1
|
Ma Y, Yu X, Ye S, Li W, Yang Q, Li YX, Wang Y, Wang YL. Immune-regulatory properties of endovascular extravillous trophoblast cells in human placenta. Placenta 2024; 145:107-116. [DOI: pmid:38128221 doi: 10.1016/j.placenta.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
|
2
|
Ma Y, Yu X, Ye S, Li W, Yang Q, Li YX, Wang Y, Wang YL. Immune-regulatory properties of endovascular extravillous trophoblast cells in human placenta. Placenta 2024; 145:107-116. [PMID: 38128221 DOI: 10.1016/j.placenta.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/04/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION Uterine spiral artery remodeling is the prerequisite for ensuring adequate blood supply to the maternal-fetal interface during human pregnancy. One crucial cellular event in this process involves the extensive replacement of the spiral artery endothelial cells by endovascular extravillous trophoblasts (enEVTs), a subtype of extravillous trophoblasts (EVTs). However, our understanding of the properties of enEVTs remains limited. METHODS Human enEVTs in decidual tissues during early pregnancy was purified using flow sorting by specific makers, NCAM1 and HLA-G. The high-throughput RNA sequencing analysis as well as the cytokine antibody array experiments were carried out to analyze for cell properties. Gene ontology (GO) enrichment, kyoto encyclopedia of genes and genomes (KEGG) enrichment, and gene set enrichment analysis (GSEA) were performed on differentially expressed genes of enEVTs. Immunofluorescent assays were used to verify the analysis results. RESULTS Both enEVTs and interstitial EVTs (iEVTs) exhibited gene expression patterns typifying EVT characteristics. Intriguingly, enEVTs displayed gene expression associated with immune responses, particularly reminiscent of M2 macrophage characteristics. The active secretion of multiple cytokines and chemokines by enEVTs provided partial validation for their expression pattern of immune-regulatory genes. DISCUSSION Our study reveals the immune-regulatory properties of human enEVTs and provides new insights into their functions and mechanisms involved in spiral artery remodeling.
Collapse
Affiliation(s)
- Yeling Ma
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang, 312000, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xin Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shenglong Ye
- Department of Gynecology and Obstetrics, Peking University Third Hospital, Beijing, China
| | - Wenlong Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qian Yang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Yu-Xia Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongqing Wang
- Department of Gynecology and Obstetrics, Peking University Third Hospital, Beijing, China.
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Chen H, Kapidzic M, Gantar D, Aksel S, Levan J, Abrahamsson DP, Jigmeddagva U, Basrai S, San A, Gaw SL, Woodruff TJ, Fisher SJ, Robinson JF. Perfluorooctanoic acid induces transcriptomic alterations in second trimester human cytotrophoblasts. Toxicol Sci 2023; 196:187-199. [PMID: 37738295 PMCID: PMC10682971 DOI: 10.1093/toxsci/kfad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023] Open
Abstract
Poly- and perfluroroalkylated substances (PFAS) are a major class of surfactants used in industry applications and consumer products. Despite efforts to reduce the usage of PFAS due to their environmental persistence, compounds such as perfluorooctanoic acid (PFOA) are widely detected in human blood and tissue. Although growing evidence supports that prenatal exposures to PFOA and other PFAS are linked to adverse pregnancy outcomes, the target organs and pathways remain unclear. Recent investigations in mouse and human cell lines suggest that PFAS may impact the placenta and impair trophoblast function. In this study, we investigated the effects of PFOA on cytotoxicity and the transcriptome in cultured second trimester human cytotrophoblasts (CTBs). We show that PFOA significantly reduces viability and induces cell death at 24 h, in a concentration-dependent manner. At subcytotoxic concentrations, PFOA impacted expression of hundreds of genes, including several molecules (CRH, IFIT1, and TNFSF10) linked with lipid metabolism and innate immune response pathways. Furthermore, in silico analyses suggested that regulatory factors such as peroxisome proliferator-activated receptor-mediated pathways may be especially important in response to PFOA. In summary, this study provides evidence that PFOA alters primary human CTB viability and gene pathways that could contribute to placental dysfunction and disease.
Collapse
Affiliation(s)
- Hao Chen
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143, USA
| | - Mirhan Kapidzic
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143, USA
| | - Danielle Gantar
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143, USA
| | - Sena Aksel
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143, USA
| | - Justine Levan
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143, USA
| | - Dimitri P Abrahamsson
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143, USA
| | - Unurzul Jigmeddagva
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143, USA
| | - Sanah Basrai
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143, USA
| | - Ali San
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143, USA
| | - Stephanie L Gaw
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143, USA
| | - Susan J Fisher
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143, USA
| | - Joshua F Robinson
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143, USA
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143, USA
| |
Collapse
|
4
|
Su S, Huang Y, Luo W, Li S. The Value of Ultrasonic Elastography in Detecting Placental Stiffness for the Diagnosis of Preeclampsia: A Meta-Analysis. Diagnostics (Basel) 2023; 13:2894. [PMID: 37761261 PMCID: PMC10527587 DOI: 10.3390/diagnostics13182894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
This meta-analysis evaluated the diagnostic value of ultrasonic elastography in detecting placental stiffness in the diagnosis of preeclampsia (PE). A systematic search was conducted in the EMBASE, Web of Science, Cochrane Library, Scopus database, and PubMed databases to identify studies published before June 2023 using ultrasonic elastography to diagnose PE. The sensitivity, specificity, and diagnostic odds ratio of ultrasonic elastography for diagnosing PE were calculated, and a summary receiver operating characteristic curve model was constructed. The degree of heterogeneity was estimated using the I2 statistic, and a meta-regression analysis was performed to explore its sources. A protocol was determined previously (PROSPERO: CRD42023443646). We included 1188 participants from 11 studies, including 190 patients with PE and 998 patients without PE as controls. Overall sensitivity and specificity of ultrasonic elastography in detecting placental stiffness for the diagnosis of PE were 89% (95% CI: 85-93) and 74% (95% CI: 51-89), respectively. The I2 values for sensitivity and specificity were 59% (95% CI: 29-89) and 96% (95% CI: 95-98), respectively. The area under the receiver operating characteristic curve was 0.90 (95% CI: 0.87-0.92). The meta-regression analysis showed no significant heterogeneity. Ultrasonic elastography exhibits good diagnostic accuracy for detecting placental stiffness and can serve as a non-invasive tool for differentially diagnosing PE.
Collapse
Affiliation(s)
- Shanshan Su
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China; (S.S.); (Y.H.)
| | - Yanyan Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China; (S.S.); (Y.H.)
- Department of Reproductive in Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Weiwen Luo
- Department of Ultrasound, Zhangzhou Hospital, Zhangzhou 363000, China;
| | - Shaohui Li
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China; (S.S.); (Y.H.)
| |
Collapse
|
5
|
Kanda T, Kagami K, Iizuka T, Kasama H, Matsumoto T, Sakai Y, Suzuki T, Yamamoto M, Matsuoka A, Yamazaki R, Hattori A, Horie A, Daikoku T, Ono M, Fujiwara H. Spheroid formation induces chemokine production in trophoblast-derived Swan71 cells. Am J Reprod Immunol 2023; 90:e13752. [PMID: 37491922 DOI: 10.1111/aji.13752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023] Open
Abstract
PROBLEM In the cell column of anchoring villi, the cytotrophoblast differentiates into extravillous trophoblast (EVT) and invades the endometrium in contact with maternal immune cells. Recently, chemokines were proposed to regulate the decidual immune response. To investigate the roles of chemokines around the anchoring villi, we examined the expression profiles of chemokines in the first-trimester trophoblast-derived Swan71 cells using a three-dimensional culture model. METHOD OF STUDY The gene expressions in the spheroid-formed Swan71 cells were examined by microarray and qPCR analyses. The protein expressions were examined by immunochemical staining. The chemoattractant effects of spheroid-formed Swan71 cells were examined by migration assay using monocyte-derived THP-1 cells. RESULTS The expressions of an EVT marker, laeverin, and matrix metalloproteases, MMP2 and MMP9, were increased in the spheroid-cultured Swan71 cells. Microarray and qPCR analysis revealed that mRNA expressions of various chemokines, CCL2, CCL7, CCL20, CXCL1, CXCL2, CXCL5, CXCL6, CXCL8, and CXCL10, in the spheroid-cultured Swan71 cells were up-regulated as compared with those in the monolayer-cultured Swan71 cells. These expressions were significantly suppressed by hypoxia. Migration assay showed that culture media derived from the spheroid-formed Swan71 cells promoted THP-1 cell migration. CONCLUSION This study indicated that chemokine expressions in Swan71 cells increase under a spheroid-forming culture and the culture media have chemoattractant effects. Since three-dimensional cell assembling in the spheroid resembles the structure of the cell column, this study also suggests that chemokines play important roles in the interaction between EVT and immune cells in their early differentiation stage.
Collapse
Affiliation(s)
- Tatsuhito Kanda
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kyosuke Kagami
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takashi Iizuka
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Haruki Kasama
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takeo Matsumoto
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuya Sakai
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takuma Suzuki
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Megumi Yamamoto
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Ayumi Matsuoka
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Rena Yamazaki
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Akira Hattori
- Department of System Chemotherapy and Molecular Sciences, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan
| | - Akihito Horie
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takiko Daikoku
- Division of Animal Disease Model, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masanori Ono
- Department of Obstetrics and Gynecology, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
6
|
Gumina DL, Su EJ. Mechanistic insights into the development of severe fetal growth restriction. Clin Sci (Lond) 2023; 137:679-695. [PMID: 37186255 PMCID: PMC10241202 DOI: 10.1042/cs20220284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/28/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Fetal growth restriction (FGR), which most commonly results from suboptimal placental function, substantially increases risks for adverse perinatal and long-term outcomes. The only "treatment" that exists is delivery, which averts stillbirth but does not improve outcomes in survivors. Furthermore, the potential long-term consequences of FGR to the fetus, including cardiometabolic disorders, predispose these individuals to developing FGR in their future pregnancies. This creates a multi-generational cascade of adverse effects stemming from a single dysfunctional placenta, and understanding the mechanisms underlying placental-mediated FGR is critically important if we are to improve outcomes and overall health. The mechanisms behind FGR remain unknown. However, placental insufficiency derived from maldevelopment of the placental vascular systems is the most common etiology. To highlight important mechanistic interactions within the placenta, we focus on placental vascular development in the setting of FGR. We delve into fetoplacental angiogenesis, a robust and ongoing process in normal pregnancies that is impaired in severe FGR. We review cellular models of FGR, with special attention to fetoplacental angiogenesis, and we highlight novel integrin-extracellular matrix interactions that regulate placental angiogenesis in severe FGR. In total, this review focuses on key developmental processes, with specific focus on the human placenta, an underexplored area of research.
Collapse
Affiliation(s)
- Diane L Gumina
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, CO, U.S.A
| | - Emily J Su
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, CO, U.S.A
| |
Collapse
|
7
|
Sun XL, Zhao J, Leng Z, Lin H, Huang Y. Low Expression Levels of CXCL12, CXCR4, and CXCR 7 in Peripheral Blood and Decidual Tissues are Associated with Miscarriage in Women. Immunol Invest 2022; 51:2053-2065. [PMID: 35912820 DOI: 10.1080/08820139.2022.2106871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Miscarriage can cause significant physical and psychological harm to women. The stromal cell-derived factor 1 (SDF-1, also known as CXCL12)/C-X-C motif chemokine receptor 4 (CXCR4) and C-X-C motif chemokine receptor 7 (CXCR7) axis can promote the proliferation and invasion of trophoblast cells in early pregnancy, and maintain immune tolerance at the maternal-fetal interface to aid with pregnancy success. From our findings, the serum CXCL12 level of women who have miscarried (n = 25) was significantly lower than that of healthy early pregnancy women (n = 20) by ELISA (P < .001). Additionally, CXCL12 levels in normal non-pregnant women (n = 20) were significantly lower than those in early pregnancy women (P < .001) and women who have miscarried (P < .001). Quantitative real-time PCR detected no significant difference in the mRNA transcription levels of CXCR4 and CXCR7 in the decidua tissues of women with early pregnancy (n = 20) and miscarriage (n = 20) (P = .724, P = .281, respectively). However, Western blot and immunohistochemistry of CXCR4 and CXCR7 in decidual tissue of women who have miscarried (n = 20) were significantly lower than those in early pregnancy women (n = 20) (P < .05 for both). Therefore, we believe that the increased serum CXCL12 levels in pregnant offspring may benefit normal pregnancy maintenance. The low level of CXCL12 in peripheral blood and the low expression of CXCR4 and CXCR7 proteins in decidua may be associated with the occurrence of early spontaneous abortion, and the clinical application value of serum CXCL12 in predicting adverse pregnancy outcomes is worth further exploring.
Collapse
Affiliation(s)
- Xian-Li Sun
- Department of Obstetrics and Gynecology, Qingdao Women and Children's Hospital, Shandong University, Qingdao, Shandong, P.R. China
| | - Jing Zhao
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, Shandong, P.R. China
| | - Zhe Leng
- Department of Obstetrics and Gynecology, Qingdao Women and Children's Hospital, Shandong University, Qingdao, Shandong, P.R. China
| | - Hui Lin
- Department of Obstetrics and Gynecology, Qingdao Women and Children's Hospital, Shandong University, Qingdao, Shandong, P.R. China
| | - Yu Huang
- Department of Obstetrics and Gynecology, Qingdao Women and Children's Hospital, Shandong University, Qingdao, Shandong, P.R. China
| |
Collapse
|
8
|
Zhang L, Mamillapalli R, Habata S, McAdow M, Taylor HS. Myometrial-derived CXCL12 promotes lipopolysaccharide induced preterm labour by regulating macrophage migration, polarization and function in mice. J Cell Mol Med 2022; 26:2566-2578. [PMID: 35318804 PMCID: PMC9077289 DOI: 10.1111/jcmm.17252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/23/2022] [Accepted: 02/11/2022] [Indexed: 12/18/2022] Open
Abstract
Preterm birth is a major contributor to neonatal mortality and morbidity. Infection results in elevation of inflammation-related cytokines followed by infiltration of immune cells into gestational tissue. CXCL12 levels are elevated in preterm birth indicating it may have a role in preterm labour (PTL); however, the pathophysiological correlations between CXCL12/CXCR4 signalling and premature labour are poorly understood. In this study, PTL was induced using lipopolysaccharide (LPS) in a murine model. LPS induced CXCL12 RNA and protein levels significantly and specifically in myometrium compared with controls (3-fold and 3.5-fold respectively). Highest levels were found just before the start of labour. LPS also enhanced the infiltration of neutrophils, macrophages and T cells, and induced macrophage M1 polarization. In vitro studies showed that condition medium from LPS-treated primary smooth muscle cells (SMC) induced macrophage migration, M1 polarization and upregulated inflammation-related cytokines such as interleukin (IL)-1, IL-6 and tumor necrosis factor alpha (TNF-α). AMD3100 treatment in pregnant mice led to a significant decrease in the rate of PTL (70%), prolonged pregnancy duration and suppressed macrophage infiltration into gestation tissue by 2.5-fold. Further, in-vitro treatment of SMC by AMD3100 suppressed the macrophage migration, decreased polarization and downregulated IL-1, IL-6 and TNF-α expression. LPS treatment in pregnant mice induced PTL by increasing myometrial CXCL12, which recruits immune cells that in turn produce inflammation-related cytokines. These effects stimulated by LPS were completely reversed by AMD3100 through blocking of CXCL12/CXCR4 signalling. Thus, the CXCL12/CXCR4 axis presents an excellent target for preventing infection and inflammation-related PTL.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Obstetrics, Gynecology, and Reproductive SciencesYale School of MedicineNew HavenConnecticutUSA
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology, and Reproductive SciencesYale School of MedicineNew HavenConnecticutUSA
| | - Shutaro Habata
- Department of Obstetrics, Gynecology, and Reproductive SciencesYale School of MedicineNew HavenConnecticutUSA
| | - Molly McAdow
- Department of Obstetrics, Gynecology, and Reproductive SciencesYale School of MedicineNew HavenConnecticutUSA
| | - Hugh S. Taylor
- Department of Obstetrics, Gynecology, and Reproductive SciencesYale School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
9
|
Dynamic genome-wide gene expression and immune cell composition in the developing human placenta. J Reprod Immunol 2022; 151:103624. [DOI: 10.1016/j.jri.2022.103624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/23/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022]
|
10
|
Fournier SB, D'Errico JN, Stapleton PA. Uterine Vascular Control Preconception and During Pregnancy. Compr Physiol 2021; 11:1871-1893. [PMID: 34061977 DOI: 10.1002/cphy.c190015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Successful pregnancy and reproduction are dependent on adequate uterine blood flow, placental perfusion, and vascular responsivity to fetal demands. The ability to support pregnancy centers on systemic adaptation and endometrial preparation through decidualization, embryonic implantation, trophoblast invasion, arterial/arteriolar reactivity, and vascular remodeling. These adaptations occur through responsiveness to endocrine signaling and local uteroplacental mediators. The purpose of this article is to highlight the current knowledge associated with vascular remodeling and responsivity during uterine preparation for and during pregnancy. We focus on maternal cardiovascular systemic and uterine modifications, endometrial decidualization, implantation and invasion, uterine and spiral artery remodeling, local uterine regulatory mechanisms, placentation, and pathological consequences of vascular dysfunction during pregnancy. © 2021 American Physiological Society. Compr Physiol 11:1-23, 2021.
Collapse
Affiliation(s)
- Sara B Fournier
- Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey, USA
| | - Jeanine N D'Errico
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Phoebe A Stapleton
- Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey, USA.,Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
11
|
Non-invasive Embryo Assessment: Altered Individual Protein Profile in Spent Culture Media from Embryos Transferred at Day 5. Reprod Sci 2020; 28:1866-1873. [PMID: 33151525 DOI: 10.1007/s43032-020-00362-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
In order to improve ART outcome, non-invasive embryo assessment is gaining more and more attention. Therefore, the aim of this study is to determine the consecutive implantation potential via the secretome between blastocysts with or without implantation and to analyse possible interactions between these differentially expressed proteins. In this prospective study, 69 spent culture media from blastocysts transferred at day 5 were collected from patients undergoing IVF/ICSI treatment in a single IVF centre between April 2015 and November 2018 after informed consent and analysed individually. Exclusion criteria were the absence of informed consent, PCOS, endometriosis and maternal age > 42 years. Dependent on the treatment outcome, media were subsequently divided into two groups: from embryos who implanted successfully (n = 37) and from embryos without implantation (n = 32). Ninety-two proteins were measured simultaneously using the proximity extension assay (PEA) technology with the Olink® CVD III panel employing oligonucleotide-labelled antibodies. Statistical analysis was performed using the Kolmogorov-Smirnov test, Student's t test, the Mann-Whitney U test and Fisher's exact test. Media from implanted blastocysts showed significantly higher expression of EPHB4, ALCAM, CSTB, BMH, TIMP4, CCL24, SELE, FAS, JAM-A, PON3, PDGF-A, vWF and PECAM-1 compared with media from blastocysts without subsequent implantation. The highest relative expression change could be demonstrated for PECAM-1 and TIMP4. PECAM-1, SELE and vWF were co-expressed. Especially EPHB 4, SELE, ALCAM, MCP-1, CCL24, FAS, JAM-A and PDGF-A have already been described in early embryonic development and metabolism. Therefore, these proteins together with PECAM-1 indicate possible biomarkers for non-invasive embryo assessment in the future. However, due to the innovative methodology, defining a threshold for the use as biomarkers remains to be assessed.
Collapse
|
12
|
Adu-Gyamfi EA, Czika A, Liu TH, Gorleku PN, Fondjo LA, Djankpa FT, Ding YB, Wang YX. Ephrin and Eph receptor signaling in female reproductive physiology and pathology†. Biol Reprod 2020; 104:71-82. [PMID: 32940657 DOI: 10.1093/biolre/ioaa171] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/19/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
Ephrins are ligands of Eph receptors (Ephs); both of which are sorted into two classes, A and B. There are five types of ephrin-As (ephrin-A1-5) and three types of ephrin-Bs (ephrin-B1-3). Also, there are 10 types of EphAs (EphA1-10) and six types of EphBs (EphB1-6). Binding of ephrins to the Eph receptors activates signaling cascades that regulate several biological processes such as cellular proliferation, differentiation, migration, angiogenesis, and vascular remodeling. Clarification of their roles in the female reproductive system is crucial to understanding the physiology and pathology of this system. Such knowledge will also create awareness regarding the importance of these molecules in diagnostic, prognostic, and therapeutic medicine. Hence, we have discussed the involvement of these molecules in the physiological and pathological events that occur within the female reproductive system. The evidence so far suggests that the ephrins and the Eph receptors modulate folliculogenesis, ovulation, embryo transport, implantation, and placentation. Abnormal expression of some of these molecules is associated with polycystic ovarian syndrome, ovarian cancer, tubal pregnancy, endometrial cancer, uterine leiomyoma (fibroids), cervical cancer, and preeclampsia, suggesting the need to utilize these molecules in the clinical setting. To enhance a quick development of this gradually emerging field in female reproductive medicine, we have highlighted some "gaps in knowledge" that need prospective investigation.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Armin Czika
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Tai-Hang Liu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Philip Narteh Gorleku
- Department of Medical Imaging, School of Medical Sciences, University of Cape Coast, Cape Coast, Republic of Ghana
| | - Linda Ahenkorah Fondjo
- Department of Molecular Medicine, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Republic of Ghana
| | - Francis Tanam Djankpa
- Department of Physiology, School of Medical Sciences, University of Cape Coast, Cape Coast, Republic of Ghana
| | - Yu-Bin Ding
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ying-Xiong Wang
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
13
|
Taylor SK, Houshdaran S, Robinson JF, Gormley MJ, Kwan EY, Kapidzic M, Schilling B, Giudice LC, Fisher SJ. Cytotrophoblast extracellular vesicles enhance decidual cell secretion of immune modulators via TNFα. Development 2020; 147:dev.187013. [PMID: 32747437 DOI: 10.1242/dev.187013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022]
Abstract
The placenta releases large quantities of extracellular vesicles (EVs) that likely facilitate communication between the embryo/fetus and the mother. We isolated EVs from second trimester human cytotrophoblasts (CTBs) by differential ultracentrifugation and characterized them using transmission electron microscopy, immunoblotting and mass spectrometry. The 100,000 g pellet was enriched for vesicles with a cup-like morphology typical of exosomes. They expressed markers specific to this vesicle type, CD9 and HRS, and the trophoblast proteins placental alkaline phosphatase and HLA-G. Global profiling by mass spectrometry showed that placental EVs were enriched for proteins that function in transport and viral processes. A cytokine array revealed that the CTB 100,000 g pellet contained a significant amount of tumor necrosis factor α (TNFα). CTB EVs increased decidual stromal cell (dESF) transcription and secretion of NF-κB targets, including IL8, as measured by qRT-PCR and cytokine array. A soluble form of the TNFα receptor inhibited the ability of CTB 100,000 g EVs to increase dESF secretion of IL8. Overall, the data suggest that CTB EVs enhance decidual cell release of inflammatory cytokines, which we theorize is an important component of successful pregnancy.
Collapse
Affiliation(s)
- Sara K Taylor
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Sahar Houshdaran
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Joshua F Robinson
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Matthew J Gormley
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Elaine Y Kwan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Mirhan Kapidzic
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Birgit Schilling
- Chemistry & Mass Spectrometry, Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Linda C Giudice
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Susan J Fisher
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA .,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.,Division of Maternal Fetal Medicine, University of California, San Francisco, CA 94143, USA.,Department of Anatomy, University of California, San Francisco, CA 94143, USA.,Human Embryonic Stem Cell Program, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
14
|
Up-regulated cytotrophoblast DOCK4 contributes to over-invasion in placenta accreta spectrum. Proc Natl Acad Sci U S A 2020; 117:15852-15861. [PMID: 32576693 PMCID: PMC7355036 DOI: 10.1073/pnas.1920776117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The syndrome of cytotrophoblast invasion beyond the normal boundary (in the superficial myometrium) is collectively termed placenta accreta spectrum. The incidence of this condition is rising. However, little is known about the underlying molecular changes. Global transcriptomic profiling of cytotrophoblasts isolated from these cases, as compared to gestational age-matched controls, revealed numerous changes in gene expression involving diverse pathways, including cell signaling, migration, and immune functions. DOCK4 was the most highly up-regulated mRNA in the cases. Mutations in this gene are mechanistically linked to cancer progression. Overexpression of DOCK4 in primary cytotrophoblasts increased their invasiveness. This study provides molecular insights into the pathways driving placenta accreta spectrum and suggests numerous future directions. In humans, a subset of placental cytotrophoblasts (CTBs) invades the uterus and its vasculature, anchoring the pregnancy and ensuring adequate blood flow to the fetus. Appropriate depth is critical. Shallow invasion increases the risk of pregnancy complications, e.g., severe preeclampsia. Overly deep invasion, the hallmark of placenta accreta spectrum (PAS), increases the risk of preterm delivery, hemorrhage, and death. Previously a rare condition, the incidence of PAS has increased to 1:731 pregnancies, likely due to the rise in uterine surgeries (e.g., Cesarean sections). CTBs track along scars deep into the myometrium and beyond. Here we compared the global gene expression patterns of CTBs from PAS cases to gestational age-matched control cells that invaded to the normal depth from preterm birth (PTB) deliveries. The messenger RNA (mRNA) encoding the guanine nucleotide exchange factor, DOCK4, mutations of which promote cancer cell invasion and angiogenesis, was the most highly up-regulated molecule in PAS samples. Overexpression of DOCK4 increased CTB invasiveness, consistent with the PAS phenotype. Also, this analysis identified other genes with significantly altered expression in this disorder, potential biomarkers. These data suggest that CTBs from PAS cases up-regulate a cancer-like proinvasion mechanism, suggesting molecular as well as phenotypic similarities in the two pathologies.
Collapse
|
15
|
Ao D, Li DJ, Li MQ. CXCL12 in normal and pathological pregnancies: A review. Am J Reprod Immunol 2020; 84:e13280. [PMID: 32485053 DOI: 10.1111/aji.13280] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 12/27/2022] Open
Abstract
The survival of allogeneic fetuses during pregnancy is a rather paradoxical phenomenon with a complex mechanism. Chemokine ligand12 (CXCL12) and its receptors CXC chemokine receptor (CXCR)4 and 7 are extensively found in placenta tissues and cells, including trophoblast cells, vascular endothelial cells, and decidual stromal and decidual immune cells (eg, NK cells and regulatory T cells). Evidence has illustrated that the CXClL12/CXCR4/CXCR7 axis could enhance the cross talk at the maternal-fetal interface through multiple processes, such as invasion and placental angiogenesis, which appears to be critical signaling components in placentation and fetal outcome. In addition, an increasing number of studies have demonstrated that the CXCL12/CXCR4/CXCR7 axis also stands out for its pleiotropic roles in several pregnancy-associated diseases (eg, recurrent spontaneous abortion (RSA), pre-eclampsia (PE), and preterm labor). In the present review, the different biological properties and signaling in physiological and pathological pregnancy conditions of CXCL12/CXCR4/CXCR7 axis were discussed, with the aim of obtaining a further understanding of the regulatory mechanisms and highlighting their potential as a target for therapeutic approaches.
Collapse
Affiliation(s)
- Deng Ao
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Robinson JF, Kapidzic M, Hamilton EG, Chen H, Puckett KW, Zhou Y, Ona K, Parry E, Wang Y, Park JS, Costello JF, Fisher SJ. Genomic Profiling of BDE-47 Effects on Human Placental Cytotrophoblasts. Toxicol Sci 2019; 167:211-226. [PMID: 30202865 DOI: 10.1093/toxsci/kfy230] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Despite gradual legislative efforts to phase out flame retardants (FRs) from the marketplace, polybrominated diphenyl ethers (PBDEs) are still widely detected in human maternal and fetal tissues, eg, placenta, due to their continued global application in consumer goods and inherent biological persistence. Recent studies in rodents and human placental cell lines suggest that PBDEs directly cause placental toxicity. During pregnancy, trophoblasts play key roles in uterine invasion, vascular remodeling, and anchoring of the placenta-fetal unit to the mother. Thus, to study the potential consequences of PBDE exposures on human placental development, we used an in vitro model: primary villous cytotrophoblasts (CTBs). Following exposures, the endpoints that were evaluated included cytotoxicity, function (migration, invasion), the transcriptome, and the methylome. In a concentration-dependent manner, common PBDE congeners, BDE-47 and -99, significantly reduced cell viability and increased death. Upon exposures to sub-cytotoxic concentrations (≤ 5 µM), we observed BDE-47 accumulation in CTBs with limited evidence of metabolism. At a functional level, BDE-47 hindered the ability of CTBs to migrate and invade. Transcriptomic analyses of BDE-47 effects suggested concentration-dependent changes in gene expression, involving stress pathways, eg, inflammation and lipid/cholesterol metabolism as well as processes underlying trophoblast fate, eg, differentiation, migration, and vascular morphogenesis. In parallel assessments, BDE-47 induced low-level global increases in methylation of CpG islands, including a subset that were proximal to genes with roles in cell adhesion/migration. Thus, using a primary human CTB model, we showed that PBDEs induced alterations at cellular and molecular levels, which could adversely impact placental development.
Collapse
Affiliation(s)
- Joshua F Robinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143
| | - Mirhan Kapidzic
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143
| | - Emily G Hamilton
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143
| | - Hao Chen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143
| | - Kenisha W Puckett
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143
| | - Yan Zhou
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143
| | - Katherine Ona
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143
| | - Emily Parry
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, California 94710
| | - Yunzhu Wang
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, California 94710
| | - June-Soo Park
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, California 94710
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco (UCSF), San Francisco, California 94158
| | - Susan J Fisher
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143
| |
Collapse
|
17
|
Hu XQ, Zhang L. MicroRNAs in Uteroplacental Vascular Dysfunction. Cells 2019; 8:E1344. [PMID: 31671866 PMCID: PMC6912833 DOI: 10.3390/cells8111344] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Pregnancy complications of preeclampsia and intrauterine growth restriction (IUGR) are major causes of maternal and perinatal/neonatal morbidity and mortality. Although their etiologies remain elusive, it is generally accepted that they are secondary to placental insufficiency conferred by both failure in spiral artery remodeling and uteroplacental vascular malfunction. MicroRNAs (miRNAs) are small no-coding RNA molecules that regulate gene expression at the post-transcriptional level. Increasing evidence suggests that miRNAs participate in virtually all biological processes and are involved in numerous human diseases. Differentially expressed miRNAs in the placenta are typical features of both preeclampsia and IUGR. Dysregulated miRNAs target genes of various signaling pathways in uteroplacental tissues, contributing to the development of both complications. In this review, we provide an overview of how aberrant miRNA expression in preeclampsia and IUGR impacts the expression of genes involved in trophoblast invasion and uteroplacental vascular adaptation.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| |
Collapse
|
18
|
Shi Z, Liu B, Li Y, Liu F, Yuan X, Wang Y. MicroRNA-652-3p promotes the proliferation and invasion of the trophoblast HTR-8/SVneo cell line by targeting homeobox A9 to modulate the expression of ephrin receptor B4. Clin Exp Pharmacol Physiol 2019; 46:587-596. [PMID: 30839116 DOI: 10.1111/1440-1681.13080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) are emerging as novel modulators in the pathogenesis of preeclampsia (PE). Multiple miRNAs have been shown to regulate the proliferation and invasion of trophoblast cells, which play a critical role in successful pregnancies. miR-652-3p has been identified as a novel disease-associated miRNA that is dysregulated in various pathological processes. However, whether miR-652-3p is dysregulated in PE and regulates the cellular function of trophoblast cells remains unknown. In the present study, we aimed to investigate the expression pattern of miR-652-3p in PE and explore its potential function in trophoblast cells. Herein, we found that miR-652-3p expression was significantly decreased in the placental tissues of pregnant women with PE. Cellular function experiments showed that overexpression of miR-652-3p promoted the viability, proliferation, and invasion of trophoblast cells in vitro. By contrast, inhibition of miR-652-3p had the opposite effect. Bioinformatics analysis predicted that homeobox A9 (HOXA9), a crucial regulator of trophoblast cell function, was a potential target gene of miR-652-3p. A luciferase reporter assay confirmed that miR-652-3p directly interacted with the 3'-untranslated region of HOXA9. Moreover, miR-652-3p was shown to negatively regulate the expression of HOXA9 and ephrin receptor B4 (EphB4) in trophoblast cells. Notably, overexpression of HOXA9 or EphB4 significantly reversed the regulatory effect of miR-652-3p on proliferation and invasion of trophoblast cells. Taken together, our findings demonstrate that miR-652-3p regulates the proliferation and invasion of trophoblast cells, possibly through targeting HOXA9 and modulating EphB4 expression.
Collapse
Affiliation(s)
- Ziyun Shi
- Department of Obstetrics, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Bo Liu
- Department of Clinical Laboratory, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanchuan Li
- Department of Obstetrics, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feifei Liu
- Department of Obstetrics, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaohua Yuan
- Department of Obstetrics, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yaqin Wang
- Department of Obstetrics, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
19
|
Skalis G, Katsi V, Miliou A, Georgiopoulos G, Papazachou O, Vamvakou G, Nihoyannopoulos P, Tousoulis D, Makris T. MicroRNAs in Preeclampsia. Microrna 2019; 8:28-35. [PMID: 30101723 DOI: 10.2174/2211536607666180813123303] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/22/2018] [Accepted: 07/27/2018] [Indexed: 11/22/2022]
Abstract
Preeclampsia (PE) continues to represent a worldwide problem and challenge for both clinicians and laboratory-based doctors. Despite many efforts, the knowledge acquired regarding its pathogenesis and pathophysiology does not allow us to treat it efficiently. It is not possible to arrest its progressive nature, and the available therapies are limited to symptomatic treatment. Furthermore, both the diagnosis and prognosis are frequently uncertain, whilst the ability to predict its occurrence is very limited. MicroRNAs are small non-coding RNAs discovered two decades ago, and present great interest given their ability to regulate almost every aspect of the cell function. A lot of evidence regarding the role of miRNAs in pre-eclampsia has been accumulated in the last 10 years. Differentially expressed miRNAs are characteristic of both mild and severe PE. In many cases they target signaling pathway-related genes that result in altered processes which are directly involved in PE. Immune system, angiogenesis and trophoblast proliferation and invasion, all fundamental aspects of placentation, are controlled in various degrees by miRNAs which are up- or downregulated. Finally, miRNAs represent a potential therapeutic target and a diagnostic tool.
Collapse
Affiliation(s)
- Georgios Skalis
- Department of Cardiology, Helena Venizelou Hospital, Athens, Greece
| | - Vasiliki Katsi
- Cardiology Department, Hippokration Hospital, National Health System, Athens, Greece
| | - Antigoni Miliou
- 1st Department of Cardiology, Hippokration Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | | | | | - Georgia Vamvakou
- Department of Cardiology, Helena Venizelou Hospital, Athens, Greece
| | - Petros Nihoyannopoulos
- 1st Department of Cardiology, Hippokration Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tousoulis
- 1st Department of Cardiology, Hippokration Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | - Thomas Makris
- Department of Cardiology, Helena Venizelou Hospital, Athens, Greece
| |
Collapse
|
20
|
Suryawanshi H, Morozov P, Straus A, Sahasrabudhe N, Max KEA, Garzia A, Kustagi M, Tuschl T, Williams Z. A single-cell survey of the human first-trimester placenta and decidua. SCIENCE ADVANCES 2018; 4:eaau4788. [PMID: 30402542 PMCID: PMC6209386 DOI: 10.1126/sciadv.aau4788] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/24/2018] [Indexed: 05/21/2023]
Abstract
The placenta and decidua interact dynamically to enable embryonic and fetal development. Here, we report single-cell RNA sequencing of 14,341 and 6754 cells from first-trimester human placental villous and decidual tissues, respectively. Bioinformatic analysis identified major cell types, many known and some subtypes previously unknown in placental villi and decidual context. Further detailed analysis revealed proliferating subpopulations, enrichment of cell type-specific transcription factors, and putative intercellular communication in the fetomaternal microenvironment. This study provides a blueprint to further the understanding of the roles of these cells in the placenta and decidua for maintenance of early gestation as well as pathogenesis in pregnancy-related disorders.
Collapse
Affiliation(s)
- Hemant Suryawanshi
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave., Box 186, New York, NY 10065, USA
| | - Pavel Morozov
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave., Box 186, New York, NY 10065, USA
| | - Alexander Straus
- Department of Obstetrics and Gynecology, Columbia University Medical Center, 630 W 168th St., New York, NY 10032, USA
| | - Nicole Sahasrabudhe
- Department of Obstetrics and Gynecology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Klaas E. A. Max
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave., Box 186, New York, NY 10065, USA
| | - Aitor Garzia
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave., Box 186, New York, NY 10065, USA
| | - Manjunath Kustagi
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave., Box 186, New York, NY 10065, USA
| | - Thomas Tuschl
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave., Box 186, New York, NY 10065, USA
- Corresponding author. (T.T.); (Z.W.)
| | - Zev Williams
- Department of Obstetrics and Gynecology, Columbia University Medical Center, 630 W 168th St., New York, NY 10032, USA
- Corresponding author. (T.T.); (Z.W.)
| |
Collapse
|
21
|
Fu Y, Li L, Fang X, Li B, Zhao W, Zhou L, Ren S. Investigation of Eph‐ephrin A1 in the regulation of embryo implantation in sows. Reprod Domest Anim 2018; 53:1563-1574. [DOI: 10.1111/rda.13308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/30/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Yanfeng Fu
- Institute of Animal Science/Key Laboratory of Animal Breed Improvement and reproduction/Jiangsu Germplasm Resources Protection and Utilization Platform Jiangsu Academy of Agricultural Sciences Nanjing China
- Key Laboratory of Crop and Livestock Integrated FarmingMinistry of Agriculture and Rural Affairs Nanjing China
| | - Lan Li
- Institute of Animal Immune Engineering Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Xiaomin Fang
- Institute of Animal Science/Key Laboratory of Animal Breed Improvement and reproduction/Jiangsu Germplasm Resources Protection and Utilization Platform Jiangsu Academy of Agricultural Sciences Nanjing China
- Key Laboratory of Crop and Livestock Integrated FarmingMinistry of Agriculture and Rural Affairs Nanjing China
| | - Bixia Li
- Institute of Animal Science/Key Laboratory of Animal Breed Improvement and reproduction/Jiangsu Germplasm Resources Protection and Utilization Platform Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Weimin Zhao
- Institute of Animal Science/Key Laboratory of Animal Breed Improvement and reproduction/Jiangsu Germplasm Resources Protection and Utilization Platform Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Lisheng Zhou
- Institute of Animal Science/Key Laboratory of Animal Breed Improvement and reproduction/Jiangsu Germplasm Resources Protection and Utilization Platform Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Shouwen Ren
- Institute of Animal Science/Key Laboratory of Animal Breed Improvement and reproduction/Jiangsu Germplasm Resources Protection and Utilization Platform Jiangsu Academy of Agricultural Sciences Nanjing China
| |
Collapse
|
22
|
Wang F, Yan J. MicroRNA-454 is involved in regulating trophoblast cell proliferation, apoptosis, and invasion in preeclampsia by modulating the expression of ephrin receptor B4. Biomed Pharmacother 2018; 107:746-753. [PMID: 30138897 DOI: 10.1016/j.biopha.2018.08.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 08/02/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022] Open
Abstract
Preeclampsia (PE) is a pregnancy-specific disorder representing a major cause for maternal and perinatal morbidity and mortality. The dysfunction of trophoblast cells plays an important role in the pathogenesis of PE. In recent years, microRNAs (miRNAs) have been suggested to play an important role in regulating trophoblast cell biological functions involved in the pathogenesis of PE. Accumulating evidence has showed that miR-454 plays an important role in regulating cell functions. However, whether miR-454 is involved in regulating cell functions of trophoblast cells during PE remains unclear. In this study, we found that miR-454 expression was significantly downregulated in placental tissues from PE patients. in vitro experiments showed that miR-454 overexpression significantly increased proliferation, inhibited apoptosis, and promoted invasion of trophoblast cells, whereas miR-454 inhibition markedly suppressed proliferation, increased apoptosis, and inhibited invasion of trophoblast cells. Interestingly, bioinformatics analysis predicted that ephrin receptor B4 (EPHB4), an important gene for regulating trophoblast cell function in PE, was a potential target gene of miR-454. Dual-luciferase reporter assay showed that miR-454 directly targeted the 3'-untranslated region of EPHB4. Real-time quantitative polymerase chain reaction and Western blot analysis demonstrated that miR-454 negatively regulated EPHB4 expression in trophoblast cells. Moreover, miR-454 expression was found inversely correlated with EPHB4 expression in placental tissues from PE patients. Importantly, EPHB4 overexpression partially reversed the promotion effect of miR-454 overexpression on trophoblast cell proliferation and invasion. Taken together, these findings demonstrate that miR-454 promotes the proliferation and invasion of trophoblast cells by inhibiting EPHB4 expression, and the decreased miR-454 expression may contribute to PE by promoting EPHB4 expression. Our study provides novel insights into understanding the molecular pathogenesis of PE.
Collapse
Affiliation(s)
- Furong Wang
- Department of Obstetrics, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China.
| | - Jin Yan
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| |
Collapse
|
23
|
Abstract
Why certain viruses cross the physical barrier of the human placenta but others do not is incompletely understood. Over the past 20 years, we have gained deeper knowledge of intrauterine infection and routes of viral transmission. This review focuses on human viruses that replicate in the placenta, infect the fetus, and cause birth defects, including rubella virus, varicella-zoster virus, parvovirus B19, human cytomegalovirus (CMV), Zika virus (ZIKV), and hepatitis E virus type 1. Detailed discussions include ( a) the architecture of the uterine-placental interface, ( b) studies of placental explants ex vivo that provide insights into the infection and spread of CMV and ZIKV to the fetal compartment and how these viruses undermine early development, and ( c) novel treatments and vaccines that limit viral replication and have the potential to reduce dissemination, vertical transmission and the occurrence of congenital disease.
Collapse
Affiliation(s)
- Lenore Pereira
- Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, California 94143, USA;
| |
Collapse
|
24
|
Fu Y, Knox RV, Li L, Ren S. Differential gene expression of Eph-ephrin A1 and LEPR-LEP with high or low number of embryos in pigs during implantation. Reprod Domest Anim 2018; 53:937-946. [PMID: 29740882 DOI: 10.1111/rda.13192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 03/22/2018] [Indexed: 12/26/2022]
Abstract
The objective of this study was to ascertain whether mRNA and protein expressions of implantation-related genes (erythropoietin-producing hepatocellular receptor-ligand A1, Eph-ephrin A1 and leptin receptor-leptin, LEPR-LEP) differed between pigs with high and low number of embryos, and whether these differences in gene expression might affect embryo implantation. Experimental pig groups (n = 24) for high and low number of embryos were prepared by altering the number of eggs ovulated in pre-pubertal gilts treated with 1.5 × (High) or 1.0 × (Low) PG600 ([400 IU PMSG + 200 IU hCG]/dose, AKZO-NOBEL). Gilts expressing oestrus were artificially inseminated twice and maintained in breeding and gestation until the reproductive tract was collected on day 22 of pregnancy. At slaughter, the reproductive tracts from each pregnant gilt from each treatment were immediately processed to collect samples for RNA and protein analysis. Within each gilt, three conceptus points were sampled, one from each horn and then a random conceptus within the tract. At each conceptus point, endometrial attachment site, chorion-allantois and embryo were collected and immediately frozen in liquid nitrogen. Number of corpus luteum (CL) (35.4 vs. 12.6) and total embryo number (18.8 vs. 10.2) were greater in the high-embryo compared to the low-embryo group, respectively (p < .05). Real-time qPCR results showed that Eph-ephrin A1 mRNA expression was less in the high-embryo (p < .05) compared to the low-embryo group. In addition, Western blotting analysis indicated that Eph-ephrin A1 and LEP protein expression at endometrial attachment site in high-embryo was less (p < .05) compared to low-embryo group. It was also noted that mRNA expression of Eph-ephrin A1 and LEPR-LEP was greater in pregnant than non-pregnant gilts (p < .05). Moreover, mRNA expression of Eph-ephrin A1 (p < .05) and LEPR-LEP was greatest at endometrial attachment site among all three tissues. There was a positive correlation between expressions of Eph-ephrin A1, LEPR-LEP and embryo length with the correlation coefficient 0.31-0.59. For Eph-ephrin A1, the highest correlation coefficient appeared between Eph A1 expression and normal embryo number, between ephrin A1 expression and embryo length. For LEPR-LEP, the highest correlation coefficient appeared between LEPR-LEP expression and ovary weight (0.79 for both, p < .05), followed by embryo length and weight. The results of this study suggest that low expression of Eph-ephrin A1 and LEPR-LEP is somehow related to increased embryo number during implantation and that endometrial attachment site might be the main target tissue of these gene products. Yet, the increased expression of Eph-ephrin A1 and LEPR-LEP appeared associated with increased embryo growth (length and weight) and ovary weight, Eph-ephrin A1 and LEPR-LEP might play roles in the regulation of embryo implantation in pigs.
Collapse
Affiliation(s)
- Y Fu
- Institute of Animal Science/The Key Laboratory of Animal Breed Improvement and reproduction, Jiangsu Academy of Agricultural Sciences/Planting and Breeding Key Laboratory of National Ministry of Agriculture, Nanjing, Jiangsu, China.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - R V Knox
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - L Li
- Institute of Animal Immune Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - S Ren
- Institute of Animal Science/The Key Laboratory of Animal Breed Improvement and reproduction, Jiangsu Academy of Agricultural Sciences/Planting and Breeding Key Laboratory of National Ministry of Agriculture, Nanjing, Jiangsu, China
| |
Collapse
|
25
|
Li Y, Lorca RA, Su EJ. Molecular and cellular underpinnings of normal and abnormal human placental blood flows. J Mol Endocrinol 2018; 60:R9-R22. [PMID: 29097590 PMCID: PMC5732864 DOI: 10.1530/jme-17-0139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022]
Abstract
Abnormal placental function is well-established as a major cause for poor pregnancy outcome. Placental blood flow within the maternal uteroplacental compartment, the fetoplacental circulation or both is a vital factor in mediating placental function. Impairment in flow in either or both vasculatures is a significant risk factor for adverse pregnancy outcome, potentially impacting maternal well-being, affecting immediate neonatal health and even influencing the long-term health of the infant. Much remains unknown regarding the mechanistic underpinnings of proper placental blood flow. This review highlights the currently recognized molecular and cellular mechanisms in the development of normal uteroplacental and fetoplacental blood flows. Utilizing the entities of preeclampsia and fetal growth restriction as clinical phenotypes that are often evident downstream of abnormal placental blood flow, mechanisms underlying impaired uteroplacental and fetoplacental blood flows are also discussed. Deficiencies in knowledge, which limit the efficacy of clinical care, are also highlighted, underscoring the need for continued research on normal and abnormal placental blood flows.
Collapse
Affiliation(s)
- Yingchun Li
- Department of Obstetrics and GynecologyDivision of Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ramón A Lorca
- Department of Obstetrics and GynecologyDivision of Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Emily J Su
- Department of Obstetrics and GynecologyDivision of Maternal-Fetal Medicine/Division of Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
26
|
Gormley M, Ona K, Kapidzic M, Garrido-Gomez T, Zdravkovic T, Fisher SJ. Preeclampsia: novel insights from global RNA profiling of trophoblast subpopulations. Am J Obstet Gynecol 2017; 217:200.e1-200.e17. [PMID: 28347715 DOI: 10.1016/j.ajog.2017.03.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND The maternal signs of preeclampsia, which include the new onset of high blood pressure, can occur because of faulty placentation. We theorized that transcriptomic analyses of trophoblast subpopulations in situ would lend new insights into the role of these cells in preeclampsia pathogenesis. OBJECTIVE Our goal was to enrich syncytiotrophoblasts, invasive cytotrophoblasts, or endovascular cytotrophoblasts from the placentas of severe preeclampsia cases. Total RNA was subjected to global transcriptional profiling to identify RNAs that were misexpressed compared with controls. STUDY DESIGN This was a cross-sectional analysis of placentas from women who had been diagnosed with severe preeclampsia. Gestational age-matched controls were placentas from women who had a preterm birth with no signs of infection. Laser microdissection enabled enrichment of syncytiotrophoblasts, invasive cytotrophoblasts, or endovascular cytotrophoblasts. After RNA isolation, a microarray approach was used for global transcriptional profiling. Immunolocalization identified changes in messenger RNA expression that carried over to the protein level. Differential expression of non-protein-coding RNAs was confirmed by in situ hybridization. A 2-way analysis of variance of non-coding RNA expression identified particular classes that distinguished trophoblasts in cases vs controls. Cajal body foci were visualized by coilin immunolocalization. RESULTS Comparison of the trophoblast subtype data within each group (severe preeclampsia or noninfected preterm birth) identified many highly differentially expressed genes. They included molecules that are known to be expressed by each subpopulation, which is evidence that the method worked. Genes that were expressed differentially between the 2 groups, in a cell-type-specific manner, encoded a combination of molecules that previous studies associated with severe preeclampsia and those that were not known to be dysregulated in this pregnancy complication. Gene ontology analysis of the syncytiotrophoblast data highlighted the dysregulation of immune functions, morphogenesis, transport, and responses to vascular endothelial growth factor and progesterone. The invasive cytotrophoblast data provided evidence of alterations in cellular movement, which is consistent with the shallow invasion often associated with severe preeclampsia. Other dysregulated pathways included immune, lipid, oxygen, and transforming growth factor-beta responses. The data for endovascular cytotrophoblasts showed disordered metabolism, signaling, and vascular development. Additionally, the transcriptional data revealed the differential expression in severe preeclampsia of 2 classes of non-coding RNAs: long non-coding RNAs and small nucleolar RNAs. The long non-coding RNA, urothelial cancer associated 1, was the most highly up-regulated in this class. In situ hybridization confirmed severe preeclampsia-associated expression in syncytiotrophoblasts. The small nucleolar RNAs, which chemically modify RNA structure, also correlated with severe preeclampsia. Thus, we enumerated Cajal body foci, sites of small nucleolar RNA activity, in primary cytotrophoblasts that were isolated from control and severe preeclampsia placentas. In severe preeclampsia, cytotrophoblasts had approximately double the number of these foci as the control samples. CONCLUSION A laser microdissection approach enabled the identification of novel messenger RNAs and non-coding RNAs that were misexpressed by various trophoblast subpopulations in severe preeclampsia. The results suggested new avenues of investigation, in particular, the roles of PRG2, Kell blood group determinants, and urothelial cancer associated 1 in syncytiotrophoblast diseases. Additionally, many of the newly identified dysregulated molecules might have clinical utility as biomarkers of severe preeclampsia.
Collapse
Affiliation(s)
- Matthew Gormley
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences; The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research; and the Department of Anatomy, University of California San Francisco, San Francisco, CA
| | - Katherine Ona
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences; The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research; and the Department of Anatomy, University of California San Francisco, San Francisco, CA
| | - Mirhan Kapidzic
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences; The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research; and the Department of Anatomy, University of California San Francisco, San Francisco, CA
| | - Tamara Garrido-Gomez
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences; The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research; and the Department of Anatomy, University of California San Francisco, San Francisco, CA
| | - Tamara Zdravkovic
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences; The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research; and the Department of Anatomy, University of California San Francisco, San Francisco, CA
| | - Susan J Fisher
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences; The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research; and the Department of Anatomy, University of California San Francisco, San Francisco, CA.
| |
Collapse
|
27
|
Robinson JF, Kapidzic M, Gormley M, Ona K, Dent T, Seifikar H, Hamilton EG, Fisher SJ. Transcriptional Dynamics of Cultured Human Villous Cytotrophoblasts. Endocrinology 2017; 158:1581-1594. [PMID: 28323933 PMCID: PMC5460928 DOI: 10.1210/en.2016-1635] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/30/2017] [Indexed: 12/11/2022]
Abstract
During human pregnancy, cytotrophoblasts (CTBs) play key roles in uterine invasion, vascular remodeling, and anchoring of the feto-placental unit. Due to the challenges associated with studying human placentation in utero, cultured primary villous CTBs are used as a model of the differentiation pathway that leads to invasion of the uterine wall. In vitro, CTBs emulate in vivo cell behaviors, such as migration, aggregation, and substrate penetration. Although some of the molecular features related to these cell behaviors have been described, the underlying mechanisms, at a global level, remain undefined at midgestation. Thus, in this study, we characterized second-trimester CTB differentiation/invasion in vitro, correlating the major morphological transitions with the transcriptional changes that occurred at these steps. After plating on Matrigel as individual cells, CTBs migrated toward each other and formed multicellular aggregates. In parallel, using a microarray approach, we observed differentially expressed (DE) genes across time, which were enriched for numerous functions, including cell migration, vascular remodeling, morphogenesis, cell communication, and inflammatory signaling. DE genes encoded several molecules that we and others previously linked to critical CTB function in vivo, suggesting that the novel DE molecules we discovered played important roles. Immunolocalization confirmed that CTBs in situ gave a signal for two of the most highly expressed genes in vitro. In summary, we characterized, at a global level, the temporal dynamics of primary human CTB gene expression in culture. These data will enable future analyses of various types of in vitro perturbations-for example, modeling disease processes and environmental exposures.
Collapse
Affiliation(s)
- Joshua F. Robinson
- Center for Reproductive Sciences, University of California, San Francisco, California 94143
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, California 94143
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California 94143
| | - Mirhan Kapidzic
- Center for Reproductive Sciences, University of California, San Francisco, California 94143
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, California 94143
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California 94143
| | - Matthew Gormley
- Center for Reproductive Sciences, University of California, San Francisco, California 94143
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, California 94143
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California 94143
| | - Katherine Ona
- Center for Reproductive Sciences, University of California, San Francisco, California 94143
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, California 94143
| | - Terrence Dent
- Center for Reproductive Sciences, University of California, San Francisco, California 94143
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, California 94143
| | - Helia Seifikar
- Center for Reproductive Sciences, University of California, San Francisco, California 94143
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, California 94143
| | - Emily G. Hamilton
- Center for Reproductive Sciences, University of California, San Francisco, California 94143
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, California 94143
| | - Susan J. Fisher
- Center for Reproductive Sciences, University of California, San Francisco, California 94143
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, California 94143
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California 94143
- Division of Maternal Fetal Medicine, University of California, San Francisco, California 94143
- Department of Anatomy, University of California, San Francisco, California 94143
- Human Embryonic Stem Cell Program, University of California, San Francisco, California 94143
| |
Collapse
|
28
|
Pereira L, Tabata T, Petitt M, Fang-Hoover J. Congenital cytomegalovirus infection undermines early development and functions of the human placenta. Placenta 2017; 59 Suppl 1:S8-S16. [PMID: 28477968 DOI: 10.1016/j.placenta.2017.04.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 12/31/2022]
Abstract
Congenital human cytomegalovirus (HCMV) infection is a major viral cause of birth defects, including microcephaly, neurological deficits, loss of hearing and vision, and intrauterine growth restriction. Despite its public health significance, there is no approved treatment for congenital infection during pregnancy; existing antivirals have unacceptable toxicities. The mechanisms of HCMV-induced placental injury, reduced capacity for compensatory development and transmission to the fetus are poorly understood, limiting the development of alternative strategies for clinical management of the disease. Recently, self-renewing, multipotent trophoblast progenitor cells (TBPCs) were reported to reside in the chorion of the human placenta and differentiate into the mature trophoblast subtypes - transport syncytiotrophoblasts and invasive cytotrophoblasts - forming chorionic villi, the functional units of the placenta. HCMV infects TBPCs, reducing the population of progenitor cells and their functional capacity to self-renew, migrate and differentiate. Human TBPCs and chorionic villus explants from first trimester represent relevant models for evaluating efficacies of new antiviral agents in protecting and restoring growth of the developing placenta in response to adverse conditions. Correlating pathology from complications of congenital HCMV infection with impaired development in the tissue environment of anchoring villus explants and defects in TBPC differentiation may enable identification of molecular pathways that could serve as targets for intervention. Here we summarize studies that could open up novel avenues of research on potential therapeutics to sustain placental development, promote differentiation and improve function and pregnancy outcomes.
Collapse
Affiliation(s)
- Lenore Pereira
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, United States.
| | - Takako Tabata
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, United States
| | - Matthew Petitt
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, United States
| | - June Fang-Hoover
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, United States
| |
Collapse
|
29
|
Menkhorst E, Winship A, Van Sinderen M, Dimitriadis E. Human extravillous trophoblast invasion: intrinsic and extrinsic regulation. Reprod Fertil Dev 2017; 28:406-15. [PMID: 25163485 DOI: 10.1071/rd14208] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 07/27/2014] [Indexed: 12/12/2022] Open
Abstract
During the establishment of pregnancy, a human blastocyst implants into the uterine endometrium to facilitate the formation of a functional placenta. Implantation involves the blastocyst adhering to the uterine luminal epithelium before the primitive syncytiotrophoblast and subsequently specialised cells, the extravillous trophoblast (EVT), invade into the decidua in order to engraft and remodel uterine spiral arteries, creating the placental blood supply at the end of the first trimester. Defects in EVT invasion lead to abnormal placentation and thus adverse pregnancy outcomes. The local decidual environment is thought to play a key role in regulating trophoblast invasion. Here we describe the major cell types present in the decidua during the first trimester of pregnancy and review what is known about their regulation of EVT invasion. Overall, the evidence suggests that in a healthy pregnancy almost all cell types in the decidua actively promote EVT invasion and, further, that reduced EVT invasion towards the end of the first trimester is regulated, in part, by the reduced invasive capacity of EVTs shown at this time.
Collapse
Affiliation(s)
- E Menkhorst
- MIMR-PHI Institute of Medical Research, 27-31 Wright St, Clayton, Vic. 3168, Australia
| | - A Winship
- MIMR-PHI Institute of Medical Research, 27-31 Wright St, Clayton, Vic. 3168, Australia
| | - M Van Sinderen
- MIMR-PHI Institute of Medical Research, 27-31 Wright St, Clayton, Vic. 3168, Australia
| | - E Dimitriadis
- MIMR-PHI Institute of Medical Research, 27-31 Wright St, Clayton, Vic. 3168, Australia
| |
Collapse
|
30
|
Windsperger K, Dekan S, Pils S, Golletz C, Kunihs V, Fiala C, Kristiansen G, Knöfler M, Pollheimer J. Extravillous trophoblast invasion of venous as well as lymphatic vessels is altered in idiopathic, recurrent, spontaneous abortions. Hum Reprod 2017; 32:1208-1217. [DOI: 10.1093/humrep/dex058] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
|
31
|
Sehgal S, Bhatnagar S, Pallavi SK. Provocative ideas on human placental biology: A prerequisite for prevention and treatment of neonatal health challenges. Am J Reprod Immunol 2017; 77. [PMID: 28276106 DOI: 10.1111/aji.12656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 01/28/2017] [Indexed: 01/09/2023] Open
Abstract
A 2-day invite-only meeting on generating "Provocative Ideas on human placental research" was organized on 1-2 December 2015 at the Translational Health Science and Technology Institute, Faridabad. This meeting was sponsored by Department of Biotechnology, Ministry of Science and Technology, Govt. of India. The objectives of this meeting were the critical evaluation of placental physiology and its development. Special emphasis was placed on understanding the consequences and implications of placental development in sustenance of pregnancy and in pregnancy-associated complications such as preeclampsia, intrauterine growth restriction, and preterm birth. This meeting brought together experienced as well as novice clinicians and biologists who have a keen interest in the field of placental biology, including development of new technologies and methods for evaluating the role of placenta in predicting pregnancy outcomes. The meeting primarily focused on (i) high-throughput "-omics" approaches, (ii) maternal nutrition and placental function, (iii) placental infection and inflammation, (iv) real-time evaluation of placental development: tools for placental research, and (v) epidemiologic relevance of placental-based research. Unanimous consensus emerged among the participants to carry out additional work focused on these areas. In this article, we summarize the talks and review the published literature on the above-mentioned niches. As a direct outcome of this meeting, a request for applications has been announced by the Department of Biotechnology, Government of India, for pursuing research in this vital but understudied domain.
Collapse
Affiliation(s)
- Shilpi Sehgal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Shinjini Bhatnagar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - S K Pallavi
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
32
|
Liu X, Liu X, Liu W, Luo M, Tao H, Wu D, Zhao Y, Zou L. HOXA9 transcriptionally regulates the EPHB4 receptor to modulate trophoblast migration and invasion. Placenta 2017; 51:38-48. [PMID: 28292467 DOI: 10.1016/j.placenta.2017.01.127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Functional placenta formation is crucially dependent on extravillous trophoblast migration and invasion. EPHB4 has been identified to play a negative but important role in regulating trophoblast biological function, whereas the upstream regulation mechanism remains unknown. As reported, there is a transcriptional stimulation of EPHB4 expression consequent to HOXA9 activation in endothelial cells (ECs). Therefore, this study is conducted to investigate the role of HOXA9 and its relationship with EPHB4 in trophoblast cells. METHOD Both mRNA and protein expression levels of HOXA9 and EPHB4 were measured in preeclamptic placenta (n = 15) and normal placenta (n = 15). Next, the expression and location of HOXA9 and EPHB4 in first-trimester villi were shown via immunohistochemistry. Trophoblast cell line HTR-8/SVneo was used to explore the effect of HOXA9 on EPHB4 expression and trophoblast bioactivity by gain- and loss-of function studies. In addition, chromatin immunoprecipitation (ChIP) and luciferase assays were conducted to clarify the regulation mechanism of HOXA9 on EPHB4 expression in HTR-8/SVneo. RESULT HOXA9 and EPHB4 expression were increased in preeclamptic placenta compared with normal placenta. HOXA9 could promote EPHB4 expression and impaired HTR-8/SVneo cells migration and invasion. ChIP and luciferase assays revealed that HOXA9 could directly bind to EPHB4 promoter and promoted its transcription. CONCLUSION HOXA9 transcriptionally regulated EPHB4 expression to modulate trophoblasts migration and invasion, which may suggest a contribution of HOXA9-EPHB4 in the poor placentation in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Xiaoping Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxia Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weifang Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minglian Luo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Tao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
33
|
CD9 suppresses human extravillous trophoblast invasion. Placenta 2016; 47:105-112. [DOI: 10.1016/j.placenta.2016.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/18/2016] [Accepted: 09/22/2016] [Indexed: 11/22/2022]
|
34
|
Moser G, Weiss G, Sundl M, Gauster M, Siwetz M, Lang-Olip I, Huppertz B. Extravillous trophoblasts invade more than uterine arteries: evidence for the invasion of uterine veins. Histochem Cell Biol 2016; 147:353-366. [PMID: 27774579 PMCID: PMC5344955 DOI: 10.1007/s00418-016-1509-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2016] [Indexed: 11/24/2022]
Abstract
During the first trimester of pregnancy, extravillous trophoblasts (EVTs) invade into the decidual interstitium to the first third of the myometrium, thereby anchoring the placenta to the uterus. They also follow the endovascular and endoglandular route of invasion; plug, line and remodel spiral arteries, thus being responsible for the establishment of hemotrophic nutrition with the beginning of the second trimester and invade and open uterine glands toward the intervillous space for a histiotrophic nutrition during the first trimester. The aim of this study was to provide proof that uterine veins are invaded by EVTs similar to uterine arteries and glands in first trimester of pregnancy. Therefore, serial sections from in situ first trimester placenta were immuno-single- and immuno-double-stained to distinguish in a first step between arteries and veins and secondly between invaded and non-invaded vessels. Subsequently, invasion of EVTs into uterine vessels was quantified. Our data show that uterine veins are significantly more invaded by EVTs than uterine arteries (29.2 ± 15.7 %) during early pregnancy. Counted vessel cross sections revealed significantly higher EVT invasion into veins (59.5 ± 7.9 %) compared to arteries (29.2 ± 15.7 %). In the lumen of veins, single EVTs were repeatedly found, beside detached glandular epithelial cells or syncytial fragments. This study allows the expansion of our hitherto postulated concept of EVT invasion during first trimester of pregnancy. We suggest that invasion of EVTs into uterine veins is responsible the draining of waste and blood plasma from the intervillous space during the first trimester of pregnancy.
Collapse
Affiliation(s)
- Gerit Moser
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21/7, 8010, Graz, Austria.
| | - Gregor Weiss
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21/7, 8010, Graz, Austria
| | - Monika Sundl
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21/7, 8010, Graz, Austria
| | - Martin Gauster
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21/7, 8010, Graz, Austria
| | - Monika Siwetz
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21/7, 8010, Graz, Austria
| | - Ingrid Lang-Olip
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21/7, 8010, Graz, Austria
| | - Berthold Huppertz
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21/7, 8010, Graz, Austria
| |
Collapse
|
35
|
Martin-Almedina S, Martinez-Corral I, Holdhus R, Vicente A, Fotiou E, Lin S, Petersen K, Simpson MA, Hoischen A, Gilissen C, Jeffery H, Atton G, Karapouliou C, Brice G, Gordon K, Wiseman JW, Wedin M, Rockson SG, Jeffery S, Mortimer PS, Snyder MP, Berland S, Mansour S, Makinen T, Ostergaard P. EPHB4 kinase-inactivating mutations cause autosomal dominant lymphatic-related hydrops fetalis. J Clin Invest 2016; 126:3080-8. [PMID: 27400125 PMCID: PMC4966301 DOI: 10.1172/jci85794] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/09/2016] [Indexed: 12/20/2022] Open
Abstract
Hydrops fetalis describes fluid accumulation in at least 2 fetal compartments, including abdominal cavities, pleura, and pericardium, or in body tissue. The majority of hydrops fetalis cases are nonimmune conditions that present with generalized edema of the fetus, and approximately 15% of these nonimmune cases result from a lymphatic abnormality. Here, we have identified an autosomal dominant, inherited form of lymphatic-related (nonimmune) hydrops fetalis (LRHF). Independent exome sequencing projects on 2 families with a history of in utero and neonatal deaths associated with nonimmune hydrops fetalis uncovered 2 heterozygous missense variants in the gene encoding Eph receptor B4 (EPHB4). Biochemical analysis determined that the mutant EPHB4 proteins are devoid of tyrosine kinase activity, indicating that loss of EPHB4 signaling contributes to LRHF pathogenesis. Further, inactivation of Ephb4 in lymphatic endothelial cells of developing mouse embryos led to defective lymphovenous valve formation and consequent subcutaneous edema. Together, these findings identify EPHB4 as a critical regulator of early lymphatic vascular development and demonstrate that mutations in the gene can cause an autosomal dominant form of LRHF that is associated with a high mortality rate.
Collapse
Affiliation(s)
- Silvia Martin-Almedina
- Lymphovascular Research Unit, Cardiovascular and Cell Sciences Institute, St. George’s University of London, London, United Kingdom (UK)
| | - Ines Martinez-Corral
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Rita Holdhus
- Genomics Core Facility, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Andres Vicente
- Lymphatic Development Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Elisavet Fotiou
- Lymphovascular Research Unit, Cardiovascular and Cell Sciences Institute, St. George’s University of London, London, United Kingdom (UK)
| | - Shin Lin
- Division of Cardiovascular Medicine and
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Kjell Petersen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Michael A. Simpson
- Division of Genetics and Molecular Medicine, King’s College London School of Medicine, Guy’s Hospital, London, UK
| | - Alexander Hoischen
- Genomics Core Facility, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Human Genetics, Radboud University Medical Center and Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center and Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Heather Jeffery
- Lymphovascular Research Unit, Cardiovascular and Cell Sciences Institute, St. George’s University of London, London, United Kingdom (UK)
| | - Giles Atton
- South West Thames Regional Genetics Unit, St. George’s University of London, London, UK
| | - Christina Karapouliou
- Lymphovascular Research Unit, Cardiovascular and Cell Sciences Institute, St. George’s University of London, London, United Kingdom (UK)
| | - Glen Brice
- South West Thames Regional Genetics Unit, St. George’s University of London, London, UK
| | - Kristiana Gordon
- Department of Dermatology, St. George’s University Hospital NHS Foundation Trust, London, UK
| | - John W. Wiseman
- Discovery Sciences, RAD-Transgenics, AstraZeneca R&D, Mölndal, Sweden
| | - Marianne Wedin
- Discovery Sciences, RAD-Transgenics, AstraZeneca R&D, Mölndal, Sweden
| | | | - Steve Jeffery
- Lymphovascular Research Unit, Cardiovascular and Cell Sciences Institute, St. George’s University of London, London, United Kingdom (UK)
| | - Peter S. Mortimer
- Lymphovascular Research Unit, Cardiovascular and Cell Sciences Institute, St. George’s University of London, London, United Kingdom (UK)
| | - Michael P. Snyder
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Siren Berland
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Sahar Mansour
- South West Thames Regional Genetics Unit, St. George’s University of London, London, UK
| | - Taija Makinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Pia Ostergaard
- Lymphovascular Research Unit, Cardiovascular and Cell Sciences Institute, St. George’s University of London, London, United Kingdom (UK)
| |
Collapse
|
36
|
Silva JF, Serakides R. Intrauterine trophoblast migration: A comparative view of humans and rodents. Cell Adh Migr 2016; 10:88-110. [PMID: 26743330 DOI: 10.1080/19336918.2015.1120397] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Trophoblast migration and invasion through the decidua and maternal uterine spiral arteries are crucial events in placentation. During this process, invasive trophoblast replace vascular endothelial cells as the uterine arteries are remodeled to form more permissive vessels that facilitate adequate blood flow to the growing fetus. Placentation failures resulting from either extensive or shallow trophoblastic invasion can cause pregnancy complications such as preeclampsia, intrauterine growth restriction, placenta creta, gestational trophoblastic disease and even maternal or fetal death. Consequently, the use of experimental animal models such as rats and mice has led to great progress in recent years with regards to the identification of mechanisms and factors that control trophoblast migration kinetics. This review aims to perform a comparative analysis of placentation and the mechanisms and factors that coordinate intrauterine trophoblast migration in humans, rats and mice under physiological and pathological conditions.
Collapse
Affiliation(s)
- Juneo F Silva
- a Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Rogéria Serakides
- b Laboratório de Patologia, Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| |
Collapse
|
37
|
Lala PK, Nandi P. Mechanisms of trophoblast migration, endometrial angiogenesis in preeclampsia: The role of decorin. Cell Adh Migr 2016; 10:111-25. [PMID: 26745663 DOI: 10.1080/19336918.2015.1106669] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The objective of the present review is to synthesize the information on the cellular and molecular players responsible for maintaining a homeostatic balance between a naturally invasive human placenta and the maternal uterus in pregnancy; to review the roles of decorin (DCN) as a molecular player in this homeostasis; to list the common maladies associated with a break-down in this homeostasis, resulting from a hypo-invasive or hyper-invasive placenta, and their underlying mechanisms. We show that both the fetal components of the placenta, represented primarily by the extravillous trophoblast, and the maternal component represented primarily by the decidual tissue and the endometrial arterioles, participate actively in this balance. We discuss the process of uterine angiogenesis in the context of uterine arterial changes during normal pregnancy and preeclampsia. We compare and contrast trophoblast growth and invasion with the processes involved in tumorigenesis with special emphasis on the roles of DCN and raise important questions that remain to be addressed. Decorin (DCN) is a small leucine-rich proteoglycan produced by stromal cells, including dermal fibroblasts, chondrocytes, chorionic villus mesenchymal cells and decidual cells of the pregnant endometrium. It contains a 40 kDa protein core having 10 leucine-rich repeats covalently linked with a glycosaminoglycan chain. Biological functions of DCN include: collagen assembly, myogenesis, tissue repair and regulation of cell adhesion and migration by binding to ECM molecules or antagonising multiple tyrosine kinase receptors (TKR) including EGFR, IGF-IR, HGFR and VEGFR-2. DCN restrains angiogenesis by binding to thrombospondin-1, TGFβ, VEGFR-2 and possibly IGF-IR. DCN can halt tumor growth by antagonising oncogenic TKRs and restraining angiogenesis. DCN actions at the fetal-maternal interface include restraint of trophoblast migration, invasion and uterine angiogenesis. We demonstrate that DCN overexpression in the decidua is associated with preeclampsia (PE); this may have a causal role in PE by compromising endovascular differentiation of the trophoblast and uterine angiogenesis, resulting in poor arterial remodeling. Elevated DCN level in the maternal blood is suggested as a potential biomarker in PE.
Collapse
Affiliation(s)
- Peeyush K Lala
- a Department of Anatomy and Cell Biology , Schulich School of Medicine and Dentistry, the University of Western Ontario , London , Ontario , Canada.,b Department of Oncology , Schulich School of Medicine and Dentistry, the University of Western Ontario , London , Ontario , Canada.,c Chidren's Health Research Institute, Schulich School of Medicine and Dentistry, the University of Western Ontario , London , Ontario , Canada
| | - Pinki Nandi
- a Department of Anatomy and Cell Biology , Schulich School of Medicine and Dentistry, the University of Western Ontario , London , Ontario , Canada
| |
Collapse
|
38
|
Dong H, Yu C, Mu J, Zhang J, Lin W. Role of EFNB2/EPHB4 signaling in spiral artery development during pregnancy: An appraisal. Mol Reprod Dev 2015; 83:12-8. [PMID: 26501487 DOI: 10.1002/mrd.22593] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 10/22/2015] [Indexed: 12/30/2022]
Abstract
EFNB2 and EPHB4, which belong to a large tyrosine kinase receptor superfamily, are molecular markers of arterial and venous blood vessels, respectively. EFNB2/EPHB4 signaling plays an important role in physiological and pathological angiogenesis, and its role in tumor vessel development has been extensively studied. Pregnancy and tumors share similar features, including continuous cell proliferation and increased demand for a blood supply. Our previous studies showed that Efnb2 and Ephb4 were expressed dynamically in the spiral arteries, uterine natural killer cells, and trophoblasts during mouse gestation Days 6.5-12.5. Moreover, uterine natural killer cells and trophoblasts are required for the modification of spiral arteries. Oxygen tension within the pregnant uterus, which contributes to the vascular development, also affects EFNB2 and EPHB4 expression. Considering the role of EFNB2/EPHB4 signaling in embryonic and tumor vascular development, and its dynamic expression in the decidua and placenta, we hypothesize that EFNB2 and EPHB4 are involved in the regulation of spiral artery remodeling. Investigating this hypothesis will help clarify the mechanisms of pathological pregnancy that may underlie abnormal spiral artery development.
Collapse
Affiliation(s)
- Hongmei Dong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chaoran Yu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jiao Mu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ji Zhang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wei Lin
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
39
|
Abstract
The placenta sits at the interface between the maternal and fetal vascular beds where it mediates nutrient and waste exchange to enable in utero existence. Placental cells (trophoblasts) accomplish this via invading and remodeling the uterine vasculature. Amazingly, despite being of fetal origin, trophoblasts do not trigger a significant maternal immune response. Additionally, they maintain a highly reliable hemostasis in this extremely vascular interface. Decades of research into how the placenta differentiates itself from embryonic tissues to accomplish these and other feats have revealed a previously unappreciated level of complexity with respect to the placenta's cellular composition. Additionally, novel insights with respect to roles played by the placenta in guiding fetal development and metabolism have sparked a renewed interest in understanding the interrelationship between fetal and placental well-being. Here, we present an overview of emerging research in placental biology that highlights these themes and the importance of the placenta to fetal and adult health.
Collapse
|
40
|
Fisher SJ. Why is placentation abnormal in preeclampsia? Am J Obstet Gynecol 2015; 213:S115-22. [PMID: 26428489 DOI: 10.1016/j.ajog.2015.08.042] [Citation(s) in RCA: 428] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 08/16/2015] [Indexed: 02/02/2023]
Abstract
The causes of preeclampsia remain one of the great medical mysteries of our time. This syndrome is thought to occur in 2 stages with abnormal placentation leading to a maternal inflammatory response. Specific regions of the placenta have distinct pathologic features. During normal pregnancy, cytotrophoblasts emigrate from the chorionic villi and invade the uterus, reaching the inner third of the myometrium. This unusual process is made even more exceptional by the fact that the placental cells are hemiallogeneic, coexpressing maternal and paternal genomes. Within the uterine wall, cytotrophoblasts deeply invade the spiral arteries. Cytotrophoblasts migrate up these vessels and replace, in a retrograde fashion, the maternal endothelial lining. They also insert themselves among the smooth muscle cells that form the tunica media. As a result, the spiral arteries attain the physiologic properties that are required to perfuse the placenta adequately. In comparison, invasion of the venous side of the uterine circulation is minimal, sufficient to enable venous return. In preeclampsia, cytotrophoblast invasion of the interstitial uterine compartment is frequently shallow, although not consistently so. In many locations, spiral artery invasion is incomplete. There are many fewer endovascular cytotrophoblasts, and some vessels retain portions of their endothelial lining with relatively intact muscular coats, although others are not modified. Work from our group showed that these defects mirror deficits in the differentiation program that enables cytotrophoblast invasion of the uterine wall. During normal pregnancy, invasion is accompanied by the down-regulation of epithelial-like molecules that are indicative of their ectodermal origin and up-regulation of numerous receptors and ligands that typically are expressed by endothelial or vascular smooth muscle cells. For example, the expression of epithelial-cadherin (the cell-cell adhesion molecule that many ectodermal derivatives use to adhere to one another) becomes nearly undetectable, replaced by vascular-endothelial cadherin, which serves the same purpose in blood vessels. Invading cytotrophoblasts also modulate vascular endothelial growth factor ligands and receptors, at some point in the differentiation process expressing every (mammalian) family member. Molecules in this family play crucial roles in vascular and trophoblast biology, including the prevention of apoptosis. In preeclampsia, this process of vascular mimicry is incomplete, which we theorize hinders the cells interactions with spiral arterioles. What causes these aberrations? Given what is known from animal models and human risk factors, reduced placental perfusion and/or certain disease states (metabolic, immune and cardiovascular) lie upstream. Recent evidence suggests the surprising conclusion that isolation and culture of cytotrophoblasts from the placentas of pregnancies complicated by preeclampsia enables normalization of their gene expression. The affected molecules include SEMA3B, which down-regulates vascular endothelial growth factor signaling through the PI3K/AKT and GSK3 pathways. Thus, some aspects of the aberrant differentiation of cytotrophoblasts within the uterine wall that is observed in situ may be reversible. The next challenge is asking what the instigating causes are. There is added urgency to finding the answers, because these pathways could be valuable therapeutic targets for reversing abnormal placental function in patients.
Collapse
|
41
|
Velicky P, Knöfler M, Pollheimer J. Function and control of human invasive trophoblast subtypes: Intrinsic vs. maternal control. Cell Adh Migr 2015; 10:154-62. [PMID: 26418186 PMCID: PMC4853032 DOI: 10.1080/19336918.2015.1089376] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The establishment of a functional placenta is pivotal for normal fetal development and the maintenance of pregnancy. In the course of early placentation, trophoblast precursors differentiate into highly invasive trophoblast subtypes. These cells, referred to as extravillous trophoblasts (EVTs), penetrate the maternal uterus reaching as far as the inner third of the myometrium. One of the most fundamental functions of EVTs is the transformation of spiral arteries to establish the uteroplacental blood circulation assuring an adequate nutrient and gas supply to the developing fetus. To achieve this, specialized EVT subpopulations interact with maternal immune cells, provoke elastolysis in the arterial wall and replace the endothelial cells lining the spiral arteries to induce intraluminal vascular remodeling. These and other trophoblast-mediated processes are tightly controlled by paracrine signals from the maternal decidua and furthermore underlie an intrinsic cell-type specific program. Various severe pregnancy complications such as preeclampsia or intrauterine growth retardation are associated with abnormal EVT function, shallow invasion, and decreased blood flow to the placenta. Hence a better understanding of human trophoblast invasion seems mandatory to improve therapeutic intervention. This approach, however, requires a profound knowledge of the human placenta, its various trophoblast subtypes and in particular a better understanding of the regulatory network that controls the invasive phenotype of EVTs.
Collapse
Affiliation(s)
- Philipp Velicky
- a Department of Obstetrics and Fetal-Maternal Medicine , Reproductive Biology Unit, Medical University of Vienna , Vienna , Austria
| | - Martin Knöfler
- a Department of Obstetrics and Fetal-Maternal Medicine , Reproductive Biology Unit, Medical University of Vienna , Vienna , Austria
| | - Jürgen Pollheimer
- a Department of Obstetrics and Fetal-Maternal Medicine , Reproductive Biology Unit, Medical University of Vienna , Vienna , Austria
| |
Collapse
|
42
|
Ephrin-B2 mediates trophoblast-dependent maternal spiral artery remodeling in first trimester. Placenta 2015; 36:567-74. [DOI: 10.1016/j.placenta.2015.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 02/05/2015] [Accepted: 02/14/2015] [Indexed: 12/29/2022]
|
43
|
Schanz A, Red-Horse K, Hess AP, Baston-Büst DM, Heiss C, Krüssel JS. Oxygen regulates human cytotrophoblast migration by controlling chemokine and receptor expression. Placenta 2014; 35:1089-94. [PMID: 25293376 DOI: 10.1016/j.placenta.2014.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 09/10/2014] [Accepted: 09/17/2014] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Placental development involves the variation of oxygen supply due to vascular changes and cytotrophoblast invasion. Chemokines and their receptors play an important role during placental formation. Herein, the analysis of the chemokine/receptor pair CXCL12/CXCR4 and further chemokine receptors, such as CCR1, CCR7 and CXCR6 expression in human cytotrophoblasts was conducted. METHODS Human cytotrophoblasts were examined directly after isolation or after incubation with different oxygen tensions and a chemical HIF-stimulator for 12 h with realtime PCR, immunoblot, immunohistochemistry. Conditioned media of placental villi, decidua, and endothelial cells was used for ELISA analysis of CXL12. Cytotrophoblast migration assays were conducted applying conditioned media of endothelial cells, a CXCL12 gradient, and different oxygen level. Endometrial and decidual tissue was stained for CXCL12 expression. RESULTS An upregulation of CXCL12, CXCR4, CCR1, CCR7 and CXCR6 was observed after cytotrophoblast differentiation. Low oxygen supply upregulated CXCR4, CCR7 and CXCR6, but downregulated CXCL12 and CCR1. In contrast to the HIF associated upregulation of the aforementioned proteins, downregulation of CXCL12 and CCR1 seemed to be HIF independent. Cytotrophoblast migration was stimulated by low oxygen, the application of a CXCL12 gradient and endothelial cell conditioned media. CXCL12 was detected in endometrial vessels, glands and conditioned media of placental and decidual tissue, but not decidual vessels. DISCUSSION/CONCLUSION Taken together, oxygen supply and cytotrophoblast differentiation seem to be regulators of chemokine and receptor expression and function in human cytotrophoblasts. Therefore, this system seems to be involved in placental development, directed cytotrophoblast migration in the decidual compartment and a subsequent sufficient supply of the growing fetus.
Collapse
Affiliation(s)
- A Schanz
- Department of Cell and Tissue Biology, University of California (UCSF), San Francisco, 513 Parnassus Ave, CA 94143, USA; University Düsseldorf, Medical Faculty, Department of Obstetrics, Gynecology and REI (UniKiD), Moorenstrasse 5, 40225 Düsseldorf, Germany.
| | - K Red-Horse
- Department of Cell and Tissue Biology, University of California (UCSF), San Francisco, 513 Parnassus Ave, CA 94143, USA; Department of Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - A P Hess
- University Düsseldorf, Medical Faculty, Department of Obstetrics, Gynecology and REI (UniKiD), Moorenstrasse 5, 40225 Düsseldorf, Germany.
| | - D M Baston-Büst
- University Düsseldorf, Medical Faculty, Department of Obstetrics, Gynecology and REI (UniKiD), Moorenstrasse 5, 40225 Düsseldorf, Germany.
| | - C Heiss
- University Düsseldorf, Medical Faculty, Division of Cardiology, Pulmonology and Vascular Medicine, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| | - J S Krüssel
- University Düsseldorf, Medical Faculty, Department of Obstetrics, Gynecology and REI (UniKiD), Moorenstrasse 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
44
|
Du MR, Wang SC, Li DJ. The integrative roles of chemokines at the maternal-fetal interface in early pregnancy. Cell Mol Immunol 2014; 11:438-48. [PMID: 25109684 DOI: 10.1038/cmi.2014.68] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/29/2014] [Accepted: 07/01/2014] [Indexed: 12/14/2022] Open
Abstract
Embryos express paternal antigens that are foreign to the mother, but the mother provides a special immune milieu at the fetal-maternal interface to permit rather than reject the embryo growth in the uterus until parturition by establishing precise crosstalk between the mother and the fetus. There are unanswered questions in the maintenance of pregnancy, including the poorly understood phenomenon of maternal tolerance to the allogeneic conceptus, and the remarkable biological roles of placental trophoblasts that invade the uterine wall. Chemokines are multifunctional molecules initially described as having a role in leukocyte trafficking and later found to participate in developmental processes such as differentiation and directed migration. It is increasingly evident that the gestational uterine microenvironment is characterized, at least in part, by the differential expression and secretion of chemokines that induce selective trafficking of leukocyte subsets to the maternal-fetal interface and regulate multiple events that are closely associated with normal pregnancy. Here, we review the expression and function of chemokines and their receptors at the maternal-fetal interface, with a special focus on chemokine as a key component in trophoblast invasiveness and placental angiogenesis, recruitment and instruction of immune cells so as to form a fetus-supporting milieu during pregnancy. The chemokine network is also involved in pregnancy complications.
Collapse
|
45
|
Schanz A, Baston-Büst DM, Heiss C, Beyer IM, Krüssel JS, Hess AP. Interferon stimulated gene 15 expression at the human embryo-maternal interface. Arch Gynecol Obstet 2014; 290:783-9. [PMID: 24996384 DOI: 10.1007/s00404-014-3290-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/21/2014] [Indexed: 11/24/2022]
Abstract
PURPOSE In early pregnancy the dialogue between maternal endometrium and embryo is a key process in establishing a receptive decidua and placental network. Decidual ISG15 induction is thought to promote pregnancy maintenance and development. ISG15 is involved in RNA splicing, cytoskeletal organization, stress response and further intracellular processes. METHODS ISG15 expression was examined immunohistologically in paraffin-embedded human placental and decidual tissue samples of all pregnancy trimesters on adjacent sections (first trimester n = 5, second n = 5, third n = 3). Samples were processed using a protocol applying a rabbit polyclonal ISG15 antibody. A mouse monoclonal cytokeratin seven antibody was utilized to identify the different placental departments and decidual glands. Staining results and anatomical features were evaluated blindly with strict rating criteria. RESULTS ISG15 expression was identified in first and second trimester tissue samples. ISG15 localized especially to the extravillous cytotrophoblasts in the maternal wall and in maternal blood vessel. Expression was detected in cytotrophoblast progenitor cells in the placental villi and the cell column with a maximum in the first trimester. The syncytial layer stained positive in first and second trimester samples. Third trimester samples showed no expression of ISG15 at all. CONCLUSIONS ISG15 abundance in the human placenta is an interesting finding, with implications for placental development, fetal growth and potential defense mechanism against infections. The maximal expression of ISG15 in the first and second trimester of pregnancy suggests that ISG function is needed when placental and embryo development is enormous and embryo susceptibility to external influences is high.
Collapse
Affiliation(s)
- Andrea Schanz
- Department of Obstetrics, Gynecology and REI (UniKiD), Medical Faculty, Medical Center University of Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany,
| | | | | | | | | | | |
Collapse
|
46
|
Rego J, Crisp J, Moura A, Nouwens A, Li Y, Venus B, Corbet N, Corbet D, Burns B, Boe-Hansen G, McGowan M. Seminal plasma proteome of electroejaculated Bos indicus bulls. Anim Reprod Sci 2014; 148:1-17. [DOI: 10.1016/j.anireprosci.2014.04.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 04/16/2014] [Accepted: 04/30/2014] [Indexed: 12/30/2022]
|
47
|
Chatzizacharias NA, Giaginis CT, Agapitos E, Theocharis SE. The role of ephrins' receptors and ephrins' ligands in normal placental development and disease. Expert Opin Ther Targets 2014; 18:269-275. [PMID: 24329716 DOI: 10.1517/14728222.2014.864638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Ephrin (Eph) receptors and their membrane-anchored ligands, the ephrins, participate in a wide spectrum of pathophysiological processes, regulating cellular adhesion, migration or chemo-repulsion and tissue/cell boundary formation. Recent evidence has further extended the role of Eph receptors and their ligands as critical regulators of vascular remodelling during embryogenesis. The role of Ephs/ephrins signalling in the angiogenic development of murine placentas and in the invasion of the maternal tissues and the development of the placental vasculature in humans has currently attracted considerable interest. AREAS COVERED A literature review summarising the most recent data in terms of the role of Ephs/ephrins in normal placental development and disease, highlighting on their expression status in the different cellular populations of the placental vascularity. EXPERT OPINION Despite the fact that the role of Eph/ephrins signalling in normal placental development is still unclear, some studies tried to investigate their potential implication in placental pathologies, such as preeclampsia and placenta accreta. Even though no evidence for their direct implication occurred, their role is an interesting field for future research.
Collapse
Affiliation(s)
- Nikolaos A Chatzizacharias
- National and Kapodistrian University of Athens, Medical School, First Department of Pathology , Athens , Greece
| | | | | | | |
Collapse
|
48
|
Rai A, Cross JC. Development of the hemochorial maternal vascular spaces in the placenta through endothelial and vasculogenic mimicry. Dev Biol 2014; 387:131-41. [PMID: 24485853 DOI: 10.1016/j.ydbio.2014.01.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/14/2014] [Accepted: 01/19/2014] [Indexed: 11/27/2022]
Abstract
The maternal vasculature within the placenta in primates and rodents is unique because it is lined by fetal cells of the trophoblast lineage and not by maternal endothelial cells. In addition to trophoblast cells that invade the uterine spiral arteries that bring blood into the placenta, other trophoblast subtypes sit at different levels of the vascular space. In mice, at least five distinct subtypes of trophoblast cells have been identified which engage maternal endothelial cells on the arterial and venous frontiers of the placenta, but which also form the channel-like spaces within it through a process analogous to formation of blood vessels (vasculogenic mimicry). These cells are all large, post-mitotic trophoblast giant cells. In addition to assuming endothelial cell-like characteristics (endothelial mimicry), they produce dozens of different hormones that are thought to regulate local and systemic maternal adaptations to pregnancy. Recent work has identified distinct molecular pathways in mice that regulate the morphogenesis of trophoblast cells on the arterial and venous sides of the vascular circuit that may be analogous to specification of arterial and venous endothelial cells.
Collapse
Affiliation(s)
- Anshita Rai
- Department of Biochemistry and Molecular Biology, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, Alta., Canada; Department of Comparative Biology and Experimental Medicine, Obstetrics and Gynecology, and Medical Genetics, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, Alta., Canada T2N 4N1
| | - James C Cross
- Department of Biochemistry and Molecular Biology, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, Alta., Canada; Department of Comparative Biology and Experimental Medicine, Obstetrics and Gynecology, and Medical Genetics, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, Alta., Canada T2N 4N1.
| |
Collapse
|
49
|
Hannan NJ, Evans J, Salamonsen LA. Alternate roles for immune regulators: establishing endometrial receptivity for implantation. Expert Rev Clin Immunol 2014; 7:789-802. [DOI: 10.1586/eci.11.65] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
50
|
Doridot L, Miralles F, Barbaux S, Vaiman D. Trophoblasts, invasion, and microRNA. Front Genet 2013; 4:248. [PMID: 24312123 PMCID: PMC3836020 DOI: 10.3389/fgene.2013.00248] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/30/2013] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) have recently become essential actors in various fields of physiology and medicine, especially as easily accessible circulating biomarkers, or as modulators of cell differentiation. To this respect, terminal differentiation of trophoblasts (the characteristic cells of the placenta in Therian mammals) into syncytiotrophoblast, villous trophoblast, or extravillous trophoblast constitutes a good example of such a choice, where miRNAs have recently been shown to play an important role. The aim of this review is to provide a snapshot of what is known today in placentation mechanisms that are mediated by miRNA, under the angles of materno–fetal immune dialog regulation, trophoblast differentiation, and angiogenesis at the materno–fetal interface. Also, two aspects of regulation of these issues will be highlighted: the part played by oxygen concentration and the specific function of imprinted genes in the developing placenta.
Collapse
Affiliation(s)
- Ludivine Doridot
- Institut Cochin, INSERM U1016-CNRS UMR8104, Université Paris Descartes Paris, France
| | | | | | | |
Collapse
|