1
|
Jaiteh Z, van der Linden R, Kong-A-San J, Maas A, Philipsen S, Grosveld F, Gutiérrez L. CAPRIN2 RNA-binding protein contributes to balance erythroid production: Implications in the fine-tuning of proteostasis during erythropoiesis. Transfus Apher Sci 2025; 64:104092. [PMID: 39922087 DOI: 10.1016/j.transci.2025.104092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
Erythropoiesis is a process that requires tight control of gene transcription, mRNA stability, and protein synthesis and degradation. These regulatory layers adapt dynamically to developmental needs and physiological stresses, ensuring precise control of erythroid production. Ribosomopathies, such as Diamond-Blackfan anemia (DBA), are characterized by defects in ribosome function. Zooming in on erythroid precursors, ribosomopathies lead to dysregulated translation of mRNAs encoding specific and essential erythropoietic genes, including master transcription factors such as GATA1. This causes defective maturation and increased apoptosis of erythroid progenitors, and consequently, anemia. Beyond ribosomal proteins, RNA-binding proteins have been put forward as an additional and targeted checkpoint regulating cellular proteostasis. CAPRIN2, which is present in neurons and erythroid cells, is one such RNA-binding protein, involved in RNA translation regulation and its levels rise during terminal erythroid differentiation. Overexpression of CAPRIN2 in Chinese hamster ovary (CHO) cells causes reduced growth, cell cycle arrest, and apoptosis. Here, we demonstrate that GATA1 potentially regulates Caprin2 transcription, and that Caprin2 loss boosts erythroid production and maturation during gestation and adulthood, a phenomenon that is enhanced in situations of stress erythropoiesis. Our results provide new insight into the role of CAPRIN2 in erythropoiesis. We hypothesize that it regulates the translation of key mRNAs during erythropoiesis. We propose that CAPRIN2 is involved in the balance of erythroid production and that its manipulation may control erythroid production, offering a potential and promising approach to manage altered erythropoiesis.
Collapse
Affiliation(s)
- Zacaria Jaiteh
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | | | - John Kong-A-San
- Former Department of Cell Biology, ErasmusMC, Rotterdam, the Netherlands
| | - Alex Maas
- Former Department of Cell Biology, ErasmusMC, Rotterdam, the Netherlands
| | - Sjaak Philipsen
- Former Department of Cell Biology, ErasmusMC, Rotterdam, the Netherlands
| | - Frank Grosveld
- Former Department of Cell Biology, ErasmusMC, Rotterdam, the Netherlands
| | - Laura Gutiérrez
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Department of Medicine, University of Oviedo, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
| |
Collapse
|
2
|
Han X, He W, Liang D, Liu X, Zhou J, de Thé H, Zhu J, Yuan H. Creg1 Regulates Erythroid Development via TGF-β/Smad2-Klf1 Axis in Zebrafish. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402804. [PMID: 38953462 PMCID: PMC11434009 DOI: 10.1002/advs.202402804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/04/2024] [Indexed: 07/04/2024]
Abstract
Understanding the regulation of normal erythroid development will help to develop new potential therapeutic strategies for disorders of the erythroid lineage. Cellular repressor of E1A-stimulated genes 1 (CREG1) is a glycoprotein that has been implicated in the regulation of tissue homeostasis. However, its role in erythropoiesis remains largely undefined. In this study, it is found that CREG1 expression increases progressively during erythroid differentiation. In zebrafish, creg1 mRNA is preferentially expressed within the intermediate cell mass (ICM)/peripheral blood island (PBI) region where primitive erythropoiesis occurs. Loss of creg1 leads to anemia caused by defective erythroid differentiation and excessive apoptosis of erythroid progenitors. Mechanistically, creg1 deficiency results in reduced activation of TGF-β/Smad2 signaling pathway. Treatment with an agonist of the Smad2 pathway (IDE2) could significantly restore the defective erythroid development in creg1-/- mutants. Further, Klf1, identified as a key target gene downstream of the TGF-β/Smad2 signaling pathway, is involved in creg1 deficiency-induced aberrant erythropoiesis. Thus, this study reveals a previously unrecognized role for Creg1 as a critical regulator of erythropoiesis, mediated at least in part by the TGF-β/Smad2-Klf1 axis. This finding may contribute to the understanding of normal erythropoiesis and the pathogenesis of erythroid disorders.
Collapse
Affiliation(s)
- Xiao Han
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- CNRS‐LIA Hematology and CancerSino‐French Research Center for Life Sciences and GenomicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Wenxin He
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- CNRS‐LIA Hematology and CancerSino‐French Research Center for Life Sciences and GenomicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Dongguo Liang
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Xiaohui Liu
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- CNRS‐LIA Hematology and CancerSino‐French Research Center for Life Sciences and GenomicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jun Zhou
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- CNRS‐LIA Hematology and CancerSino‐French Research Center for Life Sciences and GenomicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Hugues de Thé
- CNRS‐LIA Hematology and CancerSino‐French Research Center for Life Sciences and GenomicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Université de Paris 7/INSERM/CNRS UMR 944/7212Equipe Labellisée Ligue Nationale Contre le CancerHôpital St. LouisParis75010France
| | - Jun Zhu
- CNRS‐LIA Hematology and CancerSino‐French Research Center for Life Sciences and GenomicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Université de Paris 7/INSERM/CNRS UMR 944/7212Equipe Labellisée Ligue Nationale Contre le CancerHôpital St. LouisParis75010France
| | - Hao Yuan
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- CNRS‐LIA Hematology and CancerSino‐French Research Center for Life Sciences and GenomicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| |
Collapse
|
3
|
Bieker JJ, Philipsen S. Erythroid Krüppel-Like Factor (KLF1): A Surprisingly Versatile Regulator of Erythroid Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:217-242. [PMID: 39017846 PMCID: PMC12121306 DOI: 10.1007/978-3-031-62731-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Erythroid Krüppel-like factor (KLF1), first discovered in 1992, is an erythroid-restricted transcription factor (TF) that is essential for terminal differentiation of erythroid progenitors. At face value, KLF1 is a rather inconspicuous member of the 26-strong SP/KLF TF family. However, 30 years of research have revealed that KLF1 is a jack of all trades in the molecular control of erythropoiesis. Initially described as a one-trick pony required for high-level transcription of the adult HBB gene, we now know that it orchestrates the entire erythroid differentiation program. It does so not only as an activator but also as a repressor. In addition, KLF1 was the first TF shown to be directly involved in enhancer/promoter loop formation. KLF1 variants underlie a wide range of erythroid phenotypes in the human population, varying from very mild conditions such as hereditary persistence of fetal hemoglobin and the In(Lu) blood type in the case of haploinsufficiency, to much more serious non-spherocytic hemolytic anemias in the case of compound heterozygosity, to dominant congenital dyserythropoietic anemia type IV invariably caused by a de novo variant in a highly conserved amino acid in the KLF1 DNA-binding domain. In this chapter, we present an overview of the past and present of KLF1 research and discuss the significance of human KLF1 variants.
Collapse
Affiliation(s)
- James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Chen X, Pillay S, Lohmann F, Bieker JJ. Association of DDX5/p68 protein with the upstream erythroid enhancer element (EHS1) of the gene encoding the KLF1 transcription factor. J Biol Chem 2023; 299:105489. [PMID: 38000658 PMCID: PMC10750184 DOI: 10.1016/j.jbc.2023.105489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/28/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
EKLF/KLF1 is an essential transcription factor that plays a global role in erythroid transcriptional activation. Regulation of KLF1 is of interest, as it displays a highly restricted expression pattern, limited to erythroid cells and its progenitors. Here we use biochemical affinity purification to identify the DDX5/p68 protein as an activator of KLF1 by virtue of its interaction with the erythroid-specific DNAse hypersensitive site upstream enhancer element (EHS1). We further show that this protein associates with DEK and CTCF. We postulate that the range of interactions of DDX5/p68 with these and other proteins known to interact with this element render it part of the enhanseosome complex critical for optimal expression of KLF1 and enables the formation of a proper chromatin configuration at the Klf1 locus. These individual interactions provide quantitative contributions that, in sum, establish the high-level activity of the Klf1 promoter and suggest they can be selectively manipulated for clinical benefit.
Collapse
Affiliation(s)
- Xiaoyong Chen
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Sanjana Pillay
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Felix Lohmann
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA; Black Familly Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA; Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA; Mindich Child Health and Development Institute, Mount Sinai School of Medicine, New York, New York, USA.
| |
Collapse
|
5
|
Gnanapragasam MN, Planutis A, Glassberg JA, Bieker JJ. Identification of a genomic DNA sequence that quantitatively modulates KLF1 transcription factor expression in differentiating human hematopoietic cells. Sci Rep 2023; 13:7589. [PMID: 37165057 PMCID: PMC10172341 DOI: 10.1038/s41598-023-34805-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/08/2023] [Indexed: 05/12/2023] Open
Abstract
The onset of erythropoiesis is under strict developmental control, with direct and indirect inputs influencing its derivation from the hematopoietic stem cell. A major regulator of this transition is KLF1/EKLF, a zinc finger transcription factor that plays a global role in all aspects of erythropoiesis. Here, we have identified a short, conserved enhancer element in KLF1 intron 1 that is important for establishing optimal levels of KLF1 in mouse and human cells. Chromatin accessibility of this site exhibits cell-type specificity and is under developmental control during the differentiation of human CD34+ cells towards the erythroid lineage. This site binds GATA1, SMAD1, TAL1, and ETV6. In vivo editing of this region in cell lines and primary cells reduces KLF1 expression quantitatively. However, we find that, similar to observations seen in pedigrees of families with KLF1 mutations, downstream effects are variable, suggesting that the global architecture of the site is buffered towards keeping the KLF1 genetic region in an active state. We propose that modification of intron 1 in both alleles is not equivalent to complete loss of function of one allele.
Collapse
Affiliation(s)
- M N Gnanapragasam
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| | - A Planutis
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA
| | - J A Glassberg
- Department of Emergency Medicine, Hematology and Medical Oncology, Mount Sinai School of Medicine, New York, NY, USA
| | - J J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA.
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, USA.
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, USA.
- Mindich Child Health and Development Institute, Mount Sinai School of Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Talarmain L, Clarke MA, Shorthouse D, Cabrera-Cosme L, Kent DG, Fisher J, Hall BA. HOXA9 has the hallmarks of a biological switch with implications in blood cancers. Nat Commun 2022; 13:5829. [PMID: 36192425 PMCID: PMC9530117 DOI: 10.1038/s41467-022-33189-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/07/2022] [Indexed: 11/09/2022] Open
Abstract
Blood malignancies arise from the dysregulation of haematopoiesis. The type of blood cell and the specific order of oncogenic events initiating abnormal growth ultimately determine the cancer subtype and subsequent clinical outcome. HOXA9 plays an important role in acute myeloid leukaemia (AML) prognosis by promoting blood cell expansion and altering differentiation; however, the function of HOXA9 in other blood malignancies is still unclear. Here, we highlight the biological switch and prognosis marker properties of HOXA9 in AML and chronic myeloproliferative neoplasms (MPN). First, we establish the ability of HOXA9 to stratify AML patients with distinct cellular and clinical outcomes. Then, through the use of a computational network model of MPN, we show that the self-activation of HOXA9 and its relationship to JAK2 and TET2 can explain the branching progression of JAK2/TET2 mutant MPN patients towards divergent clinical characteristics. Finally, we predict a connection between the RUNX1 and MYB genes and a suppressive role for the NOTCH pathway in MPN diseases.
Collapse
Affiliation(s)
- Laure Talarmain
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Matthew A Clarke
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, United Kingdom
| | - David Shorthouse
- Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Lilia Cabrera-Cosme
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - David G Kent
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Jasmin Fisher
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, United Kingdom
| | - Benjamin A Hall
- Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
7
|
Mukherjee K, Bieker JJ. Transcriptional Control of Gene Expression and the Heterogeneous Cellular Identity of Erythroblastic Island Macrophages. Front Genet 2021; 12:756028. [PMID: 34880902 PMCID: PMC8646026 DOI: 10.3389/fgene.2021.756028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
During definitive erythropoiesis, maturation of erythroid progenitors into enucleated reticulocytes requires the erythroblastic island (EBI) niche comprising a central macrophage attached to differentiating erythroid progenitors. Normally, the macrophage provides a nurturing environment for maturation of erythroid cells. Its critical physiologic importance entails aiding in recovery from anemic insults, such as systemic stress or acquired disease. Considerable interest in characterizing the central macrophage of the island niche led to the identification of putative cell surface markers enriched in island macrophages, enabling isolation and characterization. Recent studies focus on bulk and single cell transcriptomics of the island macrophage during adult steady-state erythropoiesis and embryonic erythropoiesis. They reveal that the island macrophage is a distinct cell type but with widespread cellular heterogeneity, likely suggesting distinct developmental origins and biological function. These studies have also uncovered transcriptional programs that drive gene expression in the island macrophage. Strikingly, the master erythroid regulator EKLF/Klf1 seems to also play a major role in specifying gene expression in island macrophages, including a putative EKLF/Klf1-dependent transcription circuit. Our present review and analysis of mouse single cell genetic patterns suggest novel expression characteristics that will enable a clear enrichment of EBI subtypes and resolution of island macrophage heterogeneity. Specifically, the discovery of markers such as Epor, and specific features for EKLF/Klf1-expressing island macrophages such as Sptb and Add2, or for SpiC-expressing island macrophage such as Timd4, or for Maf/Nr1h3-expressing island macrophage such as Vcam1, opens exciting possibilities for further characterization of these unique macrophage cell types in the context of their critical developmental function.
Collapse
Affiliation(s)
- Kaustav Mukherjee
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States.,Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States.,Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, United States.,Tisch Cancer Center, Mount Sinai School of Medicine, New York, NY, United States.,Mindich Child Health and Development Institute, Mount Sinai School of Medicine, New York, NY, United States
| |
Collapse
|
8
|
Mukherjee K, Xue L, Planutis A, Gnanapragasam MN, Chess A, Bieker JJ. EKLF/KLF1 expression defines a unique macrophage subset during mouse erythropoiesis. eLife 2021; 10:61070. [PMID: 33570494 PMCID: PMC7932694 DOI: 10.7554/elife.61070] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Erythroblastic islands are a specialized niche that contain a central macrophage surrounded by erythroid cells at various stages of maturation. However, identifying the precise genetic and transcriptional control mechanisms in the island macrophage remains difficult due to macrophage heterogeneity. Using unbiased global sequencing and directed genetic approaches focused on early mammalian development, we find that fetal liver macrophages exhibit a unique expression signature that differentiates them from erythroid and adult macrophage cells. The importance of erythroid Krüppel-like factor (EKLF)/KLF1 in this identity is shown by expression analyses in EKLF-/- and in EKLF-marked macrophage cells. Single-cell sequence analysis simplifies heterogeneity and identifies clusters of genes important for EKLF-dependent macrophage function and novel cell surface biomarkers. Remarkably, this singular set of macrophage island cells appears transiently during embryogenesis. Together, these studies provide a detailed perspective on the importance of EKLF in the establishment of the dynamic gene expression network within erythroblastic islands in the developing embryo and provide the means for their efficient isolation.
Collapse
Affiliation(s)
- Kaustav Mukherjee
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of MedicineNew York, NYUnited States
- Black Family Stem Cell InstituteNew York, NYUnited States
| | - Li Xue
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of MedicineNew York, NYUnited States
| | - Antanas Planutis
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of MedicineNew York, NYUnited States
| | - Merlin Nithya Gnanapragasam
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of MedicineNew York, NYUnited States
| | - Andrew Chess
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of MedicineNew York, NYUnited States
| | - James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of MedicineNew York, NYUnited States
- Black Family Stem Cell InstituteNew York, NYUnited States
- Tisch Cancer InstituteNew York, NYUnited States
- Mindich Child Health and Development Institute, Mount Sinai School of MedicineNew York, NYUnited States
| |
Collapse
|
9
|
Generation of Transgenic Fluorescent Reporter Lines for Studying Hematopoietic Development in the Mouse. Methods Mol Biol 2021; 2224:153-182. [PMID: 33606214 DOI: 10.1007/978-1-0716-1008-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Hematopoiesis in the mouse and other mammals occurs in several waves and arises from distinct anatomic sites. Transgenic mice expressing fluorescent reporter proteins at various points in the hematopoietic hierarchy, from hematopoietic stem cell to more restricted progenitors to each of the final differentiated cell types, have provided valuable tools for tagging, tracking, and isolating these cells. In this chapter, we discuss general considerations in designing a transgene, survey available fluorescent probes, and describe methods for confirming and analyzing transgene expression in the hematopoietic tissues of the embryo, fetus, and postnatal/adult animal.
Collapse
|
10
|
Ultra-high throughput single-cell analysis of proteins and RNAs by split-pool synthesis. Commun Biol 2020; 3:213. [PMID: 32382044 PMCID: PMC7205613 DOI: 10.1038/s42003-020-0896-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 03/04/2020] [Indexed: 12/11/2022] Open
Abstract
Single-cell omics provide insight into cellular heterogeneity and function. Recent technological advances have accelerated single-cell analyses, but workflows remain expensive and complex. We present a method enabling simultaneous, ultra-high throughput single-cell barcoding of millions of cells for targeted analysis of proteins and RNAs. Quantum barcoding (QBC) avoids isolation of single cells by building cell-specific oligo barcodes dynamically within each cell. With minimal instrumentation (four 96-well plates and a multichannel pipette), cell-specific codes are added to each tagged molecule within cells through sequential rounds of classical split-pool synthesis. Here we show the utility of this technology in mouse and human model systems for as many as 50 antibodies to targeted proteins and, separately, >70 targeted RNA regions. We demonstrate that this method can be applied to multi-modal protein and RNA analyses. It can be scaled by expansion of the split-pool process and effectively renders sequencing instruments as versatile multi-parameter flow cytometers. Maeve O’Huallachain et al. report a method that enables simultaneous, ultra-high throughput single-cell barcoding for targeted single-cell protein and RNA analysis. They show the utility of their method in analyses of mRNA and protein expression in human and mouse cells.
Collapse
|
11
|
Gnanapragasam MN, Crispino JD, Ali AM, Weinberg R, Hoffman R, Raza A, Bieker JJ. Survey and evaluation of mutations in the human KLF1 transcription unit. Sci Rep 2018; 8:6587. [PMID: 29700354 PMCID: PMC5920080 DOI: 10.1038/s41598-018-24962-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/12/2018] [Indexed: 01/03/2023] Open
Abstract
Erythroid Krüppel-like Factor (EKLF/KLF1) is an erythroid-enriched transcription factor that plays a global role in all aspects of erythropoiesis, including cell cycle control and differentiation. We queried whether its mutation might play a role in red cell malignancies by genomic sequencing of the KLF1 transcription unit in cell lines, erythroid neoplasms, dysplastic disorders, and leukemia. In addition, we queried published databases from a number of varied sources. In all cases we only found changes in commonly notated SNPs. Our results suggest that if there are mutations in KLF1 associated with erythroid malignancies, they are exceedingly rare.
Collapse
Affiliation(s)
- Merlin Nithya Gnanapragasam
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - John D Crispino
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Abdullah M Ali
- Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Rona Weinberg
- Cellular Therapy Laboratory, New York Blood Center, New York, NY, 10065, USA
| | - Ronald Hoffman
- Department of Medicine, Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - Azra Raza
- Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, 10029, USA.
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, 10029, USA.
- Black Familly Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, 10029, USA.
- Mindich Child Health and Development Institute, Mount Sinai School of Medicine, New York, NY, 10029, USA.
| |
Collapse
|
12
|
Li Y, Liu D, Zhang X, Li Z, Ye Y, Liu Q, Shen J, Chen Z, Huang H, Liang Y, Han X, Liu J, An X, Mohandas N, Xu X. miR-326 regulates HbF synthesis by targeting EKLF in human erythroid cells. Exp Hematol 2018; 63:33-40.e2. [PMID: 29601850 DOI: 10.1016/j.exphem.2018.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 12/27/2022]
Abstract
Haploinsufficiency of erythroid Krüppel-like factor (EKLF/KLF1) has been shown recently to ameliorate the clinical severity of β-thalassemia by increased expression levels of fetal hemoglobin (HbF). The underlying mechanisms for role of EKLF in regulating HbF are of great interest but remain incompletely understood. In this study, we used a combination of in silico, in vitro, and in vivo approaches to identify microRNAs (miRs) involved in EKLF regulation and to validate the role of miR-326 in HbF modification. We found that miR-326 suppresses EKLF expression directly by targeting its 3' untranslated region. miR-326 overexpression in K562 cells or CD34+ hematopoietic progenitor cells resulted in reduced EKLF protein levels and was associated with elevated expression of γ-globin, whereas inhibition of physiological miR-326 levels increased EKLF and thus reduced γ-globin expression. Moreover, miR-326 expression is positively correlated with HbF levels in β-thalassemia patients. Our results suggest that miR-326 plays a key role in regulating EKLF expression and in modifying the HbF level, which may provide a new strategy for activating HbF in individuals with β-thalassemia or sickle cell disease.
Collapse
Affiliation(s)
- Yihong Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Dun Liu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinhua Zhang
- Department of Hematology, 303rd Hospital of the People's Liberation Army, Nanning, Guangxi, China
| | - Zhiming Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuhua Ye
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Shen
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Zhi Chen
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Huajie Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunhao Liang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xu Han
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jing Liu
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY, USA; College of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY, USA
| | - Xiangmin Xu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Planutis A, Xue L, Trainor CD, Dangeti M, Gillinder K, Siatecka M, Nebor D, Peters LL, Perkins AC, Bieker JJ. Neomorphic effects of the neonatal anemia (Nan-Eklf) mutation contribute to deficits throughout development. Development 2017; 144:430-440. [PMID: 28143845 DOI: 10.1242/dev.145656] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/18/2016] [Indexed: 12/20/2022]
Abstract
Transcription factor control of cell-specific downstream targets can be significantly altered when the controlling factor is mutated. We show that the semi-dominant neonatal anemia (Nan) mutation in the EKLF/KLF1 transcription factor leads to ectopic expression of proteins that are not normally expressed in the red blood cell, leading to systemic effects that exacerbate the intrinsic anemia in the adult and alter correct development in the early embryo. Even when expressed as a heterozygote, the Nan-EKLF protein accomplishes this by direct binding and aberrant activation of genes encoding secreted factors that exert a negative effect on erythropoiesis and iron use. Our data form the basis for a novel mechanism of physiological deficiency that is relevant to human dyserythropoietic anemia and likely other disease states.
Collapse
Affiliation(s)
- Antanas Planutis
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Li Xue
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Cecelia D Trainor
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Mohan Dangeti
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Kevin Gillinder
- Mater Research Institute, University of Queensland, Woolloongabba QLD 4102, Queensland, Australia
| | - Miroslawa Siatecka
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA.,Department of Genetics, University of Adam Mickiewicz, Poznan 61-614, Poland
| | | | | | - Andrew C Perkins
- Mater Research Institute, University of Queensland, Woolloongabba QLD 4102, Queensland, Australia.,Princess Alexandra Hospital, Brisbane QLD 4102, Queensland, Australia
| | - James J Bieker
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA .,Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY 10029, USA.,Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY 10029, USA.,Mindich Child Health and Development Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
14
|
Efficient Gene Knockdowns in Mouse Embryonic Stem Cells Using MicroRNA-Based shRNAs. Methods Mol Biol 2017. [PMID: 28674813 DOI: 10.1007/978-1-4939-7108-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
RNA interference (RNAi) is a powerful gene knockdown technology that has been applied for functional genetic loss-of-function studies in many model eukaryotic systems, including embryonic stem cells (ESCs). Application of RNAi in ESCs allows for dissection of mechanisms by which ESCs self-renew and maintain pluripotency and also for specifying particular cell types needed for cell replacement therapies. Potent RNAi response can be induced by expression of a microRNA-embedded short-hairpin RNA (shRNAmir) cassette that is integrated in the genome by virus infection or site-specific recombination at a defined locus. In this chapter, I will provide detailed protocols to perform shRNAmir-mediated RNAi studies in mouse ESCs using retrovirus infection and loxP site-directed recombination for efficient constitutive and inducible gene knockdown, respectively.
Collapse
|
15
|
Yang J, Tanaka Y, Seay M, Li Z, Jin J, Garmire LX, Zhu X, Taylor A, Li W, Euskirchen G, Halene S, Kluger Y, Snyder MP, Park IH, Pan X, Weissman SM. Single cell transcriptomics reveals unanticipated features of early hematopoietic precursors. Nucleic Acids Res 2017; 45:1281-1296. [PMID: 28003475 PMCID: PMC5388401 DOI: 10.1093/nar/gkw1214] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/23/2016] [Indexed: 12/18/2022] Open
Abstract
Molecular changes underlying stem cell differentiation are of fundamental interest. scRNA-seq on murine hematopoietic stem cells (HSC) and their progeny MPP1 separated the cells into 3 main clusters with distinct features: active, quiescent, and an un-characterized cluster. Induction of anemia resulted in mobilization of the quiescent to the active cluster and of the early to later stage of cell cycle, with marked increase in expression of certain transcription factors (TFs) while maintaining expression of interferon response genes. Cells with surface markers of long term HSC increased the expression of a group of TFs expressed highly in normal cycling MPP1 cells. However, at least Id1 and Hes1 were significantly activated in both HSC and MPP1 cells in anemic mice. Lineage-specific genes were differently expressed between cells, and correlated with the cell cycle stages with a specific augmentation of erythroid related genes in the G2/M phase. Most lineage specific TFs were stochastically expressed in the early precursor cells, but a few, such as Klf1, were detected only at very low levels in few precursor cells. The activation of these factors may correlate with stages of differentiation. This study reveals effects of cell cycle progression on the expression of lineage specific genes in precursor cells, and suggests that hematopoietic stress changes the balance of renewal and differentiation in these homeostatic cells.
Collapse
Affiliation(s)
- Jennifer Yang
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Yoshiaki Tanaka
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Montrell Seay
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Zhen Li
- Department of Neurobiology, Yale School of Medicine, New Haven, CT, USA
| | - Jiaqi Jin
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Lana Xia Garmire
- Epidemiology Program, University of Hawaii Cancer Center, HI, USA
| | - Xun Zhu
- Epidemiology Program, University of Hawaii Cancer Center, HI, USA
| | - Ashley Taylor
- Hematology, Yale Comprehensive Cancer Center and Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Weidong Li
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,JiangXi Key Laboratory of Systems Biomedicine, Jiujiang University, Jiangxi, PR China
| | - Ghia Euskirchen
- Department of Genetics, Stanford University, Palo, Alto, CA, USA
| | - Stephanie Halene
- Hematology, Yale Comprehensive Cancer Center and Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Yuval Kluger
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University, Palo, Alto, CA, USA
| | - In-Hyun Park
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Xinghua Pan
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, Guangdong, PR China
| | | |
Collapse
|
16
|
Aryl hydrocarbon receptor inhibition promotes hematolymphoid development from human pluripotent stem cells. Blood 2017; 129:3428-3439. [PMID: 28533309 DOI: 10.1182/blood-2016-07-730440] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 05/04/2017] [Indexed: 12/11/2022] Open
Abstract
deletion, we further demonstrate a marked enhancement of hematopoietic differentiation relative to wild-type hESCs. We also evaluated whether AHR antagonism could promote innate lymphoid cell differentiation from hESCs. SR-1 increased conventional natural killer (cNK) cell differentiation, whereas TCDD treatment blocked cNK development and supported group 3 innate lymphoid cell (ILC3) differentiation. Collectively, these results demonstrate that AHR regulates early human hematolymphoid cell development and may be targeted to enhance production of specific cell populations derived from human pluripotent stem cells.
Collapse
|
17
|
Gong X, Chao R, Wang P, Huang X, Zhang J, Zhu X, Zhang Y, Yang X, Hou C, Ji X, Shi T, Wang Y. Interplay of transcription factors and microRNAs during embryonic hematopoiesis. SCIENCE CHINA. LIFE SCIENCES 2017; 60:168-177. [PMID: 27837403 DOI: 10.1007/s11427-016-0168-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/10/2016] [Indexed: 01/11/2023]
Abstract
Hematopoietic stem cells (HSCs), which are localized in the bone marrow of adult mammals, come from hematopoietic endothelium during embryonic stages. Although the basic processes of HSC generation and differentiation have been described in the past, the epigenetic regulation of embryonic hematopoiesis remains to be fully described. Here, by utilizing an in vitro differentiation system of mouse embryonic stem cells (ESCs), we identified more than 20 microRNAs that were highly enriched in embryonic hematopoietic cells, including some (e.g. miR-10b, miR-15b, and miR-27a) with previously unknown functions in blood formation. Luciferase and gene expression assays further revealed combinational binding and regulation of these microRNAs by key transcription factors in blood cells. Finally, bioinformatics and functional analyses supported an interactive regulatory control between transcription factors and microRNAs in hematopoiesis.
Collapse
Affiliation(s)
- Xueping Gong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ruihua Chao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Pengxiang Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiaoli Huang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jingjing Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiaozhou Zhu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yanyang Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xue Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Chao Hou
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiangjun Ji
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Tieliu Shi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuan Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
18
|
Axton RA, Haideri SS, Lopez-Yrigoyen M, Taylor HA, Forrester LM. SplitAx: A novel method to assess the function of engineered nucleases. PLoS One 2017; 12:e0171698. [PMID: 28212417 PMCID: PMC5315338 DOI: 10.1371/journal.pone.0171698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/24/2017] [Indexed: 12/29/2022] Open
Abstract
Engineered nucleases have been used to generate knockout or reporter cell lines and a range of animal models for human disease. These new technologies also hold great promise for therapeutic genome editing. Current methods to evaluate the activity of these nucleases are time consuming, require extensive optimization and are hampered by readouts with low signals and high background. We have developed a simple and easy to perform method (SplitAx) that largely addresses these issues and provides a readout of nuclease activity. The assay involves splitting the N-terminal (amino acid 1-158) coding region of GFP and an out-of-frame of C-terminal region with a nuclease binding site sequence. Following exposure to the test nuclease, cutting and repair by error prone non-homologous end joining (NHEJ) restores the reading frame resulting in the production of a full length fluorescent GFP protein. Fluorescence can also be restored by complementation between the N-terminal and C-terminal coding sequences in trans. We demonstrate successful use of the SplitAx assay to assess the function of zinc finger nucleases, CRISPR hCAS9 and TALENS. We also test the activity of multiple gRNAs in CRISPR/hCas9/D10A systems. The zinc finger nucleases and guide RNAs that showed functional activity in the SplitAx assay were then used successfully to target the endogenous AAVS1, SOX6 and Cfms loci. This simple method can be applied to other unrelated proteins such as ZsGreen1 and provides a test system that does not require complex optimization.
Collapse
Affiliation(s)
- Richard A. Axton
- MRC Centre for Regenerative Medicine, SCRM Building, The University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, United Kingdom
| | - Sharmin S. Haideri
- MRC Centre for Regenerative Medicine, SCRM Building, The University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, United Kingdom
| | - Martha Lopez-Yrigoyen
- MRC Centre for Regenerative Medicine, SCRM Building, The University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, United Kingdom
| | - Helen A. Taylor
- MRC Centre for Regenerative Medicine, SCRM Building, The University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, United Kingdom
| | - Lesley M. Forrester
- MRC Centre for Regenerative Medicine, SCRM Building, The University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
DeVilbiss AW, Tanimura N, McIver SC, Katsumura KR, Johnson KD, Bresnick EH. Navigating Transcriptional Coregulator Ensembles to Establish Genetic Networks: A GATA Factor Perspective. Curr Top Dev Biol 2016; 118:205-44. [PMID: 27137658 DOI: 10.1016/bs.ctdb.2016.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Complex developmental programs require orchestration of intrinsic and extrinsic signals to control cell proliferation, differentiation, and survival. Master regulatory transcription factors are vital components of the machinery that transduce these stimuli into cellular responses. This is exemplified by the GATA family of transcription factors that establish cell type-specific genetic networks and control the development and homeostasis of systems including blood, vascular, adipose, and cardiac. Dysregulated GATA factor activity/expression underlies anemia, immunodeficiency, myelodysplastic syndrome, and leukemia. Parameters governing the capacity of a GATA factor expressed in multiple cell types to generate cell type-specific transcriptomes include selective coregulator usage and target gene-specific chromatin states. As knowledge of GATA-1 mechanisms in erythroid cells constitutes a solid foundation, we will focus predominantly on GATA-1, while highlighting principles that can be extrapolated to other master regulators. GATA-1 interacts with ubiquitous and lineage-restricted transcription factors, chromatin modifying/remodeling enzymes, and other coregulators to activate or repress transcription and to maintain preexisting transcriptional states. Major unresolved issues include: how does a GATA factor selectively utilize diverse coregulators; do distinct epigenetic landscapes and nuclear microenvironments of target genes dictate coregulator requirements; and do gene cohorts controlled by a common coregulator ensemble function in common pathways. This review will consider these issues in the context of GATA factor-regulated hematopoiesis and from a broader perspective.
Collapse
Affiliation(s)
- A W DeVilbiss
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - N Tanimura
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - S C McIver
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - K R Katsumura
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - K D Johnson
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - E H Bresnick
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States.
| |
Collapse
|
20
|
Lohmann F, Dangeti M, Soni S, Chen X, Planutis A, Baron MH, Choi K, Bieker JJ. The DEK Oncoprotein Is a Critical Component of the EKLF/KLF1 Enhancer in Erythroid Cells. Mol Cell Biol 2015; 35:3726-38. [PMID: 26303528 PMCID: PMC4589598 DOI: 10.1128/mcb.00382-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/06/2015] [Accepted: 08/17/2015] [Indexed: 02/07/2023] Open
Abstract
Understanding how transcriptional regulators are themselves controlled is important in attaining a complete picture of the intracellular effects that follow signaling cascades during early development and cell-restricted differentiation. We have addressed this issue by focusing on the regulation of EKLF/KLF1, a zinc finger transcription factor that plays a necessary role in the global regulation of erythroid gene expression. Using biochemical affinity purification, we have identified the DEK oncoprotein as a critical factor that interacts with an essential upstream enhancer element of the EKLF promoter and exerts a positive effect on EKLF levels. This element also binds a core set of erythroid transcription factors, suggesting that DEK is part of a tissue-restricted enhanceosome that contains BMP4-dependent and -independent components. Together with local enrichment of properly coded histones and an open chromatin domain, optimal transcriptional activation of the EKLF locus can be established.
Collapse
Affiliation(s)
- Felix Lohmann
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Mohan Dangeti
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Shefali Soni
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Xiaoyong Chen
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Antanas Planutis
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Margaret H Baron
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | - Kyunghee Choi
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - James J Bieker
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA
| |
Collapse
|
21
|
Blobel GA, Bodine D, Brand M, Crispino J, de Bruijn MFTR, Nathan D, Papayannopoulou T, Porcher C, Strouboulis J, Zon L, Higgs DR, Stamatoyannopoulos G, Engel JD. An international effort to cure a global health problem: A report on the 19th Hemoglobin Switching Conference. Exp Hematol 2015; 43:821-37. [PMID: 26143582 DOI: 10.1016/j.exphem.2015.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 12/24/2022]
Abstract
Every 2 years since 1978, an international group of scientists, physicians, and other researchers meet to discuss the latest developments in the underlying etiology, mechanisms of action, and developmental acquisition of cellular and systemic defects exhibited and elicited by the most common inherited human disorders, the hemoglobinopathies. The 19th Hemoglobin Switching Conference, held in September 2014 at St. John's College in Oxford, once again exceeded all expectations by describing cutting edge research in cellular, molecular, developmental, and genomic advances focused on these diseases. The conference comprised about 60 short talks over 3 days by leading investigators in the field. This meeting report describes the highlights of the conference.
Collapse
Affiliation(s)
- Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Bodine
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - John Crispino
- Division of Hematology/Oncology, Robert H Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Marella F T R de Bruijn
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital University of Oxford, Oxford, UK; BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford University Hospital, Oxford, UK
| | - David Nathan
- Division of Hematology and Oncology, Boston Children's Hospital, Departments of Pediatrics and Medicine, Harvard Medical School, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Catherine Porcher
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital University of Oxford, Oxford, UK; BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford University Hospital, Oxford, UK
| | - John Strouboulis
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Len Zon
- Boston Children's Hospital/HHMI, Boston, MA, USA
| | - Douglas R Higgs
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital University of Oxford, Oxford, UK; BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford University Hospital, Oxford, UK
| | | | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
22
|
Perna F, Vu LP, Themeli M, Kriks S, Hoya-Arias R, Khanin R, Hricik T, Mansilla-Soto J, Papapetrou EP, Levine RL, Studer L, Sadelain M, Nimer SD. The polycomb group protein L3MBTL1 represses a SMAD5-mediated hematopoietic transcriptional program in human pluripotent stem cells. Stem Cell Reports 2015; 4:658-69. [PMID: 25754204 PMCID: PMC4400644 DOI: 10.1016/j.stemcr.2015.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 01/11/2023] Open
Abstract
Epigenetic regulation of key transcriptional programs is a critical mechanism that controls hematopoietic development, and, thus, aberrant expression patterns or mutations in epigenetic regulators occur frequently in hematologic malignancies. We demonstrate that the Polycomb protein L3MBTL1, which is monoallelically deleted in 20q- myeloid malignancies, represses the ability of stem cells to drive hematopoietic-specific transcriptional programs by regulating the expression of SMAD5 and impairing its recruitment to target regulatory regions. Indeed, knockdown of L3MBTL1 promotes the development of hematopoiesis and impairs neural cell fate in human pluripotent stem cells. We also found a role for L3MBTL1 in regulating SMAD5 target gene expression in mature hematopoietic cell populations, thereby affecting erythroid differentiation. Taken together, we have identified epigenetic priming of hematopoietic-specific transcriptional networks, which may assist in the development of therapeutic approaches for patients with anemia. L3MBTL1 is a chromatin-binding protein that represses SMAD5 expression Lack of L3MBTL1 primes the hematopoietic development of pluripotent stem cells L3MBTL1 regulates erythroid differentiation
Collapse
Affiliation(s)
- Fabiana Perna
- Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Ly P Vu
- Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maria Themeli
- Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sonja Kriks
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ruben Hoya-Arias
- Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Raya Khanin
- Bioinformatics Core, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Todd Hricik
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jorge Mansilla-Soto
- Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Ross L Levine
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lorenz Studer
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michel Sadelain
- Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
23
|
Abstract
In this issue of Blood, Liu et al gain an understanding of phenotypic variability in hemoglobinopathies. They find that mutations in Krüppel-like factor-1 (KLF1) are significantly more prevalent in patients with β-thalassemia than previously recognized and correlate with a milder phenotype. This supports the emerging concept that monoallelic KLF1 mutations can play a modulatory role in hemoglobinopathies.
Collapse
|
24
|
Transcription factor EKLF (KLF1) recruitment of the histone chaperone HIRA is essential for β-globin gene expression. Proc Natl Acad Sci U S A 2014; 111:13337-42. [PMID: 25197097 DOI: 10.1073/pnas.1405422111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The binding of chromatin-associated proteins and incorporation of histone variants correlates with alterations in gene expression. These changes have been particularly well analyzed at the mammalian β-globin locus, where transcription factors such as erythroid Krüppel-like factor (EKLF), which is also known as Krüppel-like factor 1 (KLF1), play a coordinating role in establishing the proper chromatin structure and inducing high-level expression of adult β-globin. We had previously shown that EKLF preferentially interacts with histone H3 and that the H3.3 variant is differentially recruited to the β-globin promoter. We now find that a novel interaction between EKLF and the histone cell cycle regulation defective homolog A (HIRA) histone chaperone accounts for these effects. HIRA is not only critical for β-globin expression but is also required for activation of the erythropoietic regulators EKLF and GATA binding protein 1 (GATA1). Our results provide a mechanism by which transcription factor-directed recruitment of a generally expressed histone chaperone can lead to tissue-restricted changes in chromatin components, structure, and transcription at specific genomic sites during differentiation.
Collapse
|
25
|
Xue L, Galdass M, Gnanapragasam MN, Manwani D, Bieker JJ. Extrinsic and intrinsic control by EKLF (KLF1) within a specialized erythroid niche. Development 2014; 141:2245-54. [PMID: 24866116 DOI: 10.1242/dev.103960] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The erythroblastic island provides an important nutritional and survival support niche for efficient erythropoietic differentiation. Island integrity is reliant on adhesive interactions between erythroid and macrophage cells. We show that erythroblastic islands can be formed from single progenitor cells present in differentiating embryoid bodies, and that these correspond to erythro-myeloid progenitors (EMPs) that first appear in the yolk sac of the early developing embryo. Erythroid Krüppel-like factor (EKLF; KLF1), a crucial zinc finger transcription factor, is expressed in the EMPs, and plays an extrinsic role in erythroid maturation by being expressed in the supportive macrophage of the erythroblastic island and regulating relevant genes important for island integrity within these cells. Together with its well-established intrinsic contributions to erythropoiesis, EKLF thus plays a coordinating role between two different cell types whose interaction provides the optimal environment to generate a mature red blood cell.
Collapse
Affiliation(s)
- Li Xue
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Mariann Galdass
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Merlin Nithya Gnanapragasam
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Deepa Manwani
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - James J Bieker
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
26
|
Vacaru AM, Vitale J, Nieves J, Baron MH. Generation of transgenic mouse fluorescent reporter lines for studying hematopoietic development. Methods Mol Biol 2014; 1194:289-312. [PMID: 25064110 PMCID: PMC4418647 DOI: 10.1007/978-1-4939-1215-5_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
During the development of the hematopoietic system, at least eight distinct lineages are generated in the mouse embryo. Transgenic mice expressing fluorescent proteins at various points in the hematopoietic hierarchy, from hematopoietic stem cell to multipotent progenitors to each of the final differentiated cell types, have provided valuable tools for tagging, tracking, and isolating these cells. In this chapter, we discuss general considerations in designing a transgene and survey available fluorescent probes and methods for confirming and analyzing transgene expression in the hematopoietic systems of the embryo, fetus, and postnatal/adult animal.
Collapse
Affiliation(s)
- Andrei M. Vacaru
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joseph Vitale
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Johnathan Nieves
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Margaret H. Baron
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
27
|
Three fingers on the switch: Krüppel-like factor 1 regulation of γ-globin to β-globin gene switching. Curr Opin Hematol 2013; 20:193-200. [PMID: 23474875 DOI: 10.1097/moh.0b013e32835f59ba] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Krüppel-like factor 1 (KLF1) regulates most aspects of erythropoiesis. Many years ago, transgenic mouse studies implicated KLF1 in the control of the human γ-globin to β-globin switch. In this review, we will integrate these initial studies with recent developments in human genetics to discuss our present understanding of how KLF1 and its target genes direct the switch. RECENT FINDINGS Recent studies have shown that human mutations in KLF1 are common and mostly asymptomatic, but lead to significant increases in levels of fetal hemoglobin (HbF) (α2γ2) and adult HbA2 (α2δ2). Genome-wide association studies (GWAS) have demonstrated that three primary loci are associated with increased HbF levels in the population: the β-globin locus itself, the BCL11A locus, and a site between MYB and HBS1L. We discuss evidence that KLF1 directly regulates BCL11A, MYB and other genes, which are involved directly or indirectly in γ-globin silencing, thus providing a link between GWAS and KLF1 in hemoglobin switching. SUMMARY KLF1 regulates the γ-globin to β-globin genetic switch by many mechanisms. Firstly, it facilitates formation of an active chromatin hub (ACH) at the β-globin gene cluster. Specifically, KLF1 conscripts the adult-stage β-globin gene to replace the γ-globin gene within the ACH in a stage-specific manner. Secondly, KLF1 acts as a direct activator of genes that encode repressors of γ-globin gene expression. Finally, KLF1 is a regulator of many components of the cell cycle machinery. We suggest that dysregulation of these genes leads to cell cycle perturbation and 'erythropoietic stress' leading to indirect upregulation of HbF.
Collapse
|
28
|
Yien YY, Bieker JJ. EKLF/KLF1, a tissue-restricted integrator of transcriptional control, chromatin remodeling, and lineage determination. Mol Cell Biol 2013; 33:4-13. [PMID: 23090966 PMCID: PMC3536305 DOI: 10.1128/mcb.01058-12] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Erythroid Krüppel-like factor (EKLF or KLF1) is a transcriptional regulator that plays a critical role in lineage-restricted control of gene expression. KLF1 expression and activity are tightly controlled in a temporal and differentiation stage-specific manner. The mechanisms by which KLF1 is regulated encompass a range of biological processes, including control of KLF1 RNA transcription, protein stability, localization, and posttranslational modifications. Intact KLF1 regulation is essential to correctly regulate erythroid function by gene transcription and to maintain hematopoietic lineage homeostasis by ensuring a proper balance of erythroid/megakaryocytic differentiation. In turn, KLF1 regulates erythroid biology by a wide variety of mechanisms, including gene activation and repression by regulation of chromatin configuration, transcriptional initiation and elongation, and localization of gene loci to transcription factories in the nucleus. An extensive series of biochemical, molecular, and genetic analyses has uncovered some of the secrets of its success, and recent studies are highlighted here. These reveal a multilayered set of control mechanisms that enable efficient and specific integration of transcriptional and epigenetic controls and that pave the way for proper lineage commitment and differentiation.
Collapse
Affiliation(s)
- Yvette Y. Yien
- Department of Developmental and Regenerative Biology
- Graduate School of Biological Sciences
| | - James J. Bieker
- Department of Developmental and Regenerative Biology
- Black Family Stem Cell Institute
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA
| |
Collapse
|
29
|
Yien YY, Bieker JJ. Functional interactions between erythroid Krüppel-like factor (EKLF/KLF1) and protein phosphatase PPM1B/PP2Cβ. J Biol Chem 2012; 287:15193-204. [PMID: 22393050 DOI: 10.1074/jbc.m112.350496] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythroid Krüppel-like factor (EKLF; KLF1) is an erythroid-specific transcription factor required for the transcription of genes that regulate erythropoiesis. In this paper, we describe the identification of a novel EKLF interactor, Ppm1b, a serine-threonine protein phosphatase that has been implicated in the attenuation of NFκB signaling and the regulation of Cdk9 phosphorylation status. We show that Ppm1b interacts with EKLF via its PEST1 sequence. However, its genetic regulatory role is complex. Using a promoter-reporter assay in an erythroid cell line, we show that Ppm1b superactivates EKLF at the β-globin and BKLF promoters, dependent on intact Ppm1b phosphatase activity. Conversely, depletion of Ppm1b in CD34(+) cells leads to a higher level of endogenous β-globin gene activation after differentiation. We also observe that Ppm1b likely has an indirect role in regulating EKLF turnover via its zinc finger domain. Together, these studies show that Ppm1b plays a multilayered role in regulating the availability and optimal activity of the EKLF protein in erythroid cells.
Collapse
Affiliation(s)
- Yvette Y Yien
- Department of Developmental and Regenerative Biology, The Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
30
|
Kang K, Jung H, Nam S, Lim JS. NDRG2 Promotes GATA-1 Expression through Regulation of the JAK2/STAT Pathway in PMA-stimulated U937 Cells. Immune Netw 2011; 11:348-57. [PMID: 22346774 PMCID: PMC3275703 DOI: 10.4110/in.2011.11.6.348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 10/18/2011] [Accepted: 10/29/2011] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND N-myc downstream-regulated gene 2 (NDRG2), a member of a newly described family of differentiation-related genes, has been characterized as a regulator of dendritic cells. However, the role of NDRG2 on the expression and activation of transcription factors in blood cells remains poorly understood. In this study, we investigated the effects of NDRG2 overexpression on GATA-1 expression in PMA-stimulated U937 cells. METHODS We generated NDRG2-overexpressing U937 cell line (U937-NDRG2) and treated the cells with PMA to investigate the role of NDRG2 on GATA-1 expression. RESULTS NDRG2 overexpression in U937 cells significantly induced GATA-1 expression in response to PMA stimulation. Interestingly, JAK2/STAT and BMP-4/Smad pathways associated with the induction of GATA-1 were activated in PMA-stimulated U937-NDRG2 cells. We found that the inhibition of JAK2 activation, but not of BMP-4/Smad signaling, can elicit a decrease of PMA-induced GATA-1 expression in U937-NDRG2 cells. CONCLUSION The results reveal that NDRG2 promotes the expression of GATA-1 through activation of the JAK2/STAT pathway, but not through the regulation of the BMP-4/Smad pathway in U937 cells. Our findings further suggest that NDRG2 may play a role as a regulator of erythrocyte and megakaryocyte differentiation during hematopoiesis.
Collapse
Affiliation(s)
- Kyeongah Kang
- Department of Biological Science and the Research Center for Women's Disease, Sookmyung Women's University, Seoul 140-742, Korea
| | | | | | | |
Collapse
|
31
|
Zhang X, Yalcin S, Lee DF, Yeh TYJ, Lee SM, Su J, Mungamuri SK, Rimmelé P, Kennedy M, Sellers R, Landthaler M, Tuschl T, Chi NW, Lemischka I, Keller G, Ghaffari S. FOXO1 is an essential regulator of pluripotency in human embryonic stem cells. Nat Cell Biol 2011; 13:1092-9. [PMID: 21804543 DOI: 10.1038/ncb2293] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 06/06/2011] [Indexed: 12/17/2022]
Abstract
Pluripotency of embryonic stem cells (ESCs) is defined by their ability to differentiate into three germ layers and derivative cell types and is established by an interactive network of proteins including OCT4 (also known as POU5F1; ref. 4), NANOG (refs 5, 6), SOX2 (ref. 7) and their binding partners. The forkhead box O (FoxO) transcription factors are evolutionarily conserved regulators of longevity and stress response whose function is inhibited by AKT protein kinase. FoxO proteins are required for the maintenance of somatic and cancer stem cells; however, their function in ESCs is unknown. We show that FOXO1 is essential for the maintenance of human ESC pluripotency, and that an orthologue of FOXO1 (Foxo1) exerts a similar function in mouse ESCs. This function is probably mediated through direct control by FOXO1 of OCT4 and SOX2 gene expression through occupation and activation of their respective promoters. Finally, AKT is not the predominant regulator of FOXO1 in human ESCs. Together these results indicate that FOXO1 is a component of the circuitry of human ESC pluripotency. These findings have critical implications for stem cell biology, development, longevity and reprogramming, with potentially important ramifications for therapy.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cook BD, Liu S, Evans T. Smad1 signaling restricts hematopoietic potential after promoting hemangioblast commitment. Blood 2011; 117:6489-97. [PMID: 21515822 PMCID: PMC3123019 DOI: 10.1182/blood-2010-10-312389] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 04/13/2011] [Indexed: 11/20/2022] Open
Abstract
Bone morphogenetic protein (BMP) signaling regulates embryonic hematopoiesis via receptor-mediated activation of downstream SMAD proteins, including SMAD1. In previous work, we showed that Smad1 expression is sufficient to enhance commitment of mesoderm to hemangioblast fate. We also found indirect evidence to support a subsequent repressive function for Smad1 in hematopoiesis. To test this hypothesis directly, we developed a novel system allowing temporal control of Smad1 levels by conditional knockdown in embryonic stem cell derivatives. Depletion of Smad1 in embryoid body cultures before hemangioblast commitment limits hematopoietic potential because of a block in mesoderm development. Conversely, when Smad1 is depleted in FlK1(+) mesoderm, at a stage after hemangioblast commitment, the pool of hematopoietic progenitors is expanded. This involves enhanced expression levels for genes specific to hematopoiesis, including Gata1, Runx1 and Eklf, rather than factors required for earlier specification of the hemangioblast. The phenotype correlates with increased nuclear SMAD2 activity, indicating molecular cross-regulation between the BMP and TGF-β signaling pathways. Consistent with this mechanism, hematopoiesis was enhanced when Smad2 was directly expressed during this same developmental window. Therefore, this study reveals a temporally defined function for Smad1 in restricting the expansion of early hematopoietic progenitors.
Collapse
Affiliation(s)
- Brandoch D Cook
- Department of Surgery, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065, USA
| | | | | |
Collapse
|
33
|
Abstract
Erythroid cells and megakaryocytes are derived from a common precursor, the megakaryocyte-erythroid progenitor. Although these 2 closely related hematopoietic cell types share many transcription factors, there are several key differences in their regulatory networks that lead to differential gene expression downstream of the megakaryocyte-erythroid progenitor. With the advent of next-generation sequencing and our ability to precisely define transcription factor chromatin occupancy in vivo on a global scale, we are much closer to understanding how these 2 lineages are specified and in general how transcription factor complexes govern hematopoiesis.
Collapse
|
34
|
The role of the GATA2 transcription factor in normal and malignant hematopoiesis. Crit Rev Oncol Hematol 2011; 82:1-17. [PMID: 21605981 DOI: 10.1016/j.critrevonc.2011.04.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 03/18/2011] [Accepted: 04/21/2011] [Indexed: 11/23/2022] Open
Abstract
Hematopoiesis involves an elaborate regulatory network of transcription factors that coordinates the expression of multiple downstream genes, and maintains homeostasis within the hematopoietic system through the accurate orchestration of cellular proliferation, differentiation and survival. As a result, defects in the expression levels or the activity of these transcription factors are intimately linked to hematopoietic disorders, including leukemia. The GATA family of nuclear regulatory proteins serves as a prototype for the action of lineage-restricted transcription factors. GATA1 and GATA2 are expressed principally in hematopoietic lineages, and have essential roles in the development of multiple hematopoietic cells, including erythrocytes and megakaryocytes. Moreover, GATA2 is crucial for the proliferation and maintenance of hematopoietic stem cells and multipotential progenitors. In this review, we summarize the current knowledge regarding the biological properties and functions of the GATA2 transcription factor in normal and malignant hematopoiesis.
Collapse
|
35
|
Chromatin-modifying agents promote the ex vivo production of functional human erythroid progenitor cells. Blood 2011; 117:4632-41. [DOI: 10.1182/blood-2010-10-314567] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Abstract
Presently, blood transfusion products (TPs) are composed of terminally differentiated cells with a finite life span. We have developed an ex vivo–generated TP composed of erythroid progenitor cells (EPCs) and precursors cells. Several histone deacetylase inhibitors (HDACIs) were used in vitro to promote the preferential differentiation of cord blood (CB) CD34+ cells to EPCs. A combination of cytokines and valproic acid (VPA): (1) promoted the greatest degree of EPC expansion, (2) led to the generation of EPCs which were capable of differentiating into the various stages of erythroid development, (3) led to epigenetic modifications (increased H3 acetylation) of promoters for erythroid-specific genes, which resulted in the acquisition of a gene expression pattern characteristic of primitive erythroid cells, and (4) promoted the generation of a TP that when infused into NOD/SCID mice produced mature RBCs containing both human adult and fetal globins as well Rh blood group Ag which persisted for 3 weeks and the retention of human EPCs and erythroid precursor cells within the BM of recipient mice. This ex vivo–generated EPC-TP likely represents a paradigm shift in transfusion medicine because of its potential to continue to generate additional RBCs after its infusion.
Collapse
|
36
|
Allaire JM, Darsigny M, Marcoux SS, Roy SAB, Schmouth JF, Umans L, Zwijsen A, Boudreau F, Perreault N. Loss of Smad5 leads to the disassembly of the apical junctional complex and increased susceptibility to experimental colitis. Am J Physiol Gastrointest Liver Physiol 2011; 300:G586-97. [PMID: 21212325 DOI: 10.1152/ajpgi.00041.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The regulation of intestinal epithelial cell adhesion and migratory properties is often compromised in inflammatory bowel disease (IBD). Despite an increasing interest in bone morphogenetic protein (Bmp) signaling in gut pathologies, little is known of the specific roles played by individual Smads in intestinal epithelial functions. In the present study, we generated a mouse model with deletion of Smad5 transcriptional effector of the Bmp signaling pathway exclusively in the intestinal epithelium. Proliferation, migration, and apical junctional complex (AJC) protein expression were analyzed by immunofluorescence and Western blot. Human intestinal biopsies from control and IBD patients were analyzed for SMAD5 gene transcript expression by quantitative PCR (qPCR). Smad5(ΔIEC) and control mice were subjected to dextran sulfate sodium (DSS)-induced experimental colitis, and their clinical and histological symptoms were assessed. Loss of Smad5 led to intestinal epithelial hypermigration and deregulation of the expression of claudin-1 and claudin-2. E-cadherin was found to be equally expressed but displaced from the AJC to the cytoplasm in Smad5(ΔIEC) mice. Analysis of SMAD5 gene expression in human IBD patient samples revealed a significant downregulation of the gene transcript in Crohn's disease and ulcerative colitis samples. Smad5(ΔIEC) mice exposed to experimental DSS colitis were significantly more susceptible to the disease and had impaired wound healing during the recovery phase. Our results support that Smad5 is partly responsible for mediating Bmp signals in intestinal epithelial cells. In addition, deficiency in epithelial Smad5 leads to the deregulation of cell migration by disassembling the AJC with increasing susceptibility to experimental colitis and impairment in wound healing.
Collapse
Affiliation(s)
- Joannie M Allaire
- Faculté de Médecine et des Sciences de la Santé, Département d’Anatomie et Biologie Cellulaire, Université de Sherbrooke, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The Krüppel-like factor (KLF) family of transcription factors regulates diverse biological processes that include proliferation, differentiation, growth, development, survival, and responses to external stress. Seventeen mammalian KLFs have been identified, and numerous studies have been published that describe their basic biology and contribution to human diseases. KLF proteins have received much attention because of their involvement in the development and homeostasis of numerous organ systems. KLFs are critical regulators of physiological systems that include the cardiovascular, digestive, respiratory, hematological, and immune systems and are involved in disorders such as obesity, cardiovascular disease, cancer, and inflammatory conditions. Furthermore, KLFs play an important role in reprogramming somatic cells into induced pluripotent stem (iPS) cells and maintaining the pluripotent state of embryonic stem cells. As research on KLF proteins progresses, additional KLF functions and associations with disease are likely to be discovered. Here, we review the current knowledge of KLF proteins and describe common attributes of their biochemical and physiological functions and their pathophysiological roles.
Collapse
Affiliation(s)
- Beth B McConnell
- Departments of Medicine and of Hematology and Medical Oncology, Emory University School of Medicine,Atlanta, Georgia 30322, USA
| | | |
Collapse
|
38
|
Harandi OF, Hedge S, Wu DC, McKeone D, Paulson RF. Murine erythroid short-term radioprotection requires a BMP4-dependent, self-renewing population of stress erythroid progenitors. J Clin Invest 2010; 120:4507-19. [PMID: 21060151 DOI: 10.1172/jci41291] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 09/15/2010] [Indexed: 12/24/2022] Open
Abstract
Acute anemic stress induces a systemic response designed to increase oxygen delivery to hypoxic tissues. Increased erythropoiesis is a key component of this response. Recovery from acute anemia relies on stress erythropoiesis, which is distinct from steady-state erythropoiesis. In this study we found that the bone morphogenetic protein 4-dependent (BMP4-dependent) stress erythropoiesis pathway was required and specific for erythroid short-term radioprotection following bone marrow transplantation. BMP4 signaling promoted the development of three populations of stress erythroid progenitors, which expanded in the spleen subsequent to bone marrow transplantation in mice. These progenitors did not correspond to previously identified bone marrow steady-state progenitors. The most immature population of stress progenitors was capable of self renewal while maintaining erythropoiesis without contribution to other lineages when serially transplanted into irradiated secondary and tertiary recipients. These data suggest that during the immediate post-transplant period, the microenvironment of the spleen is altered, which allows donor bone marrow cells to adopt a stress erythropoietic fate and promotes the rapid expansion and differentiation of stress erythroid progenitors. Our results also suggest that stress erythropoiesis may be manipulated through targeting the BMP4 signaling pathway to improve survival after injury.
Collapse
Affiliation(s)
- Omid F Harandi
- Center for Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
39
|
Design of embedded chimeric peptide nucleic acids that efficiently enter and accurately reactivate gene expression in vivo. Proc Natl Acad Sci U S A 2010; 107:16846-51. [PMID: 20837550 DOI: 10.1073/pnas.0912896107] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pharmacological treatments designed to reactivate fetal γ-globin can lead to an effective and successful clinical outcome in patients with hemoglobinopathies. However, new approaches remain highly desired because such treatments are not equally effective for all patients, and toxicity issues remain. We have taken a systematic approach to develop an embedded chimeric peptide nucleic acid (PNA) that effectively enters the cell and the nucleus, binds to its target site at the human fetal γ-globin promoter, and reactivates this transcript in adult transgenic mouse bone marrow and human primary peripheral blood cells. In vitro and in vivo DNA-binding assays in conjunction with live-cell imaging have been used to establish and optimize chimeric PNA design parameters that lead to successful gene activation. Our final molecule contains a specific γ-promoter-binding PNA sequence embedded within two amino acid motifs: one leads to efficient cell/nuclear entry, and the other generates transcriptional reactivation of the target. These embedded PNAs overcome previous limitations and are generally applicable to the design of in vivo transcriptional activation reagents that can be directed to any promoter region of interest and are of direct relevance to clinical applications that would benefit from such a need.
Collapse
|
40
|
Tallack MR, Whitington T, Yuen WS, Wainwright EN, Keys JR, Gardiner BB, Nourbakhsh E, Cloonan N, Grimmond SM, Bailey TL, Perkins AC. A global role for KLF1 in erythropoiesis revealed by ChIP-seq in primary erythroid cells. Genome Res 2010; 20:1052-63. [PMID: 20508144 DOI: 10.1101/gr.106575.110] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
KLF1 regulates a diverse suite of genes to direct erythroid cell differentiation from bipotent progenitors. To determine the local cis-regulatory contexts and transcription factor networks in which KLF1 operates, we performed KLF1 ChIP-seq in the mouse. We found at least 945 sites in the genome of E14.5 fetal liver erythroid cells which are occupied by endogenous KLF1. Many of these recovered sites reside in erythroid gene promoters such as Hbb-b1, but the majority are distant to any known gene. Our data suggests KLF1 directly regulates most aspects of terminal erythroid differentiation including production of alpha- and beta-globin protein chains, heme biosynthesis, coordination of proliferation and anti-apoptotic pathways, and construction of the red cell membrane and cytoskeleton by functioning primarily as a transcriptional activator. Additionally, we suggest new mechanisms for KLF1 cooperation with other transcription factors, in particular the erythroid transcription factor GATA1, to maintain homeostasis in the erythroid compartment.
Collapse
Affiliation(s)
- Michael R Tallack
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
EKLF directly activates the p21WAF1/CIP1 gene by proximal promoter and novel intronic regulatory regions during erythroid differentiation. Mol Cell Biol 2010; 30:2811-22. [PMID: 20368355 DOI: 10.1128/mcb.01016-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The switch from proliferation to differentiation during the terminal stages of erythropoiesis is a tightly controlled process that relies in part on transcription factor-mediated activation of cell cycle components. EKLF is a key transcription factor that is necessary for the initial establishment of the red cell phenotype. Here, we find that EKLF also plays a role during the subsequent differentiation process, as it induces p21(WAF1/CIP1) expression independent of p53 to regulate the changes in the cell cycle underlying erythroid maturation. EKLF activates p21 not only by directly binding to an EKLF site within a previously characterized GC-rich region in the p21 proximal promoter but also by occupancy at a novel, phylogenetically conserved region that contains consensus CACCC core motifs located downstream from the p21 TATA box. Our findings demonstrate that EKLF, likely in coordination with other transcription factors, directly contributes to the complex set of events that occur at the final erythroid cell divisions and accentuates terminal differentiation directly by activation of CDK inhibitors such as p21.
Collapse
|
42
|
Genetic analysis of hierarchical regulation for Gata1 and NF-E2 p45 gene expression in megakaryopoiesis. Mol Cell Biol 2010; 30:2668-80. [PMID: 20351175 DOI: 10.1128/mcb.01304-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
GATA1 and NF-E2 p45 are two important regulators of megakaryopoiesis. Whereas GATA1 is known to regulate the p45 gene, details of the GATA1 contribution to the spatiotemporal expression of the p45 gene remain to be elucidated. To clarify the relationship between GATA1 and p45, we performed genetic complementation rescue analysis of p45 function in megakaryocytes utilizing the hematopoietic regulatory domain of the Gata1 gene (G1HRD). We established transgenic mouse lines expressing p45 under G1HRD regulation and crossed the mice with p45-null mice. Compound mutant mice displayed normal platelet counts and no sign of hemorrhage, indicating that G1HRD has the ability to express p45 in a spatiotemporally correct manner. However, deletion of 38 amino acids from the N-terminal region of p45 abrogated the p45 rescue function, suggesting the presence of an essential transactivation activity in the region. We then crossed the G1HRD-p45 transgenic mice with megakaryocyte-specific Gata1 gene knockdown (Gata1(Delta)(neo)(Delta)(HS)) mice. The G1HRD-p45 transgene was insufficient for complete rescue of the Gata1(Delta)(neo)(Delta)(HS) megakaryocytes, suggesting that GATA1 or other factors regulated by GATA1 are required to cooperate with p45 for normal megakaryopoiesis. This study thus provides a unique in vivo validation of the hierarchical relationship between GATA1 and p45 in megakaryocytes.
Collapse
|
43
|
Fromm G, Bulger M. A spectrum of gene regulatory phenomena at mammalian beta-globin gene loci. Biochem Cell Biol 2010; 87:781-90. [PMID: 19898527 DOI: 10.1139/o09-048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The beta-globin gene cluster in mammals, consisting of a set of erythroid-specific, developmentally activated, and (or) silenced genes, has long presented a model system for the investigation of gene regulation. As the number and complexity of models of gene activation and repression have expanded, so too has the complexity of phenomena associated with the regulation of the beta-globin genes. Models for expression from within the locus must account for local (promoter-proximal), distal (enhancer-mediated), and domain-wide components of the regulatory pathways that proceed through mammalian development and erythroid differentiation. In this review, we provide an overview of transcriptional activation, silencing, chromatin structure, and the function of distal regulatory elements involved in the normal developmental regulation of beta-globin gene expression.
Collapse
Affiliation(s)
- George Fromm
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
44
|
Abstract
RNA interference (RNAi) is a powerful gene-knockdown technology that has been applied for functional genetic loss-of-function studies in many model eukaryotic systems, including embryonic stem cells (ESCs). Application of RNAi in ESCs allows for dissection of mechanisms by which ESCs self-renew and maintain pluripotency, and also specifying particular cell types needed for cell-replacement therapies. Potent RNAi response can be induced by expression of an microRNA-embedded short-hairpin RNA (shRNA(mir)) cassette that is integrated in the genome by virus infection or site-specific recombination at a defined locus. In this chapter, I will provide detailed protocols to perform shRNA(mir)-mediated RNAi studies in mouse ESCs using retrovirus infection and loxP site-directed recombination for efficient constitutive and inducible gene knockdown, respectively.
Collapse
Affiliation(s)
- Jianlong Wang
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|
45
|
Fraser ST, Isern J, Baron MH. Use of transgenic fluorescent reporter mouse lines to monitor hematopoietic and erythroid development during embryogenesis. Methods Enzymol 2010; 476:403-27. [PMID: 20691878 DOI: 10.1016/s0076-6879(10)76022-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of fluorescent reporter proteins such as GFP, RFP, and their variants to tag and track cells within the embryo has revolutionized developmental biology. Expression of these proteins within restricted populations has been achieved through the use of lineage-specific regulatory elements. This approach has proven especially powerful in the hematopoietic system, where it has been possible to monitor the generation, expansion, maturation, and migration of primitive erythroid cells, macrophages, and megakaryocytes during embryogenesis at unprecedented resolution. Such analyses have provided novel insights into the development of these lineages. In this chapter, we discuss the design considerations and methodologies involved in the production and analysis of transgenic mouse lines in which fluorescent reporters are expressed in the hematopoietic system of the mouse embryo.
Collapse
Affiliation(s)
- Stuart T Fraser
- Division of Hematology and Medical Oncology, Department of Medicine, Mount Sinai School of Medicine, New York, USA
| | | | | |
Collapse
|
46
|
Tallack MR, Perkins AC. Megakaryocyte-erythroid lineage promiscuity in EKLF null mouse blood. Haematologica 2009; 95:144-7. [PMID: 19850899 DOI: 10.3324/haematol.2009.010017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Commitment towards megakaryocyte versus erythroid blood cell lineages occurs in the megakaryocyte-erythroid progenitor, where mutually exclusive expression of either EKLF (Klf1) or Fli1 defines alternative outcomes. Here we show there is a marked increase in the number of circulating platelets in mice lacking the erythroid transcription factor EKLF. In addition, committed erythroid cells retain key signatures of megakaryocytes both on the cell surface and at the mRNA level. We also show that the effect of EKLF on megakaryocyte-erythroid progenitor lineage decision and commitment is cell autonomous in bone marrow reconstitution assays where stem cells lacking EKLF favor the megakaryocyte differentiation pathway. We conclude the megakaryocyte program is aberrantly activated in EKLF null erythroid cells.
Collapse
Affiliation(s)
- Michael R Tallack
- Institute for Molecular Bioscience, University of Queensland, St Lucia, 4072 Qld, Australia
| | | |
Collapse
|
47
|
Ceredig R, Rolink AG, Brown G. Models of haematopoiesis: seeing the wood for the trees. Nat Rev Immunol 2009; 9:293-300. [DOI: 10.1038/nri2525] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Distinct modes of gene regulation by a cell-specific transcriptional activator. Proc Natl Acad Sci U S A 2009; 106:4213-8. [PMID: 19251649 DOI: 10.1073/pnas.0808347106] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The architectural layout of a eukaryotic RNA polymerase II core promoter plays a role in general transcriptional activation. However, its role in tissue-specific expression is not known. For example, differing modes of its recognition by general transcription machinery can provide an additional layer of control within which a single tissue-restricted transcription factor may operate. Erythroid Kruppel-like factor (EKLF) is a hematopoietic-specific transcription factor that is critical for the activation of subset of erythroid genes. We find that EKLF interacts with TATA binding protein-associated factor 9 (TAF9), which leads to important consequences for expression of adult beta-globin. First, TAF9 functionally supports EKLF activity by enhancing its ability to activate the beta-globin gene. Second, TAF9 interacts with a conserved beta-globin downstream promoter element, and ablation of this interaction by beta-thalassemia-causing mutations decreases its promoter activity and disables superactivation. Third, depletion of EKLF prevents recruitment of TAF9 to the beta-globin promoter, whereas depletion of TAF9 drastically impairs beta-promoter activity. However, a TAF9-independent mode of EKLF transcriptional activation is exhibited by the alpha-hemoglobin-stabilizing protein (AHSP) gene, which does not contain a discernable downstream promoter element. In this case, TAF9 does not enhance EKLF activity and depletion of TAF9 has no effect on AHSP promoter activation. These studies demonstrate that EKLF directs different modes of tissue-specific transcriptional activation depending on the architecture of its target core promoter.
Collapse
|
49
|
Acetylation of EKLF is essential for epigenetic modification and transcriptional activation of the beta-globin locus. Mol Cell Biol 2008; 28:6160-70. [PMID: 18710946 DOI: 10.1128/mcb.00919-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Posttranslational modifications of transcription factors provide alternate protein interaction platforms that lead to varied downstream effects. We have investigated how the acetylation of EKLF plays a role in its ability to alter the beta-like globin locus chromatin structure and activate transcription of the adult beta-globin gene. By establishing an EKLF-null erythroid line whose closed beta-locus chromatin structure and silent beta-globin gene status can be rescued by retroviral infection of EKLF, we demonstrate the importance of EKLF acetylation at lysine 288 in the recruitment of CBP to the locus, modification of histone H3, occupancy by EKLF, opening of the chromatin structure, and transcription of adult beta-globin. We also find that EKLF helps to coordinate this process by the specific association of its zinc finger domain with the histone H3 amino terminus. Although EKLF interacts equally well with H3.1 and H3.3, we find that only H3.3 is enriched at the adult beta-globin promoter. These data emphasize the critical nature of lysine acetylation in transcription factor activity and enable us to propose a model of how modified EKLF integrates coactivators, chromatin remodelers, and nucleosomal components to alter epigenetic chromatin structure and stimulate transcription.
Collapse
|