1
|
Sánchez-Serna G, Badia-Ramentol J, Bujosa P, Ferrández-Roldán A, Torres-Águila NP, Fabregà-Torrus M, Wibisana JN, Mansfield MJ, Plessy C, Luscombe NM, Albalat R, Cañestro C. Less, but More: New Insights From Appendicularians on Chordate Fgf Evolution and the Divergence of Tunicate Lifestyles. Mol Biol Evol 2025; 42:msae260. [PMID: 39686543 PMCID: PMC11733497 DOI: 10.1093/molbev/msae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/17/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The impact of gene loss on the diversification of taxa and the emergence of evolutionary innovations remains poorly understood. Here, our investigation on the evolution of the Fibroblast Growth Factors (FGFs) in appendicularian tunicates as a case study reveals a scenario of "less, but more" characterized by massive losses of all Fgf gene subfamilies, except for the Fgf9/16/20 and Fgf11/12/13/14, which in turn underwent two bursts of duplications. Through phylogenetic analysis, synteny conservation, and gene and protein structure, we reconstruct the history of appendicularian Fgf genes, highlighting their paracrine and intracellular functions. An exhaustive analysis of developmental Fgf expression in Oikopleura dioica allows us to identify four associated evolutionary patterns characterizing the "less, but more" conceptual framework: conservation of ancestral functions; function shuffling between paralogs linked to gene losses; innovation of new functions after the duplication bursts; and function extinctions linked to gene losses. Our findings allow us to formulate novel hypotheses about the impact of Fgf losses and duplications on the transition from an ancestral ascidian-like biphasic lifestyle to the fully free-living appendicularians. These hypotheses include massive co-options of Fgfs for the development of the oikoblast and the tail fin; recruitment of Fgf11/12/13/14s into the evolution of a new mouth, and their role modulating neuronal excitability; the evolutionary innovation of an anterior tail FGF signaling source upon the loss of retinoic acid signaling; and the potential link between the loss of Fgf7/10/22 and Fgf8/17/18 and the loss of drastic metamorphosis and tail absorption in appendicularians, in contrast to ascidians.
Collapse
Affiliation(s)
- Gaspar Sánchez-Serna
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Jordi Badia-Ramentol
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Paula Bujosa
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Alfonso Ferrández-Roldán
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Nuria P Torres-Águila
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Marc Fabregà-Torrus
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Johannes N Wibisana
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Michael J Mansfield
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Charles Plessy
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Nicholas M Luscombe
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Cristian Cañestro
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
2
|
Lagman D, Leon A, Cieminska N, Deng W, Chatzigeorgiou M, Henriet S, Chourrout D. Pax3/7 gene function in Oikopleura dioica supports a neuroepithelial-like origin for its house-making Fol territory. Dev Biol 2024; 516:207-220. [PMID: 39181419 DOI: 10.1016/j.ydbio.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Larvacean tunicates feature a spectacular innovation not seen in other animals - the trunk oikoplastic epithelium (OE). This epithelium produces a house, a large and complex extracellular structure used for filtering and concentrating food particles. Previously we identified several homeobox transcription factor genes expressed during early OE patterning. Among these are two Pax3/7 copies that we named pax37A and pax37B. The vertebrate homologs, PAX3 and PAX7 are involved in developmental processes related to neural crest and muscles. In the ascidian tunicate Ciona intestinalis, Pax3/7 plays a role in the development of cells deriving from the neural plate border, including trunk epidermal sensory neurons and tail nerve cord neurons, as well as in the neural tube closure. Here we have investigated the roles of Oikopleura dioica pax37A and pax37B in the development of the OE, by using CRISPR-Cas9 mutant lines and analyzing scRNA-seq data from wild-type animals. We found that pax37B but not pax37A is essential for the differentiation of cell fields that produce the food concentrating filter of the house: the anterior Fol, giant Fol and Nasse cells. Trajectory analysis supported a neuroepithelial-like or a preplacodal ectoderm transcriptional signature in these cells. We propose that the highly specialized secretory epithelial cells of the Fol region either maintained or evolved neuroepithelial features. This is supported by a fragmented gene regulatory network involved in their development that also operates in ascidian epidermal neurons.
Collapse
Affiliation(s)
- David Lagman
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway; Department of Medical Cell Biology, Uppsala University, Uppsala, SE-75123, Sweden.
| | - Anthony Leon
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway
| | - Nadia Cieminska
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway
| | - Wei Deng
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway
| | | | - Simon Henriet
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway
| | - Daniel Chourrout
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway.
| |
Collapse
|
3
|
Ling F, Essock-Burns T, McFall-Ngai M, Katija K, Nawroth JC, Kanso E. Flow Physics Guides Morphology of Ciliated Organs. NATURE PHYSICS 2024; 20:1679-1686. [PMID: 40129718 PMCID: PMC11932703 DOI: 10.1038/s41567-024-02591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/19/2024] [Indexed: 03/26/2025]
Abstract
Organs that pump luminal fluids by the coordinated beat of motile cilia are integral to animal physiology. Such organs include the human airways, brain ventricles and reproductive tracts. Although cilia organization and duct morphology vary drastically in the animal kingdom, ducts are typically classified as carpet or flame designs. The reason behind the appearance of these two different designs and how they relate to fluid pumping remain unclear. Here, we demonstrate that two structural parameters - lumen diameter and cilia-to-lumen ratio - organize the observed duct diversity into a continuous spectrum that connects carpets to flames across all animal phyla. Using a unified fluid model, we connect carpet and flame designs to flow rate and pressure generation. We propose that convergence of ciliated organ designs follows functional constraints rather than phylogenetic distance, along with universal design rules for ciliary pumps.
Collapse
Affiliation(s)
- Feng Ling
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90089, USA
- Helmholtz Pioneer Campus and Institute for Biological and Medical Imaging, Member of the German Lung Research Center (DZL CPC-M), Helmholtz Munich - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | | | - Margaret McFall-Ngai
- Kewalo Marine Laboratory, University of Hawaii at Manoa, USA
- Pacific Biosciences Research Center, University of Hawaii at Manoa, USA
- Biology and Environmental Research Division, Carnegie Institute, California, USA
| | - Kakani Katija
- Monterey Bay Aquarium Research Institute, California, USA
| | - Janna C. Nawroth
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90089, USA
- Helmholtz Pioneer Campus and Institute for Biological and Medical Imaging, Member of the German Lung Research Center (DZL CPC-M), Helmholtz Munich - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
- Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, D-81675, Germany
| | - Eva Kanso
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
4
|
Ling F, Essock-Burns T, McFall-Ngai M, Katija K, Nawroth JC, Kanso E. Flow Physics Explains Morphological Diversity of Ciliated Organs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.12.528181. [PMID: 38168341 PMCID: PMC10760039 DOI: 10.1101/2023.02.12.528181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Organs that pump fluids by the coordinated beat of motile cilia through the lumen are integral to animal physiology. Such organs include the human airways, brain ventricles, and reproductive tracts. Although cilia organization and duct morphology vary drastically in the animal kingdom, ducts are typically classified as either carpet or flame designs. The reason behind this dichotomy and how duct design relates to fluid pumping remain unclear. Here, we demonstrate that two structural parameters -- lumen diameter and cilia-to-lumen ratio -- organize the observed duct diversity into a continuous spectrum that connects carpets to flames across all animal phyla. Using a unified fluid model, we show that carpet and flame designs maximize flow rate and pressure generation, respectively. We propose that convergence of ciliated organ designs follows functional constraints rather than phylogenetic distance, along with universal design rules for ciliary pumps.
Collapse
|
5
|
Fritzsch B, Glover JC. Gene networks and the evolution of olfactory organs, eyes, hair cells and motoneurons: a view encompassing lancelets, tunicates and vertebrates. Front Cell Dev Biol 2024; 12:1340157. [PMID: 38533086 PMCID: PMC10963430 DOI: 10.3389/fcell.2024.1340157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Key developmental pathways and gene networks underlie the formation of sensory cell types and structures involved in chemosensation, vision and mechanosensation, and of the efferents these sensory inputs can activate. We describe similarities and differences in these pathways and gene networks in selected species of the three main chordate groups, lancelets, tunicates, and vertebrates, leading to divergent development of olfactory receptors, eyes, hair cells and motoneurons. The lack of appropriately posited expression of certain transcription factors in lancelets and tunicates prevents them from developing vertebrate-like olfactory receptors and eyes, although they generate alternative structures for chemosensation and vision. Lancelets and tunicates lack mechanosensory cells associated with the sensation of acoustic stimuli, but have gravisensitive organs and ciliated epidermal sensory cells that may (and in some cases clearly do) provide mechanosensation and thus the capacity to respond to movement relative to surrounding water. Although functionally analogous to the vertebrate vestibular apparatus and lateral line, homology is questionable due to differences in the expression of the key transcription factors Neurog and Atoh1/7, on which development of vertebrate hair cells depends. The vertebrate hair cell-bearing inner ear and lateral line thus likely represent major evolutionary advances specific to vertebrates. Motoneurons develop in vertebrates under the control of the ventral signaling molecule hedgehog/sonic hedgehog (Hh,Shh), against an opposing inhibitory effect mediated by dorsal signaling molecules. Many elements of Shh-signaling and downstream genes involved in specifying and differentiating motoneurons are also exhibited by lancelets and tunicates, but the repertoire of MNs in vertebrates is broader, indicating greater diversity in motoneuron differentiation programs.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Joel C. Glover
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Laboratory of Neural Development and Optical Recording (NDEVOR), Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Le MLV, Müller LM, Stach T. The oral sensory organs in Bathochordaeus stygius (Tunicata Appendicularia) are unique in structure and homologous to the coronal organ. Front Zool 2023; 20:40. [PMID: 38102718 PMCID: PMC10722857 DOI: 10.1186/s12983-023-00518-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Appendicularia consists of approximately 70 purely marine species that belong to Tunicata the probable sister taxon to Craniota. Therefore, Appendicularia plays a pivotal role for our understanding of chordate evolution. In addition, appendicularians are an important part of the epipelagic marine plankton. Nevertheless, little is known about appendicularian species, especially from deeper water. RESULTS Using µCT, scanning electron microscopy, and digital 3D-reconstruction techniques we describe three pairs of complex oral sensory organs in the mesopelagic appendicularian Bathochordaeus stygius. The oral sensory organs are situated at the anterior and lateral margin of the mouth and inside the mouth cavity. A single organ consists of 22-90 secondary receptor cells that project apical cilia through a narrow hole in the epidermis. The receptor cells are innervated by branches of the second brain nerve. CONCLUSIONS Based on position, morphology, and innervation we suggest that the oral sensory organs are homologues of the coronal organs in other tunicates. We discuss the hypothesized homology of coronal organs and the lateral line system of primary aquatic vertebrates. The complex oral sensory organs of B. stygius are unique in tunicates and could be adaptations to the more muffled environment of the mesopelagic.
Collapse
Affiliation(s)
- Mai-Lee Van Le
- Humboldt-Universität zu Berlin Vergleichende Elektronenmikroskopie, Philippstraße 13, 10115, Berlin, Germany
| | - Lisa-Marie Müller
- Humboldt-Universität zu Berlin Vergleichende Elektronenmikroskopie, Philippstraße 13, 10115, Berlin, Germany
| | - Thomas Stach
- Humboldt-Universität zu Berlin Vergleichende Elektronenmikroskopie, Philippstraße 13, 10115, Berlin, Germany.
| |
Collapse
|
7
|
Zemann B, Le MLV, Sherlock RE, Baum D, Katija K, Stach T. Evolutionary traces of miniaturization in a giant-Comparative anatomy of brain and brain nerves in Bathochordaeus stygius (Tunicata, Appendicularia). J Morphol 2023; 284:e21598. [PMID: 37313762 DOI: 10.1002/jmor.21598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 06/15/2023]
Abstract
Appendicularia comprises 70 marine, invertebrate, chordate species. Appendicularians play important ecological and evolutionary roles, yet their morphological disparity remains understudied. Most appendicularians are small, develop rapidly, and with a stereotyped cell lineage, leading to the hypothesis that Appendicularia derived progenetically from an ascidian-like ancestor. Here, we describe the detailed anatomy of the central nervous system of Bathochordaeus stygius, a giant appendicularian from the mesopelagic. We show that the brain consists of a forebrain with on average smaller and more uniform cells and a hindbrain, in which cell shapes and sizes vary to a greater extent. Cell count for the brain was 102. We demonstrate the presence of three paired brain nerves. Brain nerve 1 traces into the epidermis of the upper lip region and consists of several fibers with some supportive bulb cells in its course. Brain nerve 2 innervates oral sensory organs and brain nerve 3 innervates the ciliary ring of the gill slits and lateral epidermis. Brain nerve 3 is asymmetric, with the right nerve consisting of two neurites originating posterior to the left one that contains three neurites. Similarities and differences to the anatomy of the brain of the model species Oikopleura dioica are discussed. We interpret the small number of cells in the brain of B. stygius as an evolutionary trace of miniaturization and conclude that giant appendicularians evolved from a small, progenetic ancestor that secondarily increased in size within Appendicularia.
Collapse
Affiliation(s)
| | - Mai-Lee Van Le
- Humboldt-Universität zu Berlin, Vergleichende Elektronenmikroskopie, Berlin, Germany
| | - Rob E Sherlock
- Monterey Bay Aquarium Research Institute, Moss Landing, California, USA
| | | | - Kakani Katija
- Monterey Bay Aquarium Research Institute, Moss Landing, California, USA
| | - Thomas Stach
- Humboldt-Universität zu Berlin, Vergleichende Elektronenmikroskopie, Berlin, Germany
| |
Collapse
|
8
|
Abstract
Vertebrates develop an olfactory system that detects odorants and pheromones through their interaction with specialized cell surface receptors on olfactory sensory neurons. During development, the olfactory system forms from the olfactory placodes, specialized areas of the anterior ectoderm that share cellular and molecular properties with placodes involved in the development of other cranial senses. The early-diverging chordate lineages amphioxus, tunicates, lampreys and hagfishes give insight into how this system evolved. Here, we review olfactory system development and cell types in these lineages alongside chemosensory receptor gene evolution, integrating these data into a description of how the vertebrate olfactory system evolved. Some olfactory system cell types predate the vertebrates, as do some of the mechanisms specifying placodes, and it is likely these two were already connected in the common ancestor of vertebrates and tunicates. In stem vertebrates, this evolved into an organ system integrating additional tissues and morphogenetic processes defining distinct olfactory and adenohypophyseal components, followed by splitting of the ancestral placode to produce the characteristic paired olfactory organs of most modern vertebrates.
Collapse
Affiliation(s)
- Guillaume Poncelet
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| |
Collapse
|
9
|
Morita R, Onuma TA, Manni L, Ohno N, Nishida H. Mouth opening is mediated by separation of dorsal and ventral daughter cells of the lip precursor cells in the larvacean, Oikopleura dioica. Dev Genes Evol 2020; 230:315-327. [PMID: 32803391 DOI: 10.1007/s00427-020-00667-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022]
Abstract
Mouth formation involves the processes of mouth opening, formation of the oral cavity, and the development of associated sensory organs. In deuterostomes, the surface ectoderm and the anterior part of the archenteron are reconfigured and reconnected to make a mouth opening. This study of the larval development of the larvacean, Oikopleura dioica, investigates the cellular organization of the oral region, the developmental processes of the mouth, and the formation of associated sensory cells. O. dioica is a simple chordate whose larvae are transparent and have a small number of constituent cells. It completes organ morphogenesis in 7 h, between hatching 3 h after fertilization and the juvenile stage at 10 h, when it attains adult form and starts to feed. It has two types of mechanosensory cell embedded in the oral epithelium, which is a single layer of cells. There are twenty coronal sensory cells in the circumoral nerve ring and two dorsal sensory organ cells. Two bilateral lip precursor cells (LPCs), facing the anterior surface, divide dorsoventrally and make a wedge-shaped cleft between the two daughter cells named the dorsal lip cell (DLC) and the ventral lip cell (VLC). Eventually, the DLC and VLC become detached and separated into dorsal and ventral lips, triggering mouth opening. This is an intriguing example of cell division itself contributing to morphogenesis. The boundary between the ectoderm and endoderm is present between the lip cells and coronal sensory cells. All oral sensory cells, including dorsal sensory organ cells, were of endodermal origin and were not derived from the ectodermal placode. These observations on mouth formation provide a cellular basis for further studies at a molecular level, in this simple chordate.
Collapse
Affiliation(s)
- Ryo Morita
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Takeshi A Onuma
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Lucia Manni
- Dipartimento di Biologia, Università degli Studi di Padova, via U. Bassi 58/B, I-35121, Padova, Italy
| | - Nobuhiko Ohno
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
10
|
A chordate species lacking Nodal utilizes calcium oscillation and Bmp for left-right patterning. Proc Natl Acad Sci U S A 2020; 117:4188-4198. [PMID: 32029598 DOI: 10.1073/pnas.1916858117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Larvaceans are chordates with a tadpole-like morphology. In contrast to most chordates of which early embryonic morphology is bilaterally symmetric and the left-right (L-R) axis is specified by the Nodal pathway later on, invariant L-R asymmetry emerges in four-cell embryos of larvaceans. The asymmetric cell arrangements exist through development of the tailbud. The tail thus twists 90° in a counterclockwise direction relative to the trunk, and the tail nerve cord localizes on the left side. Here, we demonstrate that larvacean embryos have nonconventional L-R asymmetries: 1) L- and R-cells of the two-cell embryo had remarkably asymmetric cell fates; 2) Ca2+ oscillation occurred through embryogenesis; 3) Nodal, an evolutionarily conserved left-determining gene, was absent in the genome; and 4) bone morphogenetic protein gene (Bmp) homolog Bmp.a showed right-sided expression in the tailbud and larvae. We also showed that Ca2+ oscillation is required for Bmp.a expression, and that BMP signaling suppresses ectopic expression of neural genes. These results indicate that there is a chordate species lacking Nodal that utilizes Ca2+ oscillation and Bmp.a for embryonic L-R patterning. The right-side Bmp.a expression may have arisen via cooption of conventional BMP signaling in order to restrict neural gene expression on the left side.
Collapse
|
11
|
Wollesen T, McDougall C, Arendt D. Remnants of ancestral larval eyes in an eyeless mollusk? Molecular characterization of photoreceptors in the scaphopod Antalis entalis. EvoDevo 2019; 10:25. [PMID: 31641428 PMCID: PMC6800502 DOI: 10.1186/s13227-019-0140-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/25/2019] [Indexed: 11/06/2022] Open
Abstract
Background Eyes have evolved and been lost multiple times during animal evolution, however, the process of eye loss has only been reconstructed in a few cases. Mollusks exhibit eyes as varied as the octopod camera eye or the gastropod cup eye and are ideal systems for studying the evolution of eyes, photoreceptors, and opsins. Results Here, we identify genes related to photoreceptor formation and function in an eyeless conchiferan mollusk, the scaphopod Antalis entalis, and investigate their spatial and temporal expression patterns during development. Our study reveals that the scaphopod early mid-stage trochophore larva has putative photoreceptors in a similar location and with a similar gene expression profile as the trochophore of polyplacophoran mollusks. The apical and post-trochal putative photoreceptors appear to co-express go-opsin, six1/2, myoV, and eya, while expression domains in the posterior foot and pavilion (posterior mantle opening) show co-expression of several other candidate genes but not go-opsin. Sequence analysis reveals that the scaphopod Go-opsin amino acid sequence lacks the functionally important lysine (K296; Schiff base) in the retinal-binding domain, but has not accumulated nonsense mutations and still exhibits the canonical G-protein activation domain. Conclusions The scaphopod Go-opsin sequence reported here is the only known example of a bilaterian opsin that lacks lysine K296 in the retinal-binding domain. Although this may render the Go-opsin unable to detect light, the protein may still perform sensory functions. The location, innervation, development, and gene expression profiles of the scaphopod and polyplacophoran apical and post-trochal photoreceptors suggest that they are homologous, even though the scaphopod post-trochal photoreceptors have degenerated. This indicates that post-trochal eyes are not a polyplacophoran apomorphy but likely a molluscan synapomorphy lost in other mollusks. Scaphopod eye degeneration is probably a result of the transition to an infaunal life history and is reflected in the likely functional degeneration of Go-opsin, the loss of photoreceptor shielding pigments, and the scarce expression of genes involved in phototransduction and eye development. Our results emphasize the importance of studying a phylogenetically broad range of taxa to infer the mechanisms and direction of body plan evolution.
Collapse
Affiliation(s)
- Tim Wollesen
- 1EMBL, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Carmel McDougall
- 2Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, QLD 4111 Australia
| | | |
Collapse
|
12
|
Razy-Krajka F, Stolfi A. Regulation and evolution of muscle development in tunicates. EvoDevo 2019; 10:13. [PMID: 31249657 PMCID: PMC6589888 DOI: 10.1186/s13227-019-0125-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/08/2019] [Indexed: 12/16/2022] Open
Abstract
For more than a century, studies on tunicate muscle formation have revealed many principles of cell fate specification, gene regulation, morphogenesis, and evolution. Here, we review the key studies that have probed the development of all the various muscle cell types in a wide variety of tunicate species. We seize this occasion to explore the implications and questions raised by these findings in the broader context of muscle evolution in chordates.
Collapse
Affiliation(s)
- Florian Razy-Krajka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| |
Collapse
|
13
|
Almazán A, Ferrández-Roldán A, Albalat R, Cañestro C. Developmental atlas of appendicularian Oikopleura dioica actins provides new insights into the evolution of the notochord and the cardio-paraxial muscle in chordates. Dev Biol 2019; 448:260-270. [DOI: 10.1016/j.ydbio.2018.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/13/2018] [Accepted: 09/05/2018] [Indexed: 12/22/2022]
|
14
|
Braun K, Stach T. Morphology and evolution of the central nervous system in adult tunicates. J ZOOL SYST EVOL RES 2018. [DOI: 10.1111/jzs.12246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Katrin Braun
- Institut für Biologie, Vergleichende Zoologie Humboldt‐Universität zu Berlin Berlin Germany
| | - Thomas Stach
- Institut für Biologie, Molekulare Parasitologie Humboldt‐Universität zu Berlin Berlin Germany
| |
Collapse
|
15
|
Somorjai IML, Martí-Solans J, Diaz-Gracia M, Nishida H, Imai KS, Escrivà H, Cañestro C, Albalat R. Wnt evolution and function shuffling in liberal and conservative chordate genomes. Genome Biol 2018; 19:98. [PMID: 30045756 PMCID: PMC6060547 DOI: 10.1186/s13059-018-1468-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/22/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND What impact gene loss has on the evolution of developmental processes, and how function shuffling has affected retained genes driving essential biological processes, remain open questions in the fields of genome evolution and EvoDevo. To investigate these problems, we have analyzed the evolution of the Wnt ligand repertoire in the chordate phylum as a case study. RESULTS We conduct an exhaustive survey of Wnt genes in genomic databases, identifying 156 Wnt genes in 13 non-vertebrate chordates. This represents the most complete Wnt gene catalog of the chordate subphyla and has allowed us to resolve previous ambiguities about the orthology of many Wnt genes, including the identification of WntA for the first time in chordates. Moreover, we create the first complete expression atlas for the Wnt family during amphioxus development, providing a useful resource to investigate the evolution of Wnt expression throughout the radiation of chordates. CONCLUSIONS Our data underscore extraordinary genomic stasis in cephalochordates, which contrasts with the liberal and dynamic evolutionary patterns of gene loss and duplication in urochordate genomes. Our analysis has allowed us to infer ancestral Wnt functions shared among all chordates, several cases of function shuffling among Wnt paralogs, as well as unique expression domains for Wnt genes that likely reflect functional innovations in each chordate lineage. Finally, we propose a potential relationship between the evolution of WntA and the evolution of the mouth in chordates.
Collapse
Affiliation(s)
- Ildikó M L Somorjai
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9ST, Scotland, UK.
- Scottish Oceans Institute, School of Biology, University of St Andrews, East Sands, St Andrews, KY16 8LB, Scotland, UK.
| | - Josep Martí-Solans
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Miriam Diaz-Gracia
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Kaoru S Imai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Hector Escrivà
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France
| | - Cristian Cañestro
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain.
| | - Ricard Albalat
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
16
|
Calatayud S, Garcia-Risco M, Rojas NS, Espinosa-Sánchez L, Artime S, Palacios Ò, Cañestro C, Albalat R. Metallothioneins of the urochordate Oikopleura dioica have Cys-rich tandem repeats, large size and cadmium-binding preference. Metallomics 2018; 10:1585-1594. [DOI: 10.1039/c8mt00177d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oikopleura dioica has the longest metallothionein described so far, made of repeats generated by a modular and step-wise evolution.
Collapse
Affiliation(s)
- Sara Calatayud
- Departament de Genètica
- Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio)
- Facultat de Biologia
- Universitat de Barcelona
- Barcelona
| | - Mario Garcia-Risco
- Departament de Química
- Facultat de Ciències
- Universitat Autònoma de Barcelona
- E-08193 Cerdanyola del Vallès
- Spain
| | - Natalia S. Rojas
- Departament de Genètica
- Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio)
- Facultat de Biologia
- Universitat de Barcelona
- Barcelona
| | - Lizethe Espinosa-Sánchez
- Departament de Genètica
- Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio)
- Facultat de Biologia
- Universitat de Barcelona
- Barcelona
| | - Sebastián Artime
- Departament de Genètica
- Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio)
- Facultat de Biologia
- Universitat de Barcelona
- Barcelona
| | - Òscar Palacios
- Departament de Química
- Facultat de Ciències
- Universitat Autònoma de Barcelona
- E-08193 Cerdanyola del Vallès
- Spain
| | - Cristian Cañestro
- Departament de Genètica
- Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio)
- Facultat de Biologia
- Universitat de Barcelona
- Barcelona
| | - Ricard Albalat
- Departament de Genètica
- Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio)
- Facultat de Biologia
- Universitat de Barcelona
- Barcelona
| |
Collapse
|
17
|
Sherlock RE, Walz KR, Schlining KL, Robison BH. Morphology, ecology, and molecular biology of a new species of giant larvacean in the eastern North Pacific: Bathochordaeus mcnutti sp. nov. MARINE BIOLOGY 2016; 164:20. [PMID: 28042175 PMCID: PMC5159439 DOI: 10.1007/s00227-016-3046-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 11/18/2016] [Indexed: 06/01/2023]
Abstract
Bathochordaeus mcnutti sp. nov. is described from the mesopelagic northeast Pacific Ocean (Monterey Bay, California, USA). Larvaceans in the genus Bathochordaeus are large, often abundant zooplankters found throughout much of the world ocean, but until recently it was unclear whether more than a single species of Bathochordaeus existed. Using remotely operated vehicles, we have made hundreds of in situ observations, compiled two decades of time-series data, and carefully collected enough specimens to determine that three species of Bathochordaeus occur in Monterey Bay: B. charon (Chun), B. stygius (Garstang), and B. mcnutti sp. nov. Bathochordaeus mcnutti is readily distinguished from its two congeners by the distinct blue outline visible around the periphery of its tail, and by other aspects of its morphology, ecology, and genetics. The abundance of larvaceans means they are ecologically important as particle processors. Species within the genus, Bathochordaeus, comprise the largest of described larvaceans.
Collapse
Affiliation(s)
- R. E. Sherlock
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039 USA
| | - K. R. Walz
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039 USA
| | - K. L. Schlining
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039 USA
| | - B. H. Robison
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039 USA
| |
Collapse
|
18
|
Internal and external morphology of adults of the appendicularian, Oikopleura dioica: an SEM study. Cell Tissue Res 2016; 367:213-227. [DOI: 10.1007/s00441-016-2524-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
|
19
|
Lemaire P, Piette J. Tunicates: exploring the sea shores and roaming the open ocean. A tribute to Thomas Huxley. Open Biol 2016; 5:150053. [PMID: 26085517 PMCID: PMC4632506 DOI: 10.1098/rsob.150053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This review is a tribute to the remarkable contributions of Thomas Huxley to the biology of tunicates, the likely sister group of vertebrates. In 1851, the great biologist and philosopher published two landmark papers on pelagic tunicates in the Philosophical Transactions of the Royal Society. They were dedicated to the description of the adult anatomy and life cycle of thaliaceans and appendicularians, the pelagic relatives of ascidians. In the first part of this review, we discuss the novel anatomical observations and evolutionary hypotheses made by Huxley, which would have a lasting influence on tunicate biology. We also briefly comment on the more philosophical reflections of Huxley on individuality. In the second part, we stress the originality and relevance of past and future studies of tunicates in the resolution of major biological issues. In particular, we focus on the complex relationship between genotype and phenotype and the phenomenon of developmental system drift. We propose that more than 150 years after Huxley's papers, tunicate embryos are still worth studying in their own right, independently of their evolutionary proximity to vertebrates, as they provide original and crucial insights into the process of animal evolution. Tunicates are still at the forefront of biological research.
Collapse
Affiliation(s)
- Patrick Lemaire
- Centre de Recherches de Biochimie Macromoléculaire. UMR 5237, Centre National de la Recherche Scientifique, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier cedex 5, France
| | - Jacques Piette
- Centre de Recherches de Biochimie Macromoléculaire. UMR 5237, Centre National de la Recherche Scientifique, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier cedex 5, France
| |
Collapse
|
20
|
Abstract
Cranial sensory placodes derive from discrete patches of the head ectoderm and give rise to numerous sensory structures. During gastrulation, a specialized "neural border zone" forms around the neural plate in response to interactions between the neural and nonneural ectoderm and signals from adjacent mesodermal and/or endodermal tissues. This zone subsequently gives rise to two distinct precursor populations of the peripheral nervous system: the neural crest and the preplacodal ectoderm (PPE). The PPE is a common field from which all cranial sensory placodes arise (adenohypophyseal, olfactory, lens, trigeminal, epibranchial, otic). Members of the Six family of transcription factors are major regulators of PPE specification, in partnership with cofactor proteins such as Eya. Six gene activity also maintains tissue boundaries between the PPE, neural crest, and epidermis by repressing genes that specify the fates of those adjacent ectodermally derived domains. As the embryo acquires anterior-posterior identity, the PPE becomes transcriptionally regionalized, and it subsequently becomes subdivided into specific placodes with distinct developmental fates in response to signaling from adjacent tissues. Each placode is characterized by a unique transcriptional program that leads to the differentiation of highly specialized cells, such as neurosecretory cells, sensory receptor cells, chemosensory neurons, peripheral glia, and supporting cells. In this review, we summarize the transcriptional and signaling factors that regulate key steps of placode development, influence subsequent sensory neuron specification, and discuss what is known about mutations in some of the essential PPE genes that underlie human congenital syndromes.
Collapse
Affiliation(s)
- Sally A Moody
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA; George Washington University Institute for Neuroscience, Washington, DC, USA.
| | - Anthony-Samuel LaMantia
- George Washington University Institute for Neuroscience, Washington, DC, USA; Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
21
|
Schlosser G. Vertebrate cranial placodes as evolutionary innovations--the ancestor's tale. Curr Top Dev Biol 2015; 111:235-300. [PMID: 25662263 DOI: 10.1016/bs.ctdb.2014.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Evolutionary innovations often arise by tinkering with preexisting components building new regulatory networks by the rewiring of old parts. The cranial placodes of vertebrates, ectodermal thickenings that give rise to many of the cranial sense organs (ear, nose, lateral line) and ganglia, originated as such novel structures, when vertebrate ancestors elaborated their head in support of a more active and exploratory life style. This review addresses the question of how cranial placodes evolved by tinkering with ectodermal patterning mechanisms and sensory and neurosecretory cell types that have their own evolutionary history. With phylogenetic relationships among the major branches of metazoans now relatively well established, a comparative approach is used to infer, which structures evolved in which lineages and allows us to trace the origin of placodes and their components back from ancestor to ancestor. Some of the core networks of ectodermal patterning and sensory and neurosecretory differentiation were already established in the common ancestor of cnidarians and bilaterians and were greatly elaborated in the bilaterian ancestor (with BMP- and Wnt-dependent patterning of dorsoventral and anteroposterior ectoderm and multiple neurosecretory and sensory cell types). Rostral and caudal protoplacodal domains, giving rise to some neurosecretory and sensory cells, were then established in the ectoderm of the chordate and tunicate-vertebrate ancestor, respectively. However, proper cranial placodes as clusters of proliferating progenitors producing high-density arrays of neurosecretory and sensory cells only evolved and diversified in the ancestors of vertebrates.
Collapse
Affiliation(s)
- Gerhard Schlosser
- School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland.
| |
Collapse
|
22
|
Martí-Solans J, Ferrández-Roldán A, Godoy-Marín H, Badia-Ramentol J, Torres-Aguila NP, Rodríguez-Marí A, Bouquet JM, Chourrout D, Thompson EM, Albalat R, Cañestro C. Oikopleura dioicaculturing made easy: A Low-Cost facility for an emerging animal model in EvoDevo. Genesis 2014; 53:183-93. [DOI: 10.1002/dvg.22800] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Josep Martí-Solans
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio); Universitat de Barcelona; Barcelona 08028 Spain
| | - Alfonso Ferrández-Roldán
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio); Universitat de Barcelona; Barcelona 08028 Spain
| | - Hector Godoy-Marín
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio); Universitat de Barcelona; Barcelona 08028 Spain
| | - Jordi Badia-Ramentol
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio); Universitat de Barcelona; Barcelona 08028 Spain
| | - Nuria P. Torres-Aguila
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio); Universitat de Barcelona; Barcelona 08028 Spain
| | - Adriana Rodríguez-Marí
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio); Universitat de Barcelona; Barcelona 08028 Spain
| | - Jean Marie Bouquet
- Sars International Centre for Marine Molecular Biology; University of Bergen; N-5008 Bergen Bergen Norway
- Department of Biology; University of Bergen; Postbox 7803 N-5020 Bergen Norway
| | - Daniel Chourrout
- Sars International Centre for Marine Molecular Biology; University of Bergen; N-5008 Bergen Bergen Norway
| | - Eric M. Thompson
- Sars International Centre for Marine Molecular Biology; University of Bergen; N-5008 Bergen Bergen Norway
- Department of Biology; University of Bergen; Postbox 7803 N-5020 Bergen Norway
| | - Ricard Albalat
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio); Universitat de Barcelona; Barcelona 08028 Spain
| | - Cristian Cañestro
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio); Universitat de Barcelona; Barcelona 08028 Spain
| |
Collapse
|
23
|
Fortunato SA, Leininger S, Adamska M. Evolution of the Pax-Six-Eya-Dach network: the calcisponge case study. EvoDevo 2014; 5:23. [PMID: 25002963 PMCID: PMC4083861 DOI: 10.1186/2041-9139-5-23] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/15/2014] [Indexed: 12/21/2022] Open
Abstract
Background The Pax-Six-Eya-Dach network (PSEDN) is involved in a variety of developmental processes, including well documented roles in determination of sensory organs and morphogenesis in bilaterian animals. Expression of PSEDN components in cnidarians is consistent with function in sensory organ development. Recent work in demosponges demonstrated the presence of single homologs of Pax and Six genes, and their possible involvement in morphogenesis, but the absence of the remaining network components. Calcisponges are evolutionarily distant from demosponges, and the developmental toolkits of these two lineages differ significantly. We used an emerging model system, Sycon ciliatum, to identify components of the PSEDN and study their expression during embryonic and postembryonic development. Results We identified two Pax, three Six and one Eya genes in calcisponges, a situation strikingly different than in the previously studied demosponges. One of the calcisponge Pax genes can be identified as PaxB, while the second Pax gene has no clear affiliation. The three calcisponge Six genes could not be confidently classified within any known family of Six genes. Expression analysis in adult S. ciliatum demonstrated that representatives of Pax, Six and Eya are expressed in patterns consistent with roles in morphogenesis of the choanocyte chambers. Distinct paralogues of Pax and Six genes were expressed early in the development of the putative larval sensory cells, the cruciform cells. While lack of known photo pigments in calcisponge genomes precludes formal assignment of function to the cruciform cells, we also show that they express additional eumetazoan genes involved in specification of sensory and neuronal cells: Elav and Msi. Conclusions Our results indicate that the role of a Pax-Six-Eya network in morphogenesis likely predates the animal divergence. In addition, Pax and Six, as well as Elav and Msi are expressed during differentiation of cruciform cells, which are good candidates for being sensory cells of the calcaronean sponge larvae.
Collapse
Affiliation(s)
- Sofia Av Fortunato
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, Bergen 5008, Norway ; Department of Biology, University of Bergen, Thormøhlensgt. 55, Bergen 5008, Norway
| | - Sven Leininger
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, Bergen 5008, Norway ; Current address: Institute of Marine Research, Nordnesgaten 50, Bergen 5005, Norway
| | - Maja Adamska
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, Bergen 5008, Norway
| |
Collapse
|
24
|
Schlosser G, Patthey C, Shimeld SM. The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning. Dev Biol 2014; 389:98-119. [PMID: 24491817 DOI: 10.1016/j.ydbio.2014.01.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 12/12/2022]
Abstract
Cranial placodes are evolutionary innovations of vertebrates. However, they most likely evolved by redeployment, rewiring and diversification of preexisting cell types and patterning mechanisms. In the second part of this review we compare vertebrates with other animal groups to elucidate the evolutionary history of ectodermal patterning. We show that several transcription factors have ancient bilaterian roles in dorsoventral and anteroposterior regionalisation of the ectoderm. Evidence from amphioxus suggests that ancestral chordates then concentrated neurosecretory cells in the anteriormost non-neural ectoderm. This anterior proto-placodal domain subsequently gave rise to the oral siphon primordia in tunicates (with neurosecretory cells being lost) and anterior (adenohypophyseal, olfactory, and lens) placodes of vertebrates. Likewise, tunicate atrial siphon primordia and posterior (otic, lateral line, and epibranchial) placodes of vertebrates probably evolved from a posterior proto-placodal region in the tunicate-vertebrate ancestor. Since both siphon primordia in tunicates give rise to sparse populations of sensory cells, both proto-placodal domains probably also gave rise to some sensory receptors in the tunicate-vertebrate ancestor. However, proper cranial placodes, which give rise to high density arrays of specialised sensory receptors and neurons, evolved from these domains only in the vertebrate lineage. We propose that this may have involved rewiring of the regulatory network upstream and downstream of Six1/2 and Six4/5 transcription factors and their Eya family cofactors. These proteins, which play ancient roles in neuronal differentiation were first recruited to the dorsal non-neural ectoderm in the tunicate-vertebrate ancestor but subsequently probably acquired new target genes in the vertebrate lineage, allowing them to adopt new functions in regulating proliferation and patterning of neuronal progenitors.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Department of Zoology, School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, University Road, Galway, Ireland.
| | - Cedric Patthey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
25
|
Patthey C, Schlosser G, Shimeld SM. The evolutionary history of vertebrate cranial placodes--I: cell type evolution. Dev Biol 2014; 389:82-97. [PMID: 24495912 DOI: 10.1016/j.ydbio.2014.01.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
Abstract
Vertebrate cranial placodes are crucial contributors to the vertebrate cranial sensory apparatus. Their evolutionary origin has attracted much attention from evolutionary and developmental biologists, yielding speculation and hypotheses concerning their putative homologues in other lineages and the developmental and genetic innovations that might have underlain their origin and diversification. In this article we first briefly review our current understanding of placode development and the cell types and structures they form. We next summarise previous hypotheses of placode evolution, discussing their strengths and caveats, before considering the evolutionary history of the various cell types that develop from placodes. In an accompanying review, we also further consider the evolution of ectodermal patterning. Drawing on data from vertebrates, tunicates, amphioxus, other bilaterians and cnidarians, we build these strands into a scenario of placode evolutionary history and of the genes, cells and developmental processes that underlie placode evolution and development.
Collapse
Affiliation(s)
- Cedric Patthey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | - Gerhard Schlosser
- Zoology, School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, University Road, Galway, Ireland
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
26
|
Caicci F, Gasparini F, Rigon F, Zaniolo G, Burighel P, Manni L. The oral sensory structures of Thaliacea (Tunicata) and consideration of the evolution of hair cells in Chordata. J Comp Neurol 2014; 521:2756-71. [PMID: 23386364 DOI: 10.1002/cne.23313] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/13/2013] [Accepted: 01/22/2013] [Indexed: 02/02/2023]
Abstract
We analyzed the mouth of three species, representative of the three orders of the class Thaliacea (Tunicata)--Pyrosoma atlanticum (Pyrosomatida), Doliolum nationalis (Doliolida), and Thalia democratica (Salpida)--to verify the presence of mechanoreceptors, particularly hair cells. In vertebrates, hair cells are well-known mechanoreceptors of the inner ear and lateral line, typically exhibiting an apical hair bundle composed of a cilium and stereovilli but lacking an axon. For a long time, hair cells were thought to be exclusive to vertebrates. However, evidence of a mechanosensory organ (the coronal organ) employing hair cells in the mouth of tunicates, considered the sister group of vertebrates, suggests that tunicate and vertebrate hair cells may share a common origin. This study on thaliaceans, a tunicate group not yet investigated, shows that both P. atlanticum and D. nationalis possess a coronal organ, in addition to sensory structures containing peripheral neurons (i.e., cupular organs and triads of sensory cells). In contrast, in T. democratica, we did not recognize any oral multicellular sensory organ. We hypothesize that in T. democratica, hair cells were secondarily lost, concomitantly with the loss of branchial fissures, the acquisition of a feeding mechanism based on muscle activity, and a mechanosensory apparatus based on excitable epithelia. Our data are consistent with the hypothesis that hair cells were present in the common ancestor of tunicates and vertebrates, from which hair cells progressively evolved.
Collapse
Affiliation(s)
- Federico Caicci
- Dipartimento di Biologia, Università di Padova, I-35121 Padova, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Rivera A, Winters I, Rued A, Ding S, Posfai D, Cieniewicz B, Cameron K, Gentile L, Hill A. The evolution and function of the Pax/Six regulatory network in sponges. Evol Dev 2013; 15:186-96. [PMID: 23607302 DOI: 10.1111/ede.12032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Examining the origins of highly conserved gene regulatory networks (GRNs) will inform our understanding of the evolution of animal body plans. Sponges are believed to be the most ancient extant metazoan lineage, and as such, hold clues about the evolution of genetic programs deployed in animal development. We used the emerging freshwater sponge model, Ephydatia muelleri, to study the evolutionary origins of the Pax/Six/Eya/Dac (PSED) GRN. Orthologs to Pax and Six family members are present in E. muelleri and are expressed in endothelial cells lining the canal system as well as cells in the choanoderm. Knockdown of EmPaxB and EmSix1/2 by RNAi resulted in defects to the canal systems. We further show that PaxB may be in a regulatory relationship with Six1/2 in E. muelleri, thus demonstrating that a component of the PSED network was present early in metazoan evolution.
Collapse
Affiliation(s)
- A Rivera
- University of Richmond, Richmond, VA 23173, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gasparini F, Caicci F, Rigon F, Zaniolo G, Burighel P, Manni L. Cytodifferentiation of hair cells during the development of a basal chordate. Hear Res 2013; 304:188-99. [PMID: 23876523 DOI: 10.1016/j.heares.2013.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/28/2013] [Accepted: 07/11/2013] [Indexed: 01/10/2023]
Abstract
Tunicates are unique animals for studying the origin and evolution of vertebrates because they are considered vertebrates' closest living relatives and share the vertebrate body plan and many specific features. Both possess neural placodes, transient thickenings of the cranial ectoderm that give rise to various types of sensory cells, including axonless secondary mechanoreceptors. In vertebrates, these are represented by the hair cells of the inner ear and the lateral line, which have an apical apparatus typically bearing cilia and stereovilli. In tunicates, they are found in the coronal organ, which is a mechanoreceptor located at the base of the oral siphon along the border of the velum and tentacles and is formed of cells bearing a row of cilia and short microvilli. The coronal organ represents the best candidate homolog for the vertebrate lateral line. To further understand the evolution of secondary sensory cells, we analysed the development and cytodifferentiation of coronal cells in the tunicate ascidian Ciona intestinalis for the first time. Here, coronal sensory cells can be identified as early as larval metamorphosis, before tentacles form, as cells with short cilia and microvilli. Sensory cells gradually differentiate, acquiring hair cell features with microvilli containing actin and myosin VIIa; in the meantime, the associated supporting cells develop. The coronal organ grows throughout the animal's lifespan, accompanying the growth of the tentacle crown. Anti-phospho Histone H3 immunostaining indicates that both hair cells and supporting cells can proliferate. This finding contributes to the understanding of the evolution of secondary sensory cells, suggesting that both ancestral cell types were able to proliferate and that this property was progressively restricted to supporting cells in vertebrates and definitively lost in mammals.
Collapse
Affiliation(s)
- Fabio Gasparini
- Dipartimento di Biologia, Università di Padova, Via U. Bassi 58/B, I-35121 Padova, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Rigon F, Stach T, Caicci F, Gasparini F, Burighel P, Manni L. Evolutionary diversification of secondary mechanoreceptor cells in tunicata. BMC Evol Biol 2013; 13:112. [PMID: 23734698 PMCID: PMC3682859 DOI: 10.1186/1471-2148-13-112] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/28/2013] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Hair cells are vertebrate secondary sensory cells located in the ear and in the lateral line organ. Until recently, these cells were considered to be mechanoreceptors exclusively found in vertebrates that evolved within this group. Evidence of secondary mechanoreceptors in some tunicates, the proposed sister group of vertebrates, has recently led to the hypothesis that vertebrate and tunicate secondary sensory cells share a common origin. Secondary sensory cells were described in detail in two tunicate groups, ascidians and thaliaceans, in which they constitute an oral sensory structure called the coronal organ. Among thaliaceans, the organ is absent in salps and it has been hypothesised that this condition is due to a different feeding system adopted by this group of animals. No information is available as to whether a comparable structure exists in the third group of tunicates, the appendicularians, although different sensory structures are known to be present in these animals. RESULTS We studied the detailed morphology of appendicularian oral mechanoreceptors. Using light and electron microscopy we could demonstrate that the mechanosensory organ called the circumoral ring is composed of secondary sensory cells. We described the ultrastructure of the circumoral organ in two appendicularian species, Oikopleura dioica and Oikopleura albicans, and thus taxonomically completed the data collection of tunicate secondary sensory cells. To understand the evolution of secondary sensory cells in tunicates, we performed a cladistic analysis using morphological data. We constructed a matrix consisting of 19 characters derived from detailed ultrastructural studies in 16 tunicate species and used a cephalochordate and three vertebrate species as outgroups. CONCLUSIONS Our study clearly shows that the circumoral ring is the appendicularian homologue of the coronal organ of other tunicate taxa. The cladistic analysis enabled us to reconstruct the features of the putative ancestral hair cell in tunicates, represented by a simple monociliated cell. This cell successively differentiated into the current variety of oral mechanoreceptors in the various tunicate lineages. Finally, we demonstrated that the inferred evolutionary changes coincide with major transitions in the feeding strategies in each respective lineage.
Collapse
Affiliation(s)
- Francesca Rigon
- Dipartimento di Biologia, Università degli Studi di Padova, via U. Bassi 58/B, I-35121, Padova, Italy
| | - Thomas Stach
- Institut für Biologie, AG Vergleichende Zoologie, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 2, D-10115, Berlin, Germany
| | - Federico Caicci
- Dipartimento di Biologia, Università degli Studi di Padova, via U. Bassi 58/B, I-35121, Padova, Italy
| | - Fabio Gasparini
- Dipartimento di Biologia, Università degli Studi di Padova, via U. Bassi 58/B, I-35121, Padova, Italy
| | - Paolo Burighel
- Dipartimento di Biologia, Università degli Studi di Padova, via U. Bassi 58/B, I-35121, Padova, Italy
| | - Lucia Manni
- Dipartimento di Biologia, Università degli Studi di Padova, via U. Bassi 58/B, I-35121, Padova, Italy
| |
Collapse
|
30
|
Gasparini F, Degasperi V, Shimeld SM, Burighel P, Manni L. Evolutionary conservation of the placodal transcriptional network during sexual and asexual development in chordates. Dev Dyn 2013; 242:752-66. [DOI: 10.1002/dvdy.23957] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/14/2013] [Accepted: 02/15/2013] [Indexed: 01/14/2023] Open
Affiliation(s)
- Fabio Gasparini
- Dipartimento di Biologia; Università degli Studi di Padova; Padova; Italy
| | | | - Sebastian M. Shimeld
- Department of Zoology; University of Oxford; South Parks Road; Oxford; United Kingdom
| | - Paolo Burighel
- Dipartimento di Biologia; Università degli Studi di Padova; Padova; Italy
| | - Lucia Manni
- Dipartimento di Biologia; Università degli Studi di Padova; Padova; Italy
| |
Collapse
|
31
|
Cañestro C, Albalat R, Irimia M, Garcia-Fernàndez J. Impact of gene gains, losses and duplication modes on the origin and diversification of vertebrates. Semin Cell Dev Biol 2013; 24:83-94. [DOI: 10.1016/j.semcdb.2012.12.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 12/25/2012] [Indexed: 02/06/2023]
|
32
|
Holland LZ. Evolution of new characters after whole genome duplications: insights from amphioxus. Semin Cell Dev Biol 2013; 24:101-9. [PMID: 23291260 DOI: 10.1016/j.semcdb.2012.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/25/2012] [Indexed: 12/31/2022]
Abstract
Additional copies of genes resulting from two whole genome duplications at the base of the vertebrates have been suggested as enabling the evolution of vertebrate-specific structures such as neural crest, a midbrain/hindbrain organizer and neurogenic placodes. These structures, however, did not evolve entirely de novo, but arose from tissues already present in an ancestral chordate. This review discusses the evolutionary history of co-option of old genes for new roles in vertebrate development as well as the relative contributions of changes in cis-regulation and in protein structure. Particular examples are the FoxD, FGF8/17/18 and Pax2/5/8 genes. Comparisons with invertebrate chordates (amphioxus and tunicates) paint a complex picture with co-option of genes into new structures occurring both after and before the whole genome duplications. In addition, while cis-regulatory changes are likely of primary importance in evolution of vertebrate-specific structures, changes in protein structure including alternative splicing are non-trivial.
Collapse
Affiliation(s)
- Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA.
| |
Collapse
|
33
|
Abstract
The vertebrate oral region represents a key interface between outer and inner environments, and its structural and functional design is among the limiting factors for survival of its owners. Both formation of the respective oral opening (primary mouth) and establishment of the food-processing apparatus (secondary mouth) require interplay between several embryonic tissues and complex embryonic rearrangements. Although many aspects of the secondary mouth formation, including development of the jaws, teeth or taste buds, are known in considerable detail, general knowledge about primary mouth formation is regrettably low. In this paper, primary mouth formation is reviewed from a comparative point of view in order to reveal its underestimated morphogenetic diversity among, and also within, particular vertebrate clades. In general, three main developmental modes were identified. The most common is characterized by primary mouth formation via a deeply invaginated ectodermal stomodeum and subsequent rupture of the bilaminar oral membrane. However, in salamander, lungfish and also in some frog species, the mouth develops alternatively via stomodeal collar formation contributed both by the ecto- and endoderm. In ray-finned fishes, on the other hand, the mouth forms via an ectoderm wedge and later horizontal detachment of the initially compressed oral epithelia with probably a mixed germ-layer derivation. A very intriguing situation can be seen in agnathan fishes: whereas lampreys develop their primary mouth in a manner similar to the most common gnathostome pattern, hagfishes seem to undergo a unique oropharyngeal morphogenesis when compared with other vertebrates. In discussing the early formative embryonic correlates of primary mouth formation likely to be responsible for evolutionary-developmental modifications of this area, we stress an essential role of four factors: first, positioning and amount of yolk tissue; closely related to, second, endoderm formation during gastrulation, which initiates the process and constrains possible evolutionary changes within this area; third, incipient structure of the stomodeal primordium at the anterior neural plate border, where the ectoderm component of the prospective primary mouth is formed; and fourth, the prime role of Pitx genes for establishment and later morphogenesis of oral region both in vertebrates and non-vertebrate chordates.
Collapse
Affiliation(s)
- Vladimír Soukup
- Department of Zoology, Charles University in Prague, Prague, Czech Republic
| | | | | |
Collapse
|
34
|
Sato S, Ikeda K, Shioi G, Nakao K, Yajima H, Kawakami K. Regulation of Six1 expression by evolutionarily conserved enhancers in tetrapods. Dev Biol 2012; 368:95-108. [PMID: 22659139 DOI: 10.1016/j.ydbio.2012.05.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/16/2012] [Accepted: 05/21/2012] [Indexed: 11/16/2022]
Abstract
The Six1 homeobox gene plays critical roles in vertebrate organogenesis. Mice deficient for Six1 show severe defects in organs such as skeletal muscle, kidney, thymus, sensory organs and ganglia derived from cranial placodes, and mutations in human SIX1 cause branchio-oto-renal syndrome, an autosomal dominant developmental disorder characterized by hearing loss and branchial defects. The present study was designed to identify enhancers responsible for the dynamic expression pattern of Six1 during mouse embryogenesis. The results showed distinct enhancer activities of seven conserved non-coding sequences (CNSs) retained in tetrapod Six1 loci. The activities were detected in all cranial placodes (excluding the lens placode), dorsal root ganglia, somites, nephrogenic cord, notochord and cranial mesoderm. The major Six1-expression domains during development were covered by the sum of activities of these enhancers, together with the previously identified enhancer for the pre-placodal region and foregut endoderm. Thus, the eight CNSs identified in a series of our study represent major evolutionarily conserved enhancers responsible for the expression of Six1 in tetrapods. The results also confirmed that chick electroporation is a robust means to decipher regulatory information stored in vertebrate genomes. Mutational analysis of the most conserved placode-specific enhancer, Six1-21, indicated that the enhancer integrates a variety of inputs from Sox, Pax, Fox, Six, Wnt/Lef1 and basic helix-loop-helix proteins. Positive autoregulation of Six1 is achieved through the regulation of Six protein-binding sites. The identified Six1 enhancers provide valuable tools to understand the mechanism of Six1 regulation and to manipulate gene expression in the developing embryo, particularly in the sensory organs.
Collapse
Affiliation(s)
- Shigeru Sato
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Many of the features that distinguish the vertebrates from other chordates are found in the head. Prominent amongst these differences are the paired sense organs and associated cranial ganglia. Significantly, these structures are derived developmentally from the ectodermal placodes. It has therefore been proposed that the emergence of the ectodermal placodes was concomitant with and central to the evolution of the vertebrates. More recent studies, however, indicate forerunners of the ectodermal placodes can be readily identified outside the vertebrates, particularly in urochordates. Thus the evolutionary history of the ectodermal placodes is deeper and more complex than was previously appreciated with the full repertoire of vertebrate ectodermal placodes, and their derivatives, being assembled over a protracted period rather than arising collectively with the vertebrates.
Collapse
Affiliation(s)
- Anthony Graham
- MRC Centre for Developmental Neurobiology, King's College London, London, UK
| | | |
Collapse
|
36
|
Cattell M, Lai S, Cerny R, Medeiros DM. A new mechanistic scenario for the origin and evolution of vertebrate cartilage. PLoS One 2011; 6:e22474. [PMID: 21799866 PMCID: PMC3142159 DOI: 10.1371/journal.pone.0022474] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 06/28/2011] [Indexed: 11/18/2022] Open
Abstract
The appearance of cellular cartilage was a defining event in vertebrate evolution because it made possible the physical expansion of the vertebrate "new head". Despite its central role in vertebrate evolution, the origin of cellular cartilage has been difficult to understand. This is largely due to a lack of informative evolutionary intermediates linking vertebrate cellular cartilage to the acellular cartilage of invertebrate chordates. The basal jawless vertebrate, lamprey, has long been considered key to understanding the evolution of vertebrate cartilage. However, histological analyses of the lamprey head skeleton suggest it is composed of modern cellular cartilage and a putatively unrelated connective tissue called mucocartilage, with no obvious transitional tissue. Here we take a molecular approach to better understand the evolutionary relationships between lamprey cellular cartilage, gnathostome cellular cartilage, and lamprey mucocartilage. We find that despite overt histological similarity, lamprey and gnathostome cellular cartilage utilize divergent gene regulatory networks (GRNs). While the gnathostome cellular cartilage GRN broadly incorporates Runx, Barx, and Alx transcription factors, lamprey cellular cartilage does not express Runx or Barx, and only deploys Alx genes in certain regions. Furthermore, we find that lamprey mucocartilage, despite its distinctive mesenchymal morphology, deploys every component of the gnathostome cartilage GRN, albeit in different domains. Based on these findings, and previous work, we propose a stepwise model for the evolution of vertebrate cellular cartilage in which the appearance of a generic neural crest-derived skeletal tissue was followed by a phase of skeletal tissue diversification in early agnathans. In the gnathostome lineage, a single type of rigid cellular cartilage became dominant, replacing other skeletal tissues and evolving via gene cooption to become the definitive cellular cartilage of modern jawed vertebrates.
Collapse
Affiliation(s)
- Maria Cattell
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Su Lai
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Robert Cerny
- Department of Zoology, Charles University in Prague, Prague, Czech Republic
| | - Daniel Meulemans Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
37
|
Burighel P, Caicci F, Manni L. Hair cells in non-vertebrate models: Lower chordates and molluscs. Hear Res 2011; 273:14-24. [DOI: 10.1016/j.heares.2010.03.087] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/11/2010] [Accepted: 03/15/2010] [Indexed: 10/19/2022]
|
38
|
Posnien N, Koniszewski N, Bucher G. Insect Tc-six4 marks a unit with similarity to vertebrate placodes. Dev Biol 2010; 350:208-16. [PMID: 21034730 DOI: 10.1016/j.ydbio.2010.10.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 10/18/2010] [Accepted: 10/19/2010] [Indexed: 11/20/2022]
Abstract
Cranial placodes are specialized ectodermal regions in the developing vertebrate head that give rise to both neural and non-neural cell types of the neuroendocrine system and the sense organs of the visual, olfactory and acoustic systems. The cranial placodes develop from a panplacodal region which is specifically marked by genes of the eyes absent/eya and two "six homeobox" family members (sine oculis/six1 and six4). It had been believed that cranial placodes are evolutionary novelties of vertebrates. However, data from non-vertebrate chordates suggest that placode-like structures evolved in the chordate ancestor already. Here, we identify a morphological structure in the embryonic head of the beetle Tribolium castaneum with placode-like features. It is marked by the orthologs of the panplacodal markers Tc-six4, Tc-eya and Tc-sine oculis/six1 (Tc-six1) and expresses several genes known to be involved in adenohypophyseal placode development in vertebrates. Moreover, it contributes to both epidermal and neural tissues. We identify Tc-six4 as a specific marker for this structure that we term the insect head placode. Finally, we reveal the regulatory gene network of the panplacodal genes Tc-six4, Tc-eya and Tc-six1 and identify them as head epidermis patterning genes. Our finding of a placode-like structure in an insect suggests that a placode precursor was already present in the last common ancestor of bilaterian animals.
Collapse
Affiliation(s)
- Nico Posnien
- Center of Molecular Brain Physiology, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | | | | |
Collapse
|
39
|
Terakado K. Generation of prolactin-like neurons in the dorsal strand of ascidians. Zoolog Sci 2010; 27:581-8. [PMID: 20608847 DOI: 10.2108/zsj.27.581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The adult ascidian neural complex forms from a thin tube called the neurohypophyseal duct and from the primordium of the cerebral ganglion from the sensory vesicle in metamorphosing larvae. Neurohypophyseal duct cells, located in the anterior left side of the sensory vesicle of swimming larvae, are derived from the anterior embryonic neural plate, which expresses common transcription factors in vertebrates and urochordates. The cerebral ganglion primordium is probably derived from the posterior sensory vesicle during metamorphosis. After metamorphosis begins, the duct elongates anteriorly and fuses with the stomodeal ectoderm, where the dorsal tubercle, a large ciliated structure that opens into the upper part of the pharynx, later develops. The rudiment of the cerebral ganglion and the duct elongate posteriorly. The duct also differentiates into the neural gland. The dorsal wall of the neural gland in adult ascidians has a thick epithelium (placode), the central part of which forms the dorsal strand by repeated invaginations along the visceral nerve. Both gonadotropin-releasing hormone (GnRH) neurons and prolactin-like (non-GnRH) neurons are generated in the dorsal strand and migrate to the cerebral ganglion along the visceral nerve throughout adulthood. Thus, the epithelium derived from the neurohypophyseal duct possesses neurogenic potential to generate neural stem cells of the central (cerebral ganglion) and peripheral (dorsal strand) nervous systems. The generation of prolactin-like neurons and their migration into the brain with GnRH neurons suggest that the ascidian dorsal strand is homologous to the craniate olfactory placode, and provide unequivocal support for the existence of the clade Olfactores.
Collapse
Affiliation(s)
- Kiyoshi Terakado
- Department of Regulation Biology, Faculty of Science, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan.
| |
Collapse
|
40
|
Caicci F, Degasperi V, Gasparini F, Zaniolo G, Del Favero M, Burighel P, Manni L. Variability of hair cells in the coronal organ of ascidians (Chordata, Tunicata). CAN J ZOOL 2010. [DOI: 10.1139/z10-036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tunicate ascidians are nonvertebrate chordates that possess mechanoreceptor cells in the coronal organ in the oral siphon, which monitor the incoming water flow. Like vertebrate hair cells, the mechanoreceptor–coronal cells are secondary sensory (axonless) cells accompanied by supporting cells and they exhibit morphological diversities of apical specialisations: they are multiciliate in ascidians of the order Enterogona, whereas they are more complex and possess one or two cilia accompanied by stereovilli, also graded in length, in ascidians of the order Pleurogona. In morphology, embryonic origin, and arrangement, coronal sensory cells closely resemble vertebrate hair cells. We describe here the coronal organs of five ascidians ( Pyura haustor (Stimpson, 1864), Pyura stolonifera (Heller, 1878), Styela gibbsii (Stimpson, 1864), Styela montereyensis (Dall, 1872), and Polyandrocarpa zorritensis (Van Name, 1931)), belonging to Pleurogona, also comprising species of one family (Pyuridae), not yet considered, and thus completing our overview of the order. Each species possesses at least two kinds of secondary sensory cells, some of them characterized by stereovilli graded in length. In some species, the coronal sensory cells exhibit secretory activity; in P. haustor, a mitotic sensory cell has also been found. We compare the coronal organ in both ascidians and with other chordate sensory organs formed of secondary sensory cells, and discuss their possible homologies.
Collapse
Affiliation(s)
- Federico Caicci
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - Valentina Degasperi
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - Fabio Gasparini
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - Giovanna Zaniolo
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - Marcello Del Favero
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - Paolo Burighel
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - Lucia Manni
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| |
Collapse
|
41
|
Kano S. Genomics and Developmental Approaches to an Ascidian Adenohypophysis Primordium. Integr Comp Biol 2010; 50:35-52. [DOI: 10.1093/icb/icq050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
42
|
Jovelin R, Yan YL, He X, Catchen J, Amores A, Canestro C, Yokoi H, Postlethwait JH. Evolution of developmental regulation in the vertebrate FgfD subfamily. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:33-56. [PMID: 19562753 DOI: 10.1002/jez.b.21307] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fibroblast growth factors (Fgfs) encode small signaling proteins that help regulate embryo patterning. Fgfs fall into seven families, including FgfD. Nonvertebrate chordates have a single FgfD gene; mammals have three (Fgf8, Fgf17, and Fgf18); and teleosts have six (fgf8a, fgf8b, fgf17, fgf18a, fgf18b, and fgf24). What are the evolutionary processes that led to the structural duplication and functional diversification of FgfD genes during vertebrate phylogeny? To study this question, we investigated conserved syntenies, patterns of gene expression, and the distribution of conserved noncoding elements (CNEs) in FgfD genes of stickleback and zebrafish, and compared them with data from cephalochordates, urochordates, and mammals. Genomic analysis suggests that Fgf8, Fgf17, Fgf18, and Fgf24 arose in two rounds of whole genome duplication at the base of the vertebrate radiation; that fgf8 and fgf18 duplications occurred at the base of the teleost radiation; and that Fgf24 is an ohnolog that was lost in the mammalian lineage. Expression analysis suggests that ancestral subfunctions partitioned between gene duplicates and points to the evolution of novel expression domains. Analysis of CNEs, at least some of which are candidate regulatory elements, suggests that ancestral CNEs partitioned between gene duplicates. These results help explain the evolutionary pathways by which the developmentally important family of FgfD molecules arose and the deduced principles that guided FgfD evolution are likely applicable to the evolution of developmental regulation in many vertebrate multigene families.
Collapse
Affiliation(s)
- Richard Jovelin
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Key steps in the morphogenesis of a cranial placode in an invertebrate chordate, the tunicate Ciona savignyi. Dev Biol 2010; 340:134-44. [PMID: 20096682 DOI: 10.1016/j.ydbio.2010.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 01/13/2010] [Accepted: 01/14/2010] [Indexed: 11/20/2022]
Abstract
Tunicates and vertebrates share a common ancestor that possessed cranial neurogenic placodes, thickenings in embryonic head epidermis giving rise to sensory structures. Though orthology assignments between vertebrate and tunicate placodes are not entirely resolved, vertebrate otic placodes and tunicate atrial siphon primordia are thought to be homologous based on morphology and position, gene expression, and a common signaling requirement during induction. Here, we probe key points in the morphogenesis of the tunicate atrial siphon. We show that the siphon primordium arises within a non-dividing field of lateral-dorsal epidermis. The initial steps of atrial primordium invagination are similar to otic placode invagination, but a placode-derived vesicle is never observed as for the otic vesicle of vertebrates. Rather, confocal imaging reveals an atrial opening through juvenile stages and beyond. We inject a photoactivatable lineage tracer to show that the early atrial siphon of the metamorphic juvenile, including its aperture and lining, derives from cells of the atrial placode itself. Finally, we perturb the routing of the gut to the left atrium by laser ablation and pharmacology to show that this adaptation to a sessile lifestyle depends on left-right patterning mechanisms present in the free-swimming chordate ancestor.
Collapse
|
44
|
Schlosser G. Making senses development of vertebrate cranial placodes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:129-234. [PMID: 20801420 DOI: 10.1016/s1937-6448(10)83004-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cranial placodes (which include the adenohypophyseal, olfactory, lens, otic, lateral line, profundal/trigeminal, and epibranchial placodes) give rise to many sense organs and ganglia of the vertebrate head. Recent evidence suggests that all cranial placodes may be developmentally related structures, which originate from a common panplacodal primordium at neural plate stages and use similar regulatory mechanisms to control developmental processes shared between different placodes such as neurogenesis and morphogenetic movements. After providing a brief overview of placodal diversity, the present review summarizes current evidence for the existence of a panplacodal primordium and discusses the central role of transcription factors Six1 and Eya1 in the regulation of processes shared between different placodes. Upstream signaling events and transcription factors involved in early embryonic induction and specification of the panplacodal primordium are discussed next. I then review how individual placodes arise from the panplacodal primordium and present a model of multistep placode induction. Finally, I briefly summarize recent advances concerning how placodal neurons and sensory cells are specified, and how morphogenesis of placodes (including delamination and migration of placode-derived cells and invagination) is controlled.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Zoology, School of Natural Sciences & Martin Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
45
|
Terakado K. Placode formation and generation of gonadotropin-releasing hormone (GnRH) neurons in ascidians. Zoolog Sci 2009; 26:398-405. [PMID: 19583498 DOI: 10.2108/zsj.26.398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neurogenic placodes, a chordate innovation, generate several neuronal populations, including gonadotropin-releasing hormone (GnRH) neurons which are crucial for vertebrate and solitary ascidian urochordate reproduction. The dorsal strand placode of ascidians Is derived from the anterior ridge of the embryonic neural plate and thus shares a common developmental origin and expression of various transcription factors with vertebrate placodes. Despite their importance for understanding vertebrate origins, the evolutionary and developmental origins of the neurogenic placode remain obscure. Here I demonstrate the formation of an elaborate neurogenic placode, which forms the dorsal strand, on part of the neural gland epithelium in a solitary ascidian urochordate, Halocynthia roretzi. Two modes of GnRH neurogenesis in the dorsal strand (a peripheral organ) and the migration of GnRH neurons into the brain along the visceral nerve are also described. Ontogenetically, GnRH neurons are first detected in the dorsal strand and cerebral ganglion of very young Juveniles at almost the same time, demonstrating that ascidians possess morphological and developmental features in common with vertebrates. These results further indicate that the onset of peripheral GnRH neurogenesis and the ability of neurons to migrate into the brain predate the divergence of ascidians and vertebrates. Thus, based on the generation of GnRH neurons, the dorsal strand in ascidians may be homologous to the vertebrate olfactory placode. These organs are derived from the anterior region of the embryonic neural plate, which expresses several transcription factors that invertebrate chordates and vertebrates have in common. These results provide unequivocal support for the clade Olfactories (tunicates + vertebrates).
Collapse
Affiliation(s)
- Kiyoshi Terakado
- Innovative Research Organization, Saitama University, Sakura-Ku, Saitama 338-8570, Japan.
| |
Collapse
|
46
|
Bouquet JM, Spriet E, Troedsson C, Otterå H, Chourrout D, Thompson EM. Culture optimization for the emergent zooplanktonic model organism Oikopleura dioica. JOURNAL OF PLANKTON RESEARCH 2009; 31:359-370. [PMID: 19461862 PMCID: PMC2651036 DOI: 10.1093/plankt/fbn132] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 12/09/2008] [Indexed: 05/16/2023]
Abstract
The pan-global marine appendicularian, Oikopleura dioica, shows considerable promise as a candidate model organism for cross-disciplinary research ranging from chordate genetics and evolution to molecular ecology research. This urochordate, has a simplified anatomical organization, remains transparent throughout an exceptionally short life cycle of less than 1 week and exhibits high fecundity. At 70 Mb, the compact, sequenced genome ranks among the smallest known metazoan genomes, with both gene regulatory and intronic regions highly reduced in size. The organism occupies an important trophic role in marine ecosystems and is a significant contributor to global vertical carbon flux. Among the short list of bona fide biological model organisms, all share the property that they are amenable to long-term maintenance in laboratory cultures. Here, we tested diet regimes, spawn densities and dilutions and seawater treatment, leading to optimization of a detailed culture protocol that permits sustainable long-term maintenance of O. dioica, allowing continuous, uninterrupted production of source material for experimentation. The culture protocol can be quickly adapted in both coastal and inland laboratories and should promote rapid development of the many original research perspectives the animal offers.
Collapse
Affiliation(s)
- Jean-Marie Bouquet
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Endy Spriet
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
- corresponding author:
| | - Christofer Troedsson
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
- Department of Biology, University of Bergen, N-5020 Bergen, Norway
| | - Helen Otterå
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Daniel Chourrout
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Eric M. Thompson
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
- corresponding author:
| |
Collapse
|
47
|
Kaltenbach SL, Yu JK, Holland ND. The origin and migration of the earliest-developing sensory neurons in the peripheral nervous system of amphioxus. Evol Dev 2009; 11:142-51. [DOI: 10.1111/j.1525-142x.2009.00315.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Delsuc F, Tsagkogeorga G, Lartillot N, Philippe H. Additional molecular support for the new chordate phylogeny. Genesis 2008; 46:592-604. [DOI: 10.1002/dvg.20450] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Chen JY. Early crest animals and the insight they provide into the evolutionary origin of craniates. Genesis 2008; 46:623-39. [DOI: 10.1002/dvg.20445] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Abstract
Little is known about the ancient chordates that gave rise to the first vertebrates, but the descendants of other invertebrate chordates extant at the time still flourish in the ocean. These invertebrates include the cephalochordates and tunicates, whose larvae share with vertebrate embryos a common body plan with a central notochord and a dorsal nerve cord. Tunicates are now thought to be the sister group of vertebrates. However, research based on several species of ascidians, a diverse and wide-spread class of tunicates, revealed that the molecular strategies underlying their development appear to diverge greatly from those found in vertebrates. Furthermore, the adult body plan of most tunicates, which arises following an extensive post-larval metamorphosis, shows little resemblance to the body plan of any other chordate. In this review, we compare the developmental strategies of ascidians and vertebrates and argue that the very divergence of these strategies reveals the surprising level of plasticity of the chordate developmental program and is a rich resource to identify core regulatory mechanisms that are evolutionarily conserved in chordates. Further, we propose that the comparative analysis of the architecture of ascidian and vertebrate gene regulatory networks may provide critical insight into the origin of the chordate body plan.
Collapse
|