaction into the CAB. The CAB with embedded centrosomal microtubules can be isolated with cortical fragments from eight-cell-stage embryos.These and previous observations indicate that cytoskeleton-driven repositioning and compaction of a polarized cortical domain made of rough ER is a conserved mechanism used for polarization and segregation of cortical maternal mRNAs in embryos of evolutionarily distant species of ascidians.
Collapse
Affiliation(s)
- François Prodon
- BioMarCell, UMR7009 Biologie du Développement, CNRS/Université Pierre et Marie Curie, Station Zoologique, Observatoire, Villefranche sur Mer 06230, France
| | | | | | | |
Collapse
|
45
|
De Craene B, van Roy F, Berx G. Unraveling signalling cascades for the Snail family of transcription factors. Cell Signal 2005; 17:535-47. [PMID: 15683729 DOI: 10.1016/j.cellsig.2004.10.011] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Accepted: 10/08/2004] [Indexed: 10/26/2022]
Abstract
During development and carcinogenesis, the gradient of different molecular factors, the availability of corresponding receptors and the interplay between different signalling cascades combine to orchestrate the different stages. A good understanding of both developmental processes and oncogenesis leads to new insights into normal and aberrant regulation, processes that share some mutual key players. In this review, we will focus on the Snail family of transcription factors. These proteins, which share an evolutionarily conserved role in invertebrates and vertebrates, are implicated in several developmental processes, but are involved in carcinogenesis as well. We will highlight the different signalling cascades leading to the expression of Snail and Slug and how these factors are regulated on the transcriptional level. Then we will focus on how these factors execute their functions by repression of the numerous target genes that have been described to date.
Collapse
Affiliation(s)
- Bram De Craene
- Unit of Molecular and Cellular Oncology, Department for Molecular Biomedical Research, VIB-Ghent University, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium
| | | | | |
Collapse
|
46
|
Sardet C, Dru P, Prodon F. Maternal determinants and mRNAs in the cortex of ascidian oocytes, zygotes and embryos. Biol Cell 2005; 97:35-49. [PMID: 15601256 DOI: 10.1042/bc20040126] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The peripheral region of ascidian oocytes and zygotes contains five determinants for morphogenesis and differentiation of the embryo. The determinant for the 24 primary muscle cells of the tadpole, macho1, is one of several cortical mRNAs localized in a gradient along the animal-vegetal axis in the oocyte. After fertilization these mRNAs, together with cortical endoplasmic reticulum (cER) and a subcortical mitochondria-rich domain (myoplasm), relocate in two major reorganization phases forming the posterior plasm (postplasm) of the zygote. At the 8-cell stage cortical mRNAs concentrate in a macroscopic cortical structure called the centrosome-attracting body (CAB), forming a characteristic posterior end mark (PEM) in the two posterior vegetal blastomeres. We propose to call the numerous mRNAs showing this particular cortical localization in the posterior region of the embryo postplasmic/PEM RNAs and suggest a nomemclature. We do not know how postplasmic/PEM RNAs reach their polarized distribution in the oocyte cortex but at least PEM1 and macho1 (and probably others) bind to the network of cER retained in isolated cortical fragments. We propose that after fertilization, these postplasmic/PEM mRNAs move in the zygote cortex together with the cER network (cER/mRNA domain) via microfilament- and microtubule-driven translocations. The cER/mRNA domain is localized posteriorly at the time of first cleavage and distributed equally between the first two blastomeres. After the third cleavage, the cER/mRNA domain and dense particles compact to form the CAB in posterior vegetal blastomeres of the 8-cell stage. We discuss the identity of postplasmic/PEM RNAs, how they localize, anchor, relocate and may be translated. We also examine their roles in unequal cleavage and as a source of posterior morphogenetic and differentiation factors.
Collapse
Affiliation(s)
- Christian Sardet
- BioMarCell, UMR 7009, CNRS/UPMC, Station Zoologique, Observatoire, Villefranche sur Mer, 06230, France.
| | | | | |
Collapse
|
47
|
Cone AC, Zeller RW. Using ascidian embryos to study the evolution of developmental gene regulatory networks. CAN J ZOOL 2005. [DOI: 10.1139/z04-165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ascidians are ideally positioned taxonomically at the base of the chordate tree to provide a point of comparison for developmental regulatory mechanisms that operate among protostomes, non-chordate deuterostomes, invertebrate chordates, and vertebrates. In this review, we propose a model for the gene regulatory network that gives rise to the ascidian notochord. The purpose of this model is not to clarify all of the interactions between molecules of this network, but to provide a working schematic of the regulatory architecture that leads to the specification of endoderm and the patterning of mesoderm in ascidian embryos. We describe a series of approaches, both computational and biological, that are currently being used, or are in development, for the study of ascidian embryo gene regulatory networks. It is our belief that the tools now available to ascidian biologists, in combination with a streamlined mode of development and small genome size, will allow for more rapid dissection of developmental gene regulatory networks than in more complex organisms such as vertebrates. It is our hope that the analysis of gene regulatory networks in ascidians can provide a basic template which will allow developmental biologists to superimpose the modifications and novelties that have arisen during deuterostome evolution.
Collapse
|
48
|
Yagi K, Satoh N, Satou Y. Identification of downstream genes of the ascidian muscle determinant gene Ci-macho1. Dev Biol 2004; 274:478-89. [PMID: 15385173 DOI: 10.1016/j.ydbio.2004.07.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2004] [Revised: 07/09/2004] [Accepted: 07/14/2004] [Indexed: 12/14/2022]
Abstract
Autonomous differentiation of primary muscle cells in ascidian embryos is triggered by a maternal determinant recently identified as the macho-1 gene. macho-1 encodes a transcription factor of the Zic family with five C2H2 zinc-finger motifs. In the present study, we firstly performed a screen, using a quantitative PCR method, of genes encoding transcription factors and components in major signaling pathways to identify those regulated downstream of Ci-macho1 in early embryos of Ciona intestinalis. The amount of transcripts for a total of 64 genes was altered at the 32-cell stage depending on the Ci-macho1 activity level. Whole-mount in situ hybridization assays revealed that the alteration of expression for at least 13 of them was adequately visualized to confirm the results of quantitative PCR. Second, we determined a possible binding sequence of Ciona macho1. macho1 recombinant proteins of both C. intestinalis and Ciona savignyi recognized a sequence, 5'-GCCCCCCGCTG-3', that resembles the mammalian Zic binding site. In addition, most of the genes identified as potential Ci-macho1 downstream genes, in particular Ci-Tbx6b and Ci-snail, possessed plausible Ci-macho1-binding sequences in their 5' upstream region, suggesting their direct activation by Ci-macho1. Furthermore, some of the genes including three Wnt genes noted in the quantitative analyses implied that Ci-macho1 is involved in the differentiation of endoderm and mesenchyme via intracellular communications.
Collapse
Affiliation(s)
- Kasumi Yagi
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
49
|
Tokuoka M, Imai KS, Satou Y, Satoh N. Three distinct lineages of mesenchymal cells in Ciona intestinalis embryos demonstrated by specific gene expression. Dev Biol 2004; 274:211-24. [PMID: 15355799 DOI: 10.1016/j.ydbio.2004.07.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 07/07/2004] [Accepted: 07/12/2004] [Indexed: 11/29/2022]
Abstract
The ascidian embryonic mesenchyme, comprising about 900 cells, forms mesodermal tissues or organs of the adult body after metamorphosis. The mesenchyme originates from the A7.6 [trunk lateral cells (TLCs)], B7.7, and B8.5 blastomeres of the 110-cell stage embryo. Previous studies showed that FGF9/16/20 is required for specification of the mesenchyme in Ciona embryos and that two different (A7.6 and B8.5/B7.7) but partially overlapping molecular mechanisms are associated with the expression of a basic helix-loop-helix (bHLH) transcription factor gene, Twist-like1, in the mesenchymal precursors, which triggers the differentiation process of mesenchyme cells. In the present study, we examined whether the three embryonic lineages express the same mesenchyme-specific structural genes under the control of a common mechanism or whether the three lineages are characterized by the expression of genes specific to each of the lineages. We characterized nine mesenchyme-specific genes in Ciona embryos and found that five were expressed in A7.6/B8.5/B7.7, two in B8.5/B7.7, and two in B7.7 only. FGF9/16/20 and Twist-like1 were required for the expression of all the mesenchyme-specific genes, except for three A7.6/B8.5/B7.7-specific genes in A7.6 progenitors. Overexpression of FGF9/16/20 or Twist-like1 upregulated the expression of A7.6/B8.5/B7.7- and B8.5/B7.7-specific genes, while it downregulated the expression of B7.7-specific genes. These results provide evidence that the differentiation of each of the three mesenchyme lineages of Ciona embryos is characterized by the expression of a specific set of genes, whose expression is controlled differentially.
Collapse
Affiliation(s)
- Miki Tokuoka
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
50
|
Tanaka KJ, Matsumoto K, Tsujimoto M, Nishikata T. CiYB1 is a major component of storage mRNPs in ascidian oocytes: implications in translational regulation of localized mRNAs. Dev Biol 2004; 272:217-30. [PMID: 15242802 DOI: 10.1016/j.ydbio.2004.04.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Revised: 04/19/2004] [Accepted: 04/20/2004] [Indexed: 11/21/2022]
Abstract
In ascidian eggs, the existence of several localized maternal cytoplasmic determinants has been proposed and the importance of localized mRNAs for tissue differentiation has been demonstrated. We previously identified the ascidian Y-box proteins (CiYB1, 2 and 3), homologues of which are known to be involved in the storage of maternal mRNA in oocytes of other organisms. In this study, we found that CiYB1 protein is abundant in the gonad, egg, and embryo. Purification of messenger ribonucleoprotein (mRNP) particles from the gonad revealed that CiYB1 was one of their major components. A significant change in the distribution of CiYB1 protein from stored mRNP particles in the gonad to the ribosome fraction in eggs and embryos was observed. This change correlates most likely with the shift of stored maternal mRNAs to polyribosomes. Moreover, we found that CiYB1 colocalized with Cipem and Ci-macho1 mRNAs, which are localized at the posterior end of the embryo at the cleavage stage. Cipem and Ci-macho1 mRNAs were co-immunoprecipitated with CiYB1 in the oocyte and embryo lysates. The formation of a complex between Cipem mRNA and CiYB1 protein resulted in translational repression in the in vitro translation system. Our results indicate that associating with CiYB1 protein contributes to the translational control of the localized mRNA in eggs and embryos.
Collapse
Affiliation(s)
- Kimio J Tanaka
- Laboratory of Cellular Biochemistry, RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|