1
|
Ren J, Cai J. circ_0014736 induces GPR4 to regulate the biological behaviors of human placental trophoblast cells through miR-942-5p in preeclampsia. Open Med (Wars) 2023; 18:20230645. [PMID: 36874362 PMCID: PMC9979007 DOI: 10.1515/med-2023-0645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/16/2022] [Accepted: 01/02/2023] [Indexed: 03/05/2023] Open
Abstract
Previous studies have indicated that the development of preeclampsia (PE) involves the regulation of circular RNA (circRNA). However, the role of hsa_circ_0014736 (circ_0014736) in PE remains unknown. Thus, the study proposes to reveal the function of circ_0014736 in the pathogenesis of PE and the underlying mechanism. The results showed that circ_0014736 and GPR4 expression were significantly upregulated, while miR-942-5p expression was downregulated in PE placenta tissues when compared with normal placenta tissues. circ_0014736 knockdown promoted the proliferation, migration, and invasion of placenta trophoblast cells (HTR-8/SVneo) and inhibited apoptosis; however, circ_0014736 overexpression had the opposite effects. circ_0014736 functioned as a sponge for miR-942-5p and regulated HTR-8/SVneo cell processes by interacting with miR-942-5p. Additionally, GPR4, a target gene of miR-942-5p, was involved in miR-942-5p-mediated actions in HTR-8/SVneo cells. Moreover, circ_0014736 stimulated GPR4 production through miR-942-5p. Collectively, circ_0014736 inhibited HTR-8/SVneo cell proliferation, migration, and invasion and induced cell apoptosis through the miR-942-5p/GPR4 axis, providing a possible target for the treatment of PE.
Collapse
Affiliation(s)
- Jinlian Ren
- Department of Obstetrics, Zhuji Affiliated Hospital of Wenzhou Medical University, Shaoxing, Zhejiang, China
| | - Jing Cai
- Department of Pathology, Shanghai Jiading District Anting Hospital, No. 1060 Hejing Road, Anting Town, Jiading District, Shanghai, China
| |
Collapse
|
2
|
Circ_0014736 induces GPR4 to regulate the biological behaviors of a human placental trophoblast cell line through miR-942-5p in preeclampsia. J Reprod Immunol 2023. [DOI: 10.1016/j.jri.2023.103813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
3
|
Harata A, Hirakawa M, Sakuma T, Yamamoto T, Hashimoto C. Nucleotide receptor P2RY4 is required for head formation via induction and maintenance of head organizer in Xenopus laevis. Dev Growth Differ 2018; 61:186-197. [PMID: 30069871 PMCID: PMC7379700 DOI: 10.1111/dgd.12563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 07/05/2018] [Accepted: 07/08/2018] [Indexed: 01/23/2023]
Abstract
Vertebrates have unique head structures that are mainly composed of the central nervous system, the neural crest, and placode cells. These head structures are brought about initially by the neural induction between the organizer and the prospective neuroectoderm at early gastrula stage. Purinergic receptors are activated by nucleotides released from cells and influence intracellular signaling pathways, such as phospholipase C and adenylate cyclase signaling pathways. As P2Y receptor is vertebrate‐specific and involved in head formation, we expect that its emergence may be related to the acquisition of vertebrate head during evolution. Here, we focused on the role of p2ry4 in early development in Xenopus laevis and found that p2ry4 was required for the establishment of the head organizer during neural induction and contributed to head formation. We showed that p2ry4 was expressed in the head organizer region and the prospective neuroectoderm at early gastrula stage, and was enriched in the head components. Disruption of p2ry4 function resulted in the small head phenotype and the reduced expression of marker genes specific for neuroectoderm and neural border at an early neurula stage. Furthermore, we examined the effect of p2ry4 disruption on the establishment of the head organizer and found that a reduction in the expression of head organizer genes, such as dkk1 and cerberus, and p2ry4 could also induce the ectopic expression of these marker genes. These results suggested that p2ry4 plays a key role in head organizer formation. Our study demonstrated a novel role of p2ry4 in early head development.
Collapse
Affiliation(s)
| | | | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Chikara Hashimoto
- JT Biohistory Research Hall, Takatsuki, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
4
|
Miyagi A, Negishi T, Yamamoto TS, Ueno N. G protein-coupled receptors Flop1 and Flop2 inhibit Wnt/β-catenin signaling and are essential for head formation in Xenopus. Dev Biol 2015; 407:131-44. [PMID: 26244992 DOI: 10.1016/j.ydbio.2015.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 06/18/2015] [Accepted: 08/01/2015] [Indexed: 12/11/2022]
Abstract
Patterning of the vertebrate anterior-posterior axis is regulated by the coordinated action of growth factors whose effects can be further modulated by upstream and downstream mediators and the cross-talk of different intracellular pathways. In particular, the inhibition of the Wnt/β-catenin signaling pathway by various factors is critically required for anterior specification. Here, we report that Flop1 and Flop2 (Flop1/2), G protein-coupled receptors related to Gpr4, contribute to the regulation of head formation by inhibiting Wnt/β-catenin signaling in Xenopus embryos. Using whole-mount in situ hybridization, we showed that flop1 and flop2 mRNAs were expressed in the neural ectoderm during early gastrulation. Both the overexpression and knockdown of Flop1/2 resulted in altered embryonic head phenotypes, while the overexpression of either Flop1/2 or the small GTPase RhoA in the absence of bone morphogenetic protein (BMP) signaling resulted in ectopic head induction. Examination of the Flops' function in Xenopus embryo animal cap cells showed that they inhibited Wnt/β-catenin signaling by promoting β-catenin degradation through both RhoA-dependent and -independent pathways in a cell-autonomous manner. These results suggest that Flop1 and Flop2 are essential regulators of Xenopus head formation that act as novel inhibitory components of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Asuka Miyagi
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Takefumi Negishi
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Takamasa S Yamamoto
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Naoto Ueno
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
5
|
The maternal-to-zygotic transition targets actin to promote robustness during morphogenesis. PLoS Genet 2013; 9:e1003901. [PMID: 24244181 PMCID: PMC3820746 DOI: 10.1371/journal.pgen.1003901] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/06/2013] [Indexed: 11/26/2022] Open
Abstract
Robustness is a property built into biological systems to ensure stereotypical outcomes despite fluctuating inputs from gene dosage, biochemical noise, and the environment. During development, robustness safeguards embryos against structural and functional defects. Yet, our understanding of how robustness is achieved in embryos is limited. While much attention has been paid to the role of gene and signaling networks in promoting robust cell fate determination, little has been done to rigorously assay how mechanical processes like morphogenesis are designed to buffer against variable conditions. Here we show that the cell shape changes that drive morphogenesis can be made robust by mechanisms targeting the actin cytoskeleton. We identified two novel members of the Vinculin/α-Catenin Superfamily that work together to promote robustness during Drosophila cellularization, the dramatic tissue-building event that generates the primary epithelium of the embryo. We find that zygotically-expressed Serendipity-α (Sry-α) and maternally-loaded Spitting Image (Spt) share a redundant, actin-regulating activity during cellularization. Spt alone is sufficient for cellularization at an optimal temperature, but both Spt plus Sry-α are required at high temperature and when actin assembly is compromised by genetic perturbation. Our results offer a clear example of how the maternal and zygotic genomes interact to promote the robustness of early developmental events. Specifically, the Spt and Sry-α collaboration is informative when it comes to genes that show both a maternal and zygotic requirement during a given morphogenetic process. For the cellularization of Drosophilids, Sry-α and its expression profile may represent a genetic adaptive trait with the sole purpose of making this extreme event more reliable. Since all morphogenesis depends on cytoskeletal remodeling, both in embryos and adults, we suggest that robustness-promoting mechanisms aimed at actin could be effective at all life stages. Every embryo develops under its own unique set of circumstances, with variable inputs coming from mother, father, and the environment. To then ensure a reliable outcome, mechanisms are built into development to buffer against challenges like genetic deficiency, maternal fever, alcohol exposure, etc. This buffering, called “robustness”, can be overwhelmed, ending in miscarriage, pre-mature birth, and structural and functional birth defects. Thus, we need to understand how robustness arises in order to define an embryo's susceptibilities to genetic background and environment; and to ultimately promote healthy reproduction. In this work we provide new insight into how morphogenesis, the process of tissue building in embryos, is made more robust. First, we show that early gene expression by the embryo, or zygote, supplements the stockpile of proteins already supplied by the mother to ensure the robustness of early morphogenesis. Specifically, our data suggests that a specific gene, sry-α, and its expression by the embryo at the maternal-to-zygotic transition, is a genetic adaptation with the sole function of making the first tissue building event in the fruit fly more robust. In addition, we show that the robustness of this morphogenetic event is promoted by mechanisms regulating the actin cytoskeleton.
Collapse
|
6
|
Nandadasa S, Tao Q, Shoemaker A, Cha SW, Wylie C. Regulation of classical cadherin membrane expression and F-actin assembly by alpha-catenins, during Xenopus embryogenesis. PLoS One 2012; 7:e38756. [PMID: 22719936 PMCID: PMC3374811 DOI: 10.1371/journal.pone.0038756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/14/2012] [Indexed: 12/20/2022] Open
Abstract
Alpha (α)-E-catenin is a component of the cadherin complex, and has long been thought to provide a link between cell surface cadherins and the actin skeleton. More recently, it has also been implicated in mechano-sensing, and in the control of tissue size. Here we use the early Xenopus embryos to explore functional differences between two α-catenin family members, α-E- and α-N-catenin, and their interactions with the different classical cadherins that appear as tissues of the embryo become segregated from each other. We show that they play both cadherin-specific and context-specific roles in the emerging tissues of the embryo. α-E-catenin interacts with both C- and E-cadherin. It is specifically required for junctional localization of C-cadherin, but not of E-cadherin or N-cadherin at the neurula stage. α-N-cadherin interacts only with, and is specifically required for junctional localization of, N-cadherin. In addition, α -E-catenin is essential for normal tissue size control in the non-neural ectoderm, but not in the neural ectoderm or the blastula. We also show context specificity in cadherin/ α-catenin interactions. E-cadherin requires α-E-catenin for junctional localization in some tissues, but not in others, during early development. These specific functional cadherin/alpha-catenin interactions may explain the basis of cadherin specificity of actin assembly and morphogenetic movements seen previously in the neural and non-neural ectoderm.
Collapse
Affiliation(s)
- Sumeda Nandadasa
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Qinghua Tao
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Amanda Shoemaker
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Sang-wook Cha
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Christopher Wylie
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
7
|
Mezzacappa C, Komiya Y, Habas R. Activation and function of small GTPases Rho, Rac, and Cdc42 during gastrulation. Methods Mol Biol 2012; 839:119-31. [PMID: 22218897 DOI: 10.1007/978-1-61779-510-7_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gastrulation is comprised of a series of cell polarization and directional cell migration events that establish the physical body plan of the embryo. One of the major ligand-based pathways that has emerged to play crucial roles in the regulation of gastrulation is the non-canonical Wnt signaling pathway. This aspect of Wnt signaling is comprised of a number of signaling branches that are subsequently integrated for the regulation of changes to the actin cytoskeleton during cell polarization and cell migration during vertebrate gastrulation. The Rho family of small GTPases are activated and required for non-canonical Wnt signaling during gastrulation, and in this chapter, we describe biochemical assays for the detection of Wnt-mediated activation of Rho, Rac, and Cdc42 in both mammalian cells and Xenopus embryo explants.
Collapse
Affiliation(s)
- Courtney Mezzacappa
- Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | | | | |
Collapse
|
8
|
Kim HY, Davidson LA. Punctuated actin contractions during convergent extension and their permissive regulation by the non-canonical Wnt-signaling pathway. J Cell Sci 2011; 124:635-46. [PMID: 21266466 PMCID: PMC3031374 DOI: 10.1242/jcs.067579] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2010] [Indexed: 12/18/2022] Open
Abstract
Actomyosin networks linked to the micro-environment through the plasma membrane are thought to be key players in regulating cell behaviors within multicellular tissues, such as converging and extending mesoderm. Here, we observe the dynamics of actin contractions called 'punctuated actin contractions' in the mid-cell body of embryonic mesenchymal cells in the mesoderm. These contraction dynamics are a common feature of Xenopus embryonic tissues and are important for cell shape changes during morphogenesis. Quantitative morphological analysis of these F-actin dynamics indicates that frequent and aligned movements of multiple actin contractions accompany mesoderm cells as they intercalate and elongate. Using inhibitors combined with fluorescence recovery after photobleaching (FRAP) analysis, we find that the dynamics of actin contractions are regulated by both myosin contractility and F-actin polymerization. Furthermore, we find that the non-canonical Wnt-signaling pathway permissively regulates levels of punctuated actin contractions. Overexpression of Xfz7 (Fzd7) can induce early maturation of actin contractions in mesoderm and produce mesoderm-like actin contractions in ectoderm cells. By contrast, expression of the dominant-negative Xenopus disheveled construct Xdd1 blocks the progression of actin contractions into their late mesoderm dynamics but has no effect in ectoderm. Our study reveals punctuated actin contractions within converging and extending mesoderm and uncovers a permissive role for non-canonical Wnt-signaling, myosin contractility and F-actin polymerization in regulating these dynamics.
Collapse
Affiliation(s)
- Hye Young Kim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Lance A. Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
9
|
Davidson L, von Dassow M, Zhou J. Multi-scale mechanics from molecules to morphogenesis. Int J Biochem Cell Biol 2009; 41:2147-62. [PMID: 19394436 PMCID: PMC2753763 DOI: 10.1016/j.biocel.2009.04.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 03/31/2009] [Accepted: 04/15/2009] [Indexed: 01/02/2023]
Abstract
Dynamic mechanical processes shape the embryo and organs during development. Little is understood about the basic physics of these processes, what forces are generated, or how tissues resist or guide those forces during morphogenesis. This review offers an outline of some of the basic principles of biomechanics, provides working examples of biomechanical analyses of developing embryos, and reviews the role of structural proteins in establishing and maintaining the mechanical properties of embryonic tissues. Drawing on examples we highlight the importance of investigating mechanics at multiple scales from milliseconds to hours and from individual molecules to whole embryos. Lastly, we pose a series of questions that will need to be addressed if we are to understand the larger integration of molecular and physical mechanical processes during morphogenesis and organogenesis.
Collapse
Affiliation(s)
- Lance Davidson
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Avenue, 5059-BST3, Pittsburgh, PA, USA.
| | | | | |
Collapse
|
10
|
Lin F, Chen S, Sepich DS, Panizzi JR, Clendenon SG, Marrs JA, Hamm HE, Solnica-Krezel L. Galpha12/13 regulate epiboly by inhibiting E-cadherin activity and modulating the actin cytoskeleton. ACTA ACUST UNITED AC 2009; 184:909-21. [PMID: 19307601 PMCID: PMC2664974 DOI: 10.1083/jcb.200805148] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Epiboly spreads and thins the blastoderm over the yolk cell during zebrafish gastrulation, and involves coordinated movements of several cell layers. Although recent studies have begun to elucidate the processes that underlie these epibolic movements, the cellular and molecular mechanisms involved remain to be fully defined. Here, we show that gastrulae with altered Galpha(12/13) signaling display delayed epibolic movement of the deep cells, abnormal movement of dorsal forerunner cells, and dissociation of cells from the blastoderm, phenocopying e-cadherin mutants. Biochemical and genetic studies indicate that Galpha(12/13) regulate epiboly, in part by associating with the cytoplasmic terminus of E-cadherin, and thereby inhibiting E-cadherin activity and cell adhesion. Furthermore, we demonstrate that Galpha(12/13) modulate epibolic movements of the enveloping layer by regulating actin cytoskeleton organization through a RhoGEF/Rho-dependent pathway. These results provide the first in vivo evidence that Galpha(12/13) regulate epiboly through two distinct mechanisms: limiting E-cadherin activity and modulating the organization of the actin cytoskeleton.
Collapse
Affiliation(s)
- Fang Lin
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Nandadasa S, Tao Q, Menon NR, Heasman J, Wylie C. N- and E-cadherins in Xenopus are specifically required in the neural and non-neural ectoderm, respectively, for F-actin assembly and morphogenetic movements. Development 2009; 136:1327-38. [PMID: 19279134 DOI: 10.1242/dev.031203] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transmembrane cadherins are calcium-dependent intercellular adhesion molecules. Recently, they have also been shown to be sites of actin assembly during adhesive contact formation. However, the roles of actin assembly on transmembrane cadherins during development are not fully understood. We show here, using the developing ectoderm of the Xenopus embryo as a model, that F-actin assembly is a primary function of both N-cadherin in the neural ectoderm and E-cadherin in the non-neural (epidermal) ectoderm, and that each cadherin is essential for the characteristic morphogenetic movements of these two tissues. However, depletion of N-cadherin and E-cadherin did not cause dissociation in these tissues at the neurula stage, probably owing to the expression of C-cadherin in each tissue. Depletion of each of these cadherins is not rescued by the other, nor by the expression of C-cadherin, which is expressed in both tissues. One possible reason for this is that each cadherin is expressed in a different domain of the cell membrane. These data indicate the combinatorial nature of cadherin function, the fact that N- and E-cadherin play primary roles in F-actin assembly in addition to roles in cell adhesion, and that this function is specific to individual cadherins. They also show how cell adhesion and motility can be combined in morphogenetic tissue movements that generate the form and shape of the embryonic organs.
Collapse
Affiliation(s)
- Sumeda Nandadasa
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
12
|
von Dassow M, Davidson LA. Natural variation in embryo mechanics: gastrulation in Xenopus laevis is highly robust to variation in tissue stiffness. Dev Dyn 2009; 238:2-18. [PMID: 19097119 PMCID: PMC2733347 DOI: 10.1002/dvdy.21809] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
How sensitive is morphogenesis to the mechanical properties of embryos? To estimate an upper bound on the sensitivity of early morphogenetic movements to tissue mechanical properties, we assessed natural variability in the apparent stiffness among gastrula-stage Xenopus laevis embryos. We adapted micro-aspiration methods to make repeated, nondestructive measurements of apparent tissue stiffness in whole embryos. Stiffness varied by close to a factor of 2 among embryos within a single clutch. Variation between clutches was of similar magnitude. On the other hand, the direction of change in stiffness over the course of gastrulation was the same in all embryos and in all clutches. Neither pH nor salinity--two environmental factors we predicted could affect variability in nature--affected tissue stiffness. Our results indicate that gastrulation in X. laevis is robust to at least twofold variation in tissue stiffness.
Collapse
Affiliation(s)
- Michelangelo von Dassow
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | |
Collapse
|
13
|
Mir A, Heasman J. How the mother can help: studying maternal Wnt signaling by anti-sense-mediated depletion of maternal mRNAs and the host transfer technique. Methods Mol Biol 2008; 469:417-29. [PMID: 19109723 DOI: 10.1007/978-1-60327-469-2_26] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Early development in Xenopus laevis is controlled by maternal gene products synthesized during oogenesis. The dorsal/ventral and anterior/posterior axes are established as a result of canonical Wnt signaling activity. The functions of maternal genes in embryonic development are most effectively studied by introducing anti-sense, oligos complementary to their mRNAs into oocytes and culturing the oocytes long enough to allow for the breakdown of the target RNAs and the turnover of existing cognate proteins before fertilization. This method has been used to establish the role of Wnt signaling in Xenopus axis formation. Here we describe the methodology for targeting of maternal mRNAs and for successful fertilization of mRNA-depleted oocytes.
Collapse
Affiliation(s)
- Adnan Mir
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA
| | | |
Collapse
|
14
|
von Dassow M, Davidson LA. Variation and robustness of the mechanics of gastrulation: the role of tissue mechanical properties during morphogenesis. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2007; 81:253-69. [PMID: 18228257 DOI: 10.1002/bdrc.20108] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Diverse mechanisms of morphogenesis generate a wide variety of animal forms. In this work, we discuss two ways that the mechanical properties of embryonic tissues could guide one of the earliest morphogenetic movements in animals, gastrulation. First, morphogenetic movements are a function of both the forces generated by cells and the mechanical properties of the tissues. Second, cells could change their behavior in response to their mechanical environment. Theoretical studies of gastrulation indicate that different morphogenetic mechanisms differ in their inherent sensitivity to tissue mechanical properties. Those few empirical studies that have investigated the mechanical properties of amphibian and echinoderm gastrula-stage embryos indicate that there could be high embryo-to-embryo variability in tissue stiffness. Such high embryo-to-embryo variability would imply that gastrulation is fairly robust to variation in tissue stiffness. Cell culture studies demonstrate a wide variety of cellular responses to the mechanical properties of their microenvironment. These responses are likely to be developmentally regulated, and could either increase or decrease the robustness of gastrulation movements depending on which cells express which responses. Hence both passive physical and mechanoregulatory processes will determine how sensitive gastrulation is to tissue mechanics. Addressing these questions is important for understanding the significance of diverse programs of early development, and how genetic or environmental perturbations influence development. We discuss methods for measuring embryo-to-embryo variability in tissue mechanics, and for experimentally perturbing those mechanical properties to determine the sensitivity of gastrulation to tissue mechanics.
Collapse
|
15
|
Tao Q, Nandadasa S, McCrea PD, Heasman J, Wylie C. G-protein-coupled signals control cortical actin assembly by controlling cadherin expression in the early Xenopus embryo. Development 2007; 134:2651-61. [PMID: 17567666 DOI: 10.1242/dev.002824] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During embryonic development, each cell of a multicellular organ rudiment polymerizes its cytoskeletal elements in an amount and pattern that gives the whole cellular population its characteristic shape and mechanical properties. How does each cell know how to do this? We have used the Xenopus blastula as a model system to study this problem. Previous work has shown that the cortical actin network is required to maintain shape and rigidity of the whole embryo, and its assembly is coordinated throughout the embryo by signaling through G-protein-coupled receptors. In this paper, we show that the cortical actin network colocalizes with foci of cadherin expressed on the cell surface. We then show that cell-surface cadherin expression is both necessary and sufficient for cortical actin assembly and requires the associated catenin p120 for this function. Finally, we show that the previously identified G-protein-coupled receptors control cortical actin assembly by controlling the amount of cadherin expressed on the cell surface. This identifies a novel mechanism for control of cortical actin assembly during development that might be shared by many multicellular arrays.
Collapse
Affiliation(s)
- Qinghua Tao
- Children's Hospital Research Foundation, Division of Developmental Biology, and Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, OH 45219, USA
| | | | | | | | | |
Collapse
|
16
|
Luo T, Xu Y, Hoffman TL, Zhang T, Schilling T, Sargent TD. Inca: a novel p21-activated kinase-associated protein required for cranial neural crest development. Development 2007; 134:1279-89. [PMID: 17314132 DOI: 10.1242/dev.02813] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inca (induced in neural crest by AP2) is a novel protein discovered in a microarray screen for genes that are upregulated in Xenopus embryos by the transcriptional activator protein Tfap2a. It has no significant similarity to any known protein, but is conserved among vertebrates. In Xenopus, zebrafish and mouse embryos, Inca is expressed predominantly in the premigratory and migrating neural crest (NC). Knockdown experiments in frog and fish using antisense morpholinos reveal essential functions for Inca in a subset of NC cells that form craniofacial cartilage. Cells lacking Inca migrate successfully but fail to condense into skeletal primordia. Overexpression of Inca disrupts cortical actin and prevents formation of actin "purse strings", which are required for wound healing in Xenopus embryos. We show that Inca physically interacts with p21-activated kinase 5 (PAK5), a known regulator of the actin cytoskeleton that is co-expressed with Inca in embryonic ectoderm, including in the NC. These results suggest that Inca and PAK5 cooperate in restructuring cytoskeletal organization and in the regulation of cell adhesion in the early embryo and in NC cells during craniofacial development.
Collapse
Affiliation(s)
- Ting Luo
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
17
|
Yang LV, Radu CG, Roy M, Lee S, McLaughlin J, Teitell MA, Iruela-Arispe ML, Witte ON. Vascular abnormalities in mice deficient for the G protein-coupled receptor GPR4 that functions as a pH sensor. Mol Cell Biol 2006; 27:1334-47. [PMID: 17145776 PMCID: PMC1800706 DOI: 10.1128/mcb.01909-06] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
GPR4 is a G protein-coupled receptor expressed in the vasculature, lung, kidney, and other tissues. In vitro ectopic overexpression studies implicated GPR4 in sensing extracellular pH changes leading to cyclic AMP (cAMP) production. To investigate its biological roles in vivo, we generated GPR4-deficient mice by homologous recombination. Whereas GPR4-null adult mice appeared phenotypically normal, neonates showed a higher frequency of perinatal mortality. The average litter size from GPR4(-/-) intercrosses was approximately 30% smaller than that from GPR4(+/+) intercrosses on N3 and N5 C57BL/6 genetic backgrounds. A fraction of knockout embryos and neonates had spontaneous hemorrhages, dilated and tortuous subcutaneous blood vessels, and defective vascular smooth muscle cell coverage. Mesangial cells in kidney glomeruli were also significantly reduced in GPR4-null neonates. Some neonates exhibited respiratory distress with airway lining cell metaplasia. To examine whether GPR4 is functionally involved in vascular pH sensing, an ex vivo aortic ring assay was used under defined pH conditions. Compared to wild-type aortas, microvessel outgrowth from GPR4-null aortas was less inhibited by acidic extracellular pH. Treatment with an analog of cAMP, a downstream effector of GPR4, abolished microvessel outgrowth bypassing the GPR4-knockout phenotype. These results suggest that GPR4 deficiency leads to partially penetrant vascular abnormalities during development and that this receptor functions in blood vessel pH sensing.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Aorta/abnormalities
- Blood Vessels/abnormalities
- Blood Vessels/embryology
- Cells, Cultured
- Crosses, Genetic
- Embryo, Mammalian/abnormalities
- Embryo, Mammalian/blood supply
- Embryo, Mammalian/pathology
- Female
- Gene Targeting
- Genotype
- Hemorrhage/congenital
- Humans
- Hydrogen-Ion Concentration
- Litter Size
- Lung/abnormalities
- Lung/embryology
- Lung/pathology
- Male
- Mesangial Cells/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Penetrance
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/metabolism
- Respiratory Tract Diseases/congenital
Collapse
Affiliation(s)
- Li V Yang
- Howard Hughes Medical Institute, University of California-Los Angeles, 675 Charles E. Young Drive South, Los Angeles, CA 90095-1662, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Houston DW, Wylie C. MaternalXenopus Zic2negatively regulatesNodal-relatedgene expression during anteroposterior patterning. Development 2005; 132:4845-55. [PMID: 16207750 DOI: 10.1242/dev.02066] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During the development of Xenopus laevis, maternal mRNAs and proteins stored in the egg direct early patterning events such as the specification of the dorsoventral axis and primary germ layers. In an expression screen to identify maternal factors important for early development, we isolated a truncated cDNA for maternal Zic2(tZic2), encoding a zinc-finger transcription factor. The predicted tZic2 protein lacked the N-terminal region, but retained the zinc-finger domain. When expressed in embryos, tZic2 inhibited head and axial development,and blocked the ability of full-length Zic2 to induce neural crest genes. Depletion of maternal Zic2 from oocytes, using antisense oligonucleotides, caused exogastrulation, anterior truncations and axial defects. We show that loss of maternal Zic2 results in persistent and increased expression of Xenopus nodal-related (Xnr) genes, except for Xnr4, and overall increased Nodal signaling. Injection of a Nodal antagonist, Cerberus-short, reduced the severity of head and axial defects in Zic2-depleted embryos. Depletion of Zic2 could not restore Xnr expression to embryos additionally depleted of VegT, a T-domain transcription factor and an activator of Xnr gene transcription. Taken together, our results suggest a role for maternal Zic2 in the suppression of Xnr genes in early development. ZIC2 is mutated in human holoprosencephaly (HPE), a severe defect in brain hemisphere separation,and these results strengthen the suggestion that increased Nodal-related activity is a cause of HPE.
Collapse
Affiliation(s)
- Douglas W Houston
- The University of Iowa, Department of Biological Sciences, 257 BB, Iowa City, IA 52246-1324, USA.
| | | |
Collapse
|