1
|
Boutillon A. Organizing collective cell migration through guidance by followers. C R Biol 2023; 346:117-126. [PMID: 38095130 DOI: 10.5802/crbiol.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023]
Abstract
Morphogenesis, wound healing, and some cancer metastases rely on the collective migration of groups of cells. In these processes, guidance and coordination between cells and tissues are critical. While strongly adherent epithelial cells have to move collectively, loosely organized mesenchymal cells can migrate as individual cells. Nevertheless, many of them migrate collectively. This article summarizes how migratory reactions to cell-cell contacts, also called "contact regulation of locomotion" behaviors, organize mesenchymal collective cell migration. It focuses on one recently discovered mechanism called "guidance by followers", through which a cell is oriented by its immediate followers. In the gastrulating zebrafish embryo, during embryonic axis elongation, this phenomenon is responsible for the collective migration of the leading tissue, the polster, and its guidance by the following posterior axial mesoderm. Such guidance of migrating cells by followers ensures long-range coordination of movements and developmental robustness. Along with other "contact regulation of locomotion" behaviors, this mechanism contributes to organizing collective migration of loose populations of cells.
Collapse
|
2
|
Guidance by followers ensures long-range coordination of cell migration through α-catenin mechanoperception. Dev Cell 2022; 57:1529-1544.e5. [PMID: 35613615 DOI: 10.1016/j.devcel.2022.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 03/09/2022] [Accepted: 05/02/2022] [Indexed: 11/23/2022]
Abstract
Morphogenesis, wound healing, and some cancer metastases depend upon the migration of cell collectives that need to be guided to their destination as well as coordinated with other cell movements. During zebrafish gastrulation, the extension of the embryonic axis is led by the mesendodermal polster that migrates toward the animal pole, followed by the axial mesoderm that undergoes convergence and extension. Here, we investigate how polster cells are guided toward the animal pole. Using a combination of precise laser ablations, advanced transplants, and functional as well as in silico approaches, we establish that each polster cell is oriented by its immediate follower cells. Each cell perceives the migration of followers, through E-cadherin/α-catenin mechanotransduction, and aligns with them. Therefore, directional information propagates from cell to cell over the whole tissue. Such guidance of migrating cells by followers ensures long-range coordination of movements and developmental robustness.
Collapse
|
3
|
Bosze B, Ono Y, Mattes B, Sinner C, Gourain V, Thumberger T, Tlili S, Wittbrodt J, Saunders TE, Strähle U, Schug A, Scholpp S. Pcdh18a regulates endocytosis of E-cadherin during axial mesoderm development in zebrafish. Histochem Cell Biol 2020; 154:463-480. [PMID: 32488346 PMCID: PMC7609436 DOI: 10.1007/s00418-020-01887-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2020] [Indexed: 01/07/2023]
Abstract
The notochord defines the axial structure of all vertebrates during development. Notogenesis is a result of major cell reorganization in the mesoderm, the convergence and the extension of the axial cells. However, it is currently not fully understood how these processes act together in a coordinated way during notochord formation. The prechordal plate is an actively migrating cell population in the central mesoderm anterior to the trailing notochordal plate cells. We show that prechordal plate cells express Protocadherin 18a (Pcdh18a), a member of the cadherin superfamily. We find that Pcdh18a-mediated recycling of E-cadherin adhesion complexes transforms prechordal plate cells into a cohesive and fast migrating cell group. In turn, the prechordal plate cells subsequently instruct the trailing mesoderm. We simulated cell migration during early mesoderm formation using a lattice-based mathematical framework and predicted that the requirement for an anterior, local motile cell cluster could guide the intercalation and extension of the posterior, axial cells. Indeed, a grafting experiment validated the prediction and local Pcdh18a expression induced an ectopic prechordal plate-like cell group migrating towards the animal pole. Our findings indicate that the Pcdh18a is important for prechordal plate formation, which influences the trailing mesodermal cell sheet by orchestrating the morphogenesis of the notochord.
Collapse
Affiliation(s)
- Bernadett Bosze
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | - Yosuke Ono
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Benjamin Mattes
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Claude Sinner
- Steinbuch Centre for Computing, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76021, Germany.,Department of Physics, Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | - Victor Gourain
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | - Thomas Thumberger
- Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Sham Tlili
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Timothy E Saunders
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK.,Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | - Alexander Schug
- Steinbuch Centre for Computing, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76021, Germany
| | - Steffen Scholpp
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany. .,Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
4
|
Williams ML, Solnica-Krezel L. Cellular and molecular mechanisms of convergence and extension in zebrafish. Curr Top Dev Biol 2020; 136:377-407. [DOI: 10.1016/bs.ctdb.2019.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
Torres-Paz J, Leclercq J, Rétaux S. Maternally regulated gastrulation as a source of variation contributing to cavefish forebrain evolution. eLife 2019; 8:50160. [PMID: 31670659 PMCID: PMC6874477 DOI: 10.7554/elife.50160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/30/2019] [Indexed: 11/24/2022] Open
Abstract
Sequential developmental events, starting from the moment of fertilization, are crucial for the acquisition of animal body plan. Subtle modifications in such early events are likely to have major impacts in later morphogenesis, bringing along morphological diversification. Here, comparing the blind cave and the surface morphotypes of Astyanax mexicanus fish, we found heterochronies during gastrulation that produce organizer and axial mesoderm tissues with different properties (including differences in the expression of dkk1b) that may have contributed to cavefish brain evolution. These variations observed during gastrulation depend fully on maternal factors. The developmental evolution of retinal morphogenesis and hypothalamic patterning are among those traits that retained significant maternal influence at larval stages. Transcriptomic analysis of fertilized eggs from both morphotypes and reciprocal F1 hybrids showed a strong and specific maternal signature. Our work strongly suggests that maternal effect genes and developmental heterochronies that occur during gastrulation have impacted morphological brain change during cavefish evolution.
Collapse
Affiliation(s)
- Jorge Torres-Paz
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Julien Leclercq
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
6
|
Wu RS, Lam II, Clay H, Duong DN, Deo RC, Coughlin SR. A Rapid Method for Directed Gene Knockout for Screening in G0 Zebrafish. Dev Cell 2018; 46:112-125.e4. [PMID: 29974860 DOI: 10.1016/j.devcel.2018.06.003] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 05/14/2018] [Accepted: 06/05/2018] [Indexed: 12/31/2022]
Abstract
Zebrafish is a powerful model for forward genetics. Reverse genetic approaches are limited by the time required to generate stable mutant lines. We describe a system for gene knockout that consistently produces null phenotypes in G0 zebrafish. Yolk injection of sets of four CRISPR/Cas9 ribonucleoprotein complexes redundantly targeting a single gene recapitulated germline-transmitted knockout phenotypes in >90% of G0 embryos for each of 8 test genes. Early embryonic (6 hpf) and stable adult phenotypes were produced. Simultaneous multi-gene knockout was feasible but associated with toxicity in some cases. To facilitate use, we generated a lookup table of four-guide sets for 21,386 zebrafish genes and validated several. Using this resource, we targeted 50 cardiomyocyte transcriptional regulators and uncovered a role of zbtb16a in cardiac development. This system provides a platform for rapid screening of genes of interest in development, physiology, and disease models in zebrafish.
Collapse
Affiliation(s)
- Roland S Wu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ian I Lam
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hilary Clay
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daniel N Duong
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rahul C Deo
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shaun R Coughlin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
7
|
Abstract
Being optically clear, the zebrafish embryo is a nice model system to analyze cell migration in vivo. This chapter describes a combination of injection and cell transplant procedures that allows creation of mosaic embryos, containing a few cells labeled differently from their neighbors. Rapid 5D confocal imaging of these embryos permits to simultaneously track and quantify the movement of large cell groups, as well as analyze the cellular or subcellular dynamics of transplanted cells during their migration. In addition, expression of a candidate gene can be modified in transplanted cells. Comparing behavior of these cells to control or neighboring cells allows determination of the role of the candidate gene in cell migration. We describe the procedure, focusing on one specific cell population during gastrulation, but it can easily be adapted to other cell populations and other migration events during early embryogenesis.
Collapse
|
8
|
Surya VN, Michalaki E, Huang EY, Fuller GG, Dunn AR. Sphingosine 1-phosphate receptor 1 regulates the directional migration of lymphatic endothelial cells in response to fluid shear stress. J R Soc Interface 2017; 13:rsif.2016.0823. [PMID: 27974574 DOI: 10.1098/rsif.2016.0823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/17/2016] [Indexed: 01/03/2023] Open
Abstract
The endothelial cells that line blood and lymphatic vessels undergo complex, collective migration and rearrangement processes during embryonic development, and are known to be exquisitely responsive to fluid flow. At present, the molecular mechanisms by which endothelial cells sense fluid flow remain incompletely understood. Here, we report that both the G-protein-coupled receptor sphingosine 1-phosphate receptor 1 (S1PR1) and its ligand sphingosine 1-phosphate (S1P) are required for collective upstream migration of human lymphatic microvascular endothelial cells in an in vitro setting. These findings are consistent with a model in which signalling via S1P and S1PR1 are integral components in the response of lymphatic endothelial cells to the stimulus provided by fluid flow.
Collapse
Affiliation(s)
- Vinay N Surya
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Eleftheria Michalaki
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Eva Y Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Gerald G Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA .,Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Santos-Ledo A, Garcia-Macia M, Campbell PD, Gronska M, Marlow FL. Kinesin-1 promotes chondrocyte maintenance during skeletal morphogenesis. PLoS Genet 2017; 13:e1006918. [PMID: 28715414 PMCID: PMC5536392 DOI: 10.1371/journal.pgen.1006918] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/31/2017] [Accepted: 07/11/2017] [Indexed: 01/03/2023] Open
Abstract
During skeletal morphogenesis diverse mechanisms are used to support bone formation. This can be seen in the bones that require a cartilage template for their development. In mammals the cartilage template is removed, but in zebrafish the cartilage template persists and the bone mineralizes around the cartilage scaffold. Remodeling of unmineralized cartilage occurs via planar cell polarity (PCP) mediated cell rearrangements that contribute to lengthening of elements; however, the mechanisms that maintain the chondrocyte template that supports perichondral ossification remain unclear. We report double mutants disrupting two zebrafish kinesin-I genes (hereafter kif5Blof) that we generated using CRISPR/Cas9 mutagenesis. We show that zygotic Kif5Bs have a conserved function in maintaining muscle integrity, and are required for cartilage remodeling and maintenance during craniofacial morphogenesis by a PCP-distinct mechanism. Further, kif5Blof does not activate ER stress response genes, but instead disrupts lysosomal function, matrix secretion, and causes deregulated autophagic markers and eventual chondrocyte apoptosis. Ultrastructural and transplantation analysis reveal neighboring cells engulfing extruded kif5Blof chondrocytes. Initial cartilage specification is intact; however, during remodeling, kif5Blof chondrocytes die and the cartilage matrix devoid of hypertrophic chondrocytes remains and impedes normal ossification. Chimeric and mosaic analyses indicate that Kif5B functions cell-autonomously in secretion, nuclear position, cell elongation and maintenance of hypertrophic chondrocytes. Interestingly, large groups of wild-type cells can support elongation of neighboring mutant cells. Finally, mosaic expression of kif5Ba, but not kif5Aa in cartilage rescues the chondrocyte phenotype, further supporting a specific requirement for Kif5B. Cumulatively, we show essential Kif5B functions in promoting cartilage remodeling and chondrocyte maintenance during zebrafish craniofacial morphogenesis.
Collapse
Affiliation(s)
- Adrian Santos-Ledo
- Department of Developmental and Molecular Biology. Albert Einstein College of Medicine, Bronx, New York, United States of America
- Institute of Genetic Medicine. Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Marina Garcia-Macia
- Institute for Cellular and Molecular Biosciences. Newcastle University, Newcastle Upon Tyne, United Kingdom
- Institute of Cellular Medicine. Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Philip D Campbell
- Department of Developmental and Molecular Biology. Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Marta Gronska
- Department of Neuroscience. Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Florence L Marlow
- Department of Developmental and Molecular Biology. Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neuroscience. Albert Einstein College of Medicine, Bronx, New York, United States of America
- Cell Developmental and Regenerative Biology Department. Icahn School of Medicine at Mount Sinai. New York, New York, United States of America
| |
Collapse
|
10
|
Bodrikov V, Welte C, Wiechers M, Weschenfelder M, Kaur G, Shypitsyna A, Pinzon-Olejua A, Bastmeyer M, Stuermer CAO. Substrate properties of zebrafish Rtn4b/Nogo and axon regeneration in the zebrafish optic nerve. J Comp Neurol 2017; 525:2991-3009. [PMID: 28560734 DOI: 10.1002/cne.24253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/16/2017] [Accepted: 05/24/2017] [Indexed: 11/08/2022]
Abstract
This study explored why lesioned retinal ganglion cell (RGC) axons regenerate successfully in the zebrafish optic nerve despite the presence of Rtn4b, the homologue of the rat neurite growth inhibitor RTN4-A/Nogo-A. Rat Nogo-A and zebrafish Rtn4b possess characteristic motifs (M1-4) in the Nogo-A-specific region, which contains delta20, the most inhibitory region of rat Nogo-A. To determine whether zebrafish M1-4 is inhibitory as rat M1-4 and Nogo-A delta20, proteins were recombinantly expressed and used as substrates for zebrafish single cell RGCs, mouse hippocampal neurons and goldfish, zebrafish and chick retinal explants. When offered as homogenous substrates, neurites of hippocampal neurons and of zebrafish single cell RGCs were inhibited by zebrafish M1-4, rat M1-4, and Nogo-A delta20. Neurite length increased when zebrafish single cell RGCs were treated with receptor-type-specific antagonists and, respectively, with morpholinos (MO) against S1PR2 and S1PR5a-which represent candidate zebrafish Nogo-A receptors. In a stripe assay, however, where M1-4 lanes alternate with polylysine-(Plys)-only lanes, RGC axons from goldfish, zebrafish, and chick retinal explants avoided rat M1-4 but freely crossed zebrafish M1-4 lanes-suggesting that zebrafish M1-4 is growth permissive and less inhibitory than rat M1-4. Moreover, immunostainings and dot blots of optic nerve and myelin showed that expression of Rtn4b is very low in tissue and myelin at 3-5 days after lesion when axons regenerate. Thus, Rtn4b seems to represent no major obstacle for axon regeneration in vivo because it is less inhibitory for RGC axons from retina explants, and because of its low abundance.
Collapse
Affiliation(s)
| | - Cornelia Welte
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Markus Weschenfelder
- Zoological Institute, Cell and Neurobiology Biology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Gurjot Kaur
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | | | - Martin Bastmeyer
- Zoological Institute, Cell and Neurobiology Biology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | |
Collapse
|
11
|
Frisca F, Colquhoun D, Goldshmit Y, Änkö ML, Pébay A, Kaslin J. Role of ectonucleotide pyrophosphatase/phosphodiesterase 2 in the midline axis formation of zebrafish. Sci Rep 2016; 6:37678. [PMID: 27883058 PMCID: PMC5121889 DOI: 10.1038/srep37678] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 11/01/2016] [Indexed: 11/12/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a unique bioactive lysophospholipid that induces pleiotropic effects in various cell types and organisms by acting on its specific receptors. LPA is mainly synthetised extracellularly by the ectonucleotide pyrophosphatase/phosphodiesterase 2/autotaxin (enpp2). Altered LPA signalling is associated with embryonic abnormalities, suggesting critical roles for LPA during development. However, the role of LPA signalling during early embryogenesis is not well established. We demonstrate that enpp2/LPA signalling in the early zebrafish embryo results in altered axis and midline formation, defects in left right (L-R) patterning, ciliogenesis of the Kupffer’s vesicle (KV), through the modulation of cell migration during gastrulation in a lpar1–3 Rho/ROCK-dependant manner. Overall, this study demonstrates an essential role of enpp2/LPA signalling during early embryogenesis.
Collapse
Affiliation(s)
- Frisca Frisca
- Australian Regenerative Medicine Institute, Building 75, Monash University, Australia.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital &Ophthalmology, the University of Melbourne, Department of Surgery, Australia
| | - Daniel Colquhoun
- Australian Regenerative Medicine Institute, Building 75, Monash University, Australia
| | - Yona Goldshmit
- Australian Regenerative Medicine Institute, Building 75, Monash University, Australia.,Department of Neurobiology, Tel-Aviv University, Israel
| | - Minna-Liisa Änkö
- Monash Biomedicine Discovery Institute Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Australia
| | - Alice Pébay
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital &Ophthalmology, the University of Melbourne, Department of Surgery, Australia
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Building 75, Monash University, Australia
| |
Collapse
|
12
|
Zhang T, Yin C, Qiao L, Jing L, Li H, Xiao C, Luo N, Lei S, Meng W, Zhu H, Liu J, Xu H, Mo X. Stat3-Efemp2a modulates the fibrillar matrix for cohesive movement of prechordal plate progenitors. Development 2015; 141:4332-42. [PMID: 25371367 DOI: 10.1242/dev.104885] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recently, emerging evidence has shown that Stat3 controls tumor cell migration and invasion. However, the molecular mechanisms by which Stat3 controls the cell movement remain largely unknown. Embryonic gastrula progenitors display coordinated and orientated migration, called collective cell migration. Collective cell migration is the simultaneous movement of multiple cells and is universally involved in physiological and pathological programs. Stat3 activity is required for the migration of gastrula progenitors, but it does not affect cell specification, thus suggesting that gastrula movements are an excellent model to provide insight into Stat3 control of cell migration in vivo. In this study, we reveal a novel mechanism by which Stat3 modulates extracellular matrix (ECM) assembly to control the coherence of collective migration of prechordal plate progenitors during zebrafish embryonic gastrulation. We show that Stat3 regulates the expression of Efemp2a in the prechordal plate progenitors that migrate anteriorly during gastrulation. Alteration of Stat3-Efemp2a signaling activity disrupted the configuration of fibronectin (FN) and laminin (LM) matrices, resulting in defective coherence of prechordal plate progenitor movements in zebrafish embryos. We demonstrate that Efemp2a acts as a downstream effector of Stat3 to promote ECM configuration for coherent collective cell migrations in vivo.
Collapse
Affiliation(s)
- Ting Zhang
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chaoran Yin
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liangjun Qiao
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lulu Jing
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongda Li
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chun Xiao
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ning Luo
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Song Lei
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China Department of Pathology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wentong Meng
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Liu
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Xu
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Godard BG, Coolen M, Le Panse S, Gombault A, Ferreiro-Galve S, Laguerre L, Lagadec R, Wincker P, Poulain J, Da Silva C, Kuraku S, Carre W, Boutet A, Mazan S. Mechanisms of endoderm formation in a cartilaginous fish reveal ancestral and homoplastic traits in jawed vertebrates. Biol Open 2014; 3:1098-107. [PMID: 25361580 PMCID: PMC4232768 DOI: 10.1242/bio.20148037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In order to gain insight into the impact of yolk increase on endoderm development, we have analyzed the mechanisms of endoderm formation in the catshark S. canicula, a species exhibiting telolecithal eggs and a distinct yolk sac. We show that in this species, endoderm markers are expressed in two distinct tissues, the deep mesenchyme, a mesenchymal population of deep blastomeres lying beneath the epithelial-like superficial layer, already specified at early blastula stages, and the involuting mesendoderm layer, which appears at the blastoderm posterior margin at the onset of gastrulation. Formation of the deep mesenchyme involves cell internalizations from the superficial layer prior to gastrulation, by a movement suggestive of ingressions. These cell movements were observed not only at the posterior margin, where massive internalizations take place prior to the start of involution, but also in the center of the blastoderm, where internalizations of single cells prevail. Like the adjacent involuting mesendoderm, the posterior deep mesenchyme expresses anterior mesendoderm markers under the control of Nodal/activin signaling. Comparisons across vertebrates support the conclusion that endoderm is specified in two distinct temporal phases in the catshark as in all major osteichthyan lineages, in line with an ancient origin of a biphasic mode of endoderm specification in gnathostomes. They also highlight unexpected similarities with amniotes, such as the occurrence of cell ingressions from the superficial layer prior to gastrulation. These similarities may correspond to homoplastic traits fixed separately in amniotes and chondrichthyans and related to the increase in egg yolk mass.
Collapse
Affiliation(s)
- Benoit G Godard
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7150, 29688 Roscoff, France
| | - Marion Coolen
- Université d'Orléans-CNRS, UMR 6218, 45070 Orléans, France Present address: CNRS UPR 3294, Institute of Neurobiology Alfred Fessard, 91198 Gif-sur-Yvette, France
| | - Sophie Le Panse
- Plateforme d'Imagerie, Sorbonne Universités, UPMC Univ Paris 06, CNRS, FR 2424, Station Biologique, 29688 Roscoff, France
| | - Aurélie Gombault
- Université d'Orléans-CNRS, UMR 6218, 45070 Orléans, France Present address: UMR 7355, Université d'Orleans-CNRS, 45071 Orléans, France
| | - Susana Ferreiro-Galve
- Université d'Orléans-CNRS, UMR 6218, 45070 Orléans, France Present address: Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas y Universidad Miguel Hernández, Campus San Juan de Alicante, 03550 Alicante, Spain
| | - Laurent Laguerre
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7150, 29688 Roscoff, France
| | - Ronan Lagadec
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7150, 29688 Roscoff, France
| | - Patrick Wincker
- CEA-Institut de Génomique-Genoscope, 2 rue Gaston-Crémieux, 91057 Evry, France
| | - Julie Poulain
- CEA-Institut de Génomique-Genoscope, 2 rue Gaston-Crémieux, 91057 Evry, France
| | - Corinne Da Silva
- CEA-Institut de Génomique-Genoscope, 2 rue Gaston-Crémieux, 91057 Evry, France
| | - Shigehiro Kuraku
- Genome Resource and Analysis Unit (GRAS), Center for Developmental Biology, RIKEN.2-2-3 Minatojima-minami, Chuo-KU, Kobe 650-0047, Japan
| | - Wilfrid Carre
- ABiMS, Sorbonne Universités, UPMC Univ Paris 06, CNRS, FR 2424, 29688 Roscoff, France
| | - Agnès Boutet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7150, 29688 Roscoff, France
| | - Sylvie Mazan
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7150, 29688 Roscoff, France
| |
Collapse
|
14
|
Miyares RL, de Rezende VB, Farber SA. Zebrafish yolk lipid processing: a tractable tool for the study of vertebrate lipid transport and metabolism. Dis Model Mech 2014; 7:915-27. [PMID: 24812437 PMCID: PMC4073280 DOI: 10.1242/dmm.015800] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/02/2014] [Indexed: 01/13/2023] Open
Abstract
Dyslipidemias are a major cause of morbidity and mortality in the world, particularly in developed nations. Investigating lipid and lipoprotein metabolism in experimentally tractable animal models is a crucial step towards understanding and treating human dyslipidemias. The zebrafish, a well-established embryological model, is emerging as a notable system for studies of lipid metabolism. Here, we describe the value of the lecithotrophic, or yolk-metabolizing, stages of the zebrafish as a model for studying lipid metabolism and lipoprotein transport. We demonstrate methods to assay yolk lipid metabolism in embryonic and larval zebrafish. Injection of labeled fatty acids into the zebrafish yolk promotes efficient uptake into the circulation and rapid metabolism. Using a genetic model for abetalipoproteinemia, we show that the uptake of labeled fatty acids into the circulation is dependent on lipoprotein production. Furthermore, we examine the metabolic fate of exogenously delivered fatty acids by assaying their incorporation into complex lipids. Moreover, we demonstrate that this technique is amenable to genetic and pharmacologic studies.
Collapse
Affiliation(s)
- Rosa L Miyares
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA. Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vitor B de Rezende
- Department of Mental Health, School of Medicine of Federal University of Minas Gerais, 30130-100 Belo Horizonte, Brazil
| | - Steven A Farber
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA.
| |
Collapse
|
15
|
Abstract
Sphingosine 1-phosphate (S1P) is a lipid mediator formed by the metabolism of sphingomyelin. In vertebrates, S1P is secreted into the extracellular environment and signals via G protein-coupled S1P receptors to regulate cell-cell and cell-matrix adhesion, and thereby influence cell migration, differentiation and survival. The expression and localization of S1P receptors is dynamically regulated and controls vascular development, vessel stability and immune cell trafficking. In addition, crucial events during embryogenesis, such as angiogenesis, cardiogenesis, limb development and neurogenesis, are regulated by S1P signalling. Here, and in the accompanying poster, we provide an overview of S1P signalling in development and in disease.
Collapse
Affiliation(s)
- Karen Mendelson
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | | | | |
Collapse
|
16
|
RETRACTED: Swap70b is required for convergent and extension cell movement during zebrafish gastrulation linking Wnt11 signalling and RhoA effector function. Dev Biol 2014; 386:191-203. [DOI: 10.1016/j.ydbio.2013.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 11/22/2022]
|
17
|
Cavodeassi F, Ivanovitch K, Wilson SW. Eph/Ephrin signalling maintains eye field segregation from adjacent neural plate territories during forebrain morphogenesis. Development 2013; 140:4193-202. [PMID: 24026122 PMCID: PMC3787759 DOI: 10.1242/dev.097048] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2013] [Indexed: 02/02/2023]
Abstract
During forebrain morphogenesis, there is extensive reorganisation of the cells destined to form the eyes, telencephalon and diencephalon. Little is known about the molecular mechanisms that regulate region-specific behaviours and that maintain the coherence of cell populations undergoing specific morphogenetic processes. In this study, we show that the activity of the Eph/Ephrin signalling pathway maintains segregation between the prospective eyes and adjacent regions of the anterior neural plate during the early stages of forebrain morphogenesis in zebrafish. Several Ephrins and Ephs are expressed in complementary domains in the prospective forebrain and combinatorial abrogation of their activity results in incomplete segregation of the eyes and telencephalon and in defective evagination of the optic vesicles. Conversely, expression of exogenous Ephs or Ephrins in regions of the prospective forebrain where they are not usually expressed changes the adhesion properties of the cells, resulting in segregation to the wrong domain without changing their regional fate. The failure of eye morphogenesis in rx3 mutants is accompanied by a loss of complementary expression of Ephs and Ephrins, suggesting that this pathway is activated downstream of the regional fate specification machinery to establish boundaries between domains undergoing different programmes of morphogenesis.
Collapse
Affiliation(s)
| | - Kenzo Ivanovitch
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Stephen W. Wilson
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
18
|
Sarmah S, Muralidharan P, Curtis CL, McClintick JN, Buente BB, Holdgrafer DJ, Ogbeifun O, Olorungbounmi OC, Patino L, Lucas R, Gilbert S, Groninger ES, Arciero J, Edenberg HJ, Marrs JA. Ethanol exposure disrupts extraembryonic microtubule cytoskeleton and embryonic blastomere cell adhesion, producing epiboly and gastrulation defects. Biol Open 2013; 2:1013-21. [PMID: 24167711 PMCID: PMC3798184 DOI: 10.1242/bio.20135546] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/07/2013] [Indexed: 11/20/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) occurs when pregnant mothers consume alcohol, causing embryonic ethanol exposure and characteristic birth defects that include craniofacial, neural and cardiac defects. Gastrulation is a particularly sensitive developmental stage for teratogen exposure, and zebrafish is an outstanding model to study gastrulation and FASD. Epiboly (spreading blastomere cells over the yolk cell), prechordal plate migration and convergence/extension cell movements are sensitive to early ethanol exposure. Here, experiments are presented that characterize mechanisms of ethanol toxicity on epiboly and gastrulation. Epiboly mechanisms include blastomere radial intercalation cell movements and yolk cell microtubule cytoskeleton pulling the embryo to the vegetal pole. Both of these processes were disrupted by ethanol exposure. Ethanol effects on cell migration also indicated that cell adhesion was affected, which was confirmed by cell aggregation assays. E-cadherin cell adhesion molecule expression was not affected by ethanol exposure, but E-cadherin distribution, which controls epiboly and gastrulation, was changed. E-cadherin was redistributed into cytoplasmic aggregates in blastomeres and dramatically redistributed in the extraembryonic yolk cell. Gene expression microarray analysis was used to identify potential causative factors for early development defects, and expression of the cell adhesion molecule protocadherin-18a (pcdh18a), which controls epiboly, was significantly reduced in ethanol exposed embryos. Injecting pcdh18a synthetic mRNA in ethanol treated embryos partially rescued epiboly cell movements, including enveloping layer cell shape changes. Together, data show that epiboly and gastrulation defects induced by ethanol are multifactorial, and include yolk cell (extraembryonic tissue) microtubule cytoskeleton disruption and blastomere adhesion defects, in part caused by reduced pcdh18a expression.
Collapse
Affiliation(s)
- Swapnalee Sarmah
- Department of Biology, Indiana University-Purdue University Indianapolis , 723 West Michigan Street, Indianapolis, IN 46202-5130 , USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tada M, Heisenberg CP. Convergent extension: using collective cell migration and cell intercalation to shape embryos. Development 2012; 139:3897-904. [PMID: 23048180 DOI: 10.1242/dev.073007] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Body axis elongation represents a common and fundamental morphogenetic process in development. A key mechanism triggering body axis elongation without additional growth is convergent extension (CE), whereby a tissue undergoes simultaneous narrowing and extension. Both collective cell migration and cell intercalation are thought to drive CE and are used to different degrees in various species as they elongate their body axis. Here, we provide an overview of CE as a general strategy for body axis elongation and discuss conserved and divergent mechanisms underlying CE among different species.
Collapse
Affiliation(s)
- Masazumi Tada
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | | |
Collapse
|
20
|
Mendelson K, Zygmunt T, Torres-Vázquez J, Evans T, Hla T. Sphingosine 1-phosphate receptor signaling regulates proper embryonic vascular patterning. J Biol Chem 2012; 288:2143-56. [PMID: 23229546 DOI: 10.1074/jbc.m112.427344] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) binds G-protein-coupled receptors (S1P(1-5)) to regulate a multitude of physiological effects, especially those in the vascular and immune systems. S1P receptors in the vascular system have been characterized primarily in mammals. Here, we report that the S1P receptors and metabolic enzymes are conserved in the genome of zebrafish Danio rerio. Bioinformatic analysis identified seven S1P receptor-like sequences in the zebrafish genome, including duplicated orthologs of receptors 3 and 5. Sphingolipidomic analysis detected erythrocyte and plasma S1P as well as high plasma ceramides and sphingosine. Morpholino-mediated knockdown of s1pr1 causes global and pericardial edema, loss of blood circulation, and vascular defects characterized by both reduced vascularization in intersegmental vessels, decreased proliferation of intersegmental and axial vessels, and hypersprouting in the caudal vein plexus. The s1pr2 gene was previously characterized as a regulator of cell migration and heart development, but its role in angiogenesis is not known. However, when expression of both s1pr1 and s1pr2 is suppressed, severely reduced vascular development of the intersegmental vessels was observed with doses of the s1pr1 morpholino that alone did not cause any discernible vascular defects, suggesting that s1pr1 and s1pr2 function cooperatively to regulate vascular development in zebrafish. Similarly, the S1P transporter, spns2, also cooperated with s1pr1. We propose that extracellular S1P acts through vascular S1P receptors to regulate vascular development.
Collapse
Affiliation(s)
- Karen Mendelson
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
21
|
Santos-Ledo A, Jenny A, Marlow FL. Comparative gene expression analysis of the fmnl family of formins during zebrafish development and implications for tissue specific functions. Gene Expr Patterns 2012; 13:30-7. [PMID: 23072729 DOI: 10.1016/j.gep.2012.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/14/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
Abstract
Fmlns belong to the Formin family, catalysts of linear actin polymerization with mostly unknown roles in vivo. In cell culture Fmnls are involved in cell migration and adhesion and the formation of different types of protrusions including filopodia and blebs, suggesting important roles during development. Moreover, Fmnls can act downstream of Rac and Cdc42, mediators of cytoskeletal changes as targets of important pathways required for shaping tissues. The zebrafish genome encodes five Fmnls. Here we report their tissue specific expression patterns during early development and pharyngula stages. The fmnls show overlapping and distinct expression patterns, which suggest that they could regulate similar processes during development, but may also have independent functions. In particular, we find a strong maternal contribution of all fmnls, but distinct expression patterns in the developing brain eye, ear, heart and vascular system.
Collapse
Affiliation(s)
- Adrián Santos-Ledo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| | | | | |
Collapse
|
22
|
Collective mesendoderm migration relies on an intrinsic directionality signal transmitted through cell contacts. Proc Natl Acad Sci U S A 2012; 109:16945-50. [PMID: 23027928 DOI: 10.1073/pnas.1205870109] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Collective cell migration is key to morphogenesis, wound healing, or cancer cell migration. However, its cellular bases are just starting to be unraveled. During vertebrate gastrulation, axial mesendoderm migrates in a group, the prechordal plate, from the embryonic organizer to the animal pole. How this collective migration is achieved remains unclear. Previous work has suggested that cells migrate as individuals, with collective movement resulting from the addition of similar individual cell behavior. Through extensive analyses of cell trajectories, morphologies, and polarization in zebrafish embryos, we reveal that all prechordal plate cells show the same behavior and rely on the same signaling pathway to migrate, as expected if they do so individually. However, by using cell transplants, we demonstrate that prechordal plate migration is a true collective process, as isolated cells do not migrate toward the animal pole. They are still polarized and motile but lose directionality. Directionality is restored upon contact with the endogenous prechordal plate. This contact dependent orientation relies on E-cadherin, Wnt-PCP signaling, and Rac1. Importantly, groups of cells also need contact with the endogenous plate to orient correctly, showing an instructive role of the plate in establishing directionality. Overall, our results lead to an original model of collective migration in which directional information is contained within the moving group rather than provided by extrinsic cues, and constantly maintained in cells by contacts with their neighbors. This self-organizing model could account for collective invasion of new territories, as observed in cancer strands, without requirement for any attractant in the colonized tissue.
Collapse
|
23
|
Sphingosine kinase type 1 inhibition reveals rapid turnover of circulating sphingosine 1-phosphate. Biochem J 2012; 440:345-53. [PMID: 21848514 DOI: 10.1042/bj20110817] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
S1P (sphingosine 1-phosphate) is a signalling molecule involved in a host of cellular and physiological functions, most notably cell survival and migration. S1P, which signals via a set of five G-protein-coupled receptors (S1P1-S1P5), is formed by the action of two SphKs (sphingosine kinases) from Sph (sphingosine). Interfering RNA strategies and SphK1 (sphingosine kinase type 1)-null (Sphk1-/-) mouse studies implicate SphK1 in multiple signalling cascades, yet there is a paucity of potent and selective SphK1 inhibitors necessary to evaluate the effects of rapid onset inhibition of this enzyme. We have identified a set of submicromolar amidine-based SphK1 inhibitors and report using a pair of these compounds to probe the cellular and physiological functions of SphK1. In so doing, we demonstrate that our inhibitors effectively lower S1P levels in cell-based assays, but we have been unable to correlate SphK1 inhibition with changes in cell survival. However, SphK1 inhibition did diminish EGF (epidermal growth factor)-driven increases in S1P levels and Akt (also known as protein kinase B)/ERK (extracellular-signal-regulated kinase) phosphorylation. Finally, administration of the SphK1 inhibitor to wild-type, but not Sphk1-/-, mice resulted in a rapid decrease in blood S1P levels indicating that circulating S1P is rapidly turned over.
Collapse
|
24
|
Abstract
Planar cell polarity is a fundamental concept to understanding the coordination of cell movements in the plane of a tissue. Since the planar cell polarity pathway was discovered in mesenchymal tissues involving cell interaction during vertebrate gastrulation, there is an emerging evidence that a variety of mesenchymal and epithelial cells utilize this genetic pathway to mediate the coordination of cells in directed movements. In this review, we focus on how the planar cell polarity pathway is mediated by migrating cells to communicate with one another in different developmental processes.
Collapse
|
25
|
Row RH, Maître JL, Martin BL, Stockinger P, Heisenberg CP, Kimelman D. Completion of the epithelial to mesenchymal transition in zebrafish mesoderm requires Spadetail. Dev Biol 2011; 354:102-10. [PMID: 21463614 PMCID: PMC3090540 DOI: 10.1016/j.ydbio.2011.03.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/25/2011] [Accepted: 03/25/2011] [Indexed: 12/18/2022]
Abstract
The process of gastrulation is highly conserved across vertebrates on both the genetic and morphological levels, despite great variety in embryonic shape and speed of development. This mechanism spatially separates the germ layers and establishes the organizational foundation for future development. Mesodermal identity is specified in a superficial layer of cells, the epiblast, where cells maintain an epithelioid morphology. These cells involute to join the deeper hypoblast layer where they adopt a migratory, mesenchymal morphology. Expression of a cascade of related transcription factors orchestrates the parallel genetic transition from primitive to mature mesoderm. Although the early and late stages of this process are increasingly well understood, the transition between them has remained largely mysterious. We present here the first high resolution in vivo observations of the blebby transitional morphology of involuting mesodermal cells in a vertebrate embryo. We further demonstrate that the zebrafish spadetail mutation creates a reversible block in the maturation program, stalling cells in the transition state. This mutation creates an ideal system for dissecting the specific properties of cells undergoing the morphological transition of maturing mesoderm, as we demonstrate with a direct measurement of cell-cell adhesion.
Collapse
Affiliation(s)
- Richard H Row
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
26
|
Liu J, Hsu A, Lee JF, Cramer DE, Lee MJ. To stay or to leave: Stem cells and progenitor cells navigating the S1P gradient. World J Biol Chem 2011; 2:1-13. [PMID: 21472036 PMCID: PMC3070303 DOI: 10.4331/wjbc.v2.i1.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/25/2010] [Accepted: 12/02/2010] [Indexed: 02/05/2023] Open
Abstract
Most hematopoietic stem progenitor cells (HSPCs) reside in bone marrow (BM), but a small amount of HSPCs have been found to circulate between BM and tissues through blood and lymph. Several lines of evidence suggest that sphingosine-1-phosphate (S1P) gradient triggers HSPC egression to blood circulation after mobilization from BM stem cell niches. Stem cells also visit certain tissues. After a temporary 36 h short stay in local tissues, HSPCs go to lymph in response to S1P gradient between lymph and tissue and eventually enter the blood circulation. S1P also has a role in the guidance of the primitive HSPCs homing to BM in vivo, as S1P analogue FTY720 treatment can improve HSPC BM homing and engraftment. In stress conditions, various stem cells or progenitor cells can be attracted to local injured tissues and participate in local tissue cell differentiation and tissue rebuilding through modulation the expression level of S1P1, S1P2 or S1P3 receptors. Hence, S1P is important for stem cells circulation in blood system to accomplish its role in body surveillance and injury recovery.
Collapse
Affiliation(s)
- Jingjing Liu
- Jingjing Liu, Andrew Hsu, Jen-Fu Lee, Menq-Jer Lee, Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, United States
| | | | | | | | | |
Collapse
|
27
|
The cell adhesion-associated protein Git2 regulates morphogenetic movements during zebrafish embryonic development. Dev Biol 2010; 349:225-37. [PMID: 21034731 DOI: 10.1016/j.ydbio.2010.10.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 09/13/2010] [Accepted: 10/19/2010] [Indexed: 01/24/2023]
Abstract
Signaling through cell adhesion complexes plays a critical role in coordinating cytoskeletal remodeling necessary for efficient cell migration. During embryonic development, normal morphogenesis depends on a series of concerted cell movements; but the roles of cell adhesion signaling during these movements are poorly understood. The transparent zebrafish embryo provides an excellent system to study cell migration during development. Here, we have identified zebrafish git2a and git2b, two new members of the GIT family of genes that encode ArfGAP proteins associated with cell adhesions. Loss-of-function studies revealed an essential role for Git2a in zebrafish cell movements during gastrulation. Time-lapse microscopy analysis demonstrated that antisense depletion of Git2a greatly reduced or arrested cell migration towards the vegetal pole of the embryo. These defects were rescued by expression of chicken GIT2, indicating a specific and conserved role for Git2 in controlling embryonic cell movements. Git2a knockdown embryos showed defects in cell morphology that were associated with reduced cell contractility. We show that Git2a is required for phosphorylation of myosin light chain (MLC), which regulates myosin II-mediated cell contractility. Consistent with this, embryos treated with Blebbistatin-a small molecule inhibitor for myosin II activity-exhibited cell movement defects similar to git2a knockdown embryos. These observations provide in vivo evidence of a physiologic role for Git2a in regulating cell morphogenesis and directed cell migration via myosin II activation during zebrafish embryonic development.
Collapse
|
28
|
Abstract
Collective cell migration is a key process during the development of most organisms. It can involve either the migration of closely packed mesenchymal cells that make dynamic contacts with frequently changing neighbour cells, or the migration of epithelial sheets that typically display more stable cell-cell interactions and less frequent changes in neighbours. These collective movements can be controlled by short- or long-range dynamic gradients of extracellular signalling molecules, depending on the number of cells involved and their distance of migration. These gradients are sensed by some or all of the migrating cells and translated into directed migration, which in many settings is further modulated by cell-contact-mediated attractive or repulsive interactions that result in contact-following or contact-inhibition of locomotion, respectively. Studies of collective migration of groups of epithelial cells during development indicate that, in some cases, only leader cells sense and migrate up an external signal gradient, and that adjacent cells follow through strong cell-cell contacts. In this Commentary, I review studies of collective cell migration of differently sized cell populations during the development of several model organisms, and discuss our current understanding of the molecular mechanisms that coordinate this migration.
Collapse
Affiliation(s)
- Cornelis J Weijer
- Division of Cell and Developmental Biology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
29
|
Osborne N, Brand-Arzamendi K, Ober EA, Jin SW, Verkade H, Holtzman NG, Yelon D, Stainier DYR. The spinster homolog, two of hearts, is required for sphingosine 1-phosphate signaling in zebrafish. Curr Biol 2009; 18:1882-8. [PMID: 19062281 DOI: 10.1016/j.cub.2008.10.061] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 10/19/2008] [Accepted: 10/21/2008] [Indexed: 11/20/2022]
Abstract
The bioactive lipid sphingosine 1-phosphate (S1P) and its G protein-coupled receptors play critical roles in cardiovascular, immunological, and neural development and function. Despite its importance, many questions remain about S1P signaling, including how S1P, which is synthesized intracellularly, is released from cells. Mutations in the zebrafish gene encoding the S1P receptor Miles Apart (Mil)/S1P(2) disrupt the formation of the primitive heart tube. We find that mutations of another zebrafish locus, two of hearts (toh), cause phenotypes that are morphologically indistinguishable from those seen in mil/s1p2 mutants. Positional cloning of toh reveals that it encodes a member of the Spinster-like family of putative transmembrane transporters. The biological functions of these proteins are poorly understood, although phenotypes of the Drosophila spinster and zebrafish not really started mutants suggest that these proteins may play a role in lipid trafficking. Through gain- and loss-of-function analyses, we show that toh is required for signaling by S1P(2). Further evidence indicates that Toh is involved in the trafficking or cellular release of S1P.
Collapse
Affiliation(s)
- Nick Osborne
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, Cardiovascular Research Institute, University of California, San Francisco, 1550 Fourth Street, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Yin C, Ciruna B, Solnica-Krezel L. Chapter 7 Convergence and Extension Movements During Vertebrate Gastrulation. Curr Top Dev Biol 2009; 89:163-92. [DOI: 10.1016/s0070-2153(09)89007-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|