1
|
Dey A, Flajšhans M, Pšenička M, Gazo I. DNA repair genes play a variety of roles in the development of fish embryos. Front Cell Dev Biol 2023; 11:1119229. [PMID: 36936683 PMCID: PMC10014602 DOI: 10.3389/fcell.2023.1119229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Embryogenesis is one of the most important life stages because it determines an organism's healthy growth. However, embryos of externally fertilizing species, such as most fish, are directly exposed to the environment during development and may be threatened by DNA damaging factors (pollutants, UV, reactive oxygen species). To counteract the negative effects of DNA fragmentation, fish embryos evolved complex damage response pathways. DNA repair pathways have been extensively studied in some fish species, such as zebrafish (Danio rerio). Our literature review, on the other hand, revealed a paucity of knowledge about DNA damage response and repair in non-model aquaculture fish species. Further, several pieces of evidence underlie the additional role of DNA repair genes and proteins in organogenesis, spatiotemporal localization in different tissue, and its indispensability for normal embryo development. In this review, we will summarize features of different DNA repair pathways in course of fish embryo development. We describe how the expression of DNA repair genes and proteins is regulated during development, their organogenetic roles, and how the expression of DNA repair genes changes in response to genotoxic stress. This will aid in addressing the link between genotoxic stress and embryo phenotype. Furthermore, available data indicate that embryos can repair damaged DNA, but the effects of early-life stress may manifest later in life as behavioral changes, neoplasia, or neurodegeneration. Overall, we conclude that more research on DNA repair in fish embryos is needed.
Collapse
|
2
|
Li Q, Spalding KL. The regulation of adipocyte growth in white adipose tissue. Front Cell Dev Biol 2022; 10:1003219. [PMID: 36483678 PMCID: PMC9723158 DOI: 10.3389/fcell.2022.1003219] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/03/2022] [Indexed: 10/25/2023] Open
Abstract
Adipocytes can increase in volume up to a thousand-fold, storing excess calories as triacylglycerol in large lipid droplets. The dramatic morphological changes required of adipocytes demands extensive cytoskeletal remodeling, including lipid droplet and plasma membrane expansion. Cell growth-related signalling pathways are activated, stimulating the production of sufficient amino acids, functional lipids and nucleotides to meet the increasing cellular needs of lipid storage, metabolic activity and adipokine secretion. Continued expansion gives rise to enlarged (hypertrophic) adipocytes. This can result in a failure to maintain growth-related homeostasis and an inability to cope with excess nutrition or respond to stimuli efficiently, ultimately leading to metabolic dysfunction. We summarize recent studies which investigate the functional and cellular structure remodeling of hypertrophic adipocytes. How adipocytes adapt to an enlarged cell size and how this relates to cellular dysfunction are discussed. Understanding the healthy and pathological processes involved in adipocyte hypertrophy may shed light on new strategies for promoting healthy adipose tissue expansion.
Collapse
Affiliation(s)
- Qian Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Kirsty L. Spalding
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Li Q, Hagberg CE, Silva Cascales H, Lang S, Hyvönen MT, Salehzadeh F, Chen P, Alexandersson I, Terezaki E, Harms MJ, Kutschke M, Arifen N, Krämer N, Aouadi M, Knibbe C, Boucher J, Thorell A, Spalding KL. Obesity and hyperinsulinemia drive adipocytes to activate a cell cycle program and senesce. Nat Med 2021; 27:1941-1953. [PMID: 34608330 DOI: 10.1038/s41591-021-01501-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/12/2021] [Indexed: 01/10/2023]
Abstract
Obesity is considered an important factor for many chronic diseases, including diabetes, cardiovascular disease and cancer. The expansion of adipose tissue in obesity is due to an increase in both adipocyte progenitor differentiation and mature adipocyte cell size. Adipocytes, however, are thought to be unable to divide or enter the cell cycle. We demonstrate that mature human adipocytes unexpectedly display a gene and protein signature indicative of an active cell cycle program. Adipocyte cell cycle progression associates with obesity and hyperinsulinemia, with a concomitant increase in cell size, nuclear size and nuclear DNA content. Chronic hyperinsulinemia in vitro or in humans, however, is associated with subsequent cell cycle exit, leading to a premature senescent transcriptomic and secretory profile in adipocytes. Premature senescence is rapidly becoming recognized as an important mediator of stress-induced tissue dysfunction. By demonstrating that adipocytes can activate a cell cycle program, we define a mechanism whereby mature human adipocytes senesce. We further show that by targeting the adipocyte cell cycle program using metformin, it is possible to influence adipocyte senescence and obesity-associated adipose tissue inflammation.
Collapse
Affiliation(s)
- Qian Li
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Carolina E Hagberg
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.,Cardiovascular Medicine Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Helena Silva Cascales
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Shuai Lang
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mervi T Hyvönen
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Firoozeh Salehzadeh
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Ping Chen
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.,Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Stockolm, Sweden
| | - Ida Alexandersson
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Eleni Terezaki
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Matthew J Harms
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maria Kutschke
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Nahida Arifen
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Niels Krämer
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Myriam Aouadi
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.,Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Stockolm, Sweden
| | - Carole Knibbe
- CarMeN Laboratory, Lyon University, INRIA, INSA Lyon, Lyon, France
| | - Jeremie Boucher
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Anders Thorell
- Department of Clinical Science, Danderyds Hospital, Karolinska Institutet and Department of Surgery, Ersta Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Kirsty L Spalding
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden. .,Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Shafique S, Winn LM. Characterizing the effects of in utero valproic acid exposure on NF-κB signaling in CD-1 mouse embryos during neural tube closure. Neurotoxicol Teratol 2020; 83:106941. [PMID: 33212164 DOI: 10.1016/j.ntt.2020.106941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/26/2022]
Abstract
Nuclear factor kappa B (NF-κB) is a heterodimer of protein subunits p65 and p50, that regulates the expression of a large number of genes related to cell growth and proliferation. The p65 subunit is activated after phosphorylation by Pim-1, while the p50 subunit is the cleaved product of its precursor molecule p105. Valproic acid (VPA), an antiepileptic drug, is a known teratogen and its exposure during pregnancy is associated with 1-2% of neural tube defects in the offspring. The current study aimed at investigating the effects of in utero VPA exposure on the key components of the NF-κB signaling pathway including p65, p50, and Pim-1 in CD-1 mouse embryos during the critical period of neural tube closure. Here we report that p65, Pim-1 and p105/p50 mRNA were significantly (p < 0.05) downregulated at 1 and 3 h following in utero exposure to a teratogenic dose (400 mg/kg) of VPA in gestational day (GD)9 exposed embryos. At GD13 heads of control, non-exencephalic and exencephalic embryos were used for analysis and we found significant upregulation of p65 protein expression in non-exencephalic GD13 heads while p50 protein levels were significantly downregulated in both non-exencephalic and exencephalic groups. On the other hand, p65 and p50 protein levels remained unchanged in the nuclear extracts of the VPA-exposed non-exencephalic and exencephalic GD13 embryo heads. The reported results suggest that VPA exposure perturbates p65, p105/p50, Pim-1 transcript and p65/p50 protein levels in mouse embryos.
Collapse
Affiliation(s)
- Sidra Shafique
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Louise M Winn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada; School of Environmental Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
5
|
Abstract
Nucleotide excision repair (NER) is a highly conserved mechanism to remove helix-distorting DNA lesions. A major substrate for NER is DNA damage caused by environmental genotoxins, most notably ultraviolet radiation. Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy are three human disorders caused by inherited defects in NER. The symptoms and severity of these diseases vary dramatically, ranging from profound developmental delay to cancer predisposition and accelerated ageing. All three syndromes include developmental abnormalities, indicating an important role for optimal transcription and for NER in protecting against spontaneous DNA damage during embryonic development. Here, we review the current knowledge on genes that function in NER that also affect embryonic development, in particular the development of a fully functional nervous system.
Collapse
Affiliation(s)
- Sofia J Araújo
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.,Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain
| | - Isao Kuraoka
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
6
|
Dottermusch M, Lakner T, Peyman T, Klein M, Walz G, Neumann-Haefelin E. Cell cycle controls stress response and longevity in C. elegans. Aging (Albany NY) 2017; 8:2100-2126. [PMID: 27668945 PMCID: PMC5076454 DOI: 10.18632/aging.101052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/09/2016] [Indexed: 12/30/2022]
Abstract
Recent studies have revealed a variety of genes and mechanisms that influence the rate of aging progression. In this study, we identified cell cycle factors as potent regulators of health and longevity in C. elegans. Focusing on the cyclin-dependent kinase 2 (cdk-2) and cyclin E (cye-1), we show that inhibition of cell cycle genes leads to tolerance towards environmental stress and longevity. The reproductive system is known as a key regulator of longevity in C. elegans. We uncovered the gonad as the central organ mediating the effects of cell cycle inhibition on lifespan. In particular, the proliferating germ cells were essential for conferring longevity. Steroid hormone signaling and the FOXO transcription factor DAF-16 were required for longevity associated with cell cycle inhibition. Furthermore, we discovered that SKN-1 (ortholog of mammalian Nrf proteins) activates protective gene expression and induces longevity when cell cycle genes are inactivated. We conclude that both, germline absence and inhibition through impairment of cell cycle machinery results in longevity through similar pathways. In addition, our studies suggest further roles of cell cycle genes beyond cell cycle progression and support the recently described connection of SKN-1/Nrf to signals deriving from the germline.
Collapse
Affiliation(s)
- Matthias Dottermusch
- Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Theresa Lakner
- Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Tobias Peyman
- Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Marinella Klein
- Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Gerd Walz
- Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Elke Neumann-Haefelin
- Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
7
|
Song D, Yue L, Wu G, Ma S, Yang H, Liu Q, Zhang D, Xia Z, Jia J, Wang J. Evaluation of promoter hypomethylation and expression of p73 as a diagnostic and prognostic biomarker in Wilms' tumour. J Clin Pathol 2015; 69:12-8. [PMID: 26184366 DOI: 10.1136/jclinpath-2015-203150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/30/2015] [Indexed: 12/14/2022]
Abstract
AIMS A member of the p53 family, the p73 gene is essential for the maintenance of genomic stability, DNA repair and apoptosis regulation. This study was designed to evaluate the utility of expression and DNA methylation patterns of the p73 gene in the early diagnosis and prognosis of Wilms' tumour (WT). METHODS Methylation-specific PCR, semi-quantitative (sq-PCR), real-time quantitative PCR (qRT-PCR), receiver operating characteristic (ROC), and survival and hazard function curve analyses were utilised to measure the expression and DNA methylation patterns of p73 in WT tissue samples with a view to assessing diagnostic and prognostic value. RESULTS The relative expression of p73 mRNA was higher, while the promoter methylation level was lower in the WT than the control group (p<0.05) and closely associated with poor survival prognosis in children with WT (p<0.05). Increased expression and decreased methylation of p73 were correlated with increasing tumour size, clinical stage and unfavourable histological differentiation (p<0.05). ROC curve analysis showed areas under the curve of 0.544 for methylation and 0.939 for expression in WT venous blood, indicating the higher diagnostic yield of preoperative p73 expression. CONCLUSIONS Preoperative venous blood p73 level serves as an underlying biomarker for the early diagnosis of WT. p73 overexpression and concomitantly decreased promoter methylation are significantly associated with poor survival in children with WT.
Collapse
Affiliation(s)
- Dongjian Song
- Department of Pediatric Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Lifang Yue
- Department of Ultrasonography, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Gang Wu
- Department of Interventional Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Shanshan Ma
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Heying Yang
- Department of Pediatric Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Qiuliang Liu
- Department of Pediatric Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Da Zhang
- Department of Pediatric Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Ziqiang Xia
- Department of Pediatric Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jia Jia
- Department of Pediatric Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jiaxiang Wang
- Department of Pediatric Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| |
Collapse
|
8
|
Qian W, Kang L, Zhang T, Meng M, Wang Y, Li Z, Xia Q, Cheng D. Ecdysone receptor (EcR) is involved in the transcription of cell cycle genes in the silkworm. Int J Mol Sci 2015; 16:3335-49. [PMID: 25654229 PMCID: PMC4346899 DOI: 10.3390/ijms16023335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/06/2015] [Accepted: 01/23/2015] [Indexed: 01/07/2023] Open
Abstract
EcR (ecdysone receptor)-mediated ecdysone signaling pathway contributes to regulate the transcription of genes involved in various processes during insect development. In this work, we detected the expression of EcR gene in silkworm ovary-derived BmN4 cells and found that EcR RNAi result in an alteration of cell shape, indicating that EcR may orchestrate cell cycle progression. EcR RNAi and EcR overexpression analysis revealed that in the cultured BmN4 cells, EcR respectively promoted and suppressed the transcription of E2F-1 and CycE, two genes controlling cell cycle progression. Further examination demonstrated that ecdysone application in BmN4 cells not only changed the transcription of these two cell cycle genes like that under EcR overexpression, but also induced cell cycle arrest at G2/M phase. In vivo analysis confirmed that E2F-1 expression was elevated in silk gland of silkworm larvae after ecdysone application, which is same as its response to ecdysone in BmN4 cells. However, ecdysone also promotes CycE transcription in silk gland, and this is converse with the observation in BmN4 cells. These results provide new insights into understanding the roles of EcR-mediated ecdysone signaling in the regulation of cell cycle.
Collapse
Affiliation(s)
- Wenliang Qian
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| | - Lixia Kang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| | - Tianlei Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| | - Meng Meng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| | - Yonghu Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| | - Zhiqing Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| | - Daojun Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
9
|
Heeran MC, Høgdall CK, Kjaer SK, Christensen L, Blaakaer J, Christensen IJ, Hogdall EVS. Limited prognostic value of tissue protein expression levels of cyclin E in Danish ovarian cancer patients: from the Danish 'MALOVA' ovarian cancer study. APMIS 2012; 120:846-54. [PMID: 22958293 DOI: 10.1111/j.1600-0463.2012.02913.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 04/02/2012] [Indexed: 11/29/2022]
Abstract
The primary objective of this study was to assess the expression of cyclin E in tumour tissues from 661 patients with epithelial ovarian tumours. The second was to evaluate whether cyclin E tissue expression levels correlate with clinico-pathological parameters and prognosis of the disease. Using tissue arrays (TA), we analysed the cyclin E expression levels in tissues from 168 women with borderline ovarian tumours (BOT) (147 stage I, 4 stage II, 17 stage III) and 493 Ovarian cancer (OC) patients (127 stage I, 45 stage II, 276 stage III, 45 stage IV). Using a 10% cut-off level for cyclin E overexpression, 20% of the BOTs were positive with a higher proportion of serous than mucinous tumours. Sixty-two per cent of the OCs were positive for cyclin E expression with the highest percentage found in clear cell carcinomas. Results based on univariate and multivariate survival analyses with a 10% cut-off value showed that cyclin E had no independent prognostic value. In conclusion, we found cyclin E expression in tumour tissue to be of limited prognostic value to Danish OC patients.
Collapse
Affiliation(s)
- Mel C Heeran
- Department of Pathology, Herlev Hospital, University of Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
10
|
Jeong J, Verheyden JM, Kimble J. Cyclin E and Cdk2 control GLD-1, the mitosis/meiosis decision, and germline stem cells in Caenorhabditis elegans. PLoS Genet 2011; 7:e1001348. [PMID: 21455289 PMCID: PMC3063749 DOI: 10.1371/journal.pgen.1001348] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 02/18/2011] [Indexed: 11/29/2022] Open
Abstract
Coordination of the cell cycle with developmental events is crucial for generation of tissues during development and their maintenance in adults. Defects in that coordination can shift the balance of cell fates with devastating clinical effects. Yet our understanding of the molecular mechanisms integrating core cell cycle regulators with developmental regulators remains in its infancy. This work focuses on the interplay between cell cycle and developmental regulators in the Caenorhabditis elegans germline. Key developmental regulators control germline stem cells (GSCs) to self-renew or begin differentiation: FBF RNA–binding proteins promote self-renewal, while GLD RNA regulatory proteins promote meiotic entry. We first discovered that many but not all germ cells switch from the mitotic into the meiotic cell cycle after RNAi depletion of CYE-1 (C. elegans cyclin E) or CDK-2 (C. elegans Cdk2) in wild-type adults. Therefore, CYE-1/CDK-2 influences the mitosis/meiosis balance. We next found that GLD-1 is expressed ectopically in GSCs after CYE-1 or CDK-2 depletion and that GLD-1 removal can rescue cye-1/cdk-2 defects. Therefore, GLD-1 is crucial for the CYE-1/CDK-2 mitosis/meiosis control. Indeed, GLD-1 appears to be a direct substrate of CYE-1/CDK-2: GLD-1 is a phosphoprotein; CYE-1/CDK-2 regulates its phosphorylation in vivo; and human cyclin E/Cdk2 phosphorylates GLD-1 in vitro. Transgenic GLD-1(AAA) harbors alanine substitutions at three consensus CDK phosphorylation sites. GLD-1(AAA) is expressed ectopically in GSCs, and GLD-1(AAA) transgenic germlines have a smaller than normal mitotic zone. Together these findings forge a regulatory link between CYE-1/CDK-2 and GLD-1. Finally, we find that CYE-1/CDK-2 works with FBF-1 to maintain GSCs and prevent their meiotic entry, at least in part, by lowering GLD-1 abundance. Therefore, CYE-1/CDK-2 emerges as a critical regulator of stem cell maintenance. We suggest that cyclin E and Cdk-2 may be used broadly to control developmental regulators. How are cell cycle regulators coordinated with cell fate and patterning regulators during development? Several studies suggest that core cell cycle regulators can influence development, but molecular mechanisms remain unknown for the most part. We have tackled this question in the nematode Caenorhabditis elegans. Specifically, we have investigated how cell cycle regulators affect germline stem cells. Previous work had identified conserved developmental regulators that control the choice between self-renewal and differentiation in this tissue. In this work, we focus on cyclin E/Cdk-2, which is a core cell cycle kinase, and GLD-1, a key regulator of stem cell differentiation. Our work shows that cyclin E/Cdk-2 phosphorylates GLD-1 and lowers its abundance in stem cells via a post-translational mechanism. We also find that a post-transcriptional GLD-1 regulator, called FBF-1, works synergistically with cyclin E/Cdk-2 to ensure that GLD-1 is off in germline stem cells. When both FBF-1 and cyclin E/Cdk-2 are removed, the stem cells are no longer maintained and instead differentiate. Our findings reveal that cyclin E/Cdk-2 kinase is a critical stem cell regulator and provide a paradigm for how cell cycle regulators interface with developmental regulators.
Collapse
Affiliation(s)
- Johan Jeong
- Program in Cellular and Molecular Biology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Jamie M. Verheyden
- Howard Hughes Medical Institute, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Judith Kimble
- Program in Cellular and Molecular Biology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Howard Hughes Medical Institute, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
11
|
Dynamics of cell proliferation and apoptosis reflect different life strategies in hydrothermal vent and cold seep vestimentiferan tubeworms. Cell Tissue Res 2009; 337:149-65. [PMID: 19444472 DOI: 10.1007/s00441-009-0811-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 04/21/2009] [Indexed: 10/20/2022]
Abstract
Deep-sea vestimentiferan tubeworms, which live in symbiosis with bacteria, exhibit different life strategies according to their habitat. At unstable and relatively short-lived hydrothermal vents, they grow extremely fast, whereas their close relatives at stable and long-persisting cold seeps grow slowly and live up to 300 years. Growth and age differences are thought to occur because of ecological and physiological adaptations. However, the underlying mechanisms of cell proliferation and death, which are closely linked to homeostasis, growth, and longevity, are unknown. Here, we show by immunohistochemical and ultrastructural cell cycle analyses that cell proliferation activities of the two species studied are higher than in any other characterized invertebrate, being only comparable with tumor and wound-healing processes. The slow growth in Lamellibrachia luymesi from cold seeps results from balanced activities of proliferation and apoptosis in the epidermis. In contrast, Riftia pachyptila from hydrothermal vents grows fast because apoptosis is down-regulated in this tissue. The symbiont-housing organ, the trophosome, exhibits a complex cell cycle and terminal differentiation pattern in both species, and growth is regulated by proliferation. These mechanisms have similarities to the up- and down-regulation of proliferation or apoptosis in various types of tumor, although they occur in healthy animals in this study, thus providing significant insights into the underlying mechanisms of growth and longevity.
Collapse
|
12
|
Abstract
Elaboration of a multicellular organism requires highly efficient coordination between proliferation and developmental processes. Accordingly, the embryonic cell cycle exhibits a high degree of plasticity; however, the mechanisms underlying its regulation in vivo remain largely unknown. The purpose of this review is to summarize the data on cell cycle regulation during the early mouse embryonic development, a period characterized by major variations in cell cycle parameters which correlate with important developmental transitions. In particular, we analyse the contribution of mutant mice to the study of in vivo cell cycle regulation during early development and discuss possible contributions of cell cycle regulators to developmental programs.
Collapse
Affiliation(s)
- Jérôme Artus
- Unité de Génétique Fonctionnelle de la souris, CNRS URA 2578, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
13
|
Paris M, Wang WH, Shin MH, Franklin DS, Andrisani OM. Homeodomain transcription factor Phox2a, via cyclic AMP-mediated activation, induces p27Kip1 transcription, coordinating neural progenitor cell cycle exit and differentiation. Mol Cell Biol 2006; 26:8826-39. [PMID: 16982676 PMCID: PMC1636809 DOI: 10.1128/mcb.00575-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mechanisms coordinating neural progenitor cell cycle exit and differentiation are incompletely understood. The cyclin-dependent kinase inhibitor p27(Kip1) is transcriptionally induced, switching specific neural progenitors from proliferation to differentiation. However, neuronal differentiation-specific transcription factors mediating p27(Kip1) transcription have not been identified. We demonstrate the homeodomain transcription factor Phox2a, required for central nervous system (CNS)- and neural crest (NC)-derived noradrenergic neuron differentiation, coordinates cell cycle exit and differentiation by inducing p27(Kip1) transcription. Phox2a transcription and activation in the CNS-derived CAD cell line and primary NC cells is mediated by combined cyclic AMP (cAMP) and bone morphogenetic protein 2 (BMP2) signaling. In the CAD cellular model, cAMP and BMP2 signaling initially induces proliferation of the undifferentiated precursors, followed by p27(Kip1) transcription, G(1) arrest, and neuronal differentiation. Small interfering RNA silencing of either Phox2a or p27(Kip1) suppresses p27(Kip1) transcription and neuronal differentiation, suggesting a causal link between p27(Kip1) expression and differentiation. Conversely, ectopic Phox2a expression via the Tet-off expression system promotes accelerated CAD cell neuronal differentiation and p27(Kip1) transcription only in the presence of cAMP signaling. Importantly, endogenous or ectopically expressed Phox2a activated by cAMP signaling binds homeodomain cis-acting elements of the p27(Kip1) promoter in vivo and mediates p27(Kip1)-luciferase expression in CAD and NC cells. We conclude that developmental cues of cAMP signaling causally link Phox2a activation with p27(Kip1) transcription, thereby coordinating neural progenitor cell cycle exit and differentiation.
Collapse
Affiliation(s)
- Maryline Paris
- Department of Basic Medical Sciences, Purdue University, 625 Harrison Street, West Lafayette, IN 47907-2026, USA
| | | | | | | | | |
Collapse
|
14
|
Jordan KC, Schaeffer V, Fischer KA, Gray EE, Ruohola-Baker H. Notch signaling through tramtrack bypasses the mitosis promoting activity of the JNK pathway in the mitotic-to-endocycle transition of Drosophila follicle cells. BMC DEVELOPMENTAL BIOLOGY 2006; 6:16. [PMID: 16542414 PMCID: PMC1436016 DOI: 10.1186/1471-213x-6-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 03/16/2006] [Indexed: 12/30/2022]
Abstract
Background The follicle cells of the Drosophila egg chamber provide an excellent model in which to study modulation of the cell cycle. During mid-oogenesis, the follicle cells undergo a variation of the cell cycle, endocycle, in which the cells replicate their DNA, but do not go through mitosis. Previously, we showed that Notch signaling is required for the mitotic-to-endocycle transition, through downregulating String/Cdc25, and Dacapo/p21 and upregulating Fizzy-related/Cdh1. Results In this paper, we show that Notch signaling is modulated by Shaggy and temporally induced by the ligand Delta, at the mitotic-to-endocycle transition. In addition, a downstream target of Notch, tramtrack, acts at the mitotic-to-endocycle transition. We also demonstrate that the JNK pathway is required to promote mitosis prior to the transition, independent of the cell cycle components acted on by the Notch pathway. Conclusion This work reveals new insights into the regulation of Notch-dependent mitotic-to-endocycle switch.
Collapse
Affiliation(s)
- Katherine C Jordan
- Department of Biochemistry, Box 357350, 1959 NE Pacific Street, University of Washington, Seattle, WA 98195, USA
| | - Valerie Schaeffer
- Department of Biochemistry, Box 357350, 1959 NE Pacific Street, University of Washington, Seattle, WA 98195, USA
| | - Karin A Fischer
- Department of Biochemistry, Box 357350, 1959 NE Pacific Street, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth E Gray
- Department of Biochemistry, Box 357350, 1959 NE Pacific Street, University of Washington, Seattle, WA 98195, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, Box 357350, 1959 NE Pacific Street, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
15
|
Artus J, Vandormael-Pournin S, Frödin M, Nacerddine K, Babinet C, Cohen-Tannoudji M. Impaired mitotic progression and preimplantation lethality in mice lacking OMCG1, a new evolutionarily conserved nuclear protein. Mol Cell Biol 2005; 25:6289-302. [PMID: 15988037 PMCID: PMC1168835 DOI: 10.1128/mcb.25.14.6289-6302.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While highly conserved through evolution, the cell cycle has been extensively modified to adapt to new developmental programs. Recently, analyses of mouse mutants revealed that several important cell cycle regulators are either dispensable for development or have a tissue- or cell-type-specific function, indicating that many aspects of cell cycle regulation during mammalian embryo development remain to be elucidated. Here, we report on the characterization of a new gene, Omcg1, which codes for a nuclear zinc finger protein. Embryos lacking Omcg1 die by the end of preimplantation development. In vitro cultured Omcg1-null blastocysts exhibit a dramatic reduction in the total cell number, a high mitotic index, and the presence of abnormal mitotic figures. Importantly, we found that Omcg1 disruption results in the lengthening of M phase rather than in a mitotic block. We show that the mitotic delay in Omcg1-/- embryos is associated with neither a dysfunction of the spindle checkpoint nor abnormal global histone modifications. Taken together, these results suggest that Omcg1 is an important regulator of the cell cycle in the preimplantation embryo.
Collapse
Affiliation(s)
- Jérôme Artus
- Unité de Biologie du Développement, CNRS URA 2578, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
16
|
Reynolds-Kenneally J, Mlodzik M. Notch signaling controls proliferation through cell-autonomous and non-autonomous mechanisms in the Drosophila eye. Dev Biol 2005; 285:38-48. [PMID: 16039641 DOI: 10.1016/j.ydbio.2005.05.038] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 05/18/2005] [Accepted: 05/26/2005] [Indexed: 11/22/2022]
Abstract
During Drosophila eye development, localized Notch signaling at the dorsal ventral (DV)-midline promotes growth of the entire eye field. This long-range action of Notch signaling may be mediated through the diffusible ligand of the Jak/STAT pathway, Unpaired (Upd), which was recently identified as a downstream target of Notch. However, Notch activity has not been shown to be cell-autonomously required for Upd expression and therefore yet another diffusible signal may be required for Notch activation of Upd. Our results clarify the Notch requirement, demonstrating that Notch activity at the DV-midline leads to cell-autonomous expression of Upd as monitored in loss and gain-of-function Notch clones. In addition, mutations in the Jak/STAT pathway interact genetically with the Notch pathway by suppressing Notch mediated overgrowth. N(act) clones show non-autonomous effects on the cell cycle anterior to the furrow, indicating function of the Jak/STAT pathway. However, cell-autonomous effects of Notch within and posterior to the furrow are independent of Upd. Here, Notch autonomously maintains cells in a proliferative state and blocks photoreceptor differentiation.
Collapse
Affiliation(s)
- Jessica Reynolds-Kenneally
- Brookdale Department of Molecular, Cell and Developmental Biology, Mt. Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
17
|
Saifudeen Z, Diavolitsis V, Stefkova J, Dipp S, Fan H, El-Dahr SS. Spatiotemporal Switch from ΔNp73 to TAp73 Isoforms during Nephrogenesis. J Biol Chem 2005; 280:23094-102. [PMID: 15805112 DOI: 10.1074/jbc.m414575200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
p73 is a member of the p53 gene family, which also includes p53 and p63. These proteins share sequence similarity and target genes but also have divergent roles in cancer and development. Unlike p53, transcription of the p73 gene yields multiple full-length (transactivation (TA) domain) and amino terminus-truncated (DeltaN) isoforms. DeltaNp73 acts in a dominant negative fashion to inhibit the actions of TAp73 and p53 on their target genes, promoting cell survival and proliferation and suppressing apoptosis. The balance between TAp73 and its negative regulator, DeltaNp73, may therefore represent an important determinant of developmental cell fate. There is little if anything known regarding the developmental regulation of the p73 gene. In this study, we showed that TAp73 and DeltaNp73 exhibit reciprocal spatiotemporal expression and functions during nephrogenesis. TAp73 was predominantly expressed in the differentiation domain of the renal cortex in an overlapping manner with the vasopressin-sensitive water channel aquaporin-2 (AQP-2). Chromatin immunoprecipitation assays demonstrated that the endogenous AQP-2 promoter was occupied by TAp73 in a developmentally regulated manner. Furthermore TAp73 stimulated AQP-2 promoter-driven reporter expression. TAp73 also activated the bradykinin B2 receptor (B2R) promoter, a developmentally regulated gene involved in regulation of sodium excretion. The transcriptional effects of TAp73 on AQP-2 and B2R were independent of p53. In marked contrast to TAp73, DeltaNp73 isoforms were induced early in development and were preferentially expressed in proliferating nephron precursors. Moreover DeltaNp73 was a potent repressor of B2R gene transcription. We conclude that the p73 gene is developmentally regulated during kidney organogenesis. The spatiotemporal switch from DeltaNp73 to TAp73 may play an important role in the terminal differentiation program of the developing nephron.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Aquaporin 2
- Aquaporins/chemistry
- Aquaporins/metabolism
- Blotting, Western
- Cell Differentiation
- Cell Lineage
- Cell Proliferation
- Cell Survival
- Chromatin Immunoprecipitation
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/physiology
- Dose-Response Relationship, Drug
- Exons
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Genes, Tumor Suppressor/physiology
- Immunohistochemistry
- Kidney/growth & development
- Kidney/metabolism
- Mice
- Mice, Inbred C57BL
- Microscopy, Fluorescence
- Models, Genetic
- Nuclear Proteins/biosynthesis
- Nuclear Proteins/chemistry
- Nuclear Proteins/physiology
- Promoter Regions, Genetic
- Protein Binding
- Protein Isoforms
- Protein Structure, Tertiary
- Rats
- Receptor, Bradykinin B2/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Transcription, Genetic
- Transfection
- Tumor Protein p73
- Tumor Suppressor Proteins
- Water/chemistry
Collapse
Affiliation(s)
- Zubaida Saifudeen
- Department of Pediatrics, Section of Pediatric Nephrology, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | |
Collapse
|
18
|
Humbert PO, Brumby AM, Quinn LM, Richardson HE. New tricks for old dogs: unexpected roles for cell cycle regulators revealed using animal models. Curr Opin Cell Biol 2004; 16:614-22. [PMID: 15530771 DOI: 10.1016/j.ceb.2004.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Studies in animal models have revealed many surprises regarding the importance of key cell cycle regulators during animal development and homeostasis, underscoring the plasticity and redundancy of cell cycle circuitry within a whole-animal context. Moreover, checkpoint regulators, which are not essential for viability in yeast and cultured cells, play important roles in cell cycle control during development.
Collapse
Affiliation(s)
- Patrick O Humbert
- Cell cycle and cancer genetics laboratory, Research Division, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | | | | | | |
Collapse
|