1
|
Zhang M, Ma M, Lang H, Jiang M. Research Advances and Perspectives on Early Flowering Traits in Cucumber. PLANTS (BASEL, SWITZERLAND) 2025; 14:1158. [PMID: 40284046 PMCID: PMC12030555 DOI: 10.3390/plants14081158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/30/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Early flowering refers to the phenomenon in which the first flower appears in fewer days than normal, regardless of the sex of the flower. It is a significant feature impacting the early maturity and economic yield of cucumbers. The early flowering trait of cucumber is influenced by several factors. Considering its heritability, technologies such as whole-genome sequencing, genetic modification, bioinformatics analysis, quantitative trait locus (QTL) mapping, molecular marker-assisted selection, and gene editing are widely used to explore the regulatory genes and molecular mechanisms of the early flowering trait in cucumbers. This review aimed to summarize the factors, QTL mapping, molecular regulation mechanisms, and omics analysis related to early flowering traits in cucumbers. This review contributes theoretical insights to support both cucumber breeding for early flowering and fundamental research on early flowering traits.
Collapse
Affiliation(s)
| | | | - Hong Lang
- School of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (M.Z.); (M.M.)
| | - Mingliang Jiang
- School of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (M.Z.); (M.M.)
| |
Collapse
|
2
|
Mouri IJ, Islam MS. A comprehensive in silico genome-wide identification and characterization of SQUAMOSA promoter binding protein (SBP) gene family in Musa acuminata. J Genet Eng Biotechnol 2025; 23:100461. [PMID: 40074435 PMCID: PMC11803833 DOI: 10.1016/j.jgeb.2025.100461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/26/2024] [Accepted: 01/14/2025] [Indexed: 03/14/2025]
Abstract
One of the largest and most significant transcription factor gene families in plants is the SQUAMOSA promoter binding protein (SBP) gene family and they perform critical regulatory roles in floral enhancement, fruit development, and stress resistance. The SBP protein family (also known as SPL) has not yet been thoroughly studied in the staple fruit crop, banana. A perennial monocot plant, banana is essential for ensuring food and nutrition security. This work detected 41 SBP genes in the banana species Musa acuminata. The MaSBPs were subsequently elucidated by investigating their gene structure, chromosomal position, RNA-Seq data, along with evolutionary connections with Arabidopsis and rice. Sequence alignment of MaSBPs revealed that all genes included a domain of two Zn finger motifs (CCCH and CCHC motifs) with an overlapping nuclear localization signal region. The conserved motifs sequence in the inferred MaSBP proteins were quite comparable. According to findings, the time frame of divergence for duplicated MaSBP gene pairs ranged from 42.39 to 109.11 million years and the dicot Arabidopsis and monocotyledonous plant banana diverged before the division of banana and monocot rice. Moreover, cis-acting element and GO annotation analysis exhibited possible biological activities of MaSBPs in flower development, phytohormone regulation, and stress tolerance. RNA-Seq expression profiling exhibited that genes MaSBP-3, MaSBP-20, MaSBP-37, MaSBP-40 were more expressed during floral and fruit development stage. The foundation for additional investigation of SBP protein sequences in other plants can be laid out by this study, which will shed light on some of their crucial biological functions.
Collapse
Affiliation(s)
- Israt Jahan Mouri
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md Shariful Islam
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh; Department of Molecular Biology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| |
Collapse
|
3
|
Urrea-Castellanos R, Calderan-Rodrigues MJ, Artins A, Musialak-Lange M, Macharanda-Ganesh A, Fernie AR, Wahl V, Caldana C. The Regulatory-associated protein of target of rapamycin 1B (RAPTOR 1B) interconnects with the photoperiod pathway to promote flowering in Arabidopsis. Proc Natl Acad Sci U S A 2025; 122:e2405536122. [PMID: 39899726 PMCID: PMC11831161 DOI: 10.1073/pnas.2405536122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 12/24/2024] [Indexed: 02/05/2025] Open
Abstract
The transition from vegetative to reproductive growth, or floral transition, is a tightly regulated, energy-demanding process. In Arabidopsis, the interplay of light perception and circadian rhythms detects changes in photoperiod length, accelerating flowering under long days (LD). CONSTANS (CO), a transcription factor, upregulates FLOWERING LOCUS T (FT) in leaves during dusk. The FT protein then moves to the shoot apical meristem, triggering the floral transition. While light and circadian signals control CO protein levels, less is known about how the nutrients/energy sensing regulates the photoperiod pathway for flowering modulation in this process. In our study, we identify the contribution of the Regulatory-associated protein of target of rapamycin 1B (RAPTOR1B), a component of the nutrient-sensing TOR complex (TORC), in the induction of specific flowering genes under CO control. While transcription of CO remains unaffected in raptor1b mutants, a reduction in its protein levels at dusk is observed compared to the wild type. Remarkably, the mutant also exhibits compromised GIGANTEA (GI) protein levels, crucial for CO stabilization during dusk. Our results indicate that the interaction and colocalization of RAPTOR1B with GI in the nucleus might influence GI levels through an unknown posttranscriptional mechanism. Genetic crosses position RAPTOR1B upstream of CO and GI. This is supported by phenotypic and molecular analyses. Our findings demonstrate that RAPTOR1B, likely as part of TORC, contributes to the photoperiod pathway of the flowering network, ensuring the timely initiation of floral transition under LD conditions.
Collapse
Affiliation(s)
| | | | - Anthony Artins
- Max-Planck Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm14476, Germany
| | | | | | - Alisdair R. Fernie
- Max-Planck Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm14476, Germany
| | - Vanessa Wahl
- Max-Planck Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm14476, Germany
- The James Hutton Institute, DundeeDD2 5DA, United Kingdom
| | - Camila Caldana
- Max-Planck Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm14476, Germany
| |
Collapse
|
4
|
Burroughs AM, Nicastro GG, Aravind L. The Lipocone Superfamily: A Unifying Theme In Metabolism Of Lipids, Peptidoglycan And Exopolysaccharides, Inter-Organismal Conflicts And Immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.632903. [PMID: 40236132 PMCID: PMC11996534 DOI: 10.1101/2025.01.14.632903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Wnt proteins are critical signaling molecules in developmental processes across animals. Despite intense study, their evolutionary roots have remained enigmatic. Using sensitive sequence analysis and structure modeling, we establish that the Wnts are part of a vast assemblage of domains, the Lipocone superfamily, defined here for the first time. It includes previously studied enzymatic domains like the phosphatidylserine synthases (PTDSS1/2) and the TelC toxin domain from Streptococcus intermedius , the enigmatic VanZ proteins, the animal Serum Amyloid A (SAA) and a further host of uncharacterized proteins in a total of 30 families. Though the metazoan Wnts are catalytically inactive, we present evidence for a conserved active site across this superfamily, versions of which are consistently predicted to operate on head groups of either phospholipids or polyisoprenoid lipids, catalyzing transesterification and phosphate-containing head group severance reactions. We argue that this superfamily originated as membrane proteins, with one branch (including Wnt and SAA) evolving into soluble versions. By comprehensively analyzing contextual information networks derived from comparative genomics, we establish that they act in varied functional contexts, including regulation of membrane lipid composition, extracellular polysaccharide biosynthesis, and biogenesis of bacterial outer-membrane components, like lipopolysaccharides. On multiple occasions, members of this superfamily, including the bacterial progenitors of Wnt and SAA, have been recruited as effectors in biological conflicts spanning inter-organismal interactions and anti-viral immunity in both prokaryotes and eukaryotes. These findings establish a unifying theme in lipid biochemistry, explain the origins of Wnt signaling and provide new leads regarding immunity across the tree of life.
Collapse
|
5
|
Gramma V, Olas JJ, Zacharaki V, Ponnu J, Musialak-Lange M, Wahl V. Carbon and nitrogen signaling regulate FLOWERING LOCUS C and impact flowering time in Arabidopsis. PLANT PHYSIOLOGY 2024; 197:kiae594. [PMID: 39531643 DOI: 10.1093/plphys/kiae594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
The timing of flowering in plants is modulated by both carbon (C) and nitrogen (N) signaling pathways. In a previous study, we established a pivotal role of the sucrose-signaling trehalose 6-phosphate pathway in regulating flowering under N-limited short-day conditions. In this work, we show that both wild-type Arabidopsis (Arabidopsis thaliana) plants grown under N-limited conditions and knock-down plants of TREHALOSE PHOSPHATE SYNTHASE 1 induce FLOWERING LOCUS C (FLC) expression, a well-known floral repressor associated with vernalization. When exposed to an extended period of cold, a flc mutant fails to respond to N availability and flowers at the same time under N-limited and full-nutrition conditions. Our data suggest that SUCROSE NON-FERMENTING 1 RELATED KINASE 1-dependent trehalose 6-phosphate-mediated C signaling and a mechanism downstream of N signaling (likely involving NIN-LIKE PROTEIN 7) impact the expression of FLC. Collectively, our data underscore the existence of a multi-factor regulatory system in which the C and N signaling pathways jointly govern the regulation of flowering in plants.
Collapse
Affiliation(s)
- Vladislav Gramma
- Max Planck Institute of Molecular Plant Physiology, Department Metabolic Networks, 14476 Potsdam, Germany
| | - Justyna Jadwiga Olas
- Max Planck Institute of Molecular Plant Physiology, Department Metabolic Networks, 14476 Potsdam, Germany
| | - Vasiliki Zacharaki
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90736 Umeå, Sweden
| | - Jathish Ponnu
- Joseph Gottlieb Kölreuter Institute for Plant Sciences (JKIP), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Magdalena Musialak-Lange
- Max Planck Institute of Molecular Plant Physiology, Department Metabolic Networks, 14476 Potsdam, Germany
| | - Vanessa Wahl
- Max Planck Institute of Molecular Plant Physiology, Department Metabolic Networks, 14476 Potsdam, Germany
- The James Hutton Institute, Department of Cell and Molecular Sciences, Dundee DD2 5DA, UK
| |
Collapse
|
6
|
Qi C, Wei Q, Ye Y, Liu J, Li G, Liang JW, Huang H, Wu G. Fixation of Expression Divergences by Natural Selection in Arabidopsis Coding Genes. Int J Mol Sci 2024; 25:13710. [PMID: 39769472 PMCID: PMC11678068 DOI: 10.3390/ijms252413710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Functional divergences of coding genes can be caused by divergences in their coding sequences and expression. However, whether and how expression divergences and coding sequence divergences coevolve is not clear. Gene expression divergences in differentiated cells and tissues recapitulate developmental models within a species, while gene expression divergences between analogous cells and tissues resemble traditional phylogenies in different species, suggesting that gene expression divergences are molecular traits that can be used for evolutionary studies. Using transcriptomes and evolutionary proxies to study gene expression divergences among differentiated cells and tissues in Arabidopsis, expression divergences of coding genes are shown to be strongly anti-correlated with phylostrata (gene ages), indicators of selective constraint Ka/Ks (nonsynonymous replacement rate/synonymous substitution rate) and indicators of positive selection (frequency of loci with Ka/Ks > 1), but only weakly or not correlated with indicators of neutral selection (Ks). Our results thus suggest that expression divergences largely coevolve with coding sequence divergences, suggesting that expression divergences of coding genes are selectively fixed by natural selection but not neutral selection, which provides a molecular framework for trait diversification, functional adaptation and speciation. Our findings therefore support that positive selection rather than negative or neutral selection is a major driver for the origin and evolution of Arabidopsis genes, supporting the Darwinian theory at molecular levels.
Collapse
Affiliation(s)
- Cheng Qi
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China; (C.Q.); (Y.Y.); (J.L.); (G.L.)
| | - Qiang Wei
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China; (C.Q.); (Y.Y.); (J.L.); (G.L.)
| | - Yuting Ye
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China; (C.Q.); (Y.Y.); (J.L.); (G.L.)
| | - Jing Liu
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China; (C.Q.); (Y.Y.); (J.L.); (G.L.)
| | - Guishuang Li
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China; (C.Q.); (Y.Y.); (J.L.); (G.L.)
| | - Jane W. Liang
- Department of Statistics, University of California, Berkeley, CA 94720, USA; (J.W.L.); (H.H.)
| | - Haiyan Huang
- Department of Statistics, University of California, Berkeley, CA 94720, USA; (J.W.L.); (H.H.)
| | - Guang Wu
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China; (C.Q.); (Y.Y.); (J.L.); (G.L.)
| |
Collapse
|
7
|
Shankar N, Nath U. Advantage looping: Gene regulatory circuits between microRNAs and their target transcription factors in plants. PLANT PHYSIOLOGY 2024; 196:2304-2319. [PMID: 39230893 DOI: 10.1093/plphys/kiae462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024]
Abstract
The 20 to 24 nucleotide microRNAs (miRNAs) and their target transcription factors (TF) have emerged as key regulators of diverse processes in plants, including organ development and environmental resilience. In several instances, the mature miRNAs degrade the TF-encoding transcripts, while their protein products in turn bind to the promoters of the respective miRNA-encoding genes and regulate their expression, thus forming feedback loops (FBLs) or feedforward loops (FFLs). Computational analysis suggested that such miRNA-TF loops are recurrent motifs in gene regulatory networks (GRNs) in plants as well as animals. In recent years, modeling and experimental studies have suggested that plant miRNA-TF loops in GRNs play critical roles in driving organ development and abiotic stress responses. Here, we discuss the miRNA-TF FBLs and FFLs that have been identified and studied in plants over the past decade. We then provide some insights into the possible roles of such motifs within GRNs. Lastly, we provide perspectives on future directions for dissecting the functions of miRNA-centric GRNs in plants.
Collapse
Affiliation(s)
- Naveen Shankar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, India
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
8
|
Bertran Garcia de Olalla E, Cerise M, Rodríguez-Maroto G, Casanova-Ferrer P, Vayssières A, Severing E, López Sampere Y, Wang K, Schäfer S, Formosa-Jordan P, Coupland G. Coordination of shoot apical meristem shape and identity by APETALA2 during floral transition in Arabidopsis. Nat Commun 2024; 15:6930. [PMID: 39138172 PMCID: PMC11322546 DOI: 10.1038/s41467-024-51341-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Plants flower in response to environmental signals. These signals change the shape and developmental identity of the shoot apical meristem (SAM), causing it to form flowers and inflorescences. We show that the increases in SAM width and height during floral transition correlate with changes in size of the central zone (CZ), defined by CLAVATA3 expression, and involve a transient increase in the height of the organizing center (OC), defined by WUSCHEL expression. The APETALA2 (AP2) transcription factor is required for the rapid increases in SAM height and width, by maintaining the width of the OC and increasing the height and width of the CZ. AP2 expression is repressed in the SAM at the end of floral transition, and extending the duration of its expression increases SAM width. Transcriptional repression by SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) represents one of the mechanisms reducing AP2 expression during floral transition. Moreover, AP2 represses SOC1 transcription, and we find that reciprocal repression of SOC1 and AP2 contributes to synchronizing precise changes in meristem shape with floral transition.
Collapse
Affiliation(s)
- Enric Bertran Garcia de Olalla
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, INRIA, Lyon, France
| | - Martina Cerise
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Gabriel Rodríguez-Maroto
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Pau Casanova-Ferrer
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Alice Vayssières
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Edouard Severing
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Department of Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 4, PB, Wageningen, The Netherlands
| | - Yaiza López Sampere
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Kang Wang
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sabine Schäfer
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Pau Formosa-Jordan
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - George Coupland
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| |
Collapse
|
9
|
Liu Y, Liu P, Gao L, Li Y, Ren X, Jia J, Wang L, Zheng X, Tong Y, Pei H, Lu Z. Epigenomic identification of vernalization cis-regulatory elements in winter wheat. Genome Biol 2024; 25:200. [PMID: 39080779 PMCID: PMC11290141 DOI: 10.1186/s13059-024-03342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Winter wheat undergoes vernalization, a process activated by prolonged exposure to low temperatures. During this phase, flowering signals are generated and transported to the apical meristems, stimulating the transition to the inflorescence meristem while inhibiting tiller bud elongation. Although some vernalization genes have been identified, the key cis-regulatory elements and precise mechanisms governing this process in wheat remain largely unknown. RESULTS In this study, we construct extensive epigenomic and transcriptomic profiling across multiple tissues-leaf, axillary bud, and shoot apex-during the vernalization of winter wheat. Epigenetic modifications play a crucial role in eliciting tissue-specific responses and sub-genome-divergent expressions during vernalization. Notably, we observe that H3K27me3 primarily regulates vernalization-induced genes and has limited influence on vernalization-repressed genes. The integration of these datasets enables the identification of 10,600 putative vernalization-related regulatory elements including distal accessible chromatin regions (ACRs) situated 30Kb upstream of VRN3, contributing to the construction of a comprehensive regulatory network. Furthermore, we discover that TaSPL7/15, integral components of the aging-related flowering pathway, interact with the VRN1 promoter and VRN3 distal regulatory elements. These interactions finely regulate their expressions, consequently impacting the vernalization process and flowering. CONCLUSIONS Our study offers critical insights into wheat vernalization's epigenomic dynamics and identifies the putative regulatory elements crucial for developing wheat germplasm with varied vernalization characteristics. It also establishes a vernalization-related transcriptional network, and uncovers that TaSPL7/15 from the aging pathway participates in vernalization by directly binding to the VRN1 promoter and VRN3 distal regulatory elements.
Collapse
Affiliation(s)
- Yanhong Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Pan Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lifeng Gao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yushan Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueni Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jizeng Jia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lei Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Xu Zheng
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yiping Tong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongcui Pei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zefu Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
10
|
Jin S, Tian H, Ti M, Song J, Hu Z, Zhang Z, Xin D, Chen Q, Zhu R. Genetic Analysis of Soybean Flower Size Phenotypes Based on Computer Vision and Genome-Wide Association Studies. Int J Mol Sci 2024; 25:7622. [PMID: 39062864 PMCID: PMC11277310 DOI: 10.3390/ijms25147622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The dimensions of organs such as flowers, leaves, and seeds are governed by processes of cellular proliferation and expansion. In soybeans, the dimensions of these organs exhibit a strong correlation with crop yield, quality, and other phenotypic traits. Nevertheless, there exists a scarcity of research concerning the regulatory genes influencing flower size, particularly within the soybean species. In this study, 309 samples of 3 soybean types (123 cultivar, 90 landrace, and 96 wild) were re-sequenced. The microscopic phenotype of soybean flower organs was photographed using a three-eye microscope, and the phenotypic data were extracted by means of computer vision. Pearson correlation analysis was employed to assess the relationship between petal and seed phenotypes, revealing a strong correlation between the sizes of these two organs. Through GWASs, SNP loci significantly associated with flower organ size were identified. Subsequently, haplotype analysis was conducted to screen for upstream and downstream genes of these loci, thereby identifying potential candidate genes. In total, 77 significant SNPs associated with vexil petals, 562 significant SNPs associated with wing petals, and 34 significant SNPs associated with keel petals were found. Candidate genes were screened by candidate sites, and haplotype analysis was performed on the candidate genes. Finally, the present investigation yielded 25 and 10 genes of notable significance through haplotype analysis in the vexil and wing regions, respectively. Notably, Glyma.07G234200, previously documented for its high expression across various plant organs, including flowers, pods, leaves, roots, and seeds, was among these identified genes. The research contributes novel insights to soybean breeding endeavors, particularly in the exploration of genes governing organ development, the selection of field materials, and the enhancement of crop yield. It played a role in the process of material selection during the growth period and further accelerated the process of soybean breeding material selection.
Collapse
Affiliation(s)
- Song Jin
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China (D.X.)
| | - Huilin Tian
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China (D.X.)
| | - Ming Ti
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China (D.X.)
| | - Jia Song
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China (D.X.)
| | - Zhenbang Hu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China (D.X.)
- National Key Laboratory of Smart Farm Technolog and System, Harbin 150030, China
| | - Zhanguo Zhang
- National Key Laboratory of Smart Farm Technolog and System, Harbin 150030, China
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Dawei Xin
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China (D.X.)
- National Key Laboratory of Smart Farm Technolog and System, Harbin 150030, China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China (D.X.)
- National Key Laboratory of Smart Farm Technolog and System, Harbin 150030, China
| | - Rongsheng Zhu
- National Key Laboratory of Smart Farm Technolog and System, Harbin 150030, China
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
11
|
Hernández-Soriano L, Gálvez-Sandre L, Ávila de Dios E, Simpson J. How to awaken a sleeping giant: antagonistic expression of Flowering locus T homologs and elements of the age-related pathway are associated with the flowering transition in Agave tequilana. PLANT REPRODUCTION 2024; 37:111-132. [PMID: 38082036 PMCID: PMC11180032 DOI: 10.1007/s00497-023-00489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/08/2023] [Indexed: 06/16/2024]
Abstract
KEY MESSAGE Antagonistic expression of Flowering locus T proteins and the ageing pathway via miRNAs and sugar metabolism regulate the initiation of flowering in A. tequilana. Flowering in commercial plantations of Agave tequilana signals that plants are ready to harvest for tequila production. However, time of flowering is often unpredictable and a detailed understanding of the process would be beneficial in the field, for breeding and for the development of future research. This report describes the functional analysis of A. tequilana FLOWERING LOCUS T (FT) genes by heterologous expression in A. thaliana and in situ hybridization in agave plants. The gene structures of the Agave tequilana FT family are also described and putative regulatory promoter elements were identified. Most Agave species have monocarpic, perennial life cycles that can last over 25 years during which plants do not respond to the normal environmental signals which induce flowering, suggesting that the ageing pathway as described in Arabidopsis may play an important role in determining flowering time in these species. Elements of this pathway were analyzed and in silico data is presented that supports the regulation of SQUAMOSA PROMOTER BINDING LIKE proteins (SPL), APETALA2 (AP2) proteins and members of Plant Glycoside Hydrolase Family 32 (PGHF32) by interactions with miRNAs 156, 172 and 164 during the initiation of flowering in A. tequilana.
Collapse
Affiliation(s)
| | - Laura Gálvez-Sandre
- Department of Genetic Engineering, Cinvestav Unidad Irapuato, Guanajuato, Mexico
| | - Emmanuel Ávila de Dios
- Department of Genetic Engineering, Cinvestav Unidad Irapuato, Guanajuato, Mexico
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - June Simpson
- Department of Genetic Engineering, Cinvestav Unidad Irapuato, Guanajuato, Mexico.
| |
Collapse
|
12
|
Liu J, Bennett D, Demuth M, Burchard E, Artlip T, Dardick C, Liu Z. euAP2a, a key gene that regulates flowering time in peach ( Prunus persica) by modulating thermo-responsive transcription programming. HORTICULTURE RESEARCH 2024; 11:uhae076. [PMID: 38752224 PMCID: PMC11091482 DOI: 10.1093/hr/uhae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/05/2024] [Indexed: 05/18/2024]
Abstract
Frequent spring frost damage threatens temperate fruit production, and breeding of late-flowering cultivars is an effective strategy for preventing such damage. However, this effort is often hampered by the lack of specific genes and markers and a lack of understanding of the mechanisms. We examined a Late-Flowering Peach (LFP) germplasm and found that its floral buds require a longer chilling period to release from their dormancy and a longer warming period to bloom than the control cultivar, two key characteristics associated with flowering time. We discovered that a 983-bp deletion in euAP2a, an APETALA2 (AP2)-related gene with known roles in regulating floral organ identity and flowering time, was primarily responsible for late flowering in LFP. This deletion disrupts an miR172 binding site, resulting in a gain-of-function mutation in euAP2a. Transcriptomic analyses revealed that at different stages of floral development, two chilling-responsive modules and four warm-responsive modules, comprising approximately 600 genes, were sequentially activated, forming a unique transcription programming. Furthermore, we found that euAP2a was transiently downregulated during the activation of these thermal-responsive modules at various stages. However, the loss of such transient, stage-specific downregulation of euAP2a caused by the deletion of miR172 binding sites resulted in the deactivation or delay of these modules in the LFP flower buds, suggesting that euAP2a acts as a transcription repressor to control floral developmental pace in peaches by modulating the thermo-responsive transcription programming. The findings shed light on the mechanisms behind late flowering in deciduous fruit trees, which is instrumental for breeding frost-tolerant cultivars.
Collapse
Affiliation(s)
- Jianyang Liu
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Dennis Bennett
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Mark Demuth
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Erik Burchard
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Tim Artlip
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Chris Dardick
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Zongrang Liu
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| |
Collapse
|
13
|
Tsuji H, Sato M. The Function of Florigen in the Vegetative-to-Reproductive Phase Transition in and around the Shoot Apical Meristem. PLANT & CELL PHYSIOLOGY 2024; 65:322-337. [PMID: 38179836 PMCID: PMC11020210 DOI: 10.1093/pcp/pcae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/30/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Plants undergo a series of developmental phases throughout their life-cycle, each characterized by specific processes. Three critical features distinguish these phases: the arrangement of primordia (phyllotaxis), the timing of their differentiation (plastochron) and the characteristics of the lateral organs and axillary meristems. Identifying the unique molecular features of each phase, determining the molecular triggers that cause transitions and understanding the molecular mechanisms underlying these transitions are keys to gleaning a complete understanding of plant development. During the vegetative phase, the shoot apical meristem (SAM) facilitates continuous leaf and stem formation, with leaf development as the hallmark. The transition to the reproductive phase induces significant changes in these processes, driven mainly by the protein FT (FLOWERING LOCUS T) in Arabidopsis and proteins encoded by FT orthologs, which are specified as 'florigen'. These proteins are synthesized in leaves and transported to the SAM, and act as the primary flowering signal, although its impact varies among species. Within the SAM, florigen integrates with other signals, culminating in developmental changes. This review explores the central question of how florigen induces developmental phase transition in the SAM. Future research may combine phase transition studies, potentially revealing the florigen-induced developmental phase transition in the SAM.
Collapse
Affiliation(s)
- Hiroyuki Tsuji
- Bioscience and Biotechnology Center, Nagoya University, Furocho, Chikusa, Nagoya, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Moeko Sato
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| |
Collapse
|
14
|
Shang L, Tao J, Song J, Wang Y, Zhang X, Ge P, Li F, Dong H, Gai W, Grierson D, Ye Z, Zhang Y. CRISPR/Cas9-mediated mutations of FANTASTIC FOUR gene family for creating early flowering mutants in tomato. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:774-784. [PMID: 37942846 PMCID: PMC10893942 DOI: 10.1111/pbi.14223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2023] [Accepted: 10/21/2023] [Indexed: 11/10/2023]
Abstract
Flowering time is of great agricultural importance and the timing and extent of flowering usually determines yield and availability of flowers, fruits and seeds. Identification of genes determining flowering has important practical applications for tomato breeding. Here we demonstrate the roles of the FANTASTIC FOUR (FAF) gene family in regulating tomato flowering time. In this plant-specific gene family, SlFAF1/2a shows a constitutive expression pattern during the transition of the shoot apical meristem (SAM) from vegetative to reproductive growth and significantly influences flowering time. Overexpressing SlFAF1/2a causes earlier flowering compared with the transformations of other genes in the FAF family. SlFAF1/2c also positively regulates tomato flowering, although to a lesser extent. The other members of the SlFAF gene family, SlFAF1/2b, SlFAF3/4a and SlFAF3/4b, are negative regulators of tomato flowering and faf1/2b, faf3/4a and faf3/4b single mutants all display early flowering. We generated a series of early flowering mutants using the CRISPR/Cas9 editing system, and the faf1/2b faf3/4a faf3/4b triple mutant flowering earliest compared with other mutants. More importantly, these mutants show no adverse effect on yield. Our results have uncovered the role of the FAF gene family in regulating tomato flowering time and generated early flowering germplasms for molecular breeding.
Collapse
Affiliation(s)
- Lele Shang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Jinbao Tao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
| | - Jianwen Song
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
| | - Yaru Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
| | - Xingyu Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
| | - Pingfei Ge
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
| | - Fangman Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
| | - Haiqiang Dong
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
| | - Wenxian Gai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
| | - Donald Grierson
- Plant Sciences Division, School of BiosciencesUniversity of NottinghamLoughboroughLE12 5RDUK
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Yuyang Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518000China
| |
Collapse
|
15
|
Ye X, Deng Q, Xu S, Huang Y, Wei D, Wang Z, Zhang H, Wang H, Tang Q. CsSPL13A directly binds and positively regulates CsFT and CsBAM to accelerate flowering in cucumber. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108395. [PMID: 38290342 DOI: 10.1016/j.plaphy.2024.108395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/01/2024]
Abstract
Flowering is an important developmental transition that greatly affects the yield of many vegetable crops. In cucumber (Cucumis sativus), flowering is regulated by various factors including squamosa promoter-binding-like (SPL) family proteins. However, the role of CsSPL genes in cucumber flowering remains largely unknown. In this study, we cloned the squamosa promoter-binding-like protein 13A (CsSPL13A) gene, which encodes a highly conserved SBP-domain protein that acts as a transcription factor and localizes to the nucleus. Quantitative real-time PCR (qRT-PCR) analysis showed that CsSPL13A was mainly expressed in flowers, and its expression level increased significantly nearing the flowering stage. Additionally, compared with the wild type(WT), CsSPL13A-overexpressing transgenic cucumber plants (CsSPL13A-OE) showed considerable differences in flowering phenotypes, such as early flowering, increased number of male flowers, and longer flower stalks. CsSPL13A upregulated the expression of the flowering integrator gene Flowering Locus T (CsFT) and the sugar-mediated flowering gene β-amylase (CsBAM) in cucumber. Yeast one-hybrid and firefly enzyme reporter assays confirmed that the CsSPL13A protein could directly bind to the promoters of CsFT and CsBAM, suggesting that CsSPL13A works together with CsFT and CsBAM to mediate flowering in cucumber. Overall, our results provide novel insights into the regulatory network of flowering in cucumber as well as new ideas for the genetic improvement of cucumber varieties.
Collapse
Affiliation(s)
- Xu Ye
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Qinlin Deng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Shicheng Xu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Yifang Huang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Dayong Wei
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Zhimin Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Hongcheng Zhang
- Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Hebing Wang
- Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China.
| | - Qinglin Tang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
16
|
Knoch D, Meyer RC, Heuermann MC, Riewe D, Peleke FF, Szymański J, Abbadi A, Snowdon RJ, Altmann T. Integrated multi-omics analyses and genome-wide association studies reveal prime candidate genes of metabolic and vegetative growth variation in canola. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:713-728. [PMID: 37964699 DOI: 10.1111/tpj.16524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023]
Abstract
Genome-wide association studies (GWAS) identified thousands of genetic loci associated with complex plant traits, including many traits of agronomical importance. However, functional interpretation of GWAS results remains challenging because of large candidate regions due to linkage disequilibrium. High-throughput omics technologies, such as genomics, transcriptomics, proteomics and metabolomics open new avenues for integrative systems biological analyses and help to nominate systems information supported (prime) candidate genes. In the present study, we capitalise on a diverse canola population with 477 spring-type lines which was previously analysed by high-throughput phenotyping of growth-related traits and by RNA sequencing and metabolite profiling for multi-omics-based hybrid performance prediction. We deepened the phenotypic data analysis, now providing 123 time-resolved image-based traits, to gain insight into the complex relations during early vegetative growth and reanalysed the transcriptome data based on the latest Darmor-bzh v10 genome assembly. Genome-wide association testing revealed 61 298 robust quantitative trait loci (QTL) including 187 metabolite QTL, 56814 expression QTL and 4297 phenotypic QTL, many clustered in pronounced hotspots. Combining information about QTL colocalisation across omics layers and correlations between omics features allowed us to discover prime candidate genes for metabolic and vegetative growth variation. Prioritised candidate genes for early biomass accumulation include A06p05760.1_BnaDAR (PIAL1), A10p16280.1_BnaDAR, C07p48260.1_BnaDAR (PRL1) and C07p48510.1_BnaDAR (CLPR4). Moreover, we observed unequal effects of the Brassica A and C subgenomes on early biomass production.
Collapse
Affiliation(s)
- Dominic Knoch
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
| | - Rhonda C Meyer
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
| | - Marc C Heuermann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
| | - David Riewe
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, 14195, Berlin, Germany
| | - Fritz F Peleke
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
| | - Jędrzej Szymański
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
- Institute of Bio- and Geosciences IBG-4: Bioinformatics, Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Amine Abbadi
- NPZ Innovation GmbH, Hohenlieth, 24363, Holtsee, Germany
- Norddeutsche Pflanzenzucht Hans-Georg Lembke KG, Hohenlieth, 24363, Holtsee, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, Research Centre for Biosystems, Land Use and Nutrition (iFZ), Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Thomas Altmann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
| |
Collapse
|
17
|
Poethig RS, Fouracre J. Temporal regulation of vegetative phase change in plants. Dev Cell 2024; 59:4-19. [PMID: 38194910 PMCID: PMC10783531 DOI: 10.1016/j.devcel.2023.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
During their vegetative growth, plants reiteratively produce leaves, buds, and internodes at the apical end of the shoot. The identity of these organs changes as the shoot develops. Some traits change gradually, but others change in a coordinated fashion, allowing shoot development to be divided into discrete juvenile and adult phases. The transition between these phases is called vegetative phase change. Historically, vegetative phase change has been studied because it is thought to be associated with an increase in reproductive competence. However, this is not true for all species; indeed, heterochronic variation in the timing of vegetative phase change and flowering has made important contributions to plant evolution. In this review, we describe the molecular mechanism of vegetative phase change, how the timing of this process is controlled by endogenous and environmental factors, and its ecological and evolutionary significance.
Collapse
Affiliation(s)
- R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jim Fouracre
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
18
|
Liu S, Chen S, Zhou Y, Shen Y, Qin Z, Wu L. VERNALIZATION1 represses FLOWERING PROMOTING FACTOR1-LIKE1 in leaves for timely flowering in Brachypodium distachyon. THE PLANT CELL 2023; 35:3697-3711. [PMID: 37378548 PMCID: PMC10533335 DOI: 10.1093/plcell/koad190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/01/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
FLOWERING PROMOTING FACTOR1 (FPF1), a small protein without any known domains, promotes flowering in several plants; however, its functional mechanism remains unknown. Here, we characterized 2 FPF1-like proteins, FPL1 and FPL7, which, in contrast, function as flowering repressors in Brachypodium distachyon. FPL1 and FPL7 interact with the components of the florigen activation complex (FAC) and inhibit FAC activity to restrict expression of its critical target, VERNALIZATION1 (VRN1), in leaves, thereby preventing overaccumulation of FLOWERING LOCUS T1 (FT1) at the juvenile stage. Further, VRN1 can directly bind to the FPL1 promoter and repress FPL1 expression; hence, as VRN1 gradually accumulates during the late vegetative stage, FAC is released. This accurate feedback regulation of FPL1 by VRN1 allows proper FT1 expression in leaves and ensures sufficient FAC formation in shoot apical meristems to trigger timely flowering. Overall, we define a sophisticated modulatory loop for flowering initiation in a temperate grass, providing insights toward resolving the molecular basis underlying fine-tuning flowering time in plants.
Collapse
Affiliation(s)
- Shu Liu
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Siyi Chen
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yang Zhou
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuxin Shen
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhengrui Qin
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Liang Wu
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| |
Collapse
|
19
|
Leung CC, Tarté DA, Oliver LS, Wang Q, Gendron JM. Systematic characterization of photoperiodic gene expression patterns reveals diverse seasonal transcriptional systems in Arabidopsis. PLoS Biol 2023; 21:e3002283. [PMID: 37699055 PMCID: PMC10497145 DOI: 10.1371/journal.pbio.3002283] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/31/2023] [Indexed: 09/14/2023] Open
Abstract
Photoperiod is an annual cue measured by biological systems to align growth and reproduction with the seasons. In plants, photoperiodic flowering has been intensively studied for over 100 years, but we lack a complete picture of the transcriptional networks and cellular processes that are photoperiodic. We performed a transcriptomics experiment on Arabidopsis plants grown in 3 different photoperiods and found that thousands of genes show photoperiodic alteration in gene expression. Gene clustering, daily expression integral calculations, and cis-element analysis then separate photoperiodic genes into co-expression subgroups that display 19 diverse seasonal expression patterns, opening the possibility that many photoperiod measurement systems work in parallel in Arabidopsis. Then, functional enrichment analysis predicts co-expression of important cellular pathways. To test these predictions, we generated a comprehensive catalog of genes in the phenylpropanoid biosynthesis pathway, overlaid gene expression data, and demonstrated that photoperiod intersects with 2 major phenylpropanoid pathways differentially, controlling flavonoids but not lignin. Finally, we describe the development of a new app that visualizes photoperiod transcriptomic data for the wider community.
Collapse
Affiliation(s)
- Chun Chung Leung
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Daniel A. Tarté
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Lilijana S. Oliver
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Qingqing Wang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Joshua M. Gendron
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
20
|
Li Y, Chen Y, Yi R, Yu X, Guo X, YiLin F, Zhou XJ, Ya H, Yu X. Genome-wide identification of Apetala2 gene family in Hypericum perforatum L and expression profiles in response to different abiotic and hormonal treatments. PeerJ 2023; 11:e15883. [PMID: 37663289 PMCID: PMC10470449 DOI: 10.7717/peerj.15883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023] Open
Abstract
The Apetala2 (AP2) gene family of transcription factors (TFs) play important functions in plant development, hormonal response, and abiotic stress. To reveal the biological functions and the expression profiles of AP2 genes in Hypericum perforatum, genome-wide identification of HpAP2 family members was conducted. Methods We identified 21 AP2 TFs in H. perforatum using bioinformatic methods; their physical and chemical properties, gene structures, conserved motifs, evolutionary relationships, cis-acting elements, and expression patterns were investigated. Results We found that based on the structural characteristics and evolutionary relationships, the HpAP2 gene family can be divided into three subclasses: euANT, baselANT, and euAP2. A canonical HpAP2 TF shared a conserved protein structure, while a unique motif 6 was found in HpAP2_1, HpAP2_4, and HpAP2_5 from the euANT subgroup, indicating potential biological and regulatory functions of these genes. Furthermore, a total of 59 cis-acting elements were identified, most of which were associated with growth, development, and resistance to stress in plants. Transcriptomics data showed that 57.14% of the genes in the AP2 family were differentially expressed in four organs. For example, HpAP2_18 was specifically expressed in roots and stems, whereas HpAP2_17 and HpAP2_11 were specifically expressed in leaves and flowers, respectively. HpAP2_5, HpAP2_11, and HpAP2_18 showed tissue-specific expression patterns and responded positively to hormones and abiotic stresses. Conclusion These results demonstrated that the HpAP2 family genes are involved in diverse developmental processes and generate responses to abiotic stress conditions in H. perforatum. This article, for the first time, reports the identification and expression profiles of the AP2 family genes in H. perforatum, laying the foundation for future functional studies with these genes.
Collapse
Affiliation(s)
- Yonghui Li
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| | - Yao Chen
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| | - Ruyi Yi
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| | - Xueting Yu
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| | - Xiangmeng Guo
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| | - Fan YiLin
- Technical Center of zhengzhou Customs Distric, Zhengzhou, Henan, China
| | - Xiao-Jun Zhou
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| | - Huiyuan Ya
- School of Food and Drug, Luoyang Normal University, Luoyang, Henan, China
| | - Xiangli Yu
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| |
Collapse
|
21
|
Wang X, Li Q, Zhu H, Song M, Zhang K, Ge W. Molecular mechanisms of miR172a and its target gene LbrTOE3 regulating maturation in Lilium. PLANTA 2023; 258:53. [PMID: 37515607 DOI: 10.1007/s00425-023-04208-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
MAIN CONCLUSION Lbr-miR172a could promote the growth phase transition and shorten maturation in Lilium, while LbrTOE3 inhibited this process and prolonged the growth period. Lilium is an ornamental flower with high economic value for both food and medicinal purposes. However, under natural conditions, Lilium bulbs take a long time and cost more to grow to commercial size. This research was conducted to shorten the maturation time by subjecting Lilium bulbs to alternating temperature treatment. To explore the molecular mechanism of the vegetative phase change (VPC) in Lilium after variable temperature treatment, the key module miR172a-TOE3 was selected based on a combined omics analysis. Gene cloning and transgene functional validation showed that overexpression of Lbr-mir172a promoted a phase change, while overexpression of LbrTOE3 inhibited this process. Subcellular localization and transcriptional activation assays indicated that LbrTOE3 was predominantly localized in the nucleus and showed transcriptional activity. In situ hybridization showed that LbrTOE3 expression was significantly downregulated after alternating temperature treatment. This study elucidates the molecular mechanisms of the phase transition of Lilium and provides a scientific basis for the phase transition in other plants.
Collapse
Affiliation(s)
- Xiaoshan Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Qing Li
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Haoran Zhu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Meiqi Song
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Kezhong Zhang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, People's Republic of China.
| | - Wei Ge
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, People's Republic of China.
| |
Collapse
|
22
|
Dai Y, Luo L, Zhao Z. Genetic robustness control of auxin output in priming organ initiation. Proc Natl Acad Sci U S A 2023; 120:e2221606120. [PMID: 37399382 PMCID: PMC10334806 DOI: 10.1073/pnas.2221606120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/17/2023] [Indexed: 07/05/2023] Open
Abstract
Auxin signaling is essential for organ initiation in plants. How genetic robustness controls auxin output during organ initiation is largely unknown. Here, we identified DORNROSCHEN-LIKE (DRNL) as a target of MONOPTEROS (MP) that plays essential roles in organ initiation. We demonstrate that MP physically interacts with DRNL to inhibit cytokinin accumulation by directly activating ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6 and CYTOKININ OXIDASE 6. DRN, the paralogous gene of DRNL, acts redundantly with DRNL but is not coexpressed with DRNL in the organ founder cells in which DRNL is expressed. We demonstrate that DRNL directly inhibits DRN expression in the peripheral zone, whereas DRN transcripts are ectopically activated in drnl mutants and fully restore the functional deficiency of drnl in organ initiation. Our results provide a mechanistic framework for the robust control of auxin signaling in organ initiation through paralogous gene-triggered spatial gene compensation effects.
Collapse
Affiliation(s)
- Yuqiu Dai
- Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Ministry of Education Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
| | - Linjie Luo
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu241000, China
| | - Zhong Zhao
- Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Ministry of Education Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
| |
Collapse
|
23
|
Martignago D, da Silveira Falavigna V, Lombardi A, Gao H, Korwin Kurkowski P, Galbiati M, Tonelli C, Coupland G, Conti L. The bZIP transcription factor AREB3 mediates FT signalling and floral transition at the Arabidopsis shoot apical meristem. PLoS Genet 2023; 19:e1010766. [PMID: 37186640 PMCID: PMC10212096 DOI: 10.1371/journal.pgen.1010766] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/25/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
The floral transition occurs at the shoot apical meristem (SAM) in response to favourable external and internal signals. Among these signals, variations in daylength (photoperiod) act as robust seasonal cues to activate flowering. In Arabidopsis, long-day photoperiods stimulate production in the leaf vasculature of a systemic florigenic signal that is translocated to the SAM. According to the current model, FLOWERING LOCUS T (FT), the main Arabidopsis florigen, causes transcriptional reprogramming at the SAM, so that lateral primordia eventually acquire floral identity. FT functions as a transcriptional coregulator with the bZIP transcription factor FD, which binds DNA at specific promoters. FD can also interact with TERMINAL FLOWER 1 (TFL1), a protein related to FT that acts as a floral repressor. Thus, the balance between FT-TFL1 at the SAM influences the expression levels of floral genes targeted by FD. Here, we show that the FD-related bZIP transcription factor AREB3, which was previously studied in the context of phytohormone abscisic acid signalling, is expressed at the SAM in a spatio-temporal pattern that strongly overlaps with FD and contributes to FT signalling. Mutant analyses demonstrate that AREB3 relays FT signals redundantly with FD, and the presence of a conserved carboxy-terminal SAP motif is required for downstream signalling. AREB3 shows unique and common patterns of expression with FD, and AREB3 expression levels are negatively regulated by FD thus forming a compensatory feedback loop. Mutations in another bZIP, FDP, further aggravate the late flowering phenotypes of fd areb3 mutants. Therefore, multiple florigen-interacting bZIP transcription factors have redundant functions in flowering at the SAM.
Collapse
Affiliation(s)
- Damiano Martignago
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | | | | | - He Gao
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Massimo Galbiati
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Chiara Tonelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Lucio Conti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
24
|
Xu HX, Meng D, Yang Q, Chen T, Qi M, Li XY, Ge H, Chen JW. Sorbitol induces flower bud formation via the MADS-box transcription factor EjCAL in loquat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1241-1261. [PMID: 36541724 DOI: 10.1111/jipb.13439] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/19/2022] [Indexed: 05/13/2023]
Abstract
Sorbitol is an important signaling molecule in fruit trees. Here, we observed that sorbitol increased during flower bud differentiation (FBD) in loquat (Eriobotrya japonica Lindl.). Transcriptomic analysis suggested that bud formation was associated with the expression of the MADS-box transcription factor (TF) family gene, EjCAL. RNA fluorescence in situ hybridization showed that EjCAL was enriched in flower primordia but hardly detected in the shoot apical meristem. Heterologous expression of EjCAL in Nicotiana benthamiana plants resulted in early FBD. Yeast-one-hybrid analysis identified the ERF12 TF as a binding partner of the EjCAL promoter. Chromatin immunoprecipitation-PCR confirmed that EjERF12 binds to the EjCAL promoter, and β-glucuronidase activity assays indicated that EjERF12 regulates EjCAL expression. Spraying loquat trees with sorbitol promoted flower bud formation and was associated with increased expression of EjERF12 and EjCAL. Furthermore, we identified EjUF3GaT1 as a target gene of EjCAL and its expression was activated by EjCAL. Function characterization via overexpression and RNAi reveals that EjUF3GaT1 is a biosynthetic gene of flavonoid hyperoside. The concentration of the flavonoid hyperoside mirrored that of sorbitol during FBD and exogenous hyperoside treatment also promoted loquat bud formation. We identified a mechanism whereby EjCAL might regulate hyperoside biosynthesis and confirmed the involvement of EjCAL in flower bud formation in planta. Together, these results provide insight into bud formation in loquat and may be used in efforts to increase yield.
Collapse
Affiliation(s)
- Hong-Xia Xu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Dong Meng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100000, China
- College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Qing Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100000, China
- College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Ting Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100000, China
- College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Meng Qi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100000, China
- College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Xiao-Ying Li
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hang Ge
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jun-Wei Chen
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
25
|
Laanen P, Cuypers A, Saenen E, Horemans N. Flowering under enhanced ionising radiation conditions and its regulation through epigenetic mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:246-259. [PMID: 36731286 DOI: 10.1016/j.plaphy.2023.01.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
As sessile organisms, plants have to deal with unfavourable conditions by acclimating or adapting in order to survive. Regulation of flower induction is one such mechanism to ensure reproduction and species survival. Flowering is a tightly regulated process under the control of a network of genes, which can be affected by environmental cues and stress. The effects of ionising radiation (IR) on flowering, however, have been poorly studied. Understanding the effects of ionising radiation on flowering, including the timing, gene pathways, and epigenetics involved, is crucial in the continuing effort of environmental radiation protection. The review shows that plants alter their flowering pattern in response to IR, with various flowering related genes (eg. FLOWERING LOCUS C (FLC), FLOWERING LOCUS T (FT), CONSTANS (CO), GIGANTEA (GI), APETALA1 (AP1), LEAFY (LFY)) and epigenetic processes (DNA methylation, and miRNA expression eg. miRNA169, miR156, miR172) being affected. Thereby, showing a hypothetical IR-induced flowering mechanism. Further research on the interaction between IR and flowering in plants is, however, needed to elucidate the mechanisms behind the stress-induced flowering response.
Collapse
Affiliation(s)
- Pol Laanen
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium; Centre for Environmental Research, University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| | - Ann Cuypers
- Centre for Environmental Research, University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| | - Eline Saenen
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium.
| | - Nele Horemans
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium; Centre for Environmental Research, University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| |
Collapse
|
26
|
Nie H, Cheng C, Kong J, Li H, Hua J. Plant non-coding RNAs function in pollen development and male sterility. FRONTIERS IN PLANT SCIENCE 2023; 14:1109941. [PMID: 36875603 PMCID: PMC9975556 DOI: 10.3389/fpls.2023.1109941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Male sterility is classified as either cytoplasmic male sterility (CMS) or genic male sterility (GMS). Generally, CMS involves mitochondrial genomes interacting with the nuclear genome, while GMS is caused by nuclear genes alone. Male sterility is regulated by multilevel mechanisms in which non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and phased small interfering RNAs (phasiRNAs), which have been proven to be critical elements. The development of high-throughput sequencing technology offers new opportunities to evaluate the genetic mechanism of ncRNAs in plant male sterility. In this review, we summarize the critical ncRNAs that regulate gene expression in ways dependent on or independent of hormones, which involve the differentiation of the stamen primordia, degradation of the tapetum, formation of microspores, and the release of pollen. In addition, the key mechanisms of the miRNA-lncRNA-mRNA interaction networks mediating male sterility in plants are elaborated. We present a different perspective on exploring the ncRNA-mediated regulatory pathways that control CMS in plants and create male-sterile lines through hormones or genome editing. A refined understanding of the ncRNA regulatory mechanisms in plant male sterility for the development of new sterile lines would be conducive to improve hybridization breeding.
Collapse
Affiliation(s)
- Hushuai Nie
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Cheng Cheng
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Huijing Li
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
27
|
Zhao J, Doody E, Poethig RS. Reproductive competence is regulated independently of vegetative phase change in Arabidopsis thaliana. Curr Biol 2023; 33:487-497.e2. [PMID: 36634678 PMCID: PMC9905307 DOI: 10.1016/j.cub.2022.12.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/19/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023]
Abstract
A long-standing question in plant biology is how the acquisition of reproductive competence is related to the juvenile-to-adult vegetative transition. We addressed this question by examining the expression pattern and mutant phenotypes of two families of miRNAs-miR156/miR157 and miR172-that operate in the same pathway and play important roles in these processes. The phenotype of mutants deficient for miR156/miR157, miR172, and all three miRNAs demonstrated that miR156/miR157 regulate the timing of vegetative phase change but have only a minor effect on reproductive competence, whereas miR172 has a minor role in vegetative phase change but has a major effect on reproductive competence. MIR172B is directly downstream of the miR156/SPL module, but temporal variation in the level of miR156 in the shoot apex and leaf-to-leaf variation in miR156 expression in young primordia was not associated with a change in the level of miR172 in these tissues. Additionally, although miR172 levels increase from leaf to leaf later in leaf development, this variation is largely insensitive to changes in the abundance of miR156. Our results indicate that the acquisition of reproductive competence in Arabidopsis is regulated by miR172 through a mechanism that is independent of the vegetative phase change pathway.
Collapse
Affiliation(s)
- Jianfei Zhao
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erin Doody
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
28
|
Yang H, Zhai X, Zhao Z, Fan G. Comprehensive analyses of the SPL transcription factor family in Paulownia fortunei and their responses to biotic and abiotic stresses. Int J Biol Macromol 2023; 226:1261-1272. [PMID: 36442550 DOI: 10.1016/j.ijbiomac.2022.11.239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
To study the molecular characteristics, phylogenetic evolution, and gene functions of the SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Paulownia fortunei, a whole genome sequence analysis was carried out, and a total of 23 PfSPL genes were identified. Tandem duplication and fragment replication were the main patterns of gene expansion in the PfSPL family. Phylogenetic analysis showed that the 23 identified PfSPLs formed seven subgroups, and the structures of the proteins in the same subgroup were similar. Functional analysis indicated that PfSPL11 may regulate flowering, PfSPL5 was involved in gibberellin signaling, PfSPL1/4/23 regulated branching, and PfSPL9/16/18 were related to pathogen resistance. Yeast one hybrid technology confirmed that PfSPL4 and PfSP23 can bind to the promoter of PfTCPa. The transcriptome analysis indicated that PfSPL10 was sensitive to both drought and salt stress. Ten PfSPLs that responded to phytoplasma infection were identified. Molecular docking showed that PfSPL10 and PfSPL 4/5/9/10/11/13 formed active pockets in the conserved SBP domain that could bind methyl methane sulfonate (MMS) and rifampicin (Rif) through stable hydrogen bonds, respectively. This study provides a basis for further studies on the functions of the PfSPL transcription factor family, and for genetic improvement and breeding of trees resistant to PaWB disease.
Collapse
Affiliation(s)
- Haibo Yang
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, PR China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, PR China
| | - Xiaoqiao Zhai
- Henan Province Academy of forestry, Zhengzhou 450008, China
| | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, PR China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, PR China
| | - Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, PR China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, PR China.
| |
Collapse
|
29
|
Lee A, Jung H, Park HJ, Jo SH, Jung M, Kim YS, Cho HS. Their C-termini divide Brassica rapa FT-like proteins into FD-interacting and FD-independent proteins that have different effects on the floral transition. FRONTIERS IN PLANT SCIENCE 2023; 13:1091563. [PMID: 36714709 PMCID: PMC9878124 DOI: 10.3389/fpls.2022.1091563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Members of the FLOWERING LOCUS T (FT)-like clade of phosphatidylethanolamine-binding proteins (PEBPs) induce flowering by associating with the basic leucine zipper (bZIP) transcription factor FD and forming regulatory complexes in angiosperm species. However, the molecular mechanism of the FT-FD heterocomplex in Chinese cabbage (Brassica rapa ssp. pekinensis) is unknown. In this study, we identified 12 BrPEBP genes and focused our functional analysis on four BrFT-like genes by overexpressing them individually in an FT loss-of-function mutant in Arabidopsis thaliana. We determined that BrFT1 and BrFT2 promote flowering by upregulating the expression of floral meristem identity genes, whereas BrTSF and BrBFT, although close in sequence to their Arabidopsis counterparts, had no clear effect on flowering in either long- or short-day photoperiods. We also simultaneously genetically inactivated BrFT1 and BrFT2 in Chinese cabbage using CRISPR/Cas9-mediated genome editing, which revealed that BrFT1 and BrFT2 may play key roles in inflorescence organogenesis as well as in the transition to flowering. We show that BrFT-like proteins, except for BrTSF, are functionally divided into FD interactors and non-interactors based on the presence of three specific amino acids in their C termini, as evidenced by the observed interconversion when these amino acids are mutated. Overall, this study reveals that although BrFT-like homologs are conserved, they may have evolved to exert functionally diverse functions in flowering via their potential to be associated with FD or independently from FD in Brassica rapa.
Collapse
Affiliation(s)
- Areum Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Haemyeong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hyun Ji Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Seung Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Min Jung
- Department of Biotechnology, NongWoo Bio, Anseong, Republic of Korea
| | - Youn-Sung Kim
- Department of Biotechnology, Jenong S&T, Anseong, Republic of Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
30
|
Gao L, Lyu T, Lyu Y. Genome-Wide Analysis of the SPL Gene Family and Expression Analysis during Flowering Induction in Prunus × yedoensis 'Somei-yoshino'. Int J Mol Sci 2022; 23:ijms231710052. [PMID: 36077445 PMCID: PMC9456211 DOI: 10.3390/ijms231710052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
SQUAMOSA Promoter-Binding Protein-Like (SPL) genes encode plant-specific transcription factors which bind to the SQUAMOSA promoter of the MADS-box genes to regulate its expression. It plays important regulatory roles in floral induction and development, fertility, light signals and hormonal transduction, and stress response in plants. In this study, 32 PySPL genes with complete SBP (squamosa promoter binding protein) conserved domain were identified from the genome of Prunus × yedoensis ‘Somei-yoshino’ and analyzed by bioinformatics. 32 PySPLs were distributed on 13 chromosomes, encoding 32 PySPL proteins with different physical and chemical properties. The phylogenetic tree constructed with Arabidopsis thaliana and Oryza sativa can be divided into 10 subtribes, indicating PySPLs of different clusters have different biological functions. The conserved motif prediction showed that the number and distribution of motifs on each PySPL is varied. The gene structure analysis revealed that PySPLs harbored exons ranging from 2 to 10. The predictive analysis of acting elements showed that the promoter of PySPLs contain a large number of light-responsive elements, as well as response elements related to hormone response, growth and development and stress response. The analysis of the PySPLs expressions in flower induction and flower organs based on qRT-PCR showed that PySPL06/22 may be the key genes of flower development, PySPL01/06 and PySPL22 may play a role in the development of sepal and pistil, respectively. The results provide a foundation for the study of SPL transcription factors of Prunus × yedoensis ‘Somei-yoshino’ and provide more reference information of the function of SPL gene in flowering.
Collapse
Affiliation(s)
- Lan Gao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Tong Lyu
- Beijing Flower Engineering Technology Research Center, Plant Institute, China National Botanical Garden North Park, Beijing 100093, China
| | - Yingmin Lyu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Correspondence:
| |
Collapse
|
31
|
Zhang S, Deng L, Zhao L, Wu C. Genome-wide binding analysis of transcription factor Rice Indeterminate 1 reveals a complex network controlling rice floral transition. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1690-1705. [PMID: 35789063 DOI: 10.1111/jipb.13325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
RICE INDETERMINATE 1 (RID1) plays a critical role in controlling floral transition in rice (Oryza sativa). However, the molecular basis for this effect, particularly the target genes and regulatory specificity, remains largely unclear. Here, we performed chromatin immunoprecipitation followed by sequencing (ChIP-seq) in young leaves at the pre-floral-transition stage to identify the target genes of RID1, identifying 2,680 genes associated with RID1 binding sites genome-wide. RID1 binding peaks were highly enriched for TTTGTC, the direct binding motif of the INDETERMINATE DOMAIN protein family that includes RID1. Interestingly, CACGTG and GTGGGCCC, two previously uncharacterized indirect binding motifs, were enriched through the interactions of RID1 with the novel flowering-promoting proteins OsPIL12 and OsTCP11, respectively. Moreover, the ChIP-seq data demonstrated that RID1 bound to numerous rice heading-date genes, such as HEADING DATE 1 (HD1) and FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (OsFKF1). Notably, transcriptome sequencing (RNA-seq) analysis revealed roles of RID1 in diverse developmental pathways. Genetic analysis combined with genome-wide ChIP-seq and RNA-seq results showed that RID1 directly binds to the promoter of OsERF#136 (a repressor of rice flowering) and negatively regulates its expression. Overall, our findings provide new insights into the molecular and genetic mechanisms underlying rice floral transition and characterize OsERF#136 as a previously unrecognized direct target of RID1.
Collapse
Affiliation(s)
- Shuo Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li Deng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
32
|
Guo Z, Chen Q, Zhu J, Wang Y, Li Y, Li Q, Zhao K, Li Y, Tang R, Shi X, Tan K, Kong L, Jiang Y, Jiang Q, Wang J, Chen G, Wei Y, Zheng Y, Qi P. The Qc5 Allele Increases Wheat Bread-Making Quality by Regulating SPA and SPR. Int J Mol Sci 2022; 23:7581. [PMID: 35886927 PMCID: PMC9323144 DOI: 10.3390/ijms23147581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Common wheat (Triticum aestivum L.) is an important food crop with a unique processing quality. The Q gene positively regulates the processing quality of wheat, but the underlying mechanism remains unclear. Here, a new Q allele (Qc5) responsible for compact spikes and good bread performance was identified. Compared with the Q allele widely distributed in modern common wheat cultivars, Qc5 had a missense mutation outside the miRNA172-binding site. This missense mutation led to a more compact messenger RNA (mRNA) secondary structure around the miRNA172-binding region, resulting in increased Qc5 expression during the spike development stage and a consequent increase in spike density. Furthermore, this missense mutation weakened the physical interaction between Qc5 and storage protein activator (SPA) in seeds and suppressed the expression of storage protein repressor (SPR). These changes increased the grain protein content and improved the bread-making quality of wheat. In conclusion, a missense mutation increases Q expression because of the resulting highly folded mRNA secondary structure around the miRNA172-binding site. Furthermore, this mutation improves the bread-making quality of wheat by repressing the expression of SPR and influencing the physical interaction between Q and SPA. These findings provide new insights into the miRNA172-directed regulation of gene expression, with implications for wheat breeding.
Collapse
Affiliation(s)
- Zhenru Guo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China;
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Qing Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Jing Zhu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Yan Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Yang Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Qingcheng Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Kan Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Yue Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Rui Tang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Xiaoli Shi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Kenan Tan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Li Kong
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| |
Collapse
|
33
|
Sang Q, Vayssières A, Ó'Maoiléidigh DS, Yang X, Vincent C, Bertran Garcia de Olalla E, Cerise M, Franzen R, Coupland G. MicroRNA172 controls inflorescence meristem size through regulation of APETALA2 in Arabidopsis. THE NEW PHYTOLOGIST 2022; 235:356-371. [PMID: 35318684 DOI: 10.1111/nph.18111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/07/2022] [Indexed: 05/22/2023]
Abstract
The APETALA2 (AP2) transcription factor regulates flower development, floral transition and shoot apical meristem (SAM) maintenance in Arabidopsis. AP2 is also regulated at the post-transcriptional level by microRNA172 (miR172), but the contribution of this to SAM maintenance is poorly understood. We generated transgenic plants carrying a form of AP2 that is resistant to miR172 (rAP2) or carrying a wild-type AP2 susceptible to miR172. Phenotypic and genetic analyses were performed on these lines and mir172 mutants to study the role of AP2 regulation by miR172 on meristem size and the rate of flower production. We found that rAP2 enlarges the inflorescence meristem by increasing cell size and cell number. Misexpression of rAP2 from heterologous promoters showed that AP2 acts in the central zone (CZ) and organizing center (OC) to increase SAM size. Furthermore, we found that AP2 is negatively regulated by AUXIN RESPONSE FACTOR 3 (ARF3). However, genetic analyses indicated that ARF3 also influences SAM size and flower production rate independently of AP2. The study identifies miR172/AP2 as a regulatory module controlling inflorescence meristem size and suggests that transcriptional regulation of AP2 by ARF3 fine-tunes SAM size determination.
Collapse
Affiliation(s)
- Qing Sang
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Alice Vayssières
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Diarmuid S Ó'Maoiléidigh
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Institute of Systems, Integrative, and Molecular Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Xia Yang
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Coral Vincent
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | | | - Martina Cerise
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Rainer Franzen
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - George Coupland
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| |
Collapse
|
34
|
Integrative Analysis of miRNAs and Their Targets Involved in Ray Floret Growth in Gerbera hybrida. Int J Mol Sci 2022; 23:ijms23137296. [PMID: 35806310 PMCID: PMC9266715 DOI: 10.3390/ijms23137296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in regulating many aspects of plant growth and development at the post-transcriptional level. Gerbera (Gerbera hybrida) is an important ornamental crop. However, the role of miRNAs in the growth and development of gerbera is still unclear. In this study, we used high-throughput sequencing to analyze the expression profiles of miRNAs in ray floret during inflorescence opening. A total of 164 miRNAs were obtained, comprising 24 conserved miRNAs and 140 novel miRNAs. Ten conserved and 15 novel miRNAs were differentially expressed during ray floret growth, and 607 differentially expressed target genes of these differentially expressed miRNAs were identified using psRNATarget. We performed a comprehensive analysis of the expression profiles of the miRNAs and their targets. The changes in expression of five miRNAs (ghy-miR156, ghy-miR164, ghy-miRn24, ghy-miRn75 and ghy-miRn133) were inversely correlated with the changes in expression of their eight target genes. The miRNA cleavage sites in candidate target gene mRNAs were determined using 5′-RLM-RACE. Several miRNA-mRNA pairs were predicted to regulate ray floret growth and anthocyanin biosynthesis. In conclusion, the results of small RNA sequencing provide valuable information to reveal the mechanisms of miRNA-mediated ray floret growth and anthocyanin accumulation in gerbera.
Collapse
|
35
|
Sun J, Li GS. Identification of genes differentially expressed between prostrate shoots and erect shoots in the lycophyte Selaginella nipponica using an RNA-seq approach. AOB PLANTS 2022; 14:plac018. [PMID: 35694642 PMCID: PMC9179412 DOI: 10.1093/aobpla/plac018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Lycophytes are the earliest vascular plants and Selaginella is the most studied genus among them. Prostrate shoots are produced during early growth and erect shoots emerge later in S. nipponica, thus providing an opportunity for exploring the evolution of the mechanism underlying the transition between growth phases. Six libraries were sequenced for the prostrate and the erect shoots, and a total of 206 768 genes were identified. Some genes were differentially expressed in prostate and erect shoot, with relatively high expression in the prostate shoots being related to hormone responses and defence reactions, while higher expression in the erect shoots was related to spore formation and shoot development. Some SPL genes possessed a miR156 binding site and were highly expressed in the erect shoots, while AP2-like genes were more highly expressed in the prostrate shoots but simultaneously lacked any miR172 binding site. MiR156 was detected at a higher concentration in the prostrate shoots. Thus, the mechanism for the vegetative to reproductive transition of sporophytes probably originated in the common ancestor of vascular plants and must have experienced stepwise development during evolution.
Collapse
Affiliation(s)
- Jun Sun
- Laboratory of Plant Resource Conservation and Utilization, Jishou University, Jishou 416000, China
| | | |
Collapse
|
36
|
Kumari P, Khan S, Wani IA, Gupta R, Verma S, Alam P, Alaklabi A. Unravelling the Role of Epigenetic Modifications in Development and Reproduction of Angiosperms: A Critical Appraisal. Front Genet 2022; 13:819941. [PMID: 35664328 PMCID: PMC9157814 DOI: 10.3389/fgene.2022.819941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 12/28/2022] Open
Abstract
Epigenetics are the heritable changes in gene expression patterns which occur without altering DNA sequence. These changes are reversible and do not change the sequence of the DNA but can alter the way in which the DNA sequences are read. Epigenetic modifications are induced by DNA methylation, histone modification, and RNA-mediated mechanisms which alter the gene expression, primarily at the transcriptional level. Such alterations do control genome activity through transcriptional silencing of transposable elements thereby contributing toward genome stability. Plants being sessile in nature are highly susceptible to the extremes of changing environmental conditions. This increases the likelihood of epigenetic modifications within the composite network of genes that affect the developmental changes of a plant species. Genetic and epigenetic reprogramming enhances the growth and development, imparts phenotypic plasticity, and also ensures flowering under stress conditions without changing the genotype for several generations. Epigenetic modifications hold an immense significance during the development of male and female gametophytes, fertilization, embryogenesis, fruit formation, and seed germination. In this review, we focus on the mechanism of epigenetic modifications and their dynamic role in maintaining the genomic integrity during plant development and reproduction.
Collapse
Affiliation(s)
- Priyanka Kumari
- Conservation and Molecular Biology Lab., Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Sajid Khan
- Conservation and Molecular Biology Lab., Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Ishfaq Ahmad Wani
- Conservation and Molecular Biology Lab., Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Renu Gupta
- Division of Soil Sciences & Agricultural Chemistry, Faculty of Agriculture Sher e Kashmir University of Agricultural Sciences and Technology, Chatha, India
| | - Susheel Verma
- Department of Botany, University of Jammu, Jammu, India
- *Correspondence: Susheel Verma,
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University (PSAU), Alkharj, Saudi Arabia
| | - Abdullah Alaklabi
- Department of Biology, College of Science, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
37
|
Zhang Z, Liu J, Cao S, Guo Q, Sun Y, Niu D, Long C, Fan Y, Li Y. The RpTOE1- RpFT Module Is Involved in Rejuvenation during Root-Based Vegetative Propagation in Robinia pseudoacacia. Int J Mol Sci 2022; 23:ijms23095079. [PMID: 35563481 PMCID: PMC9104387 DOI: 10.3390/ijms23095079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 02/07/2023] Open
Abstract
Vegetative propagation is an important method of reproduction and rejuvenation in horticulture and forestry plants with a long lifespan. Although substantial juvenile clones have been obtained through the vegetative propagation of ornamental plants, the molecular factors that regulate rejuvenation during vegetative propagation are largely unknown. Here, root sprouting and root cutting of Robinia pseudoacacia were used as two vegetative propagation methods. From two consecutive years of transcriptome data from rejuvenated seedlings and mature trees, one gene module and one miRNA module were found to be specifically associated with rejuvenation during vegetative propagation through weighted gene co-expression network analysis (WGCNA). In the gene module, a transcription factor-encoding gene showed high expression during vegetative propagation, and it was subsequently named RpTOE1 through homology analysis. Heterologous overexpression of RpTOE1 in wild-type Arabidopsis and toe1 toe2 double mutants prolonged the juvenile phase. The qRT-PCR results predicted RpFT to be a downstream gene that was regulated by RpTOE1. Further investigation of the protein-DNA interactions using yeast one-hybrid, electrophoretic mobility shift, and dual luciferase reporter assays confirmed that RpTOE1 negatively regulated RpFT by binding directly to the TOE binding site (TBS)-like motif on its promoter. On the basis of these results, we showed that the high expression of RpTOE1 during vegetative propagation and its inhibition of RpFT played a key role in the phase reversal of R. pseudoacacia.
Collapse
Affiliation(s)
- Zijie Zhang
- Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.Z.); (J.L.); (S.C.); (Q.G.); (Y.S.); (C.L.); (Y.F.)
| | - Jie Liu
- Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.Z.); (J.L.); (S.C.); (Q.G.); (Y.S.); (C.L.); (Y.F.)
| | - Sen Cao
- Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.Z.); (J.L.); (S.C.); (Q.G.); (Y.S.); (C.L.); (Y.F.)
| | - Qi Guo
- Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.Z.); (J.L.); (S.C.); (Q.G.); (Y.S.); (C.L.); (Y.F.)
| | - Yuhan Sun
- Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.Z.); (J.L.); (S.C.); (Q.G.); (Y.S.); (C.L.); (Y.F.)
| | - Dongsheng Niu
- Black Locust Seed Orchard of Jixian County, Linfen 042200, China;
| | - Cui Long
- Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.Z.); (J.L.); (S.C.); (Q.G.); (Y.S.); (C.L.); (Y.F.)
| | - Yingming Fan
- Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.Z.); (J.L.); (S.C.); (Q.G.); (Y.S.); (C.L.); (Y.F.)
| | - Yun Li
- Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.Z.); (J.L.); (S.C.); (Q.G.); (Y.S.); (C.L.); (Y.F.)
- Correspondence: ; Tel./Fax: +86-10-6233-6094
| |
Collapse
|
38
|
Basu U, Hegde VS, Daware A, Jha UC, Parida SK. Transcriptome landscape of early inflorescence developmental stages identifies key flowering time regulators in chickpea. PLANT MOLECULAR BIOLOGY 2022; 108:565-583. [PMID: 35106703 DOI: 10.1007/s11103-022-01247-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Transcriptome landscape during early inflorescence developmental stages identified candidate flowering time regulators including Early Flowering 3a. Further genomics approaches validated the role of this gene in flowering time regulation. The early stages of inflorescence development in plants are as crucial as the later floral developmental stages. Several traits, such as inflorescence architecture and flower developmental timings, are determined during those early stages. In chickpea, diverse forms of inflorescence architectures regarding meristem determinacy and the number of flowers per node are observed within the germplasm. Transcriptome analysis in four desi chickpea accessions with such unique inflorescence characteristics identifies the underlying shared regulatory events leading to inflorescence development. The vegetative to reproductive stage transition brings about major changes in the transcriptome landscape. The inflorescence development progression associated genes identified through co-expression network analysis includes both protein-coding genes and long non-coding RNAs (lncRNAs). Few lncRNAs identified in our study positively regulate flowering-related mRNA stability by acting competitively with miRNAs. Bulk segregrant analysis and association mapping narrowed down an InDel marker regulating flowering time in chickpea. Deletion of 11 bp in first exon of a negative flowering time regulator, Early Flowering 3a gene, leads to early flowering phenotype in chickpea. Understanding the key players involved in vegetative to reproductive stage transition and floral meristem development will be useful in manipulating flowering time and inflorescence architecture in chickpea and other legumes.
Collapse
Affiliation(s)
- Udita Basu
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Venkatraman S Hegde
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - Anurag Daware
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Uday Chand Jha
- Crop Improvement Division, Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India
| | - Swarup K Parida
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
39
|
Osnato M, Cota I, Nebhnani P, Cereijo U, Pelaz S. Photoperiod Control of Plant Growth: Flowering Time Genes Beyond Flowering. FRONTIERS IN PLANT SCIENCE 2022; 12:805635. [PMID: 35222453 PMCID: PMC8864088 DOI: 10.3389/fpls.2021.805635] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/23/2021] [Indexed: 05/02/2023]
Abstract
Fluctuations in environmental conditions greatly influence life on earth. Plants, as sessile organisms, have developed molecular mechanisms to adapt their development to changes in daylength, or photoperiod. One of the first plant features that comes to mind as affected by the duration of the day is flowering time; we all bring up a clear image of spring blossom. However, for many plants flowering happens at other times of the year, and many other developmental aspects are also affected by changes in daylength, which range from hypocotyl elongation in Arabidopsis thaliana to tuberization in potato or autumn growth cessation in trees. Strikingly, many of the processes affected by photoperiod employ similar gene networks to respond to changes in the length of light/dark cycles. In this review, we have focused on developmental processes affected by photoperiod that share similar genes and gene regulatory networks.
Collapse
Affiliation(s)
- Michela Osnato
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignacio Cota
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Poonam Nebhnani
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Unai Cereijo
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Soraya Pelaz
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
40
|
Sheng X, Hsu CY, Ma C, Brunner AM. Functional Diversification of Populus FLOWERING LOCUS D-LIKE3 Transcription Factor and Two Paralogs in Shoot Ontogeny, Flowering, and Vegetative Phenology. FRONTIERS IN PLANT SCIENCE 2022; 13:805101. [PMID: 35185983 PMCID: PMC8850916 DOI: 10.3389/fpls.2022.805101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/10/2022] [Indexed: 06/11/2023]
Abstract
Both the evolution of tree taxa and whole-genome duplication (WGD) have occurred many times during angiosperm evolution. Transcription factors are preferentially retained following WGD suggesting that functional divergence of duplicates could contribute to traits distinctive to the tree growth habit. We used gain- and loss-of-function transgenics, photoperiod treatments, and circannual expression studies in adult trees to study the diversification of three Populus FLOWERING LOCUS D-LIKE (FDL) genes encoding bZIP transcription factors. Expression patterns and transgenic studies indicate that FDL2.2 promotes flowering and that FDL1 and FDL3 function in different vegetative phenophases. Study of dominant repressor FDL versions indicates that the FDL proteins are partially equivalent in their ability to alter shoot growth. Like its paralogs, FDL3 overexpression delays short day-induced growth cessation, but also induces distinct heterochronic shifts in shoot development-more rapid phytomer initiation and coordinated delay in both leaf expansion and the transition to secondary growth in long days, but not in short days. Our results indicate that both regulatory and protein coding sequence variation contributed to diversification of FDL paralogs that has led to a degree of specialization in multiple developmental processes important for trees and their local adaptation.
Collapse
Affiliation(s)
- Xiaoyan Sheng
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, United States
| | - Chuan-Yu Hsu
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS, United States
| | - Cathleen Ma
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
| | - Amy M. Brunner
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
41
|
Nasim Z, Fahim M, Hwang H, Susila H, Jin S, Youn G, Ahn JH. Nonsense-mediated mRNA decay modulates Arabidopsis flowering time via the SET DOMAIN GROUP 40-FLOWERING LOCUS C module. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7049-7066. [PMID: 34270724 DOI: 10.1093/jxb/erab331] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
The nonsense-mediated mRNA decay (NMD) surveillance system clears aberrant mRNAs from the cell, thus preventing the accumulation of truncated proteins. Although loss of the core NMD proteins UP-FRAMESHIFT1 (UPF1) and UPF3 leads to late flowering in Arabidopsis, the underlying mechanism remains elusive. Here, we showed that mutations in UPF1 and UPF3 cause temperature- and photoperiod-independent late flowering. Expression analyses revealed high FLOWERING LOCUS C (FLC) mRNA levels in upf mutants; in agreement with this, the flc mutation strongly suppressed the late flowering of upf mutants. Vernalization accelerated flowering of upf mutants in a temperature-independent manner. FLC transcript levels rose in wild-type plants upon NMD inhibition. In upf mutants, we observed increased enrichment of H3K4me3 and reduced enrichment of H3K27me3 in FLC chromatin. Transcriptome analyses showed that SET DOMAIN GROUP 40 (SDG40) mRNA levels increased in upf mutants, and the SDG40 transcript underwent NMD-coupled alternative splicing, suggesting that SDG40 affects flowering time in upf mutants. Furthermore, NMD directly regulated SDG40 transcript stability. The sdg40 mutants showed decreased H3K4me3 and increased H3K27me3 levels in FLC chromatin, flowered early, and rescued the late flowering of upf mutants. Taken together, these results suggest that NMD epigenetically regulates FLC through SDG40 to modulate flowering time in Arabidopsis.
Collapse
Affiliation(s)
- Zeeshan Nasim
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Muhammad Fahim
- Centre for Omic Sciences, Islamia College Peshawar, Pakistan
| | - Hocheol Hwang
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Hendry Susila
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Suhyun Jin
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Geummin Youn
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Ji Hoon Ahn
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
42
|
Zeng J, Li X, Ge Q, Dong Z, Luo L, Tian Z, Zhao Z. Endogenous stress-related signal directs shoot stem cell fate in Arabidopsis thaliana. NATURE PLANTS 2021; 7:1276-1287. [PMID: 34354259 DOI: 10.1038/s41477-021-00985-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Stem cell populations in all multicellular organisms are situated in a niche, which is a special microenvironment that defines stem cell fate. The interplay between stem cells and their niches is crucial for stem cell maintenance. Here, we show that an endogenous stress-related signal (ESS) is overrepresented in the shoot stem cell niche under natural growth conditions, and the vast majority of known stem-cell-specific and niche-specific genes responded to stress signals. Interference with the ESS in the stem cell niche by blocking ethylene signalling impaired stem cell maintenance. Ethylene-insensitive 3 (EIN3), the key transcription factor in ethylene signalling, directly actives the expression of the stress hub transcription factor AGAMOUS-LIKE 22 (AGL22) in the stem cell niche and relays ESS signals to the WUSCHEL/CLAVATA network. Our results provide a mechanistic framework for ESS signalling control of the stem cell niche and demonstrate that plant stem cells are maintained by a native stress microenvironment in vivo.
Collapse
Affiliation(s)
- Jian Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiang Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiang Ge
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhicheng Dong
- School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Linjie Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhaoxia Tian
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Zhong Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
43
|
Zumajo-Cardona C, Pabón-Mora N, Ambrose BA. The Evolution of euAPETALA2 Genes in Vascular Plants: From Plesiomorphic Roles in Sporangia to Acquired Functions in Ovules and Fruits. Mol Biol Evol 2021; 38:2319-2336. [PMID: 33528546 PMCID: PMC8136505 DOI: 10.1093/molbev/msab027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The field of evolutionary developmental biology can help address how morphological novelties evolve, a key question in evolutionary biology. In Arabidopsis thaliana, APETALA2 (AP2) plays a role in the development of key plant innovations including seeds, flowers, and fruits. AP2 belongs to the AP2/ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR family which has members in all viridiplantae, making it one of the oldest and most diverse gene lineages. One key subclade, present across vascular plants is the euAPETALA2 (euAP2) clade, whose founding member is AP2. We reconstructed the evolution of the euAP2 gene lineage in vascular plants to better understand its impact on the morphological evolution of plants, identifying seven major duplication events. We also performed spatiotemporal expression analyses of euAP2/TOE3 genes focusing on less explored vascular plant lineages, including ferns, gymnosperms, early diverging angiosperms and early diverging eudicots. Altogether, our data suggest that euAP2 genes originally contributed to spore and sporangium development, and were subsequently recruited to ovule, fruit and floral organ development. Finally, euAP2 protein sequences are highly conserved; therefore, changes in the role of euAP2 homologs during development are most likely due to changes in regulatory regions.
Collapse
Affiliation(s)
- Cecilia Zumajo-Cardona
- New York Botanical Garden, Bronx, NY 10458, United States.,The Graduate Center, City University of New York, New York, NY 10016, United States
| | - Natalia Pabón-Mora
- Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia
| | | |
Collapse
|
44
|
Li S, Su T, Wang L, Kou K, Kong L, Kong F, Lu S, Liu B, Fang C. Rapid excavating a FLOWERING LOCUS T-regulator NF-YA using genotyping-by-sequencing. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:45. [PMID: 37309386 PMCID: PMC10236035 DOI: 10.1007/s11032-021-01237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/07/2021] [Indexed: 06/14/2023]
Abstract
Soybean (Glycine max (L.) Merrill) is one of the most important crop plants in the world as an important source of protein for both human consumption and livestock fodder. As flowering time contributes to yield, finding new QTLs and further identifying candidate genes associated with various flowering time are fundamental to enhancing soybean yield. In this study, a set of 120 recombinant inbred lines (RILs) which was developed from a cross of two soybean cultivars, Suinong4 (SN4) and ZK168, were genotyped by genotyping-by-sequencing (GBS) approach and phenotyped to expand the cognitive of flowering time by quantitative trait loci (QTL) analysis. Eventually, three stable QTLs related to flowering time which were detected separately located on chromosome 14, 18, and 19 under long-day (LD) conditions. We predicted candidate genes for each QTL and carried out association analyses between the putative causal alleles and flowering time. Moreover, a transient transfection assay was performed and showed that NUCLEAR FACTOR YA 1b (GmNF-YA1b) as a strong candidate for the QTL on chromosome 19 might affect flowering time by suppressing the expression of FLOWERING LOCUS T (GmFT) genes in soybean. QTLs detected in this study would provide fundamental resources for finding candidate genes and clarify the mechanisms of flowering which would be helpful for breeding novel high-yielding soybean cultivars. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01237-w.
Collapse
Affiliation(s)
- Shichen Li
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tong Su
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingshuang Wang
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kun Kou
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingping Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fanjiang Kong
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Sijia Lu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Baohui Liu
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Chao Fang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
45
|
Meir Z, Aviezer I, Chongloi GL, Ben-Kiki O, Bronstein R, Mukamel Z, Keren-Shaul H, Jaitin D, Tal L, Shalev-Schlosser G, Harel TH, Tanay A, Eshed Y. Dissection of floral transition by single-meristem transcriptomes at high temporal resolution. NATURE PLANTS 2021; 7:800-813. [PMID: 34135484 DOI: 10.1038/s41477-021-00936-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/30/2021] [Indexed: 05/21/2023]
Abstract
The vegetative-to-floral transition is a dramatic developmental change of the shoot apical meristem, promoted by the systemic florigen signal. However, poor molecular temporal resolution of this dynamic process has precluded characterization of how meristems respond to florigen induction. Here, we develop a technology that allows sensitive transcriptional profiling of individual shoot apical meristems. Computational ordering of hundreds of tomato samples reconstructed the floral transition process at fine temporal resolution and uncovered novel short-lived gene expression programs that are activated before flowering. These programs are annulled only when both florigen and a parallel signalling pathway are eliminated. Functional screening identified genes acting at the onset of pre-flowering programs that are involved in the regulation of meristem morphogenetic changes but dispensable for the timing of floral transition. Induced expression of these short-lived transition-state genes allowed us to determine their genetic hierarchies and to bypass the need for the main flowering pathways. Our findings illuminate how systemic and autonomous pathways are integrated to control a critical developmental switch.
Collapse
Affiliation(s)
- Zohar Meir
- Faculty of Mathematics and Computer Science and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Iris Aviezer
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Oren Ben-Kiki
- Faculty of Mathematics and Computer Science and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Revital Bronstein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Zohar Mukamel
- Faculty of Mathematics and Computer Science and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Hadas Keren-Shaul
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Diego Jaitin
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Lior Tal
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Gili Shalev-Schlosser
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tom Hai Harel
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Amos Tanay
- Faculty of Mathematics and Computer Science and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| | - Yuval Eshed
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
46
|
Lai X, Blanc-Mathieu R, GrandVuillemin L, Huang Y, Stigliani A, Lucas J, Thévenon E, Loue-Manifel J, Turchi L, Daher H, Brun-Hernandez E, Vachon G, Latrasse D, Benhamed M, Dumas R, Zubieta C, Parcy F. The LEAFY floral regulator displays pioneer transcription factor properties. MOLECULAR PLANT 2021; 14:829-837. [PMID: 33684542 DOI: 10.1016/j.molp.2021.03.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/28/2021] [Accepted: 03/02/2021] [Indexed: 05/23/2023]
Abstract
Pioneer transcription factors (TFs) are a special category of TFs with the capacity to bind to closed chromatin regions in which DNA is wrapped around histones and may be highly methylated. Subsequently, pioneer TFs are able to modify the chromatin state to initiate gene expression. In plants, LEAFY (LFY) is a master floral regulator and has been suggested to act as a pioneer TF in Arabidopsis. Here, we demonstrate that LFY is able to bind both methylated and non-methylated DNA using a combination of in vitro genome-wide binding experiments and structural modeling. Comparisons between regions bound by LFY in vivo and chromatin accessibility data suggest that a subset of LFY bound regions is occupied by nucleosomes. We confirm that LFY is able to bind nucleosomal DNA in vitro using reconstituted nucleosomes. Finally, we show that constitutive LFY expression in seedling tissues is sufficient to induce chromatin accessibility in the LFY direct target genes APETALA1 and AGAMOUS. Taken together, our study suggests that LFY possesses key pioneer TF features that contribute to launching the floral gene expression program.
Collapse
Affiliation(s)
- Xuelei Lai
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 avenue des martyrs, 38054, Grenoble, France
| | - Romain Blanc-Mathieu
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 avenue des martyrs, 38054, Grenoble, France
| | - Loïc GrandVuillemin
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 avenue des martyrs, 38054, Grenoble, France
| | - Ying Huang
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Arnaud Stigliani
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 avenue des martyrs, 38054, Grenoble, France; The Bioinformatics Centre, Department of Biology and Biotech and Research Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark
| | - Jérémy Lucas
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 avenue des martyrs, 38054, Grenoble, France
| | - Emmanuel Thévenon
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 avenue des martyrs, 38054, Grenoble, France
| | - Jeanne Loue-Manifel
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 avenue des martyrs, 38054, Grenoble, France; Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342 Lyon, France
| | - Laura Turchi
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 avenue des martyrs, 38054, Grenoble, France
| | - Hussein Daher
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 avenue des martyrs, 38054, Grenoble, France; Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Eugenia Brun-Hernandez
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 avenue des martyrs, 38054, Grenoble, France
| | - Gilles Vachon
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 avenue des martyrs, 38054, Grenoble, France
| | - David Latrasse
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 75006 Paris, France
| | - Renaud Dumas
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 avenue des martyrs, 38054, Grenoble, France
| | - Chloe Zubieta
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 avenue des martyrs, 38054, Grenoble, France
| | - François Parcy
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 avenue des martyrs, 38054, Grenoble, France.
| |
Collapse
|
47
|
Guan Y, Ding L, Jiang J, Shentu Y, Zhao W, Zhao K, Zhang X, Song A, Chen S, Chen F. Overexpression of the CmJAZ1-like gene delays flowering in Chrysanthemum morifolium. HORTICULTURE RESEARCH 2021; 8:87. [PMID: 33795661 PMCID: PMC8016864 DOI: 10.1038/s41438-021-00525-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/23/2021] [Accepted: 03/01/2021] [Indexed: 05/11/2023]
Abstract
Chrysanthemum (Chrysanthemum morifolium) is one of the four major cut-flower plants worldwide and possesses both high ornamental value and cultural connotation. As most chrysanthemum varieties flower in autumn, it is costly to achieve annual production. JAZ genes in the TIFY family are core components of the jasmonic acid (JA) signaling pathway; in addition to playing a pivotal role in plant responses to defense, they are also widely implicated in regulating plant development processes. Here, we characterized the TIFY family gene CmJAZ1-like from the chrysanthemum cultivar 'Jinba'. CmJAZ1-like localizes in the nucleus and has no transcriptional activity in yeast. Tissue expression pattern analysis indicated that CmJAZ1-like was most active in the root and shoot apex. Overexpressing CmJAZ1-like with Jas domain deletion in chrysanthemum resulted in late flowering. RNA-Seq analysis of the overexpression lines revealed some differentially expressed genes (DEGs) involved in flowering, such as the homologs of the flowering integrators FT and SOC1, an FUL homolog involved in flower meristem identity, AP2 domain-containing transcription factors, MADS box genes, and autonomous pathway-related genes. Based on KEGG pathway enrichment analysis, the differentially transcribed genes were enriched in carbohydrate metabolic and fatty acid-related pathways, which are notable for their role in flowering in plants. This study preliminarily verified the function of CmJAZ1-like in chrysanthemum flowering, and the results can be used in molecular breeding programs aimed at flowering time regulation of chrysanthemum.
Collapse
Affiliation(s)
- Yunxiao Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lian Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanyue Shentu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenqian Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kunkun Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xue Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
48
|
|
49
|
Olas JJ, Apelt F, Watanabe M, Hoefgen R, Wahl V. Developmental stage-specific metabolite signatures in Arabidopsis thaliana under optimal and mild nitrogen limitation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110746. [PMID: 33487337 DOI: 10.1016/j.plantsci.2020.110746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Metabolites influence flowering time, and thus are among the major determinants of yield. Despite the reported role of trehalose 6-phosphate and nitrate signaling on the transition from the vegetative to the reproductive phase, little is known about other metabolites contributing and responding to developmental phase changes. To increase our understanding which metabolic traits change throughout development in Arabidopsis thaliana and to identify metabolic markers for the vegetative and reproductive phases, especially among individual amino acids (AA), we profiled metabolites of plants grown in optimal (ON) and limited nitrogen (N) (LN) conditions, the latter providing a mild but consistent limitation of N. We found that although LN plants adapt their growth to a decreased level of N, their metabolite profiles are strongly distinct from ON plant profiles, with N as the driving factor for the observed differences. We demonstrate that the vegetative and the reproductive phase are not only marked by growth parameters such as biomass and rosette area, but also by specific metabolite signatures including specific single AA. In summary, we identified N-dependent and -independent indicators manifesting developmental stages, indicating that the plant's metabolic status also reports on the developmental phases.
Collapse
Affiliation(s)
- Justyna Jadwiga Olas
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany; University of Potsdam, Potsdam, Germany.
| | - Federico Apelt
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| | - Mutsumi Watanabe
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany; Nara Institute of Science and Technology, Nara, Japan.
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| | - Vanessa Wahl
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| |
Collapse
|
50
|
Madrid E, Chandler JW, Coupland G. Gene regulatory networks controlled by FLOWERING LOCUS C that confer variation in seasonal flowering and life history. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4-14. [PMID: 32369593 PMCID: PMC7816851 DOI: 10.1093/jxb/eraa216] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/28/2020] [Indexed: 05/07/2023]
Abstract
Responses to environmental cues synchronize reproduction of higher plants to the changing seasons. The genetic basis of these responses has been intensively studied in the Brassicaceae. The MADS-domain transcription factor FLOWERING LOCUS C (FLC) plays a central role in the regulatory network that controls flowering of Arabidopsis thaliana in response to seasonal cues. FLC blocks flowering until its transcription is stably repressed by extended exposure to low temperatures in autumn or winter and, therefore, FLC activity is assumed to limit flowering to spring. Recent reviews describe the complex epigenetic mechanisms responsible for FLC repression in cold. We focus on the gene regulatory networks controlled by FLC and how they influence floral transition. Genome-wide approaches determined the in vivo target genes of FLC and identified those whose transcription changes during vernalization or in flc mutants. We describe how studying FLC targets such as FLOWERING LOCUS T, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 15, and TARGET OF FLC AND SVP 1 can explain different flowering behaviours in response to vernalization and other environmental cues, and help define mechanisms by which FLC represses gene transcription. Elucidating the gene regulatory networks controlled by FLC provides access to the developmental and physiological mechanisms that regulate floral transition.
Collapse
Affiliation(s)
- Eva Madrid
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Germany
| | - John W Chandler
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Germany
- Correspondence:
| |
Collapse
|