1
|
Umehara T, Yamanaka T, Shimada M. Toll-like receptors in mammalian sperm. Reprod Med Biol 2025; 24:e12651. [PMID: 40242391 PMCID: PMC12000229 DOI: 10.1002/rmb2.12651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025] Open
Abstract
Background Toll-like receptors (TLRs) are critical components of the innate immune system and are expressed in various cells, including the reproductive system. Although their roles in female reproductive tissues such as the ovaries and uterus, including their involvement in fertilization and implantation, have been extensively reviewed, their expression and function in male germ cells, particularly in sperm, remain underexplored. Methods This review provides a comprehensive summary of research on TLRs expressed in sperm, including findings from experimental models in mice, humans, and industrial livestock. Results The activation of TLR2 and TLR4, which detect Gram-positive and Gram-negative bacteria, has been shown to reduce sperm motility and viability, thereby impairing fertilization. Conversely, low levels of TLR2 activation have been reported to promote the fertilization of bull sperm, suggesting that TLR2/4 may act as regulators of fertilization. TLR7 and TLR8, which are exclusively expressed in X chromosome-bearing sperm (X-sperm), have attracted increasing research interest. These receptors modulate sperm metabolism, selectively reduce the motility of X sperm, and enable the separation of X and Y sperm. Conclusion TLRs in the sperm serve as immune receptors that detect bacterial and viral infections, thereby reducing sperm functionality, preventing miscarriage, protecting maternal health, and sex selection.
Collapse
Affiliation(s)
- Takashi Umehara
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
| | - Takahiro Yamanaka
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
| |
Collapse
|
2
|
Fedorka CE, El-Sheikh-Ali H, Scoggin KE, Coleman S, Humphrey EA, Troutt L, Troedsson MHT. The Effect of Seminal Plasma on the Equine Endometrial Transcriptome. Reprod Domest Anim 2024; 59:e14711. [PMID: 39246124 DOI: 10.1111/rda.14711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024]
Abstract
The establishment of pregnancy involves a fine-tuned balance between protection and tolerance within the maternal immune system, as the female needs to accept a foreign antigen (the semi-allogenic fetus) while still being able to combat pathogens from the uterus. In the horse, the first uterine exposure to paternal antigens is during mating when sperm is introduced to the tissue and draining lymphatics of the uterus. Additionally, it has been suggested that seminal plasma and its proteins within it play an essential role in preparing the female tract for a suitable immunologic environment but this has not been confirmed in the horse. Therefore, the objective of this study was to evaluate the endometrial transcriptome following insemination either with seminal plasma or with reduced seminal plasma. We hypothesised that reduced seminal plasma would alter the endometrial transcriptome and affect transcripts relating to immunotolerance, antigen presentation and embryo growth and development. To do so, six (n = 6) mares were inseminated in a randomised switch-back design over the course of four oestrous cycles. Mares were rectally palpated and scanned via ultrasonography for the detection of a pre-ovulatory follicle (>35 mm) alongside increasing uterine oedema and relaxed cervix, and then treated with one of four treatment groups including (1) 30 mL lactated Ringers solution (LRS; NegCon), (2) 500 × 106 spermatozoa in conjunction with 30 mL seminal plasma (SP+), (3) 30 mL lactated Ringers solution (LRS; wash out) and (4) 500 × 106 spermatozoa with seminal plasma reduced via gradient centrifugation and resuspended in 30 mL LRS (SP-). Human chorionic gonadotropin (hCG) was administered to standardise the time to ovulation and endometrial biopsies were collected 7 days after insemination. RNA was isolated utilising Trizol, and RNA-Seq was performed by Novogene, with 97.79% total mapping and 40 million read depth. p value was set to <0.05. When comparing SP+ to SP-, 158 differentially expressed genes (DEGs) were identified. Biological processes impacted included antigen processing and regulation, cholesterol synthesis, and immune/inflammatory response. Gene ontology (GO) enrichment analysis using DAVID v6.8 revealed that many of these DEGs were involved in biological process such as antigen presentation (HLA-DM beta chain, HLA-DRB, HLA-DQA and RASGRP1), immune cell signalling (CXCL9, CXCL1, DEFB1 and MIP-2B), embryo growth and development (INHA, KLF2, RDH10, LAMA3 and SLC34A2) and embryo metabolism (ABCA1, ABCA2, APOA1, LDL, INSR, IGFBP2 and IGFBP3). Overall, reduction of seminal plasma from the insemination dose impacted the endometrial transcriptome at the time of early embryonic exposure to the uterine environment. Further work is justified to evaluate these alterations impact on embryo maturation, placental development, pregnancy outcome and development of offspring.
Collapse
Affiliation(s)
- C E Fedorka
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - H El-Sheikh-Ali
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - K E Scoggin
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - S Coleman
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - E A Humphrey
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, Tennessee, USA
| | - L Troutt
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, Tennessee, USA
| | - M H T Troedsson
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
3
|
Akthar I, Yousef MS, Mansouri A, Shimada M, Miyamoto A. Sperm hyperactivation in the uterus and oviduct: a double-edged sword for sperm and maternal innate immunity toward fertility. Anim Reprod 2024; 21:e20240043. [PMID: 39176001 PMCID: PMC11340796 DOI: 10.1590/1984-3143-ar2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/25/2024] [Indexed: 08/24/2024] Open
Abstract
In cattle, artificial insemination (AI) is a technique that allows breeding by depositing frozen-thawed and extended semen into the female reproductive tract. The semen contains sperm with various motility patterns including dead, progressive and hyperactivated. Sperm hyperactivation is high amplitude, asymmetrical beating of sperm tail which usually occurs in the oviduct as part of the capacitation process, but it can also be induced by cryopreservation. After insemination, sperm enter the uterine glands and trigger a pro-inflammatory response in the uterus. Hyperactivated sperm, stimulated by sperm-Toll-like receptor 2 (TLR2), penetrates the mucus and uterine glands more efficiently and enhances the immune response. This facilitates the clearance of excess and dead sperm from the uterus. Some sperm escape the immune response and reach the oviduct either before or after the immune response is initiated. In the oviduct, sperm bind to the epithelium and form a reservoir. This triggers an anti-inflammatory response and preserves the fertilization potential of sperm. Hyperactivation facilitates sperm detaching from the epithelium, swimming through the viscous mucus and cumulus cells, and penetrating the egg's zona pellucida. Sperm-TLR2 activation enhances Ca2+-influx and acrosome reaction, which enables sperm to penetrate and fertilize oocytes during in vitro fertilization. Altogether, post-AI in cattle, sperm and maternal immunity interact differentially depending upon the site of sperm hyperactivation - whether it occurs within the uterus or oviduct. Specifically, hyperactivated sperm that enter the uterus after AI or are triggered via sperm-TLR2 activation or other stimuli contribute to sperm-induced uterine inflammation. Such hyperactivated sperm may impede their capacity to ascend to the oviduct. Conversely, sperm that become hyperactivated within the oviduct modulate their interactions with the oviduct and oocytes, which is pivotal during fertilization process. Indeed, the location and timing of sperm hyperactivation partially via TLR2 activation are critical determinants of their different influence on fertility.
Collapse
Affiliation(s)
- Ihshan Akthar
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mohamed Samy Yousef
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Alireza Mansouri
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Akio Miyamoto
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
4
|
Rashki Ghaleno L, Pennisi CP, Shahverdi A, Dardmeh F, Alipour H, Rezazadeh Valojerdi M. Exploring the Role of Hyaluronic Acid in Reproductive Biology and Beyond: Applications in Assisted Reproduction and Tissue Engineering. Adv Biol (Weinh) 2024; 8:e2300621. [PMID: 38580620 DOI: 10.1002/adbi.202300621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/26/2024] [Indexed: 04/07/2024]
Abstract
Hyaluronic acid (HA) plays a prominent role in various aspects of reproductive biology and assisted reproductive technologies (ART). This review describes the multifaceted influence of HA, ranging from primordial germ cell migration, ovarian follicle development, and ovulation in females to sperm structure, physiology, motility, and capacitation in males. In addition, HA also plays an important role in fertilization and promotes embryo implantation by mediating cellular adhesion and communication within the uterus. Against this physiological background, the review examines the current applications of HA in the context of ART. In addition, the article addresses the emerging field of reproductive tissue engineering, where HA-based hydrogels offer promising perspectives as they can support the development of mature oocytes and spermatogenesis in vitro. Overall, this review highlights the integral role of HA in the intricate mechanisms of reproductive biology and its growing importance for improving ART outcomes and the field of tissue engineering of the reproductive system.
Collapse
Affiliation(s)
- Leila Rashki Ghaleno
- Department of Reproductive Biology, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, 19395-4644, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, 19395-4644, Iran
| | - Cristian Pablo Pennisi
- Regenerative Medicine, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, 9260, Denmark
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, 19395-4644, Iran
| | - Fereshteh Dardmeh
- Regenerative Medicine, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, 9260, Denmark
| | - Hiva Alipour
- Regenerative Medicine, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, 9260, Denmark
| | - Mojtaba Rezazadeh Valojerdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, 19395-4644, Iran
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14115-111, Iran
| |
Collapse
|
5
|
Akthar I, Kim Y, Umehara T, Kanno C, Sasaki M, Marey MA, Yousef MS, Haneda S, Shimada M, Miyamoto A. Activation of sperm Toll-like receptor 2 induces hyperactivation to enhance the penetration to mucus and uterine glands: a trigger for the uterine inflammatory cascade in cattle. Front Immunol 2023; 14:1319572. [PMID: 38179051 PMCID: PMC10766357 DOI: 10.3389/fimmu.2023.1319572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
It is known that sperm and seminal plasma (SP) affect uterine immunity. In cattle, artificial insemination enables breeding by depositing frozen and largely diluted sperm with a negligible amount of SP into the uterus. Thus, the present study focused on the impact of frozen-thawed sperm on bovine uterine immunity. We have previously shown that in the bovine uterus, sperm swim smoothly over the luminal epithelium and some sperm interact with uterine glands to induce a weak inflammatory response mainly via the endometrial Toll-like receptor 2 (TLR2) signaling. However, the process by which sperm is encountered in the uterine glands is not completely clear. The present study intended to evaluate the role of sperm-TLR2 in sperm-uterine mucus penetration for reaching the glandular epithelium to induce the uterine immune response. To activate and block sperm-TLR2, they were treated with TLR2 agonist and antagonist, respectively. TLR2 activation enhanced sperm hyperactivation and improved its capacity to penetrate the artificial viscoelastic fluid and estrous-uterine-mucus. In contrast, TLR2-blocked sperm showed completely opposite effects. It is noteworthy, that the TLR2-activated sperm that penetrated the uterine mucus exhibited increased motile activity with hyperactivation. In the sperm-endometrial ex-vivo model, a greater amount of TLR2-activated sperm entered the uterine glands with an immune response, which was seen as the upregulation of mRNA expression for TNFA, IL1B, IL8, PGES, and TLR2 similar to those in control sperm. On the other hand, a lesser amount of TLR2-blocked sperm entered the uterine glands and weakened the sperm-induced increase only in PGES, suggesting that penetration of a certain number of sperm in the uterine gland is necessary enough to trigger the inflammatory response. Altogether, the present findings indicate that activation of sperm-TLR2 promotes their hyperactivation and mucus penetration with greater motility, allowing them to enter into the uterine glands more. This further suggests that the hyperactivated sperm contributes to triggering the pro-inflammatory cascade partly via TLR2 in the uterus.
Collapse
Affiliation(s)
- Ihshan Akthar
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Yejin Kim
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Takashi Umehara
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Chihiro Kanno
- School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Motoki Sasaki
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mohamed Ali Marey
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Theriogenology, Faculty of Veterinary Medicine, Damanhur University, Behera, Egypt
| | - Mohamed Samy Yousef
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Shingo Haneda
- Department of Clinical Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Akio Miyamoto
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
6
|
Babayev E, Suebthawinkul C, Gokyer D, Parkes WS, Rivas F, Pavone ME, Hall AR, Pritchard MT, Duncan FE. Cumulus expansion is impaired with advanced reproductive age due to loss of matrix integrity and reduced hyaluronan. Aging Cell 2023; 22:e14004. [PMID: 37850336 PMCID: PMC10652338 DOI: 10.1111/acel.14004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023] Open
Abstract
Reproductive aging is associated with ovulatory defects. Age-related ovarian fibrosis partially contributes to this phenotype as short-term treatment with anti-fibrotic compounds improves ovulation in reproductively old mice. However, age-dependent changes that are intrinsic to the follicle may also be relevant. In this study, we used a mouse model to demonstrate that reproductive aging is associated with impaired cumulus expansion which is accompanied by altered morphokinetic behavior of cumulus cells as assessed by time-lapse microscopy. The extracellular matrix integrity of expanded cumulus-oocyte complexes is compromised with advanced age as evidenced by increased penetration of fluorescent nanoparticles in a particle exclusion assay and larger open spaces on scanning electron microscopy. Reduced hyaluronan (HA) levels, decreased expression of genes encoding HA-associated proteins (e.g., Ptx3 and Tnfaip6), and increased expression of inflammatory genes and matrix metalloproteinases underlie this loss of matrix integrity. Importantly, HA levels are decreased with age in follicular fluid of women, indicative of conserved reproductive aging mechanisms. These findings provide novel mechanistic insights into how defects in cumulus expansion contribute to age-related infertility and may serve as a target to extend reproductive longevity.
Collapse
Affiliation(s)
- Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Chanakarn Suebthawinkul
- Department of Obstetrics and Gynecology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Department of Obstetrics and Gynecology, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Dilan Gokyer
- Department of Obstetrics and Gynecology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Wendena S. Parkes
- Department of Pharmacology, Toxicology, & Therapeutics, Institute for Reproductive and Developmental SciencesUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Felipe Rivas
- Virginia Tech‐Wake Forest University School of Biomedical Engineering and SciencesWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Mary Ellen Pavone
- Department of Obstetrics and Gynecology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Adam R. Hall
- Virginia Tech‐Wake Forest University School of Biomedical Engineering and SciencesWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Michele T. Pritchard
- Department of Pharmacology, Toxicology, & Therapeutics, Institute for Reproductive and Developmental SciencesUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
7
|
Ezz MA, Mansouri A, Akthar I, Yousef MS, Kowsar R, Miyamoto A. Hyaluronan regulates sperm-induced inflammatory response by enhancing sperm attachment to bovine endometrial epithelial cells via CD44: in-silico and in-vitro approaches. Front Endocrinol (Lausanne) 2023; 14:1134868. [PMID: 37234812 PMCID: PMC10206253 DOI: 10.3389/fendo.2023.1134868] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Recently, we reported that sperm induce cluster of differentiation 44 (CD44) expression and Toll-like receptor 2 (TLR2)-mediated inflammatory response in bovine uterus. In the present study, we hypothesized that the interaction between CD44 of bovine endometrial epithelial cells (BEECs) and hyaluronan (HA) affects sperm attachment and thereby enhancing TLR2-mediated inflammation. To test our hypothesis, at first, in-silico approaches were employed to define the binding affinity of HA for CD44 and TLR2. Further, an in-vitro experiment using the sperm-BEECs co-culture model was applied to investigate the effect of HA on sperm attachment and inflammatory response. Here, low molecular weight (LMW) HA at different concentrations (0, 0.1, 1, or 10 µg/mL) was incubated with BEECs for 2 h followed by the co-culture without- or with non-capacitated washed sperm (106/ml) for additional 3 h was performed. The present in-silico model clarified that CD44 is a high-affinity receptor for HA. Moreover, TLR2 interactions with HA oligomer (4- and 8-mers) target a different subdomain (h-bonds) compared to TLR2-agonist (PAM3) which targets a central hydrophobic pocket. However, the interaction of LMW HA (32-mers) with TLR2 revealed no stability of HA at any pocket of TLR2. Notably, the immunofluorescence analysis revealed the HA localization in both endometrial stroma and epithelia of ex-vivo endometrial explant. Moreover, ELISA showed significant levels of HA in BEECs culture media. Importantly, BEECs pretreatment with HA prior to sperm exposure increased the number of attached sperm to BEECs, and upregulated the transcriptional levels of pro-inflammatory genes (TNFA, IL-1B, IL-8, and PGES) in BEECs in response to sperm. However, BEECs treated with HA only (no sperm exposure) did not show any significant effect on the transcript abundance of pro-inflammatory genes when compared to the non-treated BEECs. Altogether, our findings strongly suggest a possible cross-talk between sperm and endometrial epithelial cells via HA and HA binding receptors (CD44 and TLR2) to induce a pro-inflammatory response in bovine uterus.
Collapse
Affiliation(s)
- Mohamed Aboul Ezz
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Alireza Mansouri
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Ihshan Akthar
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mohamed Samy Yousef
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Rasoul Kowsar
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Akio Miyamoto
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
8
|
Chuphal B, Sathoria P, Rai U, Roy B. Crosstalk between reproductive and immune systems: the teleostean perspective. JOURNAL OF FISH BIOLOGY 2023; 102:302-316. [PMID: 36477945 DOI: 10.1111/jfb.15284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The bidirectional interaction between the hypothalamic-pituitary-gonadal (HPG) axis and the immune system plays a crucial role in the adaptation of an organism to its environment, its survival and the continuance of a species. Nonetheless, very little is known about this interaction among teleost, the largest group of extant vertebrates. Fishes being seasonal breeders, their immune system is exposed to seasonally changing levels of HPG hormones. On the contrary, the presence and infiltration of leukocytes, the expression of pattern recognition receptors as well as cytokines in gonads suggest their key role in teleostean gametogenesis as in the case of mammals. Moreover, the modulation of gametogenesis and steroidogenesis by lipopolysaccharide implicates the pathological significance of inflammation on reproduction. Thus, it is important to engage in the understanding of the interaction between these two important physiological systems, not only from a phylogenetic perspective but also due to the importance of fish as an important economic resource. In view of this, the authors have reviewed the crosstalk between the reproductive and immune systems in teleosts and tried to explore the importance of this interaction in their survival and reproductive fitness.
Collapse
Affiliation(s)
- Bhawna Chuphal
- Department of Zoology, University of Delhi, Delhi, India
| | - Priyanka Sathoria
- Department of Zoology, Maitreyi College, University of Delhi, Delhi, India
| | - Umesh Rai
- University of Jammu, Jammu, Jammu and Kashmir, India
| | - Brototi Roy
- Department of Zoology, Maitreyi College, University of Delhi, Delhi, India
| |
Collapse
|
9
|
Mansouri A, Yousef MS, Kowsar R, Usui N, Akthar I, Miyamoto A. Sperm activate TLR2/TLR1 heterodimerization to induce a weak proinflammatory response in the bovine uterus. Front Immunol 2023; 14:1158090. [PMID: 37180107 PMCID: PMC10174305 DOI: 10.3389/fimmu.2023.1158090] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Toll-like receptor 2 (TLR2) signaling pathway is involved in the sperm-triggered uterine inflammatory response at insemination, but its precise mechanism at molecular-level remains unknown. According to the ligand specificity, TLR2 forms a heterodimer with TLR1 or TLR6 as an initial step to mediate intracellular signaling, leading to a specific type of immune response. Hence, the present study aimed to identify the active TLR2 heterodimer (TLR2/1 or TLR2/6) that is involved in sperm-uterine immune crosstalk in bovine using various models. First, in-vitro (bovine endometrial epithelial cells, BEECs) and ex-vivo (bovine uterine explant) models were employed to test different TLR2 dimerization pathways in endometrial epithelia after exposure to sperm or TLR2 agonists; PAM3 (TLR2/1 agonist), and PAM2 (TLR2/6 agonist). Additionally, in-silico approaches were performed to confirm the dimer stability using de novo protein structure prediction model for bovine TLRs. The in-vitro approach revealed that sperm triggered the mRNA and protein expression of TLR1 and TLR2 but not TLR6 in BEECs. Moreover, this model disclosed that activation of TLR2/6 heterodimer, triggers a much stronger inflammatory response than TLR2/1 and sperm in bovine uterine epithelia. In the ex-vivo model that mimics the intact uterine tissue at insemination, sperm also induced the protein expression of both TLR1 and TLR2, but not TLR6, in bovine endometrium, particularly in uterine glands. Importantly, PAM3 and sperm induced similar and low mRNA expression of pro-inflammatory cytokines and TNFA protein to a lesser extent than PAM2 in endometrial epithelia. This implied that sperm might trigger a weak inflammatory response via TLR2/TLR1 activation which is similar to that of PAM3. Additionally, the in-silico analyses showed that the existence of bridging ligands is essential for heterodimer stability in bovine TLR2 with either TLR1 or TLR6. Altogether, the present findings revealed that sperm utilize TLR2/1, but not TLR2/6, heterodimerization to trigger a weak physiological inflammatory response in the bovine uterus. This might be the way to remove excess dead sperm remaining in the uterine lumen without tissue damage for providing an ideal uterine environment for early embryo reception and implantation.
Collapse
Affiliation(s)
- Alireza Mansouri
- Global AgroMedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mohamed Samy Yousef
- Global AgroMedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Rasoul Kowsar
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Nonoka Usui
- Global AgroMedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Ihshan Akthar
- Global AgroMedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Akio Miyamoto
- Global AgroMedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- *Correspondence: Akio Miyamoto,
| |
Collapse
|
10
|
Alipour R, Sereshki N, Rafiee M, Ahmadipanah V, Pashoutan Sarvar D, Rahimian K, Wilkinson D. The effect of probiotic bacteria on toll-like receptor-2 and -4 expression by spermatozoa in couples with unexplained recurrent spontaneous abortion. Biochem Biophys Rep 2022; 33:101390. [PMID: 36504703 PMCID: PMC9732116 DOI: 10.1016/j.bbrep.2022.101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
The disturbance of microbiota composition in the female reproductive tract (FRT) can result in several reproductive disorders. Spermatozoa express toll like receptors (TLRs) and may encounter many types of microbiota in the FRT, however no study has been performed regarding the interaction between spermatozoa TLRs and FRT microbiota in unexplained recurrent spontaneous abortion (URSA) and fertile couples. In this study, we investigate the interaction of vaginal lactobacillus casei probiotic as a representative of FRT microbiota with TLR2 and 4 on spermatozoa. Ten fertile couples and ten URSA couples were involved in this study. Untreated and lactobacillus casei probiotic treated purified spermatozoa were evaluated for TLR2 and 4 expression by flow cytometry. Vaginal lactobacillus casei probiotic treatment of spermatozoa led to increased expression of TLR4 and decreased expression of TLR2 on spermatozoa in both URSA and fertile couples. Vaginal lactobacillus casei probiotic led to an increase in TLR4 expression and a decrease in TLR2 expression on spermatozoa in fertile and URSA groups. However, the disturbed expression of TLR2 and 4 was not completely correct, and further studies with other types of vaginal lactobacilli are needed. In contrast to our expectation, vaginal lactobacillus casei probiotic could not improve the disturbed expression of TLR2 and TLR4 in the RSA group. This could be due to small sample size and the use of one type of lactobacillus. Therefore, further study needs to be performed with other types of lactobacilli to determine the effect of microbiota and probiotics on spermatozoa function such as motility, acrosome reaction, sperm capacitation, sperm and egg fusion and spermatozoa motility and apoptosis and etc. Nevertheless, this study can provide a first step to investigate the effectiveness of vaginal microbiota on spermatozoa, and consequently design new strategies for RSA couples.
Collapse
Affiliation(s)
- Razieh Alipour
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Sereshki
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,Corresponding author. Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mitra Rafiee
- Department of Immunology, Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | | | - Kourosh Rahimian
- Medical Laboratory Sciences, Pasteur Clinical Laboratory, Sanandaj, Iran
| | | |
Collapse
|
11
|
The secretion and metabolism of cumulus cells support fertilization in the bovine model. Theriogenology 2022; 193:136-145. [DOI: 10.1016/j.theriogenology.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022]
|
12
|
Zhang YS, Gong JS, Yao ZY, Jiang JY, Su C, Li H, Kang CL, Liu L, Xu ZH, Shi JS. Insights into the source, mechanism and biotechnological applications of hyaluronidases. Biotechnol Adv 2022; 60:108018. [PMID: 35853550 DOI: 10.1016/j.biotechadv.2022.108018] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 01/10/2023]
Abstract
It has long been found that hyaluronidases exist in a variety of organisms, playing their roles in various biological processes including infection, envenomation and metabolic regulation through degrading hyaluronan. However, exploiting them as a bioresource for specific applications had not been extensively studied until the latest decades. In recent years, new application scenarios have been developed, which extended the field of application, and emphasized the research value of hyaluronidase. This critical review comprehensively summarizes existing studies on hyaluronidase from different source, particularly in their structures, action patterns, and biological functions in human and mammals. Furthermore, we give in-depth insight into the resource mining and protein engineering process of hyaluronidase, as well as strategies for their high-level production, indicating that mixed strategies should be adopted to obtain well-performing hyaluronidase with efficiency. In addition, advances in application of hyaluronidase were summarized and discussed. Finally, prospects for future researches are proposed, highlighting the importance of further investigation into the characteristics of hyaluronidases, and the necessity of investigating their products for the development of their application value.
Collapse
Affiliation(s)
- Yue-Sheng Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Zhi-Yuan Yao
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, PR China
| | - Jia-Yu Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Chuan-Li Kang
- Shandong Engineering Laboratory of Sodium Hyaluronate and its Derivatives, Shandong Focusfreda Biotech Co., Ltd, Qufu 273165, PR China
| | - Lei Liu
- Shandong Engineering Laboratory of Sodium Hyaluronate and its Derivatives, Shandong Focusfreda Biotech Co., Ltd, Qufu 273165, PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
13
|
Rafiee M, Sereshki N, Alipour R, Ahmadipanah V, Pashoutan Sarvar D, Wilkinson D. The effect of probiotics on immunogenicity of spermatozoa in couples suffering from recurrent spontaneous abortion. BMC Immunol 2022; 23:32. [PMID: 35725392 PMCID: PMC9210679 DOI: 10.1186/s12865-022-00506-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background Impaired spermatozoa immunogenicity can result in pregnancy complications such as recurrent spontaneous abortion (RSA). Given that spermatozoa contact with microbiota, it is possible that inappropriate microbiota composition in the reproductive tract could result in the alteration of spermatozoa antigenicity. Probiotics, as a representative of microbiota, may therefore have a beneficial effect on this altered immunogenicity. The objective of this study was to determine the effect of probiotics on spermatozoa immunogenicity.
Methods Twenty-five fertile couples and twenty-five RSA couples were included in this study. Spermatozoa were purified and treated with probiotics. Untreated and probiotic treated spermatozoa were evaluated for human leukocyte antigen (HLA) class I & II expression by flow cytometry. Untreated and probiotic treated spermatozoa were also cocultured with the wife’s peripheral blood mononuclear cells (PBMC) for 12 days. Then, the supernatant was assessed for IgG and APCA by enzyme-linked immunosorbent assay (ELISA) and complement-dependent cytotoxicity (CDC) assay respectively. Results Probiotic treatment of spermatozoa leads to an increase of HLA class I & II expression in both the fertile and RSA groups. The probiotic treatment resulted in a decrease in both IgG and APCA in the fertile group, but an increase in both IgG and APCA in the RSA group. Conclusions The results of this study suggest that a supplementary probiotic treatment may be useful in couples suffering from RSA with an immunologic cause, because it improves disturbed HLA expression on spermatozoa and improves disturbed APCA and IgG production in the presence of spermatozoa.
Collapse
Affiliation(s)
- Mitra Rafiee
- Department of Immunology, Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nasrin Sereshki
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Razieh Alipour
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | | |
Collapse
|
14
|
Ma D, Marey MA, Shimada M, Miyamoto A. Toll-like Receptor 2 is Involved in Calcium Influx and Acrosome Reaction to Facilitate Sperm Penetration to Oocytes During in vitro Fertilization in Cattle. Front Cell Dev Biol 2022; 10:810961. [PMID: 35281105 PMCID: PMC8907135 DOI: 10.3389/fcell.2022.810961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cumulus cells of ovulated cumulus-oocyte complexes (COCs) express Toll-like receptor 2 (TLR2), pathogen recognition receptors, to recognize and react to sperm signals during fertilization. Sperm also express TLR2, but its contribution to the sperm-oocytes crosstalk is still unclear. Here, we adapted the in vitro fertilization (IVF) model to characterize the potential relevance of sperm TLR2 in sperm-oocytes interactions during fertilization in bovine. The IVF results showed that the ligation of sperm TLR2 with its specific antagonist/agonist resulted in down/up-regulation of the cleavage and blastocyst rates either in COCs or cumulus-free oocytes, but not in zona pellucida (ZP)-free oocytes. The computer-assisted sperm analysis (CASA) system revealed that sperm motility parameters were not affected in TLR2 antagonist/agonist-treated sperm. However, fluorescence imaging of sperm-ZP interactions revealed that the blockage or activation of the TLR2 system in sperm reduced or enhanced both binding and penetration abilities of sperm to ZP compared to control, respectively. Flow cytometrical analysis of acrosome reaction (AR) demonstrated that the TLR2 system adjusted the occurrence of AR in ZP-attached sperm, suggesting that sperm TLR2 plays physiological impacts on the sperm-oocyte crosstalk via regulating ZP-triggered AR in sperm. Given that calcium (Ca2+) influx is a pre-requisite step for the induction of AR, we investigated the impact of the TLR2 system on the ionophore A23187-induced Ca2+ influx into sperm. Notably, the exposure of sperm to TLR2 antagonist/agonist reduced/increased the intracellular Ca2+ level in sperm. Together, these findings shed new light that the TLR2 system is involved in sperm AR induction which enables sperm to penetrate and fertilize oocytes during the fertilization, at least in vitro, in cows. This suggests that sperm possibly developed a quite flexible sensing mechanism simultaneously against pathogens as well as COCs toward fertilization with the same TLR2 of the innate immune system.
Collapse
Affiliation(s)
- Dongxue Ma
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mohamed Ali Marey
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Theriogenology, Faculty of Veterinary Medicine, Damanhur University, Behera, Egypt
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Akio Miyamoto
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- *Correspondence: Akio Miyamoto,
| |
Collapse
|
15
|
Atli MO, Hitit M, Özbek M, Köse M, Bozkaya F. Cell-Specific Expression Pattern of Toll-Like Receptors and Their Roles in Animal Reproduction. Handb Exp Pharmacol 2022; 276:65-93. [PMID: 35434748 DOI: 10.1007/164_2022_584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Toll-like receptors (TLRs), a part of the innate immune system, have critical roles in protection against infections and involve in basic pathology and physiology. Secreted molecules from the body or pathogens could be a ligand for induction of the TLR system. There are many immune and non-immune types of cells that express at a least single TLR on their surface or cytoplasm. Those cells may be a player in a defense system or in the physiological regulation mechanisms. Reproductive tract and organs contain different types of cells that have essential functions such as hormone production, providing an environment for embryo/fetus, germ cell production, etc. Although lower parts of reproductive organs are in a relationship with outsider contaminants (bacteria, viruses, etc.), upper parts should be sterile to provide a healthy pregnancy and germ cell production. In those areas, TLRs bear controller or regulator roles. In this chapter, we will provide current information about physiological functions of TLR in the cells of the reproductive organs and tract, and especially about their roles in follicle selection, maturation, follicular atresia, ovulation, corpus luteum (CL) formation and regression, establishment and maintenance of pregnancy, sperm production, maturation, capacitation as well as the relationship between TLR polymorphism and reproduction in domestic animals. We will also discuss pathogen-associated molecular patterns (PAMPs)-induced TLRs that involve in reproductive inflammation/pathology.
Collapse
Affiliation(s)
- Mehmet Osman Atli
- Department of Reproduction, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Turkey.
| | - Mustafa Hitit
- Department of Genetics, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Mehmet Özbek
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Mehmet Köse
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Dicle University, Diyarbakır, Turkey
| | - Faruk Bozkaya
- Department of Genetics, Faculty of Veterinary Medicine, Harran University, Sanlıurfa, Turkey
| |
Collapse
|
16
|
Akthar I, Marey MA, Kim Y, Shimada M, Suarez SS, Miyamoto A. Sperm interaction with the uterine innate immune system: toll-like receptor 2 (TLR2) is a main sensor in cattle. Reprod Fertil Dev 2021; 34:139-148. [PMID: 35231265 DOI: 10.1071/rd21265] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
During the passage through the female reproductive tract, sperm interact with various compartments and their immune systems. The immune system that protects the female against pathogens also could destroy sperm or prevent them from reaching the site of fertilisation. In particular, the uterine innate immune response is crucial from the perspectives of both the sperm and the uterus. Following insemination, sperm immediately start to trigger inflammation in the uterus by entering uterine glands and activating an innate immune response. In cattle, the activation occurs mainly via TLR2 signalling, if not the only one, between sperm and the uterine epithelium lining the glands. This acute immune response is manifested as the upregulation of mRNA expression of IL8, TNFA, IL1B , and PGES . As a consequence, many sperm are trapped by polymorphonuclear neutrophils, the first and major component of innate immunity. The sperm-induced uterine innate immune responses apparently serve to clear the uterus of excess sperm and, importantly, prepare the endometrium for implantation. Pathophysiological conditions in the uterus seriously disrupt this phenomenon, and thus could directly decrease fertility.
Collapse
Affiliation(s)
- Ihshan Akthar
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Mohamed A Marey
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; and Department of Theriogenology, Faculty of Veterinary Medicine, Damanhur University, Behera, Egypt
| | - Yejin Kim
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Susan S Suarez
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Akio Miyamoto
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| |
Collapse
|
17
|
Kawai T, Richards JS, Shimada M. Large-scale DNA demethylation occurs in proliferating ovarian granulosa cells during mouse follicular development. Commun Biol 2021; 4:1334. [PMID: 34824385 PMCID: PMC8617273 DOI: 10.1038/s42003-021-02849-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/04/2021] [Indexed: 12/20/2022] Open
Abstract
During ovarian follicular development, granulosa cells proliferate and progressively differentiate to support oocyte maturation and ovulation. To determine the underlying links between proliferation and differentiation in granulosa cells, we determined changes in 1) the expression of genes regulating DNA methylation and 2) DNA methylation patterns, histone acetylation levels and genomic DNA structure. In response to equine chorionic gonadotropin (eCG), granulosa cell proliferation increased, DNA methyltransferase (DNMT1) significantly decreased and Tet methylcytosine dioxygenase 2 (TET2) significantly increased in S-phase granulosa cells. Comprehensive MeDIP-seq analyses documented that eCG treatment decreased methylation of promoter regions in approximately 40% of the genes in granulosa cells. The expression of specific demethylated genes was significantly increased in association with specific histone modifications and changes in DNA structure. These epigenetic processes were suppressed by a cell cycle inhibitor. Based on these results, we propose that the timing of sequential epigenetic events is essential for progressive, stepwise changes in granulosa cell differentiation.
Collapse
Affiliation(s)
- Tomoko Kawai
- Laboratory of Reproductive Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - JoAnne S Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Masayuki Shimada
- Laboratory of Reproductive Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.
| |
Collapse
|
18
|
Wu W, Duan C, Lv H, Song J, Cai W, Fu K, Xu J. MiR-let-7d-3p inhibits granulosa cell proliferation by targeting TLR4 in polycystic ovary syndrome. Reprod Toxicol 2021; 106:61-68. [PMID: 34655744 DOI: 10.1016/j.reprotox.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/17/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a typical reproductive and endocrinological disorder of women at child-bearing age. In this study, we used miRNA sequencing technology and verified miR-let-7d-3p as a vital miRNA in PCOS. RT-qPCR confirmed miR-let-7d-3p was significantly increased in granulosa cells (GCs) of PCOS. Cell counting kit-8 (CCK-8) identified the suppression of miR-let-7d-3p mimic in KGN cell proliferation and PI3K/Akt signaling pathway. Dual luciferase reporter assay proved that Toll-like receptor 4 (TLR4) was a target of miR-let-7d-3p, and TLR4 was significantly down-regulated by miR-let-7d-3p. Furthermore, over-expression of TLR4 promoted KGN cell proliferation and rescued the inhibition of miR-let-7d-3p on KGN cells. In conclusion, miR-let-7d-3p was a crucial miRNA up-regulated in GCs of PCOS, and inhibited cell proliferation by targeting TLR4 gene.
Collapse
Affiliation(s)
- Wei Wu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Cuicui Duan
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Houyi Lv
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianyuan Song
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Wangyu Cai
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Kaiyou Fu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Xu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.
| |
Collapse
|
19
|
Aboussahoud WS, Smith H, Stevens A, Wangsaputra I, Hunter HR, Kimber SJ, Seif MW, Brison DR. The expression and activity of Toll-like receptors in the preimplantation human embryo suggest a new role for innate immunity. Hum Reprod 2021; 36:2661-2675. [PMID: 34517414 PMCID: PMC8450873 DOI: 10.1093/humrep/deab188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
STUDY QUESTION Is the innate immunity system active in early human embryo development? SUMMARY ANSWER The pattern recognition receptors and innate immunity Toll-like receptor (TLR) genes are widely expressed in preimplantation human embryos and the pathway appears to be active in response to TLR ligands. WHAT IS KNOWN ALREADY Early human embryos are highly sensitive to their local environment, however relatively little is known about how embryos detect and respond to specific environmental cues. While the maternal immune response is known to be key to the establishment of pregnancy at implantation, the ability of human embryos to detect and signal the presence of pathogens is unknown. STUDY DESIGN, SIZE, DURATION Expression of TLR family and related genes in human embryos was assessed by analysis of published transcriptome data (n = 40). Day 5 (D-5) human embryos (n = 25) were cultured in the presence of known TLR ligands and gene expression and cytokine production measured compared to controls. PARTICIPANTS/MATERIALS, SETTING, METHODS Human embryos surplus to treatment requirements were donated with informed consent from several ART centres. Embryos were cultured to Day 6 (D-6) in the presence of the TLR3 and TLR5 ligands Poly (I: C) and flagellin, with gene expression measured by quantitative PCR and cytokine release into medium measured using cytometric bead arrays. MAIN RESULTS AND THE ROLE OF CHANCE TLR and related genes, including downstream signalling molecules, were expressed variably at all human embryo developmental stages. Results showed the strongest expression in the blastocyst for TLRs 9 and 5, and throughout development for TLRs 9, 5, 2, 6 and 7. Stimulation of Day 5 blastocysts with TLR3 and TLR5 ligands Poly (I: C) and flagellin produced changes in mRNA expression levels of TLR genes, including the hyaluronan-mediated motility receptor (HMMR), TLR5, TLR7, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and monocyte chemoattractant Protein-1 (MCP-1) (P < 0.05, P < 0.001 compared to unstimulated controls), and release into culture medium of cytokines and chemokines, notably IL8 (P = 0.00005 and 0.01277 for flagellin and Poly (I: C), respectively). LIMITATIONS, REASONS FOR CAUTION This was a descriptive and experimental study which suggests that the TLR system is active in human embryos and capable of function, but does not confirm any particular role. Although we identified embryonic transcripts for a range of TLR genes, the expression patterns were not always consistent across published studies and expression levels of some genes were low, leaving open the possibility that these were expressed from the maternal rather than embryonic genome. WIDER IMPLICATIONS OF THE FINDINGS This is the first report of the expression and activity of a number of components of the innate immunity TLR system in human embryos. Understanding the role of TLRs during preimplantation human development may be important to reveal immunological mechanisms and potential clinical markers of embryo quality and pregnancy initiation during natural conception and in ART. STUDY FUNDING/COMPETING INTEREST(S) This work was funded by the Ministry of Higher Education, The State of Libya, the UK Medical Research Council, and the NIHR Local Comprehensive Research Network and NIHR Manchester Clinical Research Facility and the European Union's Horizon 2020 Research and Innovation Programmes under the Marie Skłodowska-Curie Grant Agreement No. 812660 (DohART-NET). In accordance with H2020 rules, no new human embryos were sacrificed for research activities performed from the EU funding, which concerned only in silico analyses of recorded time-lapse and transcriptomics datasets. None of the authors has any conflict of interest to declare. TRIAL REGISTRATION NUMBER n/a.
Collapse
Affiliation(s)
- Wedad S Aboussahoud
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
- Maternal and Fetal Health Research Centre, St. Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Helen Smith
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Adam Stevens
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
- Maternal and Fetal Health Research Centre, St. Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Ivan Wangsaputra
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
- Maternal and Fetal Health Research Centre, St. Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Helen R Hunter
- Department of Reproductive Medicine, Old St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Mourad W Seif
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
- Department of Reproductive Medicine, Old St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Daniel R Brison
- Department of Reproductive Medicine, Old St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| |
Collapse
|
20
|
Peroxiredoxin 1 Controls Ovulation and Ovulated Cumulus-Oocyte Complex Activity through TLR4-Derived ERK1/2 Signaling in Mice. Int J Mol Sci 2021; 22:ijms22179437. [PMID: 34502346 PMCID: PMC8430854 DOI: 10.3390/ijms22179437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/18/2022] Open
Abstract
Peroxiredoxins (PRDXs) are expressed in the ovary and during ovulation. PRDX1 activity related to the immuno-like response during ovulation is unknown. We investigated the roles of Prdx1 on TLR4 and ERK1/2 signaling from the ovulated cumulus–oocyte complex (COC) using Prdx1-knockout (K/O) and wild-type (WT) mice. Ovulated COCs were collected 12 and 16 h after pregnant mare serum gonadotropin/hCG injection. PRDX1 protein expression and COC secretion factors (Il-6, Tnfaip6, and Ptgs2) increased 16 h after ovulated COCs of the WT mice were obtained. We treated the ovulated COCs in mice with LPS (0.5 μg/mL) or hyaluronidase (Hya) (10 units/mL) to induce TLR4 activity. Intracellular reactive oxygen species (ROS), cumulus cell apoptosis, PRDX1, TLR4/P38/ERK1/2 protein expression, and COC secretion factors’ mRNA levels increased in LPS- and Hya-treated COCs. The ERK inhibitor (U0126) and Prdx1 siRNA affected TLR4/ERK1/2 expression. The number and cumulus expansion of ovulated COCs by ROS were impaired in Prdx1 K/O mice but not in WT ones. Prdx1 gene deletion induced TLR4/P38/ERK1/2 expression and cumulus expansion genes. These results show the controlling roles of PRDX1 for TLR4/P38/ERK1/2 signaling activity in ovulated mice and the interlink of COCs with ovulation.
Collapse
|
21
|
Contrasting effects of the Toll-like receptor 4 in determining ovarian follicle endowment and fertility in female adult mice. ZYGOTE 2021; 30:227-233. [PMID: 34405787 DOI: 10.1017/s096719942100054x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Toll-like receptor 4 (TLR4) is best known for its role in bacteria-produced lipopolysaccharide recognition. Regarding female reproduction, TLR4 is expressed by murine cumulus cells and participates in ovulation and in cumulus-oocyte complex (COC) expansion, maternal-fetal interaction and preterm labour. Despite these facts, the role of TLR4 in ovarian physiology is not fully understood. Therefore, the aim of the present study was to investigate the effects of TLR4 genetic ablation on mice folliculogenesis and female fertility, through analysis of reproductive crosses, ovarian responsiveness and follicular quantification in TLR4-/- (n = 94) and C57BL/6 mice [wild type (WT), n = 102]. TLR4-deficient pairs showed a reduced number of pups per litter (P = 0.037) compared with WT. TLR4-/- mice presented more primordial, primary, secondary and antral follicles (P < 0.001), however there was no difference in estrous cyclicity (P > 0.05). A lower (P = 0.006) number of COC was recovered from TLR4-/- mice oviducts after superovulation, and in heterozygous pairs, TLR4-/- females also showed a reduction in the pregnancy rate and in the number of fetuses per uterus (P = 0.007) when compared with WT. Altogether, these data suggest that TLR4 plays a role in the regulation of murine folliculogenesis and in determining ovarian endowment. TLR4 deficiency may affect ovulation and pregnancy rates, potentially decreasing fertility, therefore the potential side effects of its blockade have to be carefully investigated.
Collapse
|
22
|
Toll-like receptor-4 null mutation causes fetal loss and fetal growth restriction associated with impaired maternal immune tolerance in mice. Sci Rep 2021; 11:16569. [PMID: 34400677 PMCID: PMC8368181 DOI: 10.1038/s41598-021-95213-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/16/2021] [Indexed: 12/30/2022] Open
Abstract
Maternal immune adaptation to accommodate pregnancy depends on sufficient availability of regulatory T (Treg) cells to enable embryo implantation. Toll-like receptor 4 is implicated as a key upstream driver of a controlled inflammatory response, elicited by signals in male partner seminal fluid, to initiate expansion of the maternal Treg cell pool after mating. Here, we report that mice with null mutation in Tlr4 (Tlr4−/−) exhibit impaired reproductive outcomes after allogeneic mating, with reduced pregnancy rate, elevated mid-gestation fetal loss, and fetal growth restriction, compared to Tlr4+/+ wild-type controls. To investigate the effects of TLR4 deficiency on early events of maternal immune adaptation, TLR4-regulated cytokines and immune regulatory microRNAs were measured in the uterus at 8 h post-mating by qPCR, and Treg cells in uterus-draining lymph nodes were evaluated by flow cytometry on day 3.5 post-coitum. Ptgs2 encoding prostaglandin-endoperoxide synthase 2, cytokines Csf2, Il6, Lif, and Tnf, chemokines Ccl2, Cxcl1, Cxcl2, and Cxcl10, and microRNAs miR-155, miR-146a, and miR-223 were induced by mating in wild-type mice, but not, or to a lesser extent, in Tlr4−/− mice. CD4+ T cells were expanded after mating in Tlr4+/+ but not Tlr4−/− mice, with failure to expand peripheral CD25+FOXP3+ NRP1− or thymic CD25+FOXP3+ NRP1+ Treg cell populations, and fewer Treg cells expressed Ki67 proliferation marker and suppressive function marker CTLA4. We conclude that TLR4 is an essential mediator of the inflammation-like response in the pre-implantation uterus that induces generation of Treg cells to support robust pregnancy tolerance and ensure optimal fetal growth and survival.
Collapse
|
23
|
Aya T, Tomioka Y, Takeuchi T. Effect of lactoferrin on murine sperm apoptosis induced by intraperitoneal injection of lipopolysaccharide. J Vet Med Sci 2021; 83:1173-1177. [PMID: 34121040 PMCID: PMC8437733 DOI: 10.1292/jvms.21-0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Genital bacterial infection is one of the most important causes of infertility, however,
bacteria frequently exist in seminal fluid. Sperm express Toll-like receptors (TLRs) on
their cell surfaces and bacterial recognition by TLRs induces sperm apoptosis. In this
study, we examined the lactoferrin (LF) potentiality on sperm apoptosis induced by
bacterial lipopolysaccharide (LPS). The TdT-mediated dUTP-biotin nick end labeling (TUNEL)
assay indicated that TUNEL-positive sperm cells were scarce in the group treated with LF
and LPS (LF/LPS group) compared to the group treated with LPS only (LPS group). In
addition, real-time RT-PCR detected lower mRNA expression levels of apoptosis-associated
genes in the LF/LPS group compared to the LPS group. These results indicate that LF
treatment of semen might decrease LPS-induced apoptosis of sperm.
Collapse
Affiliation(s)
- Takahiro Aya
- Department of Laboratory Animal Science, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Yukiko Tomioka
- Department of Laboratory Animal Science, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Takashi Takeuchi
- Department of Laboratory Animal Science, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| |
Collapse
|
24
|
Aya T, Tomioka Y, Takeuchi T. Effect of lactoferrin on murine embryo development created from lipopolysaccharide-treated sperm. J Vet Med Sci 2021; 83:1144-1146. [PMID: 34108340 PMCID: PMC8349819 DOI: 10.1292/jvms.21-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The effect of lactoferrin (LF) on embryo development was investigated by using lipopolysaccharide (LPS)-treated mouse sperm. For the development rate of the 2-cell stage embryo, the embryo derived from LPS- and LF-treated sperm showed similar survival rate to the control embryo. On day 12 after the embryo transfer into the recipient, the frequent abnormality was observed in the embryo derived from LPS-treated sperm, and the abnormality was tended to be inhibited in the embryo derived from LPS- and LF-treated sperm. These results imply that LF treatment on sperm contaminated with bacteria may facilitate the embryo development, which contribute to the improvement of infertility.
Collapse
Affiliation(s)
- Takahiro Aya
- Department of Laboratory Animal Science, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Yukiko Tomioka
- Department of Laboratory Animal Science, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Takashi Takeuchi
- Department of Laboratory Animal Science, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| |
Collapse
|
25
|
Sperm modulate uterine immune parameters relevant to embryo implantation and reproductive success in mice. Commun Biol 2021; 4:572. [PMID: 33990675 PMCID: PMC8121928 DOI: 10.1038/s42003-021-02038-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/24/2021] [Indexed: 02/03/2023] Open
Abstract
Seminal fluid factors modulate the female immune response at conception to facilitate embryo implantation and reproductive success. Whether sperm affect this response has not been clear. We evaluated global gene expression by microarray in the mouse uterus after mating with intact or vasectomized males. Intact males induced greater changes in gene transcription, prominently affecting pro-inflammatory cytokine and immune regulatory genes, with TLR4 signaling identified as a top-ranked upstream driver. Recruitment of neutrophils and expansion of peripheral regulatory T cells were elevated by seminal fluid of intact males. In vitro, epididymal sperm induced IL6, CXCL2, and CSF3 in uterine epithelial cells of wild-type, but not Tlr4 null females. Collectively these experiments show that sperm assist in promoting female immune tolerance by eliciting uterine cytokine expression through TLR4-dependent signaling. The findings indicate a biological role for sperm beyond oocyte fertilization, in modulating immune mechanisms involved in female control of reproductive investment.
Collapse
|
26
|
Highly successful production of viable mice derived from vitrified germinal vesicle oocytes. PLoS One 2021; 16:e0248050. [PMID: 33705447 PMCID: PMC7951897 DOI: 10.1371/journal.pone.0248050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/18/2021] [Indexed: 11/24/2022] Open
Abstract
The vitrification of immature germinal vesicle (GV) oocytes is an important way to preserve genetic resources and female fertility. However, it is well known that cryopreserved GV oocytes have very poor developmental ability and that further improvement in this technique is needed. We previously reported the successful vitrification of matured mouse oocytes with enclosed cumulus cells using the calcium-free vitrification solution supplemented with ethylene glycol (EG) by the minimal volume cooling (MVC) method. In this study, we investigated whether our method is applicable to the vitrification of mouse oocytes at the GV stage (GV oocytes). Following maturation and fertilization in vitro, vitrified GV oocytes showed high survival (94.3 ± 2.0%) and maturation (94.3 ± 2.1%) rates. Although the fertilization and blastocyst rates of vitrified oocytes (fertilization: 46.6 ± 4.9% and blastocyst: 46.6 ± 3.0%) were significantly lower than those of fresh oocytes (fertilization: 73.0 ± 7.1% and blastocyst: 71.6 ± 8.0%) (P < 0.01), there were no differences in the ability to develop to term between fresh oocytes (50.0 ± 8.4%) and vitrified oocytes (37.5 ± 4.6%) (P > 0.05). In conclusion, we here show, for the first time, the efficient production of live mice derived from vitrified GV oocytes.
Collapse
|
27
|
Elesh IF, Marey MA, Zinnah MA, Akthar I, Kawai T, Naim F, Goda W, Rawash ARA, Sasaki M, Shimada M, Miyamoto A. Peptidoglycan Switches Off the TLR2-Mediated Sperm Recognition and Triggers Sperm Localization in the Bovine Endometrium. Front Immunol 2021; 11:619408. [PMID: 33643300 PMCID: PMC7905083 DOI: 10.3389/fimmu.2020.619408] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
In mammals, the uterine mucosal immune system simultaneously recognizes and reacts to most bacteria as well as allogenic sperm mainly through the Toll-like receptors (TLR)2/4 signaling pathway. Here, we characterized the impact of pathogen-derived TLR2/4 ligands (peptidoglycan (PGN)/lipopolysaccharide (LPS)) on the immune crosstalk of sperm with the bovine endometrial epithelium. The real-time PCR analysis showed that the presence of low levels of PGN, but not LPS, blocked the sperm-induced inflammatory responses in bovine endometrial epithelial cells (BEECs) in vitro. Immunoblotting analysis revealed that PGN prevented the sperm-induced phosphorylation of JNK in BEECs. Activation or blockade of the TLR2 system in the endometrial epithelium verified that TLR2 signaling acts as a commonly-shared pathway for PGN and sperm recognition. The impairment of endometrial sperm recognition, induced by PGN, subsequently inhibited sperm phagocytosis by polymorphonuclear neutrophils (PMNs). Moreover, using an ex vivo endometrial explant that more closely resembles those in vivo conditions, showed that sperm provoked a mild and reversible endometrial tissue injury and triggered PMN recruitment into uterine glands, while PGN inhibited these events. Of note, PGN markedly increased the sperm attachment to uterine glands, and relatively so in the surface epithelium. However, addition of the anti-CD44 antibody into a PGN-sperm-explant co-culture completely blocked sperm attachment into glands and surface epithelia, indicating that the CD44 adhesion molecule is involved in the PGN-triggered sperm attachment to the endometrial epithelium. Together, these findings demonstrate that, the presence of PGN residues disrupts sperm immune recognition and prevents the physiological inflammation induced by sperm in the endometrial epithelium via the MyD88-dependent pathway of TLR2 signaling, possibly leading to impairment of uterine clearance and subsequent embryo receptivity.
Collapse
Affiliation(s)
- Ibrahim Fouad Elesh
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Mohamed Ali Marey
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Theriogenology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Mohammed Ali Zinnah
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Microbiology and Public Health, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Ihshan Akthar
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Tomoko Kawai
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Fayrouz Naim
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Wael Goda
- Department of Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Abdel Rahman A Rawash
- Department of Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Motoki Sasaki
- Department of Basic Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Akio Miyamoto
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
28
|
Adetunji AO, Kawai T, Shimada M. Impact of lipopolysaccharide administration on luteinizing hormone/choriogonadotropin receptor (Lhcgr) expression in mouse ovaries. J Reprod Immunol 2020; 142:103193. [DOI: 10.1016/j.jri.2020.103193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/27/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023]
|
29
|
Morillo VA, Akthar I, Fiorenza MF, Takahashi KI, Sasaki M, Marey MA, Suarez SS, Miyamoto A. Toll-like receptor 2 mediates the immune response of the bovine oviductal ampulla to sperm binding. Mol Reprod Dev 2020; 87:1059-1069. [PMID: 32914493 DOI: 10.1002/mrd.23422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/06/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022]
Abstract
We previously reported that sperm binding to cultured bovine oviduct epithelial cells induces an anti-inflammatory immune response. Now we have developed a differentiated explant model to focus on the oviductal ampulla, where fertilization occurs, and to study the effect of sperm capacitation on the immune response. We used heparin to stimulate bovine sperm capacitation. Fluorescence imaging showed that 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide-labeled sperm pretreated with (Hep(+) ) or without (Hep( -) ) heparin rapidly attached to the explant ciliated epithelium in similar numbers. However, only Hep(+) sperm upregulated explant messenger RNA (mRNA) transcription of TLR2, IL8, TGFB1, and PGES, without changes in TNFA and IL-10 expression, while Hep( -) sperm only upregulated PGES. The responses were primarily anti-inflammatory, with a greater response produced by Hep(+) sperm, which also produced a substantial increase in TLR2 protein expression in the epithelium. The addition of TLR1/2 (toll-like receptor 1/2) antagonist to the Hep(+) and (Hep( -) ) sperm-explant coincubations reduced sperm attachment to the epithelium and inhibited TLR2 protein expression and some of the Hep(+) sperm-induced mRNA transcription. Our observations suggest that the ampullar epithelium immunologically reacts more strongly to sperm that have undergone heparin stimulation of capacitation. This anti-inflammatory response could serve to protect capacitated sperm as they approach the oocyte in the ampulla.
Collapse
Affiliation(s)
- Vernadyn A Morillo
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Clinical Sciences, College of Veterinary Medicine, Nueva Vizcaya State University, Nueva Vizcaya, Philippines
| | - Ihshan Akthar
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mariani F Fiorenza
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | | | - Motoki Sasaki
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mohamed A Marey
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Theriogenology, Faculty of Veterinary Medicine, Damanhur University, Behera, Egypt
| | - Susan S Suarez
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, USA
| | - Akio Miyamoto
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
30
|
Umehara T, Urabe N, Obata T, Yamaguchi T, Tanaka A, Shimada M. Cutting the ovarian surface improves the responsiveness to exogenous hormonal treatment in aged mice. Reprod Med Biol 2020; 19:415-424. [PMID: 33071644 PMCID: PMC7542011 DOI: 10.1002/rmb2.12345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose Ovarian vascular abnormality and ovarian fibrosis are observed in the low responder patients and aging mice. Vascularization and fibrosis are regulated by injury‐repair system, such as wound. Thus, in this study, the authors tried to investigate the effect of the surgical treatment to ovarian surface with cutting on the functions of ovary in aging mouse model, gcNrg1KO. Method The ovarian surface of gcNrg1KO was surgically cut, and then the ovary was returned inside of bursa ovarica. To assess the effect of cutting on fertility, mating test, smear analysis, and exogenous hormonal treatment were done. Additionally, the histological analysis was used for observing the remodeling of ovarian stroma after the surgical approach. Result Ovarian fibrosis disappeared at 7 days after surgery. With the abrogation of fibrosis, the blood vessels were fluently observed around the follicles, and the follicular development was re‐started. The responses against exogenous hormone were recovered at 21 days after the surgery, and estrous cycle and delivery were also recovered by the surgery and the fertility was maintained for 3 months. Conclusion This cutting method of ovarian surface becomes a good option against low responder patients.
Collapse
Affiliation(s)
- Takashi Umehara
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi-Hiroshima Japan
| | - Nao Urabe
- Saint Mother Obstetrics and Gynecology Clinic Institute for ART Fukuoka Japan
| | - Toshiki Obata
- Saint Mother Obstetrics and Gynecology Clinic Institute for ART Fukuoka Japan
| | - Takashi Yamaguchi
- Saint Mother Obstetrics and Gynecology Clinic Institute for ART Fukuoka Japan
| | - Atsushi Tanaka
- Saint Mother Obstetrics and Gynecology Clinic Institute for ART Fukuoka Japan
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi-Hiroshima Japan
| |
Collapse
|
31
|
Umehara T, Tsujita N, Zhu Z, Ikedo M, Shimada M. A simple sperm-sexing method that activates TLR7/8 on X sperm for the efficient production of sexed mouse or cattle embryos. Nat Protoc 2020; 15:2645-2667. [DOI: 10.1038/s41596-020-0348-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/30/2020] [Indexed: 12/13/2022]
|
32
|
Pretreatment of ovaries with collagenase before vitrification keeps the ovarian reserve by maintaining cell-cell adhesion integrity in ovarian follicles. Sci Rep 2020; 10:6841. [PMID: 32321979 PMCID: PMC7176664 DOI: 10.1038/s41598-020-63948-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
The mammalian ovarian follicle is comprised of the germ cell or oocyte surrounded by the somatic cells, the granulosa and theca cells. The ovarian stroma, including the collagen-rich matrix that supports the three-dimensional disk-like follicular structure, impacts the integrity of the ovarian follicle and is essential for follicular development. Maintaining follicular integrity during cryopreservation has remained a limiting factor in preserving ovarian tissues for transplantation because a significant proportion of developed follicles in the frozen-thawed ovaries undergo atresia after transplantation. In this study, we show for the first time that during vitrification of the mouse ovary, the attachment of the oocyte to the granulosa cells was impaired by the loss of the cadherin adhesion molecules. Importantly, exposure to a high osmotic solution greatly decreased the ratio of oocyte diameter to the diameter of its follicle but did not alter the collagen-rich matrix surrounding the follicles. By treating ovaries briefly with collagenase before exposure to the hyper-osmotic solution the ratio of oocyte diameter to follicle diameter was maintained, and cadherin adhesion junctions were preserved. When frozen-thawed ovaries were transplanted to the bursa of recipient hosts, pretreatment with collagenase significantly increased serum levels of AMH, the number of intact follicles and the total number of viable offspring compared to frozen-thawed ovaries without collagenase pretreatment, even 6 months after transplantation. Thus, the collagenase pretreatment could provide a beneficial approach for maintaining the functions and viability of cryopreserved ovaries in other species and clinically relevant situations.
Collapse
|
33
|
Distinct expression patterns of TLR transcripts in human oocytes and granulosa cells from primordial and primary follicles. J Reprod Immunol 2020; 140:103125. [PMID: 32454326 DOI: 10.1016/j.jri.2020.103125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 11/22/2022]
Abstract
Ovulation has long been regarded as a process resembling an inflammatory response. Previously, luteinizing hormone (LH) was shown to induce Toll-like receptor 2 (TLR2) and TLR4 in granulosa cells from preovulatory hormone-dependent follicles. However, whether this could already initiate before the hormone-dependent phase is currently unknown. The aim of this study was to investigate TLR genes in human oocytes and granulosa cells from primordial and primary ovarian follicles during the hormone-independent phase. A class-comparison study of existing oocyte and granulosa cell RNA sequencing transcriptomes from primordial (n = 539 follicles) and primary (n = 261) follicles collected from three patients was examined. This revealed a distinct expression pattern of TLR3, TLR4 and TLR5 transcripts. Interestingly, the TLR3 protein was differentially detected in both the oocyte and the granulosa cells in primordial and primary follicles, suggesting that TLR3 is maternally contributed both as mRNA and protein. Intracellularly, the compartmentalized TLR3 dot-like staining in the intersection between the oocyte and the surrounding primordial granulosa cells. The TLR4 protein was detected in both primordial and primary follicles, with a notable staining in the granulosa cells. We functionally challenged ovaries in vitro, by polyinosinic:polycytidylic acid (poly I:C) and LPS, known to activate TLR3 and TLR4, respectively, and found a tendency for increased IL-6 production, which was particular evident in the LPS-treated group. Based on the expression of TLRs, it is notably that human primordial and primary follicles express genes that would allow them to respond to innate immune proteins and cytokines during follicle activation.
Collapse
|
34
|
Cannarella R, Condorelli RA, Mongioì LM, La Vignera S, Calogero AE. Molecular Biology of Spermatogenesis: Novel Targets of Apparently Idiopathic Male Infertility. Int J Mol Sci 2020; 21:E1728. [PMID: 32138324 PMCID: PMC7084762 DOI: 10.3390/ijms21051728] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Male infertility affects half of infertile couples and, currently, a relevant percentage of cases of male infertility is considered as idiopathic. Although the male contribution to human fertilization has traditionally been restricted to sperm DNA, current evidence suggest that a relevant number of sperm transcripts and proteins are involved in acrosome reactions, sperm‒oocyte fusion and, once released into the oocyte, embryo growth and development. The aim of this review is to provide updated and comprehensive insight into the molecular biology of spermatogenesis, including evidence on spermatogenetic failure and underlining the role of the sperm-carried molecular factors involved in oocyte fertilization and embryo growth. This represents the first step in the identification of new possible diagnostic and, possibly, therapeutic markers in the field of apparently idiopathic male infertility.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.A.C.); (L.M.M.); (A.E.C.)
| | | | | | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.A.C.); (L.M.M.); (A.E.C.)
| | | |
Collapse
|
35
|
Chaurasiya V, Kumari S, Onteru SK, Singh D. Up-regulation of miR-326 regulates pro-inflammatory cytokines targeting TLR-4 in buffalo granulosa cells. Mol Immunol 2020; 119:154-158. [DOI: 10.1016/j.molimm.2020.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/12/2020] [Accepted: 01/24/2020] [Indexed: 01/30/2023]
|
36
|
Pacentra A, Grasselli F, Bussolati S, Grolli S, Di Lecce R, Cantoni AM, Basini G. The effect of pathogen-associated molecular patterns on the swine granulosa cells. Theriogenology 2020; 145:207-216. [DOI: 10.1016/j.theriogenology.2019.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 02/02/2023]
|
37
|
Abstract
Seminal fluid is often assumed to have just one function in mammalian reproduction, delivering sperm to fertilize oocytes. But seminal fluid also transmits signaling agents that interact with female reproductive tissues to facilitate conception and .pregnancy. Upon seminal fluid contact, female tissues initiate a controlled inflammatory response that affects several aspects of reproductive function to ultimately maximize the chances of a male producing healthy offspring. This effect is best characterized in mice, where the female response involves several steps. Initially, seminal fluid factors cause leukocytes to infiltrate the female reproductive tract, and to selectively target and eliminate excess sperm. Other signals stimulate ovulation, induce an altered transcriptional program in female tract tissues that modulates embryo developmental programming, and initiate immune adaptations to promote receptivity to implantation and placental development. A key result is expansion of the pool of regulatory T cells that assist implantation by suppressing inflammation, mediating tolerance to male transplantation antigens, and promoting uterine vascular adaptation and placental development. Principal signaling agents in seminal fluid include prostaglandins and transforming growth factor-β. The balance of male signals affects the nature of the female response, providing a mechanism of ‟cryptic female choiceˮ that influences female reproductive investment. Male-female seminal fluid signaling is evident in all mammalian species investigated including human, and effects of seminal fluid in invertebrates indicate evolutionarily conserved mechanisms. Understanding the female response to seminal fluid will shed new light on infertility and pregnancy disorders and is critical to defining how events at conception influence offspring health.
Collapse
Affiliation(s)
- John E Schjenken
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Sarah A Robertson
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, Australia
| |
Collapse
|
38
|
Morgan HL, Watkins AJ. The influence of seminal plasma on offspring development and health. Semin Cell Dev Biol 2020; 97:131-137. [DOI: 10.1016/j.semcdb.2019.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/19/2022]
|
39
|
Piersanti RL, Santos JEP, Sheldon IM, Bromfield JJ. Lipopolysaccharide and tumor necrosis factor-alpha alter gene expression of oocytes and cumulus cells during bovine in vitro maturation. Mol Reprod Dev 2019; 86:1909-1920. [PMID: 31663199 DOI: 10.1002/mrd.23288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/08/2019] [Indexed: 12/23/2022]
Abstract
Communication between the oocyte and cumulus facilitates oocyte growth, cell cycle regulation, and metabolism. This communication is mediated by direct contact between oocytes and cumulus cells, and soluble secreted molecules. Secreted molecules involved in this process are known inflammatory mediators. Lipopolysaccharide (LPS) is detected in follicular fluid and is associated with reduced fertility, whereas accumulation of inflammatory mediators in follicular fluid, including tumor necrosis factor-α (TNF-α), is associated with female infertility. Maturation of oocytes in the presence of LPS or TNF-α reduces meiotic maturation and the capacity to develop to the blastocyst. Here we evaluated the abundance of 92 candidate genes involved immune function, epigenetic modifications, embryo development, oocyte secreted factors, apoptosis, cell cycle, and cell signaling in bovine cumulus cells or zona-free oocytes after exposure to LPS or TNF-α during in vitro maturation. We hypothesize that LPS or TNF-α will alter the abundance of transcripts in oocytes and cumulus cell in a cell type dependent manner. Exposure to LPS altered abundance of 31 transcripts in oocytes (including ACVR1V, BMP15, DNMT3A) and 12 transcripts in cumulus cells (including AREG, FGF4, PIK3IP1). Exposure to TNF-α altered 1 transcript in oocytes (IGF2) and 4 transcripts in cumulus cells (GJA1, PLD2, PTGER4, STAT1). Cumulus expansion was reduced after exposure to LPS or TNF-α. Exposing COCs to LPS had a marked effect on expression of targeted transcripts in oocytes. We propose that altered oocyte transcript abundance is associated with reduced meiotic maturation and embryo development observed in oocytes cultured in LPS or TNF-α.
Collapse
Affiliation(s)
- Rachel L Piersanti
- Department of Animal Sciences, University of Florida, Gainesville, Florida
| | - José E P Santos
- Department of Animal Sciences, University of Florida, Gainesville, Florida
| | - I Martin Sheldon
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - John J Bromfield
- Department of Animal Sciences, University of Florida, Gainesville, Florida
| |
Collapse
|
40
|
Zhu Z, Kawai T, Umehara T, Hoque SAM, Zeng W, Shimada M. Negative effects of ROS generated during linear sperm motility on gene expression and ATP generation in boar sperm mitochondria. Free Radic Biol Med 2019; 141:159-171. [PMID: 31212063 DOI: 10.1016/j.freeradbiomed.2019.06.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/06/2019] [Accepted: 06/14/2019] [Indexed: 01/03/2023]
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) is essential for ATP production to maintain sperm linear motility during migration from the uterus to the oviduct. However, ROS are generated as by-products of OXPHOS, causing stress and damaging the sperm quality. This study aimed to clarify the ROS targets in sperm mitochondria that decrease linear motility and to investigate whether mitochondria-target antioxidants (PQQ and CoQ10) affect mitochondrial activity and sperm motility. Sperm linear motility pattern, ATP production, and mitochondrial activity were decreased with increasing ROS levels during incubation in the low-glucose medium. However, sperm motility patterns and ROS levels were not significantly changed in the high-glucose medium. Moreover, the gene expression system (mt-DNA, mitochondrial transcription factor-A (TFAM) and RNA polymerase (POLRMT)) in sperm mitochondria was damaged during incubation in the low-glucose medium. Interestingly, PQQ treatment increased the mt-DNA stability and decreased the damage to TFAM and POLRMT, which resulted in high expression of mitochondrial genes. Furthermore, the antioxidants increased mitochondrial activity and maintained sperm linear motility under the low glucose condition. These results revealed that both ATP production and the mitochondrial transcription system are damaged with increasing ROS levels in sperm that show a linear motility pattern. Treatment with antioxidants, such as PQQ and CoQ10, is beneficial tool to maintain sperm linear motility.
Collapse
Affiliation(s)
- Zhendong Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China; Laboratory of Reproductive Endocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Tomoko Kawai
- Laboratory of Reproductive Endocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takashi Umehara
- Laboratory of Reproductive Endocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - S A Masudul Hoque
- Laboratory of Reproductive Endocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan; Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Wenxian Zeng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China.
| | - Masayuki Shimada
- Laboratory of Reproductive Endocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
41
|
Activation of Toll-like receptor 7/8 encoded by the X chromosome alters sperm motility and provides a novel simple technology for sexing sperm. PLoS Biol 2019; 17:e3000398. [PMID: 31408454 PMCID: PMC6691984 DOI: 10.1371/journal.pbio.3000398] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/08/2019] [Indexed: 12/21/2022] Open
Abstract
In most mammals, the male to female sex ratio of offspring is about 50% because half of the sperm contain either the Y chromosome or X chromosome. In mice, the Y chromosome encodes fewer than 700 genes, whereas the X chromosome encodes over 3,000 genes. Although overall gene expression is lower in sperm than in somatic cells, transcription is activated selectively in round spermatids. By regulating the expression of specific genes, we hypothesized that the X chromosome might exert functional differences in sperm that are usually masked during fertilization. In this study, we found that Toll-like receptors 7/8 (TLR7/8) coding the X chromosome were expressed by approximately 50% of the round spermatids in testis and in approximately 50% of the epididymal sperm. Especially, TLR7 was localized to the tail, and TLR8 was localized to the midpiece. Ligand activation of TLR7/8 selectively suppressed the mobility of the X chromosome–bearing sperm (X-sperm) but not the Y-sperm without altering sperm viability or acrosome formation. The difference in sperm motility allowed for the separation of Y-sperm from X-sperm. Following in vitro fertilization using the ligand-selected high-mobility sperm, 90% of the embryos were XY male. Likewise, 83% of the pups obtained following embryo transfer were XY males. Conversely, the TLR7/8-activated, slow mobility sperm produced embryos and pups that were 81% XX females. Therefore, the functional differences between Y-sperm and X-sperm motility were revealed and related to different gene expression patterns, specifically TLR7/8 on X-sperm. The Toll-like receptors TLR7 and TLR8 are encoded by the X chromosome and expressed in X-containing sperm but not Y-containing sperm. TLR7/8 ligands suppress the motility of X-containing sperm, indicating that this receptor can differentially affect sperm function on the basis of the sex chromosome they bear.
Collapse
|
42
|
Raphael A, Gonzales J. Use of cryopreserved umbilical cord with negative pressure wound therapy for complex diabetic ulcers with osteomyelitis. J Wound Care 2019; 26:S38-S44. [PMID: 28976835 DOI: 10.12968/jowc.2017.26.sup10.s38] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the combined use of cryopreserved human umbilical cord (cUC) allograft and negative pressure wound therapy (NPWT) in treating complex diabetic foot ulcers (DFUs) with bone exposure and osteomyelitis. These types of wound are known to carry a high morbidity and mortality. METHODS A single-center, retrospective chart review was performed to assess the efficacy of the combined use of cUC with NPWT, by the same surgeon, to help promote the closure of complex DFUs presenting with biopsy-proven osteomyelitis. Change in wound size and volume, time to wound closure, and number of cUC applications were assessed. RESULTS We identified of 14 wounds in 13 patients, with an average initial wound area of (mean±standard devaition) 33.2±21.7cm2 and wound volume of 52±26.2cm3. All achieved complete re-epithelialisation with an average time to closure of 24.0±10.9 weeks, using between 2-5 cUC applications. No adverse events were noted and none of the wounds required limb amputation during the a follow-up of 24 months for each patient. CONCLUSION The results suggest that combined use of cUC and NPWT may be effective in improving the healing of complex DFUs that present with osteomyelitis. Prospective, randomised controlled trials are warranted to confirm this efficacy as well as its potential applications in other chronic wounds.
Collapse
Affiliation(s)
- A Raphael
- Partner Podiatrist, Village Podiatry Centers, Smyrna, GA, US
| | - J Gonzales
- Podiatry Resident, PGY-3, Dekalb Medical Podiatric Residency, Decatur, GA, US
| |
Collapse
|
43
|
TLR2/4 signaling pathway mediates sperm-induced inflammation in bovine endometrial epithelial cells in vitro. PLoS One 2019; 14:e0214516. [PMID: 30995239 PMCID: PMC6469758 DOI: 10.1371/journal.pone.0214516] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/15/2019] [Indexed: 02/06/2023] Open
Abstract
We have recently shown that sperm attachment to bovine endometrial epithelial cells (BEECs) triggers uterine local innate immunity with induction of a pro-inflammatory response in vitro, however details of the mechanism remain unknown. Here, we investigated the involvement of Toll-like receptor 2/4 (TLR2/4) pathway in mediating sperm-BEECs inflammatory process. Immunohistochemistry of the uterine tissue revealed that TLR2 and TLR4 proteins were present in the luminal and glandular epithelia of bovine endometrium. Moreover, BEECs monolayers were treated with TLR2 agonist (Pam; 0, 10, 100, and 1000 ng/ml) or TLR4 agonist (LPS; 0, 0.1, 1, and 10 ng/ml) for 0, 1, 3, or 6 h, followed by evaluating mRNA expression of the pro-inflammatory genes (TNFA, IL-1B, IL-8, and PGES) in BEECs using a real-time PCR. Both Pam and LPS treatments showed a dose-dependent stimulation of mRNA expression of the pro-inflammatory genes. To elucidate the functional role of TLR2/4 in sperm-BEECs interaction, BEECs monolayers were incubated with either TLR2 antagonist or TLR4 antibody for 2 h prior to the co-culture with sperm for 3 h. Importantly, pre-incubation of BEECs with TLR2 antagonist or TLR4 antibody prevented the stimulatory effect of sperm on the transcription of pro-inflammatory genes in BEECs. Furthermore, sperm increased the phosphorylation levels of TLR2/4 downstream targets (p38MAPK and JNK) in BEECs within 1 h of the co-culture. Treatment of BEECs with TLR2 antagonist prior to sperm addition inhibited JNK phosphorylation, while TLR4 antibody inhibited the phosphorylation of both p38MAPK and JNK. In conclusion, the present in vitro findings strongly suggest that bovine endometrial epithelial cells respond to sperm via TLR2/4 signal transduction.
Collapse
|
44
|
Zhu Z, Umehara T, Okazaki T, Goto M, Fujita Y, Hoque SAM, Kawai T, Zeng W, Shimada M. Gene Expression and Protein Synthesis in Mitochondria Enhance the Duration of High-Speed Linear Motility in Boar Sperm. Front Physiol 2019; 10:252. [PMID: 30914972 PMCID: PMC6422996 DOI: 10.3389/fphys.2019.00252] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/25/2019] [Indexed: 11/13/2022] Open
Abstract
Sperm motility patterns are continuously changed after ejaculation to fertilization in the female tract. Hyperactivated motility is induced with high glucose medium in vitro or the oviduct fluids in vivo, whereas sperm maintain linear motility in the seminal plasma or the uterine fluids containing low glucose. Therefore, it is estimated that sperm motility patterns are dependent on the energy sources, and the mitochondrial oxidative phosphorylation is activated to produce ATP in low glucose condition. To elucidate these hypotheses, boar sperm was incubated in different energy conditions with the transcription and translation inhibitors in vitro. Sperm motility parameters, mitochondrial activity, ATP level, gene expression and protein synthesis were analyzed. Sperm progressive motility and straight-line velocity were significantly increased with decreasing glucose level in the incubation medium. Moreover, the mitochondrial protein turnover meaning transcription and translation from mitochondrial genome in sperm is activated during incubation. Incubation of sperm with mitochondrial translation inhibitor (D-chloramphenicol) suppressed mitochondrial protein synthesis, mitochondrial activity and ATP level in sperm and consequently reduced the linear motility speed, but not the motility. Thus, it is revealed that the mitochondrial central dogma is active in sperm, and the high-speed linear motility is induced in low glucose condition via activating the mitochondrial activity for ATP generation.
Collapse
Affiliation(s)
- Zhendong Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
| | - Takashi Umehara
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
| | - Tetsuji Okazaki
- Livestock Research Institute, Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Oita, Japan
| | - Masaaki Goto
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
- Livestock Research Institute, Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Oita, Japan
| | | | - S. A. Masudul Hoque
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
- Department of Animal Breeding of Genetics, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Tomoko Kawai
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
| | - Wenxian Zeng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Masayuki Shimada
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
45
|
Bhanothu V, Venkatesan V. Conventional polymerase chain reaction and amplification refractory mutation system-multi-gene/ multi-primer PCR in the diagnosis of female genital tuberculosis. Arch Microbiol 2019; 201:267-281. [DOI: 10.1007/s00203-019-01631-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/12/2019] [Indexed: 01/18/2023]
|
46
|
Yu GM, Tan W. Melatonin Inhibits Lipopolysaccharide-Induced Inflammation and Oxidative Stress in Cultured Mouse Mammary Tissue. Mediators Inflamm 2019; 2019:8597159. [PMID: 30890898 PMCID: PMC6390262 DOI: 10.1155/2019/8597159] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/30/2018] [Accepted: 11/11/2018] [Indexed: 12/31/2022] Open
Abstract
To determine whether melatonin can protect cultured mouse mammary tissue from lipopolysaccharide- (LPS-) induced damage, we investigated the effects of melatonin on the mRNA and protein levels of proinflammatory cytokines and chemokines in LPS-stimulated mammary tissue in vitro. This study also examined the IgG level in both cultured mammary tissue and the culture medium. In addition, we investigated the potential benefits of melatonin on the expression of antioxidant relative genes following LPS treatment in cultured mammary tissue and evaluated ROS level in the culture medium. The results demonstrate that melatonin inhibited the mRNA expression of TNF-α, IL-1β, IL-6, CXCL1, MCP-1, and RANTES and the production of these cytokines and chemokines and IgG in LPS-stimulated mouse mammary tissue in vitro. In addition, melatonin increased Nrf2 but decreased iNOS and COX-2 mRNA expression after LPS stimulation. Similarly, the decreased level of dityrosine in the culture medium was increased by treatment with melatonin, while increased nitrite level was suppressed. This study confirms that melatonin inhibited LPS-induced inflammation and oxidative stress in cultured mouse mammary tissue. It might contribute to mastitis therapy while treating antibiotic resistance.
Collapse
Affiliation(s)
- Guang-Min Yu
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wen Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
47
|
Ghandehari-Alavijeh R, Tavalaee M, Zohrabi D, Foroozan-Broojeni S, Abbasi H, Nasr-Esfahani MH. Hypoxia pathway has more impact than inflammation pathway on etiology of infertile men with varicocele. Andrologia 2018; 51:e13189. [DOI: 10.1111/and.13189] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/04/2018] [Accepted: 03/28/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Rana Ghandehari-Alavijeh
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology; ACECR; Isfahan Iran
- Department of Biology, Faculty of Science; NourDanesh Institute of Higher Education; Isfahan Iran
| | - Marziyeh Tavalaee
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology; ACECR; Isfahan Iran
| | - Dina Zohrabi
- Department of Biology, Faculty of Science; NourDanesh Institute of Higher Education; Isfahan Iran
| | - Shaqayeq Foroozan-Broojeni
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology; ACECR; Isfahan Iran
| | | | - Mohammad H. Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology; ACECR; Isfahan Iran
- Isfahan Fertility and Infertility Center; Isfahan Iran
| |
Collapse
|
48
|
Patel MV, Shen Z, Wira CR. Poly (I:C) and LPS induce distinct immune responses by ovarian stromal fibroblasts. J Reprod Immunol 2018; 127:36-42. [PMID: 29758486 PMCID: PMC5991091 DOI: 10.1016/j.jri.2018.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 04/05/2018] [Accepted: 05/08/2018] [Indexed: 12/21/2022]
Abstract
Despite its anatomical location, the ovary is a site of pathogen exposure in the human female reproductive tract (FRT). However, the role of ovarian stromal fibroblasts in immune protection is unclear. We generated a population of ovarian stromal fibroblasts derived from normal human ovaries that expressed the pattern recognition receptors TLR3, TLR4, RIG-I, & MDA5. Poly (I:C) and LPS, respective mimics of viral and bacterial infections, selectively upregulated antiviral gene expression and secretion of chemokines and antimicrobials. Poly (I:C) exclusively stimulated the expression of interferon (IFN) β, IFNλ1, and the IFN-stimulated gene OAS2. Poly (I:C) also significantly increased secretion of elafin, CCL20, and RANTES, but had no effect on SDF-1α. In contrast, LPS had no effect on IFN or ISG expression but significantly increased secretion of RANTES and SDF-1α. Secretions from poly (I:C)-treated fibroblasts had both greater anti-HIV activity and induced higher levels of CD4 + T cell chemotaxis than those from LPS-treated cells. Our studies demonstrate a potential key role for ovarian fibroblasts in innate immune protection against incoming pathogens in the normal ovary.
Collapse
Affiliation(s)
- Mickey V Patel
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA.
| | - Zheng Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Charles R Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| |
Collapse
|
49
|
Umehara T, Kawai T, Goto M, Richards JS, Shimada M. Creatine enhances the duration of sperm capacitation: a novel factor for improving in vitro fertilization with small numbers of sperm. Hum Reprod 2018; 33:1117-1129. [PMID: 29635630 PMCID: PMC5972610 DOI: 10.1093/humrep/dey081] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/05/2018] [Accepted: 03/16/2018] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Why are many sperm required for successful fertilization of oocytes in vitro, even though fertilization occurs in vivo when only a few sperm reach the oocyte? SUMMARY ANSWER Creatine produced in the ovary promotes efficient fertilization in vivo; however, in vitro, creatine is not contained in the in vitro fertilization (IVF) medium. WHAT IS KNOWN ALREADY The IVF medium enables capacitation of sperm. However, the IVF medium does not fully mimic the in vivo environment during fertilization. Consequently, fertilization in vitro is more inefficient than in the oviduct. STUDY DESIGN, SIZE, DURATION Follicular and oviductal fluids were collected and then analyzed for creatine and glucose levels. To determine the physiological functions of creatine, the creatine antagonist 3-guanidinopropionic acid (GPA) was injected into hormonally primed mice. Using conventional IVF protocols, sperm were pre-incubated in IVF medium with creatine and then co-cultured with 10 ovulated cumulus-oocyte complexes (1-1000 per oocyte) in 50 μl medium droplets. PARTICIPANTS/MATERIALS, SETTING, METHODS Glucose and creatine levels were measured using commercial enzymatic assay kits. The effect of creatine in vivo was assessed by mating experiments using mice treated with or without GPA just before ovulation. To assess the functions of sperm incubated in IVF medium containing creatine, we analyzed (1) the motility of sperm using computer-assisted sperm assay, (2) the capacitation level of sperm by western blot analyses, and (3) the condition of sperm acrosomes by peanut agglutinin lectin-FITC staining. MAIN RESULTS AND THE ROLE OF CHANCE Oviductal creatine levels were significantly increased following ovulation. Injecting mice with GPA just before ovulation significantly reduced the number of fertilized oocytes. The addition of creatine to IVF medium enhanced sperm capacitation by increasing ATP levels. Successful fertilization was achieved with as few as five sperm/oocyte in the creatine group, and the number of fertilized oocytes was significantly higher than in the control without creatine (P < 0.01). LIMITATIONS, REASONS FOR CAUTION In the present study, a pharmacological approach, creatine antagonist (GPA) treatment, but not a knockout mouse model, was used to understand the role of creatine in vivo. The role of creatine in fertilization processes can only be shown in a mouse model. WIDER IMPLICATIONS OF THE FINDINGS A modified IVF technique using creatine-containing medium was developed and shown to markedly improve fertilization with small numbers of sperm. This approach has the potential to be highly beneficial for human assisted reproductive technologies, especially for patients with a limited number of good quality sperm. STUDY FUNDING/COMPETING INTEREST(S) This work was supported in part by JSPS KAKENHI Grant numbers JP24688028, JP16H05017 (to M.S.), and JP15J05331 (to T.U.), the Japan Agency for Medical Research and Development (AMED) (16gk0110015h0001 to M.S.), and National Institutes of Health (NIH-HD-076980 to J.S.R). The authors have nothing to disclose.
Collapse
Affiliation(s)
- Takashi Umehara
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Tomoko Kawai
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Masaaki Goto
- From the Livestock Research Institute, Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Bungoono, Oita, Japan
| | - JoAnne S Richards
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Masayuki Shimada
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
50
|
Isotani A, Matsumura T, Ogawa M, Tanaka T, Yamagata K, Ikawa M, Okabe M. A delayed sperm penetration of cumulus layers by disruption of acrosin gene in rats. Biol Reprod 2018; 97:61-68. [PMID: 28859281 DOI: 10.1093/biolre/iox066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 06/27/2017] [Indexed: 01/09/2023] Open
Abstract
Acrosin, the trypsin-like serine protease in the sperm acrosome, was long viewed as a key enzyme required for zona pellucida penetration to fertilize eggs. However, gene disruption experiments in mice surprisingly showed that acrosin-disrupted males were fertile. Thus, the acrosin was considered to be not an essential enzyme for fertilization in mice. However, the involvement of acrosin in fertilization has been suggested in various species such as rat, bull, and pig. Moreover, it has been reported that serine protease (including acrosin) activity in mice is significantly weaker compared to other species, including rats. We analyzed the role of acrosin by disrupting the rat acrosin gene. It was found that, unlike in mice, acrosin was almost the sole source of serine protease in rat spermatozoa. Nevertheless, the acrosin-disrupted males were not infertile. However, the litter size from acrosin-disrupted males was decreased compared to heterozygous mutant rats. Further investigation using an in vitro fertilization system revealed that the acrosin-disrupted spermatozoa possessed an equal ability to penetrate the zona pellucida with wild-type spermatozoa, but the cumulus cell dispersal was slower compared to wild-type and heterozygous spermatozoa. This delay was presumed to be the cause of the small litter size of acrosin-disrupted male rats.
Collapse
Affiliation(s)
- Ayako Isotani
- Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, Japan
| | - Takafumi Matsumura
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Masaki Ogawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Takahiro Tanaka
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kazuo Yamagata
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Department of Genetic Engineering, Faculty of Biology-Oriented Science and Technology, KINDAI University, 930 Nishimitani, Kinokawa, Wakayama, Japan
| | - Masahito Ikawa
- Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masaru Okabe
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|