1
|
Mehta K, Daghsni M, Raeisossadati R, Xu Z, Davis E, Naidich A, Wang B, Tao S, Pi S, Chen W, Kostka D, Liu S, Gross JM, Kuwajima T, Aldiri I. A cis-regulatory module underlies retinal ganglion cell genesis and axonogenesis. Cell Rep 2024; 43:114291. [PMID: 38823017 PMCID: PMC11238474 DOI: 10.1016/j.celrep.2024.114291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024] Open
Abstract
Atoh7 is transiently expressed in retinal progenitor cells (RPCs) and is required for retinal ganglion cell (RGC) differentiation. In humans, a deletion in a distal non-coding regulatory region upstream of ATOH7 is associated with optic nerve atrophy and blindness. Here, we functionally interrogate the significance of the Atoh7 regulatory landscape to retinogenesis in mice. Deletion of the Atoh7 enhancer structure leads to RGC deficiency, optic nerve hypoplasia, and retinal blood vascular abnormalities, phenocopying inactivation of Atoh7. Further, loss of the Atoh7 remote enhancer impacts ipsilaterally projecting RGCs and disrupts proper axonal projections to the visual thalamus. Deletion of the Atoh7 remote enhancer is also associated with the dysregulation of axonogenesis genes, including the derepression of the axon repulsive cue Robo3. Our data provide insights into how Atoh7 enhancer elements function to promote RGC development and optic nerve formation and highlight a key role of Atoh7 in the transcriptional control of axon guidance molecules.
Collapse
Affiliation(s)
- Kamakshi Mehta
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Marwa Daghsni
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Reza Raeisossadati
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Zhongli Xu
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Emily Davis
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Abigail Naidich
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Bingjie Wang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Shiyue Tao
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Shaohua Pi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Wei Chen
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Dennis Kostka
- Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jeffrey M Gross
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Takaaki Kuwajima
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Issam Aldiri
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
2
|
Friedrich M. Coming into clear sight at last: Ancestral and derived events during chelicerate visual system development. Bioessays 2022; 44:e2200163. [DOI: 10.1002/bies.202200163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Markus Friedrich
- Department of Biological Sciences Wayne State University Detroit Michigan USA
- Department of Ophthalmological, Visual, and Anatomical Sciences, Wayne State University School of Medicine Detroit Michigan USA
| |
Collapse
|
3
|
Fritzsch B, Martin PR. Vision and retina evolution: how to develop a retina. IBRO Neurosci Rep 2022; 12:240-248. [PMID: 35449767 PMCID: PMC9018162 DOI: 10.1016/j.ibneur.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/30/2022] [Indexed: 12/29/2022] Open
Abstract
Early in vertebrate evolution, a single homeobox (Hox) cluster in basal chordates was quadrupled to generate the Hox gene clusters present in extant vertebrates. Here we ask how this expanded gene pool may have influenced the evolution of the visual system. We suggest that a single neurosensory cell type split into ciliated sensory cells (photoreceptors, which transduce light) and retinal ganglion cells (RGC, which project to the brain). In vertebrates, development of photoreceptors is regulated by the basic helix-loop-helix (bHLH) transcription factor Neurod1 whereas RGC development depends on Atoh7 and related bHLH genes. Lancelet (a basal chordate) does not express Neurod or Atoh7 and possesses a few neurosensory cells with cilia that reach out of the opening of the neural tube. Sea-squirts (Ascidians) do not express Neurod and express a different bHLH gene, Atoh8, that is likely expressed in the anterior vesicle. Recent data indicate the neurosensory cells in lancelets may correspond to three distinct eye fields in ascidians, which in turn may be the basis of the vertebrate retina, pineal and parapineal. In this review we contrast the genetic control of visual structure development in these chordates with that of basal vertebrates such as lampreys and hagfish, and jawed vertebrates. We propose an evolutionary sequence linking whole-genome duplications, initially to a split between photoreceptor and projection neurons (RGC) and subsequently between pineal and lateral eye structures.
Collapse
|
4
|
Daghsni M, Aldiri I. Building a Mammalian Retina: An Eye on Chromatin Structure. Front Genet 2021; 12:775205. [PMID: 34764989 PMCID: PMC8576187 DOI: 10.3389/fgene.2021.775205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Regulation of gene expression by chromatin structure has been under intensive investigation, establishing nuclear organization and genome architecture as a potent and effective means of regulating developmental processes. The substantial growth in our knowledge of the molecular mechanisms underlying retinogenesis has been powered by several genome-wide based tools that mapped chromatin organization at multiple cellular and biochemical levels. Studies profiling the retinal epigenome and transcriptome have allowed the systematic annotation of putative cis-regulatory elements associated with transcriptional programs that drive retinal neural differentiation, laying the groundwork to understand spatiotemporal retinal gene regulation at a mechanistic level. In this review, we outline recent advances in our understanding of the chromatin architecture in the mammalian retina during development and disease. We focus on the emerging roles of non-coding regulatory elements in controlling retinal cell-type specific transcriptional programs, and discuss potential implications in untangling the etiology of eye-related disorders.
Collapse
Affiliation(s)
- Marwa Daghsni
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Issam Aldiri
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
5
|
Lyu J, Mu X. Genetic control of retinal ganglion cell genesis. Cell Mol Life Sci 2021; 78:4417-4433. [PMID: 33782712 DOI: 10.1007/s00018-021-03814-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/27/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022]
Abstract
Retinal ganglion cells (RGCs) are the only projection neurons in the neural retina. They receive and integrate visual signals from upstream retinal neurons in the visual circuitry and transmit them to the brain. The function of RGCs is performed by the approximately 40 RGC types projecting to various central brain targets. RGCs are the first cell type to form during retinogenesis. The specification and differentiation of the RGC lineage is a stepwise process; a hierarchical gene regulatory network controlling the RGC lineage has been identified and continues to be elaborated. Recent studies with single-cell transcriptomics have led to unprecedented new insights into their types and developmental trajectory. In this review, we summarize our current understanding of the functions and relationships of the many regulators of the specification and differentiation of the RGC lineage. We emphasize the roles of these key transcription factors and pathways in different developmental steps, including the transition from retinal progenitor cells (RPCs) to RGCs, RGC differentiation, generation of diverse RGC types, and central projection of the RGC axons. We discuss critical issues that remain to be addressed for a comprehensive understanding of these different aspects of RGC genesis and emerging technologies, including single-cell techniques, novel genetic tools and resources, and high-throughput genome editing and screening assays, which can be leveraged in future studies.
Collapse
Affiliation(s)
- Jianyi Lyu
- Department of Ophthalmology/Ross Eye Institute, State University of New York At Buffalo, Buffalo, NY, 14203, USA
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute, State University of New York At Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
6
|
Zhang Q, Li T, Zhang Y, Lin J, Chen X, Gui Y, Li Q. Comparative sequence analysis and functional validation identified a retina-specific enhancer around zic5 and zic2a. Gene Expr Patterns 2020; 39:119162. [PMID: 33359848 DOI: 10.1016/j.gep.2020.119162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 11/19/2022]
Abstract
The spatiotemporal development of vertebrate retina is regulated by a variety of genes. The zinc finger transcription factors zic5 and zic2a are located close to each other in the chromosome. They have similar expression patterns, and both play important roles in the development of the retina and nervous system. Here, we used ECR browser and gfp fluorescence report experiment to identify a 290bp enhancer sequence ECR3, which is located at 3 kb upstream of zic5 and 10 kb downstream of zic2a, and it can drive the specific expression of gfp in the retina. pT2KXIGQ-ECR3 was used to construct a transgenic zebrafish line Tg(ECR3-290: gfp) which first exhibits specific green fluorescence in the whole retina area at 24hpf. Then the expression region was gradually limited to ganglion cell layer (GCL) and lasted through adulthood. This expression pattern is highly consistent with the zic5 and zic2a at retina. These results indicate that the 290bp enhancer might be an important element to regulate the expression of zic5 and zic2a genes in ganglion cells, and this transgenic line is an important tool for studying the development of retina.
Collapse
Affiliation(s)
- Qi Zhang
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Tingting Li
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Yinglan Zhang
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Jia Lin
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Xudong Chen
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Yiting Gui
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Miesfeld JB, Ghiasvand NM, Marsh-Armstrong B, Marsh-Armstrong N, Miller EB, Zhang P, Manna SK, Zawadzki RJ, Brown NL, Glaser T. The Atoh7 remote enhancer provides transcriptional robustness during retinal ganglion cell development. Proc Natl Acad Sci U S A 2020; 117:21690-21700. [PMID: 32817515 PMCID: PMC7474671 DOI: 10.1073/pnas.2006888117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The retinal ganglion cell (RGC) competence factor ATOH7 is dynamically expressed during retinal histogenesis. ATOH7 transcription is controlled by a promoter-adjacent primary enhancer and a remote shadow enhancer (SE). Deletion of the ATOH7 human SE causes nonsyndromic congenital retinal nonattachment (NCRNA) disease, characterized by optic nerve aplasia and total blindness. We used genome editing to model NCRNA in mice. Deletion of the murine SE reduces Atoh7 messenger RNA (mRNA) fivefold but does not recapitulate optic nerve loss; however, SEdel/knockout (KO) trans heterozygotes have thin optic nerves. By analyzing Atoh7 mRNA and protein levels, RGC development and survival, and chromatin landscape effects, we show that the SE ensures robust Atoh7 transcriptional output. Combining SE deletion and KO and wild-type alleles in a genotypic series, we determined the amount of Atoh7 needed to produce a normal complement of adult RGCs, and the secondary consequences of graded reductions in Atoh7 dosage. Together, these data reveal the workings of an evolutionary fail-safe, a duplicate enhancer mechanism that is hard-wired in the machinery of vertebrate retinal ganglion cell genesis.
Collapse
Affiliation(s)
- Joel B Miesfeld
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA 95616
| | - Noor M Ghiasvand
- Department of Biology, Grand Valley State University, Allendale, MI 49401
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Brennan Marsh-Armstrong
- Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Nicholas Marsh-Armstrong
- Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Eric B Miller
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA 95616
| | - Pengfei Zhang
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA 95616
| | - Suman K Manna
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA 95616
| | - Robert J Zawadzki
- Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Nadean L Brown
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA 95616
| | - Tom Glaser
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA 95616;
| |
Collapse
|
8
|
Hutcheson DA, Xie Y, Figueroa P, Dorsky RI. A transgene targeted to the zebrafish nkx2.4b locus drives specific green fluorescent protein expression and disrupts thyroid development. Dev Dyn 2020; 249:1387-1393. [PMID: 32644242 DOI: 10.1002/dvdy.224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND With the goal of labeling and manipulating the zebrafish hypothalamus, we sought to target a green fluorescent protein (gfp) transgene to the expression domains of nkx2.4b, a gene expressed during hypothalamic and thyroid development. We combined transcription activator-like effector nucleases (TALENs)-mediated mutagenesis with a targeting construct to enable insertion of a gfp transgene into the endogenous nkx2.4b genomic locus. RESULTS Injection of TALENs targeted to the first exon of nkx2.4b created a predicted null allele, and homozygous mutant embryos displayed loss of thyroid markers. From embryos injected with both TALENs and a targeting construct carrying a gfp transgene, we recovered a line in which GFP was expressed specifically in the hypothalamus and thyroid. Fish homozygous for this allele lacked exon 1 of nkx2.4b and exhibited hypothyroid phenotypes. CONCLUSIONS By combining TALENs injections with a targeting construct that contained a gfp transgene, we were able to recover an allele in which GFP is expressed in the nkx2.4b expression domains, with homozygous phenotypes suggesting the creation of a loss-of-function transgenic line. These results demonstrate the creation of a useful tool for studying hypothalamus and thyroid development.
Collapse
Affiliation(s)
- David A Hutcheson
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, USA
| | - Yuanyuan Xie
- Department of Molecular, Cellular and Developmental Biology, BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Priscilla Figueroa
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, USA
| | - Richard I Dorsky
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
9
|
Simultaneous Requirements for Hes1 in Retinal Neurogenesis and Optic Cup-Stalk Boundary Maintenance. J Neurosci 2020; 40:1501-1513. [PMID: 31949107 DOI: 10.1523/jneurosci.2327-19.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
The bHLH transcription factor Hes1 is a key downstream effector for the Notch signaling pathway. During embryogenesis neural progenitors express low levels of Hes1 in an oscillating pattern, whereas glial brain boundary regions (e.g., isthmus) have high, sustained Hes1 levels that suppress neuronal fates. Here, we show that in the embryonic mouse retina, the optic nerve head and stalk express high Hes1, with the ONH constituting a boundary between the neural retina and glial cells that ultimately line the optic stalk. Using two Cre drivers with distinct spatiotemporal expression we conditionally inactivated Hes1, to delineate the requirements for this transcriptional repressor during retinal neurogenesis versus patterning of the optic cup and stalk. Throughout retinal neurogenesis, Hes1 maintains proliferation and blocks retinal ganglion cell formation, but surprisingly we found it also promotes cone photoreceptor genesis. In the postnatal eye, Hes1 inactivation with Rax-Cre resulted in increased bipolar neurons and a mispositioning of Müller glia. Our results indicate that Notch pathway regulation of cone genesis is more complex than previously assumed, and reveal a novel role for Hes1 in maintaining the optic cup-stalk boundary.SIGNIFICANCE STATEMENT The bHLH repressor Hes1 regulates the timing of neurogenesis, rate of progenitor cell division, gliogenesis, and maintains tissue compartment boundaries. This study expands current eye development models by showing Notch-independent roles for Hes1 in the developing optic nerve head (ONH). Defects in ONH formation result in optic nerve coloboma; our work now inserts Hes1 into the genetic hierarchy regulating optic fissure closure. Given that Hes1 acts analogously in the ONH as the brain isthmus, it prompts future investigation of the ONH as a signaling factor center, or local organizer. Embryonic development of the ONH region has been poorly studied, which is surprising given it is where the pan-ocular disease glaucoma is widely believed to inflict damage on RGC axons.
Collapse
|
10
|
Song T, Li K, Wu T, Wang Y, Zhang X, Xu X, Yao Y, Han Z. Identification of new regulators through transcriptome analysis that regulate anthocyanin biosynthesis in apple leaves at low temperatures. PLoS One 2019; 14:e0210672. [PMID: 30695036 PMCID: PMC6350969 DOI: 10.1371/journal.pone.0210672] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022] Open
Abstract
Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. To identify new regulatory genes in apple (Malus domestica) that may be involved in regulating low temperature induced anthocyanin biosynthesis, we performed RNA-seq analysis of leaves from the ‘Gala’ apple cultivar following exposure to a low temperature (16 °C). A visible red color appeared on the upper leaves and the anthocyanin content increased significantly after the low temperature treatment. Genes from the flavonoid biosynthesis pathway were significantly enriched among the differentially expressed genes, and the expression of several transcription factors was shown by WGCNA (weighted gene co-expression network analysis) to correlate with anthocyanin accumulation, including members of the MYB, MADS, WRKY, WD40, Zinc Finger and HB-ZIP families. Three MYB transcription factors (MdMYB12, MdMYB22 and MdMYB114), which had several CBF/DREB response elements in their promoters, were significantly induced by low temperature exposure and their expression also correlated highly with anthocyanin accumulation. We hypothesize that they may act as regulators of anthocyanin biosynthesis and be regulated by CBF/DREB transcription factors in apple leaves under low temperature conditions. The analyses presented here provide insights into the molecular mechanisms underlying anthocyanin accumulation during low temperature exposure.
Collapse
Affiliation(s)
- Tingting Song
- College of Horticulture, China Agricultural University, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Keting Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Yuncong Yao
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
- * E-mail:
| |
Collapse
|
11
|
Maurer KA, Kowalchuk A, Shoja-Taheri F, Brown NL. Integral bHLH factor regulation of cell cycle exit and RGC differentiation. Dev Dyn 2018; 247:965-975. [PMID: 29770538 PMCID: PMC6105502 DOI: 10.1002/dvdy.24638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/05/2018] [Accepted: 05/05/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND In the developing mouse embryo, the bHLH transcription factor Neurog2 is transiently expressed by retinal progenitor cells and required for the initial wave of neurogenesis. Remarkably, another bHLH factor, Ascl1, normally not present in the embryonic Neurog2 retinal lineage, can rescue the temporal phenotypes of Neurog2 mutants. RESULTS Here we show that Neurog2 simultaneously promotes terminal cell cycle exit and retinal ganglion cell differentiation, using mitotic window labeling and integrating these results with retinal marker quantifications. We also analyzed the transcriptomes of E12.5 GFP-expressing cells from Neurog2GFP/+ , Neurog2GFP/GFP , and Neurog2Ascl1KI/GFP eyes, and validated the most significantly affected genes using qPCR assays. CONCLUSIONS Our data support the hypothesis that Neurog2 acts at the top of a retinal bHLH transcription factor hierarchy. The combined expression levels of these downstream factors are sufficiently induced by ectopic Ascl1 to restore RGC genesis, highlighting the robustness of this gene network during retinal ganglion cell neurogenesis. Developmental Dynamics 247:965-975, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kate A. Maurer
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH, 45229
| | - Angelica Kowalchuk
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA 95616
| | - Farnaz Shoja-Taheri
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA 95616
| | - Nadean L. Brown
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH, 45229
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA 95616
| |
Collapse
|
12
|
Miesfeld JB, Moon MS, Riesenberg AN, Contreras AN, Kovall RA, Brown NL. Rbpj direct regulation of Atoh7 transcription in the embryonic mouse retina. Sci Rep 2018; 8:10195. [PMID: 29977079 PMCID: PMC6033939 DOI: 10.1038/s41598-018-28420-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/22/2018] [Indexed: 12/24/2022] Open
Abstract
In vertebrate retinal progenitor cells, the proneural factor Atoh7 exhibits a dynamic tissue and cellular expression pattern. Although the resulting Atoh7 retinal lineage contains all seven major cell types, only retinal ganglion cells require Atoh7 for proper differentiation. Such specificity necessitates complex regulation of Atoh7 transcription during retina development. The Notch signaling pathway is an evolutionarily conserved suppressor of proneural bHLH factor expression. Previous in vivo mouse genetic studies established the cell autonomous suppression of Atoh7 transcription by Notch1, Rbpj and Hes1. Here we identify four CSL binding sites within the Atoh7 proximal regulatory region and demonstrate Rbpj protein interaction at these sequences by in vitro electromobility shift, calorimetry and luciferase assays and, in vivo via colocalization and chromatin immunoprecipitation. We found that Rbpj simultaneously represses Atoh7 transcription using both Notch-dependent and –independent pathways.
Collapse
Affiliation(s)
- Joel B Miesfeld
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, One Shields Avenue, Davis, CA, 95616, USA
| | - Myung-Soon Moon
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, One Shields Avenue, Davis, CA, 95616, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Amy N Riesenberg
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Ashley N Contreras
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati School of Medicine, Cincinnati, OH, 45267, USA.,Department of Biology, University of Cincinnati Blue Ash College, Cincinnati, OH, 45236, USA
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati School of Medicine, Cincinnati, OH, 45267, USA
| | - Nadean L Brown
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, One Shields Avenue, Davis, CA, 95616, USA. .,Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
13
|
Abstract
Photoreceptors are highly specialized primary sensory neurons that sense light and initiate vision. This critical role is well demonstrated by the fact that visual impairment accompanies photoreceptor loss or dysfunction in many human diseases. With the remarkable advances in stem cell research, one therapeutic approach is to use stem cells to generate photoreceptors and then engraft them into diseased eyes. Knowledge of the molecular mechanisms that control photoreceptor genesis during normal development can greatly aid in the production of photoreceptor cells for this approach. This article will discuss advances in our understanding of the molecular mechanisms that regulate photoreceptor fate determination during development. Recent lineage studies have shown that there are distinct retinal progenitor cells (RPCs) that produce specific combinations of daughter cell types, including photoreceptors and other types of retinal cells. Gene regulatory networks, in which transcription factors interact via cis-regulatory DNA elements, have been discovered that operate within distinct RPCs, and/or newly postmitotic cells, to direct the choice of photoreceptor fate.
Collapse
Affiliation(s)
- Sui Wang
- Department of Genetics and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States 2Howard Hughes Medical Institute, Boston, Massachusetts, United States
| | - Constance L Cepko
- Department of Genetics and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States 2Howard Hughes Medical Institute, Boston, Massachusetts, United States
| |
Collapse
|
14
|
Shabanpoor F, Hammond SM, Abendroth F, Hazell G, Wood MJA, Gait MJ. Identification of a Peptide for Systemic Brain Delivery of a Morpholino Oligonucleotide in Mouse Models of Spinal Muscular Atrophy. Nucleic Acid Ther 2017; 27:130-143. [PMID: 28118087 PMCID: PMC5467147 DOI: 10.1089/nat.2016.0652] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Splice-switching antisense oligonucleotides are emerging treatments for neuromuscular diseases, with several splice-switching oligonucleotides (SSOs) currently undergoing clinical trials such as for Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA). However, the development of systemically delivered antisense therapeutics has been hampered by poor tissue penetration and cellular uptake, including crossing of the blood–brain barrier (BBB) to reach targets in the central nervous system (CNS). For SMA application, we have investigated the ability of various BBB-crossing peptides for CNS delivery of a splice-switching phosphorodiamidate morpholino oligonucleotide (PMO) targeting survival motor neuron 2 (SMN2) exon 7 inclusion. We identified a branched derivative of the well-known ApoE (141–150) peptide, which as a PMO conjugate was capable of exon inclusion in the CNS following systemic administration, leading to an increase in the level of full-length SMN2 transcript. Treatment of newborn SMA mice with this peptide-PMO (P-PMO) conjugate resulted in a significant increase in the average lifespan and gains in weight, muscle strength, and righting reflexes. Systemic treatment of adult SMA mice with this newly identified P-PMO also resulted in small but significant increases in the levels of SMN2 pre-messenger RNA (mRNA) exon inclusion in the CNS and peripheral tissues. This work provides proof of principle for the ability to select new peptide paradigms to enhance CNS delivery and activity of a PMO SSO through use of a peptide-based delivery platform for the treatment of SMA potentially extending to other neuromuscular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Fazel Shabanpoor
- 1 Medical Research Council, Laboratory of Molecular Biology , Cambridge, United Kingdom
| | - Suzan M Hammond
- 2 Department of Physiology, Anatomy, and Genetics, University of Oxford , Oxford, United Kingdom
| | - Frank Abendroth
- 1 Medical Research Council, Laboratory of Molecular Biology , Cambridge, United Kingdom
| | - Gareth Hazell
- 2 Department of Physiology, Anatomy, and Genetics, University of Oxford , Oxford, United Kingdom
| | - Matthew J A Wood
- 2 Department of Physiology, Anatomy, and Genetics, University of Oxford , Oxford, United Kingdom
| | - Michael J Gait
- 1 Medical Research Council, Laboratory of Molecular Biology , Cambridge, United Kingdom
| |
Collapse
|
15
|
Abstract
Photoreceptors have been the most intensively studied retinal cell type. Early lineage studies showed that photoreceptors are produced by retinal progenitor cells (RPCs) that produce only photoreceptor cells and by RPCs that produce both photoreceptor cells and other retinal cell types. More recent lineage studies have shown that there are intrinsic, molecular differences among these RPCs and that these molecular differences operate in gene regulatory networks (GRNs) that lead to the choice of the rod versus the cone fate. In addition, there are GRNs that lead to the choice of a photoreceptor fate and that of another retinal cell type. An example of such a GRN is one that drives the binary fate choice between a rod photoreceptor and bipolar cell. This GRN has many elements, including both feedforward and feedback regulatory loops, highlighting the complexity of such networks. This and other examples of retinal cell fate determination are reviewed here, focusing on the events that direct the choice of rod and cone photoreceptor fate.
Collapse
Affiliation(s)
- Constance L Cepko
- Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
16
|
Maurer KA, Riesenberg AN, Brown NL. Notch signaling differentially regulates Atoh7 and Neurog2 in the distal mouse retina. Development 2014; 141:3243-54. [PMID: 25100656 DOI: 10.1242/dev.106245] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Notch signaling regulates basic helix-loop-helix (bHLH) factors as an evolutionarily conserved module, but the tissue-specific mechanisms are incompletely elucidated. In the mouse retina, bHLH genes Atoh7 and Neurog2 have distinct functions, with Atoh7 regulating retinal competence and Neurog2 required for progression of neurogenesis. These transcription factors are extensively co-expressed, suggesting similar regulation. We directly compared Atoh7 and Neurog2 regulation at the earliest stages of retinal neurogenesis in a broad spectrum of Notch pathway mutants. Notch1 and Rbpj normally block Atoh7 and Neurog2 expression. However, the combined activities of Notch1, Notch3 and Rbpj regulate Neurog2 patterning in the distal retina. Downstream of the Notch complex, we found the Hes1 repressor mediates Atoh7 suppression, but Hes1, Hes3 and Hes5 do not regulate Neurog2 expression. We also tested Notch-mediated regulation of Jag1 and Pax6 in the distal retina, to establish the appropriate context for Neurog2 patterning. We found that Notch1;Notch3 and Rbpj block co-expression of Jag1 and Neurog2, while specifically stimulating Pax6 within an adjacent domain. Our data suggest that Notch signaling controls the overall tempo of retinogenesis, by integrating cell fate specification, the wave of neurogenesis and the developmental status of cells ahead of this wave.
Collapse
Affiliation(s)
- Kate A Maurer
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Amy N Riesenberg
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Nadean L Brown
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA 95616, USA
| |
Collapse
|
17
|
Intrinsically different retinal progenitor cells produce specific types of progeny. Nat Rev Neurosci 2014; 15:615-27. [DOI: 10.1038/nrn3767] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Onset of atonal expression in Drosophila retinal progenitors involves redundant and synergistic contributions of Ey/Pax6 and So binding sites within two distant enhancers. Dev Biol 2013; 386:152-64. [PMID: 24247006 DOI: 10.1016/j.ydbio.2013.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/06/2013] [Accepted: 11/09/2013] [Indexed: 11/23/2022]
Abstract
Proneural transcription factors drive the generation of specialized neurons during nervous system development, and their dynamic expression pattern is critical to their function. The activation of the proneural gene atonal (ato) in the Drosophila eye disc epithelium represents a critical step in the transition from retinal progenitor cell to developing photoreceptor neuron. We show here that the onset of ato transcription depends on two distant enhancers that function differently in subsets of retinal progenitor cells. A detailed analysis of the crosstalk between these enhancers identifies a critical role for three binding sites for the Retinal Determination factors Eyeless (Ey) and Sine oculis (So). We show how these sites interact to induce ato expression in distinct regions of the eye field and confirm them to be occupied by endogenous Ey and So proteins in vivo. Our study suggests that Ey and So operate differently through the same 3' cis-regulatory sites in distinct populations of retinal progenitors.
Collapse
|
19
|
Brzezinski JA, Prasov L, Glaser T. Math5 defines the ganglion cell competence state in a subpopulation of retinal progenitor cells exiting the cell cycle. Dev Biol 2012; 365:395-413. [PMID: 22445509 PMCID: PMC3337348 DOI: 10.1016/j.ydbio.2012.03.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 03/03/2012] [Accepted: 03/06/2012] [Indexed: 11/20/2022]
Abstract
The basic helix-loop-helix (bHLH) transcription factor Math5 (Atoh7) is transiently expressed during early retinal histogenesis and is necessary for retinal ganglion cell (RGC) development. Using nucleoside pulse-chase experiments and clonal analysis, we determined that progenitor cells activate Math5 during or after the terminal division, with progressively later onset as histogenesis proceeds. We have traced the lineage of Math5+ cells using mouse BAC transgenes that express Cre recombinase under strict regulatory control. Quantitative analysis showed that Math5+ progenitors express equivalent levels of Math5 and contribute to every major cell type in the adult retina, but are heavily skewed toward early fates. The Math5>Cre transgene labels 3% of cells in adult retina, including 55% of RGCs. Only 11% of Math5+ progenitors develop into RGCs; the majority become photoreceptors. The fate bias of the Math5 cohort, inferred from the ratio of cone and rod births, changes over time, in parallel with the remaining neurogenic population. Comparable results were obtained using Math5 mutant mice, except that ganglion cells were essentially absent, and late fates were overrepresented within the lineage. We identified Math5-independent RGC precursors in the earliest born (embryonic day 11) retinal cohort, but these precursors require Math5-expressing cells for differentiation. Math5 thus acts permissively to establish RGC competence within a subset of progenitors, but is not sufficient for fate specification. It does not autonomously promote or suppress the determination of non-RGC fates. These data are consistent with progressive and temporal restriction models for retinal neurogenesis, in which environmental factors influence the final histotypic choice.
Collapse
Affiliation(s)
- Joseph A. Brzezinski
- Departments of Human Genetics and Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Lev Prasov
- Departments of Human Genetics and Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Tom Glaser
- Departments of Human Genetics and Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
20
|
Ghiasvand NM, Rudolph DD, Mashayekhi M, Brzezinski JA, Goldman D, Glaser T. Deletion of a remote enhancer near ATOH7 disrupts retinal neurogenesis, causing NCRNA disease. Nat Neurosci 2011; 14:578-86. [PMID: 21441919 PMCID: PMC3083485 DOI: 10.1038/nn.2798] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 03/07/2011] [Indexed: 01/09/2023]
Abstract
Individuals with nonsyndromic congenital retinal nonattachment (NCRNA) are totally blind from birth. The disease afflicts ∼1% of Kurdish people living in a group of neighboring villages in North Khorasan, Iran. We found that NCRNA is caused by a 6,523-bp deletion that spans a remote cis regulatory element 20 kb upstream from ATOH7 (Math5), a bHLH transcription factor gene that is required for retinal ganglion cell (RGC) and optic nerve development. In humans, the absence of RGCs stimulates massive neovascular growth of fetal blood vessels in the vitreous and early retinal detachment. The remote ATOH7 element appears to act as a secondary or 'shadow' transcriptional enhancer. It has minimal sequence similarity to the primary enhancer, which is close to the ATOH7 promoter, but drives transgene expression with an identical spatiotemporal pattern in the mouse retina. The human transgene also functions appropriately in zebrafish, reflecting deep evolutionary conservation. These dual enhancers may reinforce ATOH7 expression during early critical stages of eye development when retinal neurogenesis is initiated.
Collapse
Affiliation(s)
- Noor M Ghiasvand
- Neuroscience Research Center and Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
21
|
Macgregor S, Hewitt AW, Hysi PG, Ruddle JB, Medland SE, Henders AK, Gordon SD, Andrew T, McEvoy B, Sanfilippo PG, Carbonaro F, Tah V, Li YJ, Bennett SL, Craig JE, Montgomery GW, Tran-Viet KN, Brown NL, Spector TD, Martin NG, Young TL, Hammond CJ, Mackey DA. Genome-wide association identifies ATOH7 as a major gene determining human optic disc size. Hum Mol Genet 2010; 19:2716-24. [PMID: 20395239 PMCID: PMC2883339 DOI: 10.1093/hmg/ddq144] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/31/2010] [Accepted: 04/09/2010] [Indexed: 11/13/2022] Open
Abstract
Optic nerve assessment is important for many blinding diseases, with cup-to-disc ratio (CDR) assessments commonly used in both diagnosis and progression monitoring of glaucoma patients. Optic disc, cup, rim area and CDR measurements all show substantial variation between human populations and high heritability estimates within populations. To identify loci underlying these quantitative traits, we performed a genome-wide association study in two Australian twin cohorts and identified rs3858145, P=6.2x10(-10), near the ATOH7 gene as associated with the mean disc area. ATOH7 is known from studies in model organisms to play a key role in retinal ganglion cell formation. The association with rs3858145 was replicated in a cohort of UK twins, with a meta-analysis of the combined data yielding P=3.4x10(-10). Imputation further increased the evidence for association for several SNPs in and around ATOH7 (P=1.3x10(-10) to 4.3x10(-11), top SNP rs1900004). The meta-analysis also provided suggestive evidence for association for the cup area at rs690037, P=1.5x10(-7), in the gene RFTN1. Direct sequencing of ATOH7 in 12 patients with optic nerve hypoplasia, one of the leading causes of blindness in children, revealed two novel non-synonymous mutations (Arg65Gly, Ala47Thr) which were not found in 90 unrelated controls (combined Fisher's exact P=0.0136). Furthermore, the Arg65Gly variant was found to have very low frequency (0.00066) in an additional set of 672 controls.
Collapse
Affiliation(s)
- Stuart Macgregor
- Genetics and Population Health, Queensland Institute of Medical Research, Brisbane, Australia
| | - Alex W. Hewitt
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Australia
| | - Pirro G. Hysi
- Department of Twin Research and Genetic Epidemiology, King's College London School of Medicine, St Thomas' Hospital, London, UK
| | - Jonathan B. Ruddle
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Australia
| | - Sarah E. Medland
- Genetics and Population Health, Queensland Institute of Medical Research, Brisbane, Australia
| | - Anjali K. Henders
- Genetics and Population Health, Queensland Institute of Medical Research, Brisbane, Australia
| | - Scott D. Gordon
- Genetics and Population Health, Queensland Institute of Medical Research, Brisbane, Australia
| | - Toby Andrew
- Department of Twin Research and Genetic Epidemiology, King's College London School of Medicine, St Thomas' Hospital, London, UK
| | - Brian McEvoy
- Genetics and Population Health, Queensland Institute of Medical Research, Brisbane, Australia
| | - Paul G. Sanfilippo
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Australia
| | - Francis Carbonaro
- Department of Twin Research and Genetic Epidemiology, King's College London School of Medicine, St Thomas' Hospital, London, UK
| | - Vikas Tah
- Department of Twin Research and Genetic Epidemiology, King's College London School of Medicine, St Thomas' Hospital, London, UK
| | - Yi Ju Li
- Center for Human Genetics and
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Sonya L. Bennett
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Australia
| | - Jamie E. Craig
- Department of Ophthalmology, Flinders Medical Centre, Flinders University, Adelaide, Australia
| | - Grant W. Montgomery
- Genetics and Population Health, Queensland Institute of Medical Research, Brisbane, Australia
| | | | - Nadean L. Brown
- Division of Developmental Biology, Cincinnati Children's Research Foundation and
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Timothy D. Spector
- Department of Twin Research and Genetic Epidemiology, King's College London School of Medicine, St Thomas' Hospital, London, UK
| | - Nicholas G. Martin
- Genetics and Population Health, Queensland Institute of Medical Research, Brisbane, Australia
| | | | - Christopher J. Hammond
- Department of Twin Research and Genetic Epidemiology, King's College London School of Medicine, St Thomas' Hospital, London, UK
| | - David A. Mackey
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Australia
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia and
- Discipline of Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
22
|
Neurog2 controls the leading edge of neurogenesis in the mammalian retina. Dev Biol 2010; 340:490-503. [PMID: 20144606 DOI: 10.1016/j.ydbio.2010.02.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 01/20/2010] [Accepted: 02/01/2010] [Indexed: 01/26/2023]
Abstract
In the mammalian retina, neuronal differentiation begins in the dorso-central optic cup and sweeps peripherally and ventrally. While certain extrinsic factors have been implicated, little is known about the intrinsic factors that direct this process. In this study, we evaluate the expression and function of proneural bHLH transcription factors during the onset of mouse retinal neurogenesis. Dorso-central retinal progenitor cells that give rise to the first postmitotic neurons express Neurog2/Ngn2 and Atoh7/Math5. In the absence of Neurog2, the spread of neurogenesis stalls, along with Atoh7 expression and RGC differentiation. However, neurogenesis is eventually restored, and at birth Neurog2 mutant retinas are reduced in size, with only a slight increase in the retinal ganglion cell population. We find that the re-establishment of neurogenesis coincides with the onset of Ascl1 expression, and that Ascl1 can rescue the early arrest of neural development in the absence of Neurog2. Together, this study supports the hypothesis that the intrinsic factors Neurog2 and Ascl1 regulate the temporal progression of retinal neurogenesis by directing overlapping waves of neuron formation.
Collapse
|
23
|
Skowronska-Krawczyk D, Chiodini F, Ebeling M, Alliod C, Kundzewicz A, Castro D, Ballivet M, Guillemot F, Matter-Sadzinski L, Matter JM. Conserved regulatory sequences in Atoh7 mediate non-conserved regulatory responses in retina ontogenesis. Development 2009; 136:3767-77. [DOI: 10.1242/dev.033449] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The characterisation of interspecies differences in gene regulation is crucial to understanding the molecular basis of phenotypic diversity and evolution. The atonal homologue Atoh7 participates in the ontogenesis of the vertebrate retina. Our study reveals how evolutionarily conserved, non-coding DNA sequences mediate both the conserved and the species-specific transcriptional features of the Atoh7 gene. In the mouse and chick retina, species-related variations in the chromatin-binding profiles of bHLH transcription factors correlate with distinct features of the Atoh7 promoters and underlie variations in the transcriptional rates of the Atoh7 genes. The different expression kinetics of the Atoh7 genes generate differences in the expression patterns of a set of genes that are regulated by Atoh7 in a dose-dependent manner, including those involved in neurite outgrowth and growth cone migration. In summary, we show how highly conserved regulatory elements are put to use in mediating non-conserved functions and creating interspecies neuronal diversity.
Collapse
Affiliation(s)
| | - Florence Chiodini
- Department of Ophthalmology, School of Medicine, University of Geneva, 1211 Genève 4, Switzerland
| | - Martin Ebeling
- Bioinformatics, F. Hoffmann-La Roche, Basel 4070, Switzerland
| | - Christine Alliod
- Department of Biochemistry, Sciences II, University of Geneva, 1211 Genève 4, Switzerland
| | - Adam Kundzewicz
- Department of Biochemistry, Sciences II, University of Geneva, 1211 Genève 4, Switzerland
- Department of Ophthalmology, School of Medicine, University of Geneva, 1211 Genève 4, Switzerland
| | - Diogo Castro
- Division of Molecular Neurobiology, National Institute for Medical Research,The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Marc Ballivet
- Department of Biochemistry, Sciences II, University of Geneva, 1211 Genève 4, Switzerland
| | - François Guillemot
- Division of Molecular Neurobiology, National Institute for Medical Research,The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Lidia Matter-Sadzinski
- Department of Biochemistry, Sciences II, University of Geneva, 1211 Genève 4, Switzerland
- Department of Ophthalmology, School of Medicine, University of Geneva, 1211 Genève 4, Switzerland
| | - Jean-Marc Matter
- Department of Biochemistry, Sciences II, University of Geneva, 1211 Genève 4, Switzerland
- Department of Ophthalmology, School of Medicine, University of Geneva, 1211 Genève 4, Switzerland
| |
Collapse
|
24
|
Distinct effects of Hedgehog signaling on neuronal fate specification and cell cycle progression in the embryonic mouse retina. J Neurosci 2009; 29:6932-44. [PMID: 19474320 DOI: 10.1523/jneurosci.0289-09.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cell-extrinsic signals can profoundly influence the production of various neurons from common progenitors. Yet mechanisms by which extrinsic signals coordinate progenitor cell proliferation, cell cycle exit, and cell fate choices are not well understood. Here, we address whether Hedgehog (Hh) signals independently regulate progenitor proliferation and neuronal fate decisions in the embryonic mouse retina. Conditional ablation of the essential Hh signaling component Smoothened (Smo) in proliferating progenitors, rather than in nascent postmitotic neurons, leads to a dramatic increase of retinal ganglion cells (RGCs) and a mild increase of cone photoreceptor precursors without significantly affecting other early-born neuronal cell types. In addition, Smo-deficient progenitors exhibit aberrant expression of cell cycle regulators and delayed G(1)/S transition, especially during the late embryonic stages, resulting in a reduced progenitor pool by birth. Deficiency in Smo function also causes reduced expression of the basic helix-loop-helix transcription repressor Hes1 and preferential elevation of the proneural gene Math5. In Smo and Math5 double knock-out mutants, the enhanced RGC production observed in Smo-deficient retinas is abolished, whereas defects in the G(1)/S transition persist, suggesting that Math5 mediates the Hh effect on neuronal fate specification but not on cell proliferation. These findings demonstrate that Hh signals regulate progenitor pool expansion primarily by promoting cell cycle progression and influence cell cycle exit and neuronal fates by controlling specific proneural genes. Together, these distinct cellular effects of Hh signaling in neural progenitor cells coordinate a balanced production of diverse neuronal cell types.
Collapse
|
25
|
Riesenberg AN, Le TT, Willardsen MI, Blackburn DC, Vetter ML, Brown NL. Pax6 regulation of Math5 during mouse retinal neurogenesis. Genesis 2009; 47:175-87. [PMID: 19208436 DOI: 10.1002/dvg.20479] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Activation of the bHLH factor Math5 (Atoh7) is an initiating event for mammalian retinal neurogenesis, as it is critically required for retinal ganglion cell formation. However, the cis-regulatory elements and trans-acting factors that control Math5 expression are largely unknown. Using a combination of transgenic mice and bioinformatics, we identified a phylogenetically conserved regulatory element that is required to activate Math5 transcription during early retinal neurogenesis. This element drives retinal expression in vivo, in a cross-species transgenic assay. Previously, Pax6 was shown to be necessary for the initiation of Math5 mRNA expression. We extend this finding by showing that the Math5 retinal enhancer also requires Pax6 for its activation, via Pax6 binding to a highly conserved binding site. In addition, our data reveal that other retinal factors are required for accurate regulation of Math5 by Pax6.
Collapse
Affiliation(s)
- Amy N Riesenberg
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | |
Collapse
|
26
|
Willardsen MI, Suli A, Pan Y, Marsh-Armstrong N, Chien CB, El-Hodiri H, Brown NL, Moore KB, Vetter ML. Temporal regulation of Ath5 gene expression during eye development. Dev Biol 2008; 326:471-81. [PMID: 19059393 DOI: 10.1016/j.ydbio.2008.10.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Revised: 10/29/2008] [Accepted: 10/30/2008] [Indexed: 12/11/2022]
Abstract
During central nervous system development the timing of progenitor differentiation must be precisely controlled to generate the proper number and complement of neuronal cell types. Proneural basic helix-loop-helix (bHLH) transcription factors play a central role in regulating neurogenesis, and thus the timing of their expression must be regulated to ensure that they act at the appropriate developmental time. In the developing retina, the expression of the bHLH factor Ath5 is controlled by multiple signals in early retinal progenitors, although less is known about how these signals are coordinated to ensure correct spatial and temporal pattern of gene expression. Here we identify a key distal Xath5 enhancer and show that this enhancer regulates the early phase of Xath5 expression, while the proximal enhancer we previously identified acts later. The distal enhancer responds to Pax6, a key patterning factor in the optic vesicle, while FGF signaling regulates Xath5 expression through sequences outside of this region. In addition, we have identified an inhibitory element adjacent to the conserved distal enhancer region that is required to prevent premature initiation of expression in the retina. This temporal regulation of Xath5 gene expression is comparable to proneural gene regulation in Drosophila, whereby separate enhancers regulate different temporal phases of expression.
Collapse
Affiliation(s)
- Minde I Willardsen
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chesneau A, Sachs LM, Chai N, Chen Y, Pasquier LD, Loeber J, Pollet N, Reilly M, Weeks DL, Bronchain OJ. Transgenesis procedures in Xenopus. Biol Cell 2008; 100:503-21. [PMID: 18699776 PMCID: PMC2967756 DOI: 10.1042/bc20070148] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Stable integration of foreign DNA into the frog genome has been the purpose of several studies aimed at generating transgenic animals or producing mutations of endogenous genes. Inserting DNA into a host genome can be achieved in a number of ways. In Xenopus, different strategies have been developed which exhibit specific molecular and technical features. Although several of these technologies were also applied in various model organizms, the attributes of each method have rarely been experimentally compared. Investigators are thus confronted with a difficult choice to discriminate which method would be best suited for their applications. To gain better understanding, a transgenesis workshop was organized by the X-omics consortium. Three procedures were assessed side-by-side, and the results obtained are used to illustrate this review. In addition, a number of reagents and tools have been set up for the purpose of gene expression and functional gene analyses. This not only improves the status of Xenopus as a powerful model for developmental studies, but also renders it suitable for sophisticated genetic approaches. Twenty years after the first reported transgenic Xenopus, we review the state of the art of transgenic research, focusing on the new perspectives in performing genetic studies in this species.
Collapse
Affiliation(s)
- Albert Chesneau
- Laboratoire Evolution et Développement, Université Paris Sud, F-91405 Orsay cedex, France
- CNRS UMR 8080, F-91405 Orsay, France
| | - Laurent M. Sachs
- Département Régulation, Développement et Diversité Moléculaire, MNHN USM 501, CNRS UMR 5166, CP32, 7 rue Cuvier, 75231 Paris cedex 05, France
| | - Norin Chai
- Muséum National d’Histoire Naturelle, Ménagerie du Jardin des Plantes, 57 rue Cuvier, 75005 Paris, France
| | - Yonglong Chen
- Georg-August-Universitat Gottingen, Zentrum Biochemie und Molekular Zellbiologie, Abteilung Entwicklungsbiochemie, 37077 Gottingen, Germany
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Science City, 510663 Guangzhou, People’s Republic of China
| | - Louis Du Pasquier
- Institute of Zoology and Evolutionary Biology, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland
| | - Jana Loeber
- Georg-August-Universitat Gottingen, Zentrum Biochemie und Molekular Zellbiologie, Abteilung Entwicklungsbiochemie, 37077 Gottingen, Germany
| | - Nicolas Pollet
- Laboratoire Evolution et Développement, Université Paris Sud, F-91405 Orsay cedex, France
- CNRS UMR 8080, F-91405 Orsay, France
| | - Michael Reilly
- Division of Developmental Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, U.K
| | - Daniel L. Weeks
- Department of Biochemistry, Bowen Science Building, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Odile J. Bronchain
- Laboratoire Evolution et Développement, Université Paris Sud, F-91405 Orsay cedex, France
- CNRS UMR 8080, F-91405 Orsay, France
| |
Collapse
|
28
|
Sequential and cooperative action of Fgfs and Shh in the zebrafish retina. Dev Biol 2008; 314:200-14. [DOI: 10.1016/j.ydbio.2007.11.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 11/19/2007] [Accepted: 11/27/2007] [Indexed: 11/23/2022]
|
29
|
Hernandez J, Matter-Sadzinski L, Skowronska-Krawczyk D, Chiodini F, Alliod C, Ballivet M, Matter JM. Highly Conserved Sequences Mediate the Dynamic Interplay of Basic Helix-Loop-Helix Proteins Regulating Retinogenesis. J Biol Chem 2007; 282:37894-905. [DOI: 10.1074/jbc.m703616200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
30
|
Hufnagel RB, Riesenberg AN, Saul SM, Brown NL. Conserved regulation of Math5 and Math1 revealed by Math5-GFP transgenes. Mol Cell Neurosci 2007; 36:435-48. [PMID: 17900924 PMCID: PMC2095782 DOI: 10.1016/j.mcn.2007.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 07/22/2007] [Accepted: 08/06/2007] [Indexed: 12/28/2022] Open
Abstract
Retinal ganglion cell genesis requires the proneural bHLH transcription factor Math5 (Atoh7), but little is known about the regulatory elements that control its expression. Here, we investigate Math5 gene regulation using transgenic mice. These mice express GFP in the prenatal retina, live-labeling RGC axon migration and innervation of the brain. Unexpectedly, these Math5-GFP transgenes are also found in Math1 expression domains throughout the nervous system, intriguing since Math5 and Math1 normally exhibit nonoverlapping expression. Furthermore, Math5-GFP and Math1 are regulated similarly, by both Pax6 and Math1 itself, in the lower rhombic lip and dorsal spinal cord. We also show that Pax6 binds to particular Math5 and Math1 regulatory sequences in vitro. Together these data suggest that these atonal semi-orthologues may share conserved regulatory elements that are normally silent in the Math5 gene.
Collapse
Affiliation(s)
- Robert B. Hufnagel
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation and Departments of Pediatrics and Ophthalmology, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Amy N. Riesenberg
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation and Departments of Pediatrics and Ophthalmology, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Sara M. Saul
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - Nadean L. Brown
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation and Departments of Pediatrics and Ophthalmology, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| |
Collapse
|
31
|
Del Bene F, Ettwiller L, Skowronska-Krawczyk D, Baier H, Matter JM, Birney E, Wittbrodt J. In vivo validation of a computationally predicted conserved Ath5 target gene set. PLoS Genet 2007; 3:1661-71. [PMID: 17892326 PMCID: PMC1988851 DOI: 10.1371/journal.pgen.0030159] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 08/01/2007] [Indexed: 11/29/2022] Open
Abstract
So far, the computational identification of transcription factor binding sites is hampered by the complexity of vertebrate genomes. Here we present an in silico procedure to predict target sites of a transcription factor in complex genomes using its binding site. In a first step sequence, comparison of closely related genomes identifies the binding sites in conserved cis-regulatory regions (phylogenetic footprinting). Subsequently, more remote genomes are introduced into the comparison to identify highly conserved and therefore putatively functional binding sites (phylogenetic filtering). When applied to the binding site of atonal homolog 5 (Ath5 or ATOH7), this procedure efficiently filters evolutionarily conserved binding sites out of more than 300,000 instances in a vertebrate genome. We validate a selection of the linked target genes by showing coexpression with and transcriptional regulation by Ath5. Finally, chromatin immunoprecipitation demonstrates the occupancy of the target gene promoters by Ath5. Thus, our procedure, applied to whole genomes, is a fast and predictive tool to in silico filter the target genes of a given transcription factor with defined binding site.
Collapse
Affiliation(s)
- Filippo Del Bene
- Developmental Biology Programme, European Molecular Biology Laboratory, Heidelberg, Heidelberg, Germany
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
- Programs in Neuroscience, Genetics, and Developmental Biology, University of California San Francisco, San Francisco, California, United States of America
- Center for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Laurence Ettwiller
- Developmental Biology Programme, European Molecular Biology Laboratory, Heidelberg, Heidelberg, Germany
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Neurobiologie et diversité cellulaire, Ecole Supérieure de Physique et de Chimie Industrielles, CNRS, UMR7637, Paris, France
| | | | - Herwig Baier
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
- Programs in Neuroscience, Genetics, and Developmental Biology, University of California San Francisco, San Francisco, California, United States of America
- Center for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Jean-Marc Matter
- University of Lausanne, Eye Hospital Jules Gonin, Lausanne, Switzerland
| | - Ewan Birney
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Joachim Wittbrodt
- Developmental Biology Programme, European Molecular Biology Laboratory, Heidelberg, Heidelberg, Germany
| |
Collapse
|
32
|
Conte I, Bovolenta P. Comprehensive characterization of the cis-regulatory code responsible for the spatio-temporal expression of olSix3.2 in the developing medaka forebrain. Genome Biol 2007; 8:R137. [PMID: 17617896 PMCID: PMC2323233 DOI: 10.1186/gb-2007-8-7-r137] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 06/05/2007] [Accepted: 07/06/2007] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Embryonic development is coordinated by sets of cis-regulatory elements that are collectively responsible for the precise spatio-temporal organization of regulatory gene networks. There is little information on how these elements, which are often associated with highly conserved noncoding sequences, are combined to generate precise gene expression patterns in vertebrates. To address this issue, we have focused on Six3, an important regulator of vertebrate forebrain development. RESULTS Using computational analysis and exploiting the diversity of teleost genomes, we identified a cluster of highly conserved noncoding sequences surrounding the Six3 gene. Transgenesis in medaka fish demonstrates that these sequences have enhancer, silencer, and silencer blocker activities that are differentially combined to control the entire distribution of Six3. CONCLUSION This report provides the first example of the precise regulatory code necessary for the expression of a vertebrate gene, and offers a unique framework for defining the interplay of trans-acting factors that control the evolutionary conserved use of Six3.
Collapse
Affiliation(s)
- Ivan Conte
- Departamento de Neurobiología Celular, Molecular y del Desarrollo, Instituto Cajal, CSIC, Dr Arce, Madrid 28002, Spain
| | - Paola Bovolenta
- Departamento de Neurobiología Celular, Molecular y del Desarrollo, Instituto Cajal, CSIC, Dr Arce, Madrid 28002, Spain
| |
Collapse
|
33
|
McCabe KL, McGuire C, Reh TA. Pea3 expression is regulated by FGF signaling in developing retina. Dev Dyn 2006; 235:327-35. [PMID: 16273524 PMCID: PMC2575118 DOI: 10.1002/dvdy.20631] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
FGF signaling has been implicated as an important regulator of retinal development. As a first step in characterizing potential downstream targets of FGF signaling in the retina, we have analyzed expression of Pea3, a member of the Pea3 class of Ets-domain transcription factors, in the developing eye. We find that Pea3 is expressed in the developing retina, and its transcription is regulated by FGF receptor activation. In addition, FGF signaling activates Cath5, a gene necessary for retinal ganglion cell differentiation. These results suggest that FGF signaling via MAPK up-regulates transcription factors that in turn control retinal ganglion cell differentiation.
Collapse
Affiliation(s)
- Kathryn Leigh McCabe
- Department of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | |
Collapse
|
34
|
Poggi L, Vitorino M, Masai I, Harris WA. Influences on neural lineage and mode of division in the zebrafish retina in vivo. ACTA ACUST UNITED AC 2006; 171:991-9. [PMID: 16365165 PMCID: PMC2171316 DOI: 10.1083/jcb.200509098] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell determination in the retina has been under intense investigation since the discovery that retinal progenitors generate clones of apparently random composition (Price, J., D. Turner, and C. Cepko. 1987. Proc. Natl. Acad. Sci. USA. 84:156–160; Holt, C.E., T.W. Bertsch, H.M. Ellis, and W.A. Harris. 1988. Neuron. 1:15–26; Wetts, R., and S.E. Fraser. 1988. Science. 239:1142–1145). Examination of fixed tissue, however, sheds little light on lineage patterns or on the relationship between the orientation of division and cell fate. In this study, three-dimensional time-lapse analyses were used to trace lineages of retinal progenitors expressing green fluorescent protein under the control of the ath5 promoter. Surprisingly, these cells divide just once along the circumferential axis to produce two postmitotic daughters, one of which becomes a retinal ganglion cell (RGC). Interestingly, when these same progenitors are transplanted into a mutant environment lacking RGCs, they often divide along the central-peripheral axis and produce two RGCs. This study provides the first insight into reproducible lineage patterns of retinal progenitors in vivo and the first evidence that environmental signals influence the orientation of cell division and the lineage of neural progenitors.
Collapse
Affiliation(s)
- Lucia Poggi
- Department of Anatomy, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | | | | | | |
Collapse
|
35
|
Lamar E, Kintner C. The Notch targets Esr1 and Esr10 are differentially regulated in Xenopus neural precursors. Development 2005; 132:3619-30. [PMID: 16077089 DOI: 10.1242/dev.01937] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The HES family of bHLH repressors plays a key role in regulating the differentiation of neural precursors in the vertebrate embryo. Members of the HES gene family are expressed in neural precursors as targets of the Notch signaling pathway, but how this occurs in the context of neurogenesis is not known. Here, we address this issue by identifying enhancers driving Notch-dependent gene expression of two Hes5-like genes expressed in Xenopus called Esr1 and Esr10. Using frog transgenesis, we identify enhancer elements driving expression of Esr1 and Esr10 in neural precursors or in response to ectopic expression of the proneural protein, Xngnr1. Using deletion and mutation analysis, we define motifs required for enhancer activity of both genes, namely Notch-responsive elements and, in the case of Esr10, E-box motifs. We find that Esr1 and Esr10 are differentially regulated both in terms of Notch input and its interaction with heterologous factors. These studies reveal inputs required for proneural expression of genes encoding bHLH repressors in the developing vertebrate nervous system.
Collapse
Affiliation(s)
- Elise Lamar
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
36
|
Matter-Sadzinski L, Puzianowska-Kuznicka M, Hernandez J, Ballivet M, Matter JM. A bHLH transcriptional network regulating the specification of retinal ganglion cells. Development 2005; 132:3907-21. [PMID: 16079155 DOI: 10.1242/dev.01960] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the developing retina, the production of ganglion cells is dependent on the proneural proteins NGN2 and ATH5, whose activities define stages along the pathway converting progenitors into newborn neurons. Crossregulatory interactions between NGN2, ATH5 and HES1 maintain the uncommitted status of ATH5-expressing cells during progenitor patterning, and later on regulate the transition from competence to cell fate commitment. Prior to exiting the cell cycle, a subset of progenitors is selected from the pool of ATH5-expressing cells to go through a crucial step in the acquisition of a definitive retinal ganglion cell fate. The selected cells are those in which the upregulation of NGN2, the downregulation of HES1 and the autostimulation of ATH5 are coordinated with the progression of progenitors through the last cell cycle. This coordinated pattern initiates the transcription of ganglion cell-specific traits and determines the size of the ganglion cell population.
Collapse
Affiliation(s)
- Lidia Matter-Sadzinski
- University of Lausanne, Eye Hospital Jules Gonin and Institute for Research in Ophthalmology, 15 avenue de France, 1004 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|