1
|
Lozano LP, Jensen R, Jennisch M, Pandala NG, Jamshidi F, Boldt HC, Tucker BA, Binkley EM. Genetics and current research models of Mendelian tumor predisposition syndromes with ocular involvement. Prog Retin Eye Res 2025; 106:101359. [PMID: 40274012 DOI: 10.1016/j.preteyeres.2025.101359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
In this review, we aim to provide a survey of hereditable tumor predisposition syndromes with a Mendelian inheritance pattern and ocular involvement. We focus our discussion on von Hippel-Lindau disease, neurofibromatosis type 1, NF2-related schwannomatosis, tuberous sclerosis complex, retinoblastoma, and the BAP1 tumor predisposition syndrome. For each of the six diseases, we discuss the clinical presentation and the molecular pathophysiology. We emphasize the genetics, current research models, and therapeutic developments. After reading each disease section, readers should possess an understanding of the clinical presentation, genetic causes and inheritance patterns, and current state of research in disease modeling and treatment.
Collapse
Affiliation(s)
- Lola P Lozano
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA.
| | - Renato Jensen
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA.
| | - Madeleine Jennisch
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA.
| | - Narendra G Pandala
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA.
| | - Farzad Jamshidi
- Department of Ophthalmology, University of Pittsburgh/UPMC, Pittsburgh, PA, 15213, USA.
| | - H Culver Boldt
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| | - Budd A Tucker
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| | - Elaine M Binkley
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| |
Collapse
|
2
|
Kang M, Choi J, Han J, Araki T, Kim SW, Ryu HH, Kim MG, Kim S, Jang H, Kim SY, Hwang KD, Kim S, Yoo M, Lee J, Kim K, Park P, Choi JE, Han DH, Kim Y, Kim J, Chang S, Kaang BK, Ko JM, Cheon KA, An JY, Kim SJ, Park H, Neel BG, Kim CH, Lee YS. Aberrant ERK signaling in astrocytes impairs learning and memory in RASopathy-associated BRAF mutant mouse models. J Clin Invest 2025; 135:e176631. [PMID: 39964758 PMCID: PMC11996877 DOI: 10.1172/jci176631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/13/2025] [Indexed: 02/20/2025] Open
Abstract
RAS/MAPK pathway mutations often induce RASopathies with overlapping features, such as craniofacial dysmorphology, cardiovascular defects, dermatologic abnormalities, and intellectual disabilities. Although B-Raf proto-oncogene (BRAF) mutations are associated with cardio-facio-cutaneous (CFC) syndrome and Noonan syndrome, it remains unclear how these mutations impair cognition. Here, we investigated the underlying neural mechanisms using several mouse models harboring a gain-of-function BRAF mutation (K499E) discovered in RASopathy patients. We found expressing BRAF K499E (KE) in neural stem cells under the control of a Nestin-Cre promoter (Nestin;BRAFKE/+) induced hippocampal memory deficits, but expressing it in excitatory or inhibitory neurons did not. BRAF KE expression in neural stem cells led to aberrant reactive astrogliosis, increased astrocytic Ca2+ fluctuations, and reduced hippocampal long-term depression (LTD) in mice. Consistently, 3D human cortical spheroids expressing BRAF KE also showed reactive astrogliosis. Astrocyte-specific adeno-associated virus-BRAF KE (AAV-BRAF KE) delivery induced memory deficits and reactive astrogliosis and increased astrocytic Ca2+ fluctuations. Notably, reducing extracellular signal-regulated kinase (ERK) activity in astrocytes rescued the memory deficits and altered astrocytic Ca2+ activity of Nestin;BRAFKE/+ mice. Furthermore, reducing astrocyte Ca2+ activity rescued the spatial memory impairments of BRAF KE-expressing mice. Our results demonstrate that ERK hyperactivity contributes to astrocyte dysfunction associated with Ca2+ dysregulation, leading to the memory deficits of BRAF-associated RASopathies.
Collapse
Affiliation(s)
- Minkyung Kang
- Department of Physiology, and
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jihye Choi
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeongho Han
- Research Group of Neurovascular Unit, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Toshiyuki Araki
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, USA
| | - Soo-Whee Kim
- Department of Integrated Biomedical and Life Science, and
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, Republic of Korea
| | | | - Min-Gyun Kim
- Department of Physiology, and
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seoyeon Kim
- Department of Integrated Biomedical and Life Science, and
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Hanbyul Jang
- Department of Physiology, and
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sun Yong Kim
- Department of Physiology, and
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyoung-Doo Hwang
- Department of Physiology, and
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soobin Kim
- Department of Physiology, and
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Myeongjong Yoo
- Department of Physiology, and
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jaegeon Lee
- Department of Physiology, and
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kitae Kim
- Department of Physiology, and
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Pojeong Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ja Eun Choi
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dae Hee Han
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yujin Kim
- Department of Integrated Biomedical and Life Science, and
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Jeongyeon Kim
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Sunghoe Chang
- Department of Physiology, and
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jung Min Ko
- Department of Pediatrics, Division of Clinical Genetics, Seoul National University College of Medicine, Seoul, Republic of Korea
- Rare Disease Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Keun-Ah Cheon
- Department of Child and Adolescent Psychiatry, Severance Hospital, and
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Republic of Korea
| | - Joon-Yong An
- Department of Integrated Biomedical and Life Science, and
| | - Sang Jeong Kim
- Department of Physiology, and
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Hyungju Park
- Research Group of Neurovascular Unit, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Benjamin G. Neel
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, USA
| | - Chul Hoon Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Seok Lee
- Department of Physiology, and
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Kardani K, Ghouse SM, Din Abdul Jabbar MA, Rajasubramanian N, Sanchez Gil J, Stemmer-Rachamimov A, Soda Y, Martuza RL, Hara T, Wakimoto H, Rabkin SD. Immunocompetent murine glioblastoma stem-like cell models exhibiting distinct phenotypes. Neurooncol Adv 2025; 7:vdae215. [PMID: 39896074 PMCID: PMC11783566 DOI: 10.1093/noajnl/vdae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Background Glioblastoma (GBM) treatment is hindered by a dearth of representative mouse GBM preclinical models in immunocompetent mice. Here, we characterized 5 murine GBM stem-like cell (mGSC) models derived from lentivirus-induced tumors in transgenic mice that are driven by the activation of the Nf1-Ras signaling pathway and inactivation of Tp53. Methods MGSC lines (005, RIG, NF53, C1, and C3) were cultured as spheres in serum-free stem cell media. Whole exome sequencing (WES) was employed to quantify single nucleotide polymorphisms (SNPs). Stem cell properties were characterized by stemness in vitro and tumorigenicity after intracerebral implantation in C57BL/6 mice. Tumor phenotypes and the immune microenvironment were characterized by immunohistochemistry, flow cytometry, and RNA sequencing. Results WES revealed a large variation in coding sequence SNPs across mGSC lines (~20-fold), likely influenced by the mixed backgrounds of the parental mice. MGSCs exhibited variable clonogenic sphere formation and CD133 expression levels. In vivo, they consistently initiated lethal malignant gliomas, with median survival ranging from 29 to 82 days, and showed strong CD44 expression and variable invasiveness. The tumor microenvironment featured an abundance of CD68+ macrophages and uniform high PD-L1+ myeloid cells, while T-cell infiltration varied among the models, with low mutation burden C1 and C3 exhibiting fewer tumor-infiltrating T cells. Conclusions Upon orthotopic implantation in immunocompetent mice, mGSCs generate tumors characteristic of human GBM. Despite similar strategies to generate these mGSCs, they exhibited a range of phenotypes and immune profiles in mGSC-derived orthotopic tumors. These mGSCs provide new preclinical GBM models for developing GBM immunotherapies.
Collapse
Affiliation(s)
- Kimia Kardani
- Molecular Neurosurgery Laboratory and the Brain Tumor Research Center, and Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shanawaz M Ghouse
- Molecular Neurosurgery Laboratory and the Brain Tumor Research Center, and Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Muzammil Arif Din Abdul Jabbar
- Molecular Neurosurgery Laboratory and the Brain Tumor Research Center, and Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Namita Rajasubramanian
- Molecular Neurosurgery Laboratory and the Brain Tumor Research Center, and Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Judit Sanchez Gil
- Molecular Neurosurgery Laboratory and the Brain Tumor Research Center, and Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Anat Stemmer-Rachamimov
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yasushi Soda
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California, USA
- Division of Molecular and Medical Genetics, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Robert L Martuza
- Molecular Neurosurgery Laboratory and the Brain Tumor Research Center, and Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Toshiro Hara
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Hiroaki Wakimoto
- Molecular Neurosurgery Laboratory and the Brain Tumor Research Center, and Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Samuel D Rabkin
- Molecular Neurosurgery Laboratory and the Brain Tumor Research Center, and Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Xie XP, Ganbold M, Li J, Lien M, Chipman ME, Wang T, Jayewickreme CD, Pedraza AM, Bale T, Tabar V, Brennan C, Sun D, Sharma R, Parada LF. Glioblastoma functional heterogeneity and enrichment of cancer stem cells with tumor recurrence. Neuron 2024; 112:4017-4032.e6. [PMID: 39510072 DOI: 10.1016/j.neuron.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/31/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024]
Abstract
Glioblastoma (GBM) is an incurable disease with high intratumoral heterogeneity. Bioinformatic studies have examined transcriptional heterogeneity with differing conclusions. Here, we characterize GBM heterogeneity and highlight critical phenotypic and hierarchical roles for quiescent cancer stem cells (qCSCs). Unsupervised single-cell transcriptomic analysis of patient-derived xenografts (PDXs) delineates six GBM transcriptional states with unique tumor exclusive gene signatures, five of which display congruence with central nervous system (CNS) cell lineages. We employ a surrogate tumor evolution assay by serial xenograft transplantation to demonstrate faithful preservation of somatic mutations, transcriptome, and qCSCs. PDX chemotherapy results in CSC resistance and expansion, also seen in recurrent patient GBM. In aggregate, these novel GBM transcriptional signatures exclusively identify tumor cells and define the hierarchical landscape as stable biologically discernible cell types that allow capture of their evolution upon recurrence, emphasizing the importance of CSCs and demonstrating general relevance to all GBM.
Collapse
Affiliation(s)
- Xuanhua P Xie
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Mungunsarnai Ganbold
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jing Li
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michelle Lien
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mollie E Chipman
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tao Wang
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chenura D Jayewickreme
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alicia M Pedraza
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tejus Bale
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Viviane Tabar
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cameron Brennan
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daochun Sun
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Roshan Sharma
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Luis F Parada
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
5
|
Brandner S. Rodent models of tumours of the central nervous system. Mol Oncol 2024; 18:2842-2870. [PMID: 39324445 PMCID: PMC11619804 DOI: 10.1002/1878-0261.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
Modelling of human diseases is an essential component of biomedical research, to understand their pathogenesis and ultimately, develop therapeutic approaches. Here, we will describe models of tumours of the central nervous system, with focus on intrinsic CNS tumours. Model systems for brain tumours were established as early as the 1920s, using chemical carcinogenesis, and a systematic analysis of different carcinogens, with a more refined histological analysis followed in the 1950s and 1960s. Alternative approaches at the time used retroviral carcinogenesis, allowing a more topical, organ-centred delivery. Most of the neoplasms arising from this approach were high-grade gliomas. Whilst these experimental approaches did not directly demonstrate a cell of origin, the localisation and growth pattern of the tumours already pointed to an origin in the neurogenic zones of the brain. In the 1980s, expression of oncogenes in transgenic models allowed a more targeted approach by expressing the transgene under tissue-specific promoters, whilst the constitutive inactivation of tumour suppressor genes ('knock out')-often resulted in embryonic lethality. This limitation was elegantly solved by engineering the Cre-lox system, allowing for a promoter-specific, and often also time-controlled gene inactivation. More recently, the use of the CRISPR Cas9 technology has significantly increased experimental flexibility of gene expression or gene inactivation and thus added increased value of rodent models for the study of pathogenesis and establishing preclinical models.
Collapse
Affiliation(s)
- Sebastian Brandner
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals, NHS Foundation TrustLondonUK
| |
Collapse
|
6
|
Plank JR, Gozdas E, Dai E, McGhee CA, Raman MM, Green T. Elucidating Microstructural Alterations in Neurodevelopmental Disorders: Application of Advanced Diffusion-Weighted Imaging in Children With Rasopathies. Hum Brain Mapp 2024; 45:e70087. [PMID: 39665502 PMCID: PMC11635693 DOI: 10.1002/hbm.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/01/2024] [Accepted: 11/17/2024] [Indexed: 12/13/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) can severely impact functioning yet effective treatments are limited. Greater insight into the neurobiology underlying NDDs is critical to the development of successful treatments. Using a genetics-first approach, we investigated the potential of advanced diffusion-weighted imaging (DWI) techniques to characterize the neural microstructure unique to neurofibromatosis type 1 (NF1) and Noonan syndrome (NS). In this prospective study, children with NF1, NS, and typical developing (TD) were scanned using a multi-shell DWI sequence optimized for neurite orientation density and dispersion imaging (NODDI) and diffusion kurtosis imaging (DKI). Region-of-interest and tract-based analysis were conducted on subcortical regions and white matter tracts. Analysis of covariance, principal components, and linear discriminant analysis compared between three groups. 88 participants (Mage = 9.36, SDage = 2.61; 44 male) were included: 31 NS, 25 NF1, and 32 TD. Subcortical regions differed between NF1 and NS, particularly in the thalamus where the neurite density index (NDI; estimated difference 0.044 [95% CI: -0.034, 0.053], d = 2.36), orientation dispersion index (ODI; estimate 0.018 [95% CI: 0.010, 0.026], d = 1.39), and mean kurtosis (MK; estimate 0.049 [95% CI: 0.025, 0.072], d = 1.39) were lower in NF1 compared with NS (all p < 0.0001). Reduced NDI was found in NF1 and NS compared with TD in all 39 white matter tracts investigated (p < 0.0001). Reduced MK was found in a majority of the tracts in NF1 and NS relative to TD, while fewer differences in ODI were observed. The middle cerebellar peduncle showed lower NDI (estimate 0.038 [95% CI: 0.021, 0.056], p < 0.0001) and MK (estimate 0.057 [95% CI: 0.026, 0.089], p < 0.0001) in NF1 compared to NS. Multivariate analyses distinguished between groups using NDI, ODI, and MK measures. Principal components analysis confirmed that the clinical groups differ most from TD in white matter tract-based NDI and MK, whereas ODI values appear similar across the groups. The subcortical regions showed several differences between NF1 and NS, to the extent that a linear discriminant analysis could classify participants with NF1 with an accuracy rate of 97%. Differences in neural microstructure were detected between NF1 and NS, particularly in subcortical regions and the middle cerebellar peduncle, in line with pre-clinical evidence. Advanced DWI techniques detected subtle alterations not found in prior work using conventional diffusion tensor imaging.
Collapse
Affiliation(s)
- Julia R. Plank
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral SciencesStanford UniversityPalo AltoCaliforniaUSA
| | - Elveda Gozdas
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral SciencesStanford UniversityPalo AltoCaliforniaUSA
| | - Erpeng Dai
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Chloe A. McGhee
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral SciencesStanford UniversityPalo AltoCaliforniaUSA
| | - Mira M. Raman
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral SciencesStanford UniversityPalo AltoCaliforniaUSA
| | - Tamar Green
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral SciencesStanford UniversityPalo AltoCaliforniaUSA
| |
Collapse
|
7
|
Sigaud R, Brummer T, Kocher D, Milde T, Selt F. MOST wanted: navigating the MAPK-OIS-SASP-tumor microenvironment axis in primary pediatric low-grade glioma and preclinical models. Childs Nerv Syst 2024; 40:3209-3221. [PMID: 38789691 PMCID: PMC11511703 DOI: 10.1007/s00381-024-06463-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Understanding the molecular and cellular mechanisms driving pediatric low-grade glioma (pLGG)-the most prevalent brain tumor in children-is essential for the identification and evaluation of novel effective treatments. This review explores the intricate relationship between the mitogen-activated protein kinase (MAPK) pathway, oncogene-induced senescence (OIS), the senescence-associated secretory phenotype (SASP), and the tumor microenvironment (TME), integrating these elements into a unified framework termed the MAPK/OIS/SASP/TME (MOST) axis. This integrated approach seeks to deepen our understanding of pLGG and improve therapeutic interventions by examining the MOST axis' critical influence on tumor biology and response to treatment. In this review, we assess the axis' capacity to integrate various biological processes, highlighting new targets for pLGG treatment, and the need for characterized in vitro and in vivo preclinical models recapitulating pLGG's complexity to test targets. The review underscores the need for a comprehensive strategy in pLGG research, positioning the MOST axis as a pivotal approach in understanding pLGG. This comprehensive framework will open promising avenues for patient care and guide future research towards inventive treatment options.
Collapse
Affiliation(s)
- Romain Sigaud
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
| | - Tilman Brummer
- Institute, of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Biological Signaling Studies BIOSS, University of Freiburg and German Consortium for Translational Cancer Research (DKTK), Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniela Kocher
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Selt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
8
|
Botero V, Tomchik SM. Unraveling neuronal and metabolic alterations in neurofibromatosis type 1. J Neurodev Disord 2024; 16:49. [PMID: 39217323 PMCID: PMC11365184 DOI: 10.1186/s11689-024-09565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Neurofibromatosis type 1 (OMIM 162200) affects ~ 1 in 3,000 individuals worldwide and is one of the most common monogenetic neurogenetic disorders that impacts brain function. The disorder affects various organ systems, including the central nervous system, resulting in a spectrum of clinical manifestations. Significant progress has been made in understanding the disorder's pathophysiology, yet gaps persist in understanding how the complex signaling and systemic interactions affect the disorder. Two features of the disorder are alterations in neuronal function and metabolism, and emerging evidence suggests a potential relationship between them. This review summarizes neurofibromatosis type 1 features and recent research findings on disease mechanisms, with an emphasis on neuronal and metabolic features.
Collapse
Affiliation(s)
- Valentina Botero
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- Department of Neuroscience, Scripps Research, Scripps Florida, Jupiter, FL, USA
- Skaggs School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA, USA
| | - Seth M Tomchik
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA.
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52242, USA.
- Hawk-IDDRC, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Neuroscience, Scripps Research, Scripps Florida, Jupiter, FL, USA.
| |
Collapse
|
9
|
Hocking MC, Albee MV, Kim M, Berman JI, Fisher MJ, Roberts TP, Blaskey L. Social challenges, autism spectrum disorder, and attention deficit/hyperactivity disorder in youth with neurofibromatosis type I. APPLIED NEUROPSYCHOLOGY. CHILD 2024:1-9. [PMID: 38864448 PMCID: PMC11635006 DOI: 10.1080/21622965.2024.2365383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
OBJECTIVE Youth with neurofibromatosis type I (NF1) demonstrate high rates of Autism Spectrum Disorder (ASD) and Attention Deficit/Hyperactivity Disorder (ADHD), which often have overlapping behaviors. Diagnostic clarity is important to guide services. This study evaluated ASD classification in NF1 using various methods and whether those with ADHD suspicion have more social challenges associated with ASD. METHOD 34 youth with NF1 (Mage = 10.5 ± 1.6 years), completed ASD assessments that combined direct observation and informant ratings to yield a Clinician Best Estimate (CBE) classification. Caregivers rated ASD-related social challenges using the Social Responsiveness Scale- 2nd Edition (SRS-2). RESULTS ASD classification varied depending on the method, ranging from 32% using low-threshold SRS-2 cut-scores (T ≥ 60) to under 6% when combining cut scores for diagnostic observational tools and stringent SRS-2 cut-scores (T ≥ 70). 14.7% had a CBE ASD classification. 44% were judged to have autism traits associated with a non-ASD diagnosis. The 52.9% with a suspicion of ADHD had higher SRS-2 scores than those without ADHD, F (7, 26) = 3.45, p < .05, Wilk's lambda = 0.518, partial eta squared = 0.482. CONCLUSIONS Findings highlight the importance of rigorous diagnostic methodology when evaluating ASD in NF1 to inform the selection of targeted interventions for socialization challenges in NF1.
Collapse
Affiliation(s)
- Matthew C. Hocking
- Children’s Hospital of Philadelphia
- Perelman School of Medicine at The University of Pennsylvania
| | | | - Mina Kim
- Children’s Hospital of Philadelphia
| | - Jeffrey I. Berman
- Children’s Hospital of Philadelphia
- Perelman School of Medicine at The University of Pennsylvania
| | - Michael J. Fisher
- Children’s Hospital of Philadelphia
- Perelman School of Medicine at The University of Pennsylvania
| | - Timothy P.L. Roberts
- Children’s Hospital of Philadelphia
- Perelman School of Medicine at The University of Pennsylvania
| | - Lisa Blaskey
- Children’s Hospital of Philadelphia
- Perelman School of Medicine at The University of Pennsylvania
| |
Collapse
|
10
|
Chen Y, Yu J, Ge S, Jia R, Song X, Wang Y, Fan X. An Overview of Optic Pathway Glioma With Neurofibromatosis Type 1: Pathogenesis, Risk Factors, and Therapeutic Strategies. Invest Ophthalmol Vis Sci 2024; 65:8. [PMID: 38837168 PMCID: PMC11160950 DOI: 10.1167/iovs.65.6.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024] Open
Abstract
Optic pathway gliomas (OPGs) are most predominant pilocytic astrocytomas, which are typically diagnosed within the first decade of life. The majority of affected children with OPGs also present with neurofibromatosis type 1 (NF1), the most common tumor predisposition syndrome. OPGs in individuals with NF1 primarily affect the optic pathway and lead to visual disturbance. However, it is challenging to assess risk in asymptomatic patients without valid biomarkers. On the other hand, for symptomatic patients, there is still no effective treatment to prevent or recover vision loss. Therefore, this review summarizes current knowledge regarding the pathogenesis of NF1-associated OPGs (NF1-OPGs) from preclinical studies to seek potential prognostic markers and therapeutic targets. First, the loss of the NF1 gene activates 3 distinct Ras effector pathways, including the PI3K/AKT/mTOR pathway, the MEK/ERK pathway, and the cAMP pathway, which mediate glioma tumorigenesis. Meanwhile, non-neoplastic cells from the tumor microenvironment (microglia, T cells, neurons, etc.) also contribute to gliomagenesis via various soluble factors. Subsequently, we investigated potential genetic risk factors, molecularly targeted therapies, and neuroprotective strategies for tumor prevention and vision recovery. Last, potential directions and promising preclinical models of NF1-OPGs are presented for further research. On the whole, NF1-OPGs develop as a result of the interaction between glioma cells and the tumor microenvironment. Developing effective treatments require a better understanding of tumor molecular characteristics, as well as multistage interventions targeting both neoplastic cells and non-neoplastic cells.
Collapse
Affiliation(s)
- Ying Chen
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Jie Yu
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Xin Song
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Yefei Wang
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
11
|
Miyagishima KJ, Qiao F, Stasheff SF, Nadal-Nicolás FM. Visual Deficits and Diagnostic and Therapeutic Strategies for Neurofibromatosis Type 1: Bridging Science and Patient-Centered Care. Vision (Basel) 2024; 8:31. [PMID: 38804352 PMCID: PMC11130890 DOI: 10.3390/vision8020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/29/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is an inherited autosomal dominant disorder primarily affecting children and adolescents characterized by multisystemic clinical manifestations. Mutations in neurofibromin, the protein encoded by the Nf1 tumor suppressor gene, result in dysregulation of the RAS/MAPK pathway leading to uncontrolled cell growth and migration. Neurofibromin is highly expressed in several cell lineages including melanocytes, glial cells, neurons, and Schwann cells. Individuals with NF1 possess a genetic predisposition to central nervous system neoplasms, particularly gliomas affecting the visual pathway, known as optic pathway gliomas (OPGs). While OPGs are typically asymptomatic and benign, they can induce visual impairment in some patients. This review provides insight into the spectrum and visual outcomes of NF1, current diagnostic techniques and therapeutic interventions, and explores the influence of NF1-OPGS on visual abnormalities. We focus on recent advancements in preclinical animal models to elucidate the underlying mechanisms of NF1 pathology and therapies targeting NF1-OPGs. Overall, our review highlights the involvement of retinal ganglion cell dysfunction and degeneration in NF1 disease, and the need for further research to transform scientific laboratory discoveries to improved patient outcomes.
Collapse
Affiliation(s)
- Kiyoharu J. Miyagishima
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.J.M.); (F.Q.); (S.F.S.)
| | - Fengyu Qiao
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.J.M.); (F.Q.); (S.F.S.)
| | - Steven F. Stasheff
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.J.M.); (F.Q.); (S.F.S.)
- Center for Neuroscience and Behavioral Medicine, Gilbert Neurofibromatosis Institute, Children’s National Health System, Washington, DC 20010, USA
- Neurology Department, George Washington University School of Medicine, Washington, DC 20037, USA
| | - Francisco M. Nadal-Nicolás
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.J.M.); (F.Q.); (S.F.S.)
| |
Collapse
|
12
|
Yvone GM, Breunig JJ. Pediatric low-grade glioma models: advances and ongoing challenges. Front Oncol 2024; 13:1346949. [PMID: 38318325 PMCID: PMC10839015 DOI: 10.3389/fonc.2023.1346949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
Pediatric low-grade gliomas represent the most common childhood brain tumor class. While often curable, some tumors fail to respond and even successful treatments can have life-long side effects. Many clinical trials are underway for pediatric low-grade gliomas. However, these trials are expensive and challenging to organize due to the heterogeneity of patients and subtypes. Advances in sequencing technologies are helping to mitigate this by revealing the molecular landscapes of mutations in pediatric low-grade glioma. Functionalizing these mutations in the form of preclinical models is the next step in both understanding the disease mechanisms as well as for testing therapeutics. However, such models are often more difficult to generate due to their less proliferative nature, and the heterogeneity of tumor microenvironments, cell(s)-of-origin, and genetic alterations. In this review, we discuss the molecular and genetic alterations and the various preclinical models generated for the different types of pediatric low-grade gliomas. We examined the different preclinical models for pediatric low-grade gliomas, summarizing the scientific advances made to the field and therapeutic implications. We also discuss the advantages and limitations of the various models. This review highlights the importance of preclinical models for pediatric low-grade gliomas while noting the challenges and future directions of these models to improve therapeutic outcomes of pediatric low-grade gliomas.
Collapse
Affiliation(s)
- Griselda Metta Yvone
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Joshua J. Breunig
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Center for Neural Sciences in Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
13
|
de Blank P, Nishiyama A, López-Juárez A. A new era for myelin research in Neurofibromatosis type 1. Glia 2023; 71:2701-2719. [PMID: 37382486 PMCID: PMC10592420 DOI: 10.1002/glia.24432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
Evidence for myelin regulating higher-order brain function and disease is rapidly accumulating; however, defining cellular/molecular mechanisms remains challenging partially due to the dynamic brain physiology involving deep changes during development, aging, and in response to learning and disease. Furthermore, as the etiology of most neurological conditions remains obscure, most research models focus on mimicking symptoms, which limits understanding of their molecular onset and progression. Studying diseases caused by single gene mutations represents an opportunity to understand brain dys/function, including those regulated by myelin. Here, we discuss known and potential repercussions of abnormal central myelin on the neuropathophysiology of Neurofibromatosis Type 1 (NF1). Most patients with this monogenic disease present with neurological symptoms diverse in kind, severity, and onset/decline, including learning disabilities, autism spectrum disorders, attention deficit and hyperactivity disorder, motor coordination issues, and increased risk for depression and dementia. Coincidentally, most NF1 patients show diverse white matter/myelin abnormalities. Although myelin-behavior links were proposed decades ago, no solid data can prove or refute this idea yet. A recent upsurge in myelin biology understanding and research/therapeutic tools provides opportunities to address this debate. As precision medicine moves forward, an integrative understanding of all cell types disrupted in neurological conditions becomes a priority. Hence, this review aims to serve as a bridge between fundamental cellular/molecular myelin biology and clinical research in NF1.
Collapse
Affiliation(s)
- Peter de Blank
- Department of Pediatrics, The Cure Starts Now Brain Tumor Center, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Alejandro López-Juárez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| |
Collapse
|
14
|
Milde T, Fangusaro J, Fisher MJ, Hawkins C, Rodriguez FJ, Tabori U, Witt O, Zhu Y, Gutmann DH. Optimizing preclinical pediatric low-grade glioma models for meaningful clinical translation. Neuro Oncol 2023; 25:1920-1931. [PMID: 37738646 PMCID: PMC10628935 DOI: 10.1093/neuonc/noad125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023] Open
Abstract
Pediatric low-grade gliomas (pLGGs) are the most common brain tumor in young children. While they are typically associated with good overall survival, children with these central nervous system tumors often experience chronic tumor- and therapy-related morbidities. Moreover, individuals with unresectable tumors frequently have multiple recurrences and persistent neurological symptoms. Deep molecular analyses of pLGGs reveal that they are caused by genetic alterations that converge on a single mitogenic pathway (MEK/ERK), but their growth is heavily influenced by nonneoplastic cells (neurons, T cells, microglia) in their local microenvironment. The interplay between neoplastic cell MEK/ERK pathway activation and stromal cell support necessitates the use of predictive preclinical models to identify the most promising drug candidates for clinical evaluation. As part of a series of white papers focused on pLGGs, we discuss the current status of preclinical pLGG modeling, with the goal of improving clinical translation for children with these common brain tumors.
Collapse
Affiliation(s)
- Till Milde
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jason Fangusaro
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael J Fisher
- Division of Oncology, Children’s Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Cynthia Hawkins
- Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, Toronto, Canada
| | - Fausto J Rodriguez
- Department of Pathology, University of California Los Angeles, Los Angeles, California, USA
| | - Uri Tabori
- Department of Medical Biophysics, Institute of Medical Science and Paediatrics, University of Toronto, Toronto, Canada
| | - Olaf Witt
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Yuan Zhu
- Gilbert Family Neurofibromatosis Institute Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
15
|
Benowitz LI, Xie L, Yin Y. Inflammatory Mediators of Axon Regeneration in the Central and Peripheral Nervous Systems. Int J Mol Sci 2023; 24:15359. [PMID: 37895039 PMCID: PMC10607492 DOI: 10.3390/ijms242015359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Although most pathways in the mature central nervous system cannot regenerate when injured, research beginning in the late 20th century has led to discoveries that may help reverse this situation. Here, we highlight research in recent years from our laboratory identifying oncomodulin (Ocm), stromal cell-derived factor (SDF)-1, and chemokine CCL5 as growth factors expressed by cells of the innate immune system that promote axon regeneration in the injured optic nerve and elsewhere in the central and peripheral nervous systems. We also review the role of ArmC10, a newly discovered Ocm receptor, in mediating many of these effects, and the synergy between inflammation-derived growth factors and complementary strategies to promote regeneration, including deleting genes encoding cell-intrinsic suppressors of axon growth, manipulating transcription factors that suppress or promote the expression of growth-related genes, and manipulating cell-extrinsic suppressors of axon growth. In some cases, combinatorial strategies have led to unprecedented levels of nerve regeneration. The identification of some similar mechanisms in human neurons offers hope that key discoveries made in animal models may eventually lead to treatments to improve outcomes after neurological damage in patients.
Collapse
Affiliation(s)
- Larry I. Benowitz
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA 02115, USA; (L.X.); (Y.Y.)
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Lili Xie
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA 02115, USA; (L.X.); (Y.Y.)
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yuqin Yin
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA 02115, USA; (L.X.); (Y.Y.)
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
16
|
Irshad K, Huang YK, Rodriguez P, Lo J, Aghoghovwia BE, Pan Y, Chang KC. The Neuroimmune Regulation and Potential Therapeutic Strategies of Optic Pathway Glioma. Brain Sci 2023; 13:1424. [PMID: 37891793 PMCID: PMC10605541 DOI: 10.3390/brainsci13101424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Optic pathway glioma (OPG) is one of the causes of pediatric visual impairment. Unfortunately, there is as yet no cure for such a disease. Understanding the underlying mechanisms and the potential therapeutic strategies may help to delay the progression of OPG and rescue the visual morbidities. Here, we provide an overview of preclinical OPG studies and the regulatory pathways controlling OPG pathophysiology. We next discuss the role of microenvironmental cells (neurons, T cells, and tumor-associated microglia and macrophages) in OPG development. Last, we provide insight into potential therapeutic strategies for treating OPG and promoting axon regeneration.
Collapse
Affiliation(s)
- Khushboo Irshad
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.I.); (B.E.A.)
| | - Yu-Kai Huang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Paul Rodriguez
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Jung Lo
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Benjamin E. Aghoghovwia
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.I.); (B.E.A.)
| | - Yuan Pan
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.I.); (B.E.A.)
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kun-Che Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
- Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
17
|
Tang Y, Gutmann DH. Neurofibromatosis Type 1-Associated Optic Pathway Gliomas: Current Challenges and Future Prospects. Cancer Manag Res 2023; 15:667-681. [PMID: 37465080 PMCID: PMC10351533 DOI: 10.2147/cmar.s362678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/06/2023] [Indexed: 07/20/2023] Open
Abstract
Optic pathway glioma (OPG) occurs in as many as one-fifth of individuals with the neurofibromatosis type 1 (NF1) cancer predisposition syndrome. Generally considered low-grade and slow growing, many children with NF1-OPGs remain asymptomatic. However, due to their location within the optic pathway, ~20-30% of those harboring NF1-OPGs will experience symptoms, including progressive vision loss, proptosis, diplopia, and precocious puberty. While treatment with conventional chemotherapy is largely effective at attenuating tumor growth, it is not clear whether there is much long-term recovery of visual function. Additionally, because these tumors predominantly affect young children, there are unique challenges to NF1-OPG diagnosis, monitoring, and longitudinal management. Over the past two decades, the employment of authenticated genetically engineered Nf1-OPG mouse models have provided key insights into the function of the NF1 protein, neurofibromin, as well as the molecular and cellular pathways that contribute to optic gliomagenesis. Findings from these studies have resulted in the identification of new molecular targets whose inhibition blocks murine Nf1-OPG growth in preclinical studies. Some of these promising compounds have now entered into early clinical trials. Future research focused on defining the determinants that underlie optic glioma initiation, expansion, and tumor-induced optic nerve injury will pave the way to personalized risk assessment strategies, improved tumor monitoring, and optimized treatment plans for children with NF1-OPG.
Collapse
Affiliation(s)
- Yunshuo Tang
- Department of Ophthalmology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
18
|
Sran S, Bedrosian TA. RAS pathway: The new frontier of brain mosaicism in epilepsy. Neurobiol Dis 2023; 180:106074. [PMID: 36907520 DOI: 10.1016/j.nbd.2023.106074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
As cells divide during development, errors in DNA replication and repair lead to somatic mosaicism - a phenomenon in which different cell lineages harbor unique constellations of genetic variants. Over the past decade, somatic variants that disrupt mTOR signaling, protein glycosylation, and other functions during brain development have been linked to cortical malformations and focal epilepsy. More recently, emerging evidence points to a role for Ras pathway mosaicism in epilepsy. The Ras family of proteins is a critical driver of MAPK signaling. Disruption of the Ras pathway is most known for its association with tumorigenesis; however, developmental disorders known as RASopathies commonly have a neurological component that sometimes includes epilepsy, offering evidence for Ras involvement in brain development and epileptogenesis. Brain somatic variants affecting the Ras pathway (e.g., KRAS, PTPN11, BRAF) are now strongly associated with focal epilepsy through genotype-phenotype association studies as well as mechanistic evidence. This review summarizes the Ras pathway and its involvement in epilepsy and neurodevelopmental disorders, focusing on new evidence regarding Ras pathway mosaicism and the potential future clinical implications.
Collapse
Affiliation(s)
- Sahibjot Sran
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Tracy A Bedrosian
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States of America; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States of America.
| |
Collapse
|
19
|
Lucas CHG, Sloan EA, Gupta R, Wu J, Pratt D, Vasudevan HN, Ravindranathan A, Barreto J, Williams EA, Shai A, Whipple NS, Bruggers CS, Maher O, Nabors B, Rodriguez M, Samuel D, Brown M, Carmichael J, Lu R, Mirchia K, Sullivan DV, Pekmezci M, Tihan T, Bollen AW, Perry A, Banerjee A, Mueller S, Gupta N, Hervey-Jumper SL, Oberheim Bush NA, Daras M, Taylor JW, Butowski NA, de Groot J, Clarke JL, Raleigh DR, Costello JF, Phillips JJ, Reddy AT, Chang SM, Berger MS, Solomon DA. Multiplatform molecular analyses refine classification of gliomas arising in patients with neurofibromatosis type 1. Acta Neuropathol 2022; 144:747-765. [PMID: 35945463 PMCID: PMC9468105 DOI: 10.1007/s00401-022-02478-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 01/28/2023]
Abstract
Gliomas arising in the setting of neurofibromatosis type 1 (NF1) are heterogeneous, occurring from childhood through adulthood, can be histologically low-grade or high-grade, and follow an indolent or aggressive clinical course. Comprehensive profiling of genetic alterations beyond NF1 inactivation and epigenetic classification of these tumors remain limited. Through next-generation sequencing, copy number analysis, and DNA methylation profiling of gliomas from 47 NF1 patients, we identified 2 molecular subgroups of NF1-associated gliomas. The first harbored biallelic NF1 inactivation only, occurred primarily during childhood, followed a more indolent clinical course, and had a unique epigenetic signature for which we propose the terminology "pilocytic astrocytoma, arising in the setting of NF1". The second subgroup harbored additional oncogenic alterations including CDKN2A homozygous deletion and ATRX mutation, occurred primarily during adulthood, followed a more aggressive clinical course, and was epigenetically diverse, with most tumors aligning with either high-grade astrocytoma with piloid features or various subclasses of IDH-wildtype glioblastoma. Several patients were treated with small molecule MEK inhibitors that resulted in stable disease or tumor regression when used as a single agent, but only in the context of those tumors with NF1 inactivation lacking additional oncogenic alterations. Together, these findings highlight recurrently altered pathways in NF1-associated gliomas and help inform targeted therapeutic strategies for this patient population.
Collapse
Affiliation(s)
- Calixto-Hope G Lucas
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emily A Sloan
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
- Department of Pathology, Medstar Georgetown University Hospital, Washington, DC, USA
| | - Rohit Gupta
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Jasper Wu
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Drew Pratt
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Harish N Vasudevan
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ajay Ravindranathan
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Jairo Barreto
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Erik A Williams
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Anny Shai
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Nicholas S Whipple
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Carol S Bruggers
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Ossama Maher
- Department of Oncology, Nicklaus Children's Hospital, Miami, FL, USA
| | - Burt Nabors
- Division of Neuro-Oncology, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - David Samuel
- Department of Hematology/Oncology, Valley Children's Hospital, Madera, CA, USA
| | - Melandee Brown
- Department of Neurosurgery, Valley Children's Hospital, Madera, CA, USA
| | - Jason Carmichael
- Department of Medical Genetics and Metabolism, Valley Children's Hospital, Madera, CA, USA
| | - Rufei Lu
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Kanish Mirchia
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Daniel V Sullivan
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Melike Pekmezci
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Tarik Tihan
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Andrew W Bollen
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Arie Perry
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Anuradha Banerjee
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Sabine Mueller
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Nalin Gupta
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Nancy Ann Oberheim Bush
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Mariza Daras
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jennie W Taylor
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Nicholas A Butowski
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - John de Groot
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer L Clarke
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Alyssa T Reddy
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Susan M Chang
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - David A Solomon
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA.
| |
Collapse
|
20
|
Anastasaki C, Chatterjee J, Cobb O, Sanapala S, Scheaffer SM, De Andrade Costa A, Wilson AF, Kernan CM, Zafar AH, Ge X, Garbow JR, Rodriguez FJ, Gutmann DH. Human induced pluripotent stem cell engineering establishes a humanized mouse platform for pediatric low-grade glioma modeling. Acta Neuropathol Commun 2022; 10:120. [PMID: 35986378 PMCID: PMC9392324 DOI: 10.1186/s40478-022-01428-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
A major obstacle to identifying improved treatments for pediatric low-grade brain tumors (gliomas) is the inability to reproducibly generate human xenografts. To surmount this barrier, we leveraged human induced pluripotent stem cell (hiPSC) engineering to generate low-grade gliomas (LGGs) harboring the two most common pediatric pilocytic astrocytoma-associated molecular alterations, NF1 loss and KIAA1549:BRAF fusion. Herein, we identified that hiPSC-derived neuroglial progenitor populations (neural progenitors, glial restricted progenitors and oligodendrocyte progenitors), but not terminally differentiated astrocytes, give rise to tumors retaining LGG histologic features for at least 6 months in vivo. Additionally, we demonstrated that hiPSC-LGG xenograft formation requires the absence of CD4 T cell-mediated induction of astrocytic Cxcl10 expression. Genetic Cxcl10 ablation is both necessary and sufficient for human LGG xenograft development, which additionally enables the successful long-term growth of patient-derived pediatric LGGs in vivo. Lastly, MEK inhibitor (PD0325901) treatment increased hiPSC-LGG cell apoptosis and reduced proliferation both in vitro and in vivo. Collectively, this study establishes a tractable experimental humanized platform to elucidate the pathogenesis of and potential therapeutic opportunities for childhood brain tumors.
Collapse
Affiliation(s)
- Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Jit Chatterjee
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Olivia Cobb
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Shilpa Sanapala
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Suzanne M Scheaffer
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Amanda De Andrade Costa
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Anna F Wilson
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Chloe M Kernan
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Ameera H Zafar
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Xia Ge
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joel R Garbow
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Fausto J Rodriguez
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA.
| |
Collapse
|
21
|
Dissecting and analyzing the Subclonal Mutations Associated with Poor Prognosis in Diffuse Glioma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4919111. [PMID: 35496054 PMCID: PMC9039777 DOI: 10.1155/2022/4919111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 11/18/2022]
Abstract
The prognostic and therapeutic implications in diffuse gliomas are still challenging. In this study, we first performed an integrative framework to infer the clonal status of mutations in glioblastomas (GBMs) and low-grade gliomas (LGGs) by using exome sequencing data from TCGA and observed both clonal and subclonal mutations for most mutant genes. Based on the clonal status of a given gene, we systematically investigated its prognostic value in GBM and LGG, respectively. Focusing on the subclonal mutations, our results showed that they were more likely to contribute to the poor prognosis, which could be hardly figured out without considering clonal status. These risk subclonal mutations were associated with some specific genomic features, such as genomic instability and intratumor heterogeneity, and their accumulation could enhance the prognostic value. By analyzing the regulatory mechanisms underlying the risk subclonal mutations, we found that the subclonal mutations of AHNAK and AHNAK2 in GBM and those of NF1 and PTEN in LGG could influence some important molecules and functions associated with glioma progression. Furthermore, we dissected the role of risk subclonal mutations in tumor evolution and found that advanced subclonal mutations showed poorer overall survival. Our study revealed the importance of clonal status in prognosis analysis, highlighting the role of the subclonal mutation in glioma prognosis.
Collapse
|
22
|
García-Gómez P, Golán I, Dadras MS, Mezheyeuski A, Bellomo C, Tzavlaki K, Morén A, Carreras-Puigvert J, Caja L. NOX4 regulates TGFβ-induced proliferation and self-renewal in glioblastoma stem cells. Mol Oncol 2022; 16:1891-1912. [PMID: 35203105 PMCID: PMC9067149 DOI: 10.1002/1878-0261.13200] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 12/04/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive and common glioma subtype, with a median survival of 15 months after diagnosis. Current treatments have limited therapeutic efficacy; thus, more effective approaches are needed. The glioblastoma tumoural mass is characterised by a small cellular subpopulation – glioblastoma stem cells (GSCs) – that has been held responsible for glioblastoma initiation, cell invasion, proliferation, relapse and resistance to chemo‐ and radiotherapy. Targeted therapies against GSCs are crucial, as is understanding the molecular mechanisms that govern the GSCs. Transforming growth factor β (TGFβ) signalling and reactive oxygen species (ROS) production are known to govern and regulate cancer stem cell biology. Among the differentially expressed genes regulated by TGFβ in a transcriptomic analysis of two different patient‐derived GSCs, we found NADPH oxidase 4 (NOX4) as one of the top upregulated genes. Interestingly, when patient tissues were analysed, NOX4 expression was found to be higher in GSCs versus differentiated cells. A functional analysis of the role of NOX4 downstream of TGFβ in several patient‐derived GSCs showed that TGFβ does indeed induce NOX4 expression and increases ROS production in a NOX4‐dependent manner. NOX4 downstream of TGFβ regulates GSC proliferation, and NOX4 expression is necessary for TGFβ‐induced expression of stem cell markers and of the transcription factor nuclear factor erythroid 2‐related factor 2 (NRF2), which in turn controls the cell’s antioxidant and metabolic responses. Interestingly, overexpression of NOX4 recapitulates the effects induced by TGFβ in GSCs: enhanced proliferation, stemness and NRF2 expression. In conclusion, this work functionally establishes NOX4 as a key mediator of GSC biology.
Collapse
Affiliation(s)
- Pedro García-Gómez
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123 Uppsala, Sweden. Ludwig Cancer Research, Science for Life Laboratory, Box 595, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden.,Brain Metastasis Group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Irene Golán
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123 Uppsala, Sweden. Ludwig Cancer Research, Science for Life Laboratory, Box 595, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Mahsa S Dadras
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123 Uppsala, Sweden. Ludwig Cancer Research, Science for Life Laboratory, Box 595, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden.,Weill Cornell Medical College Brain and Mind Research Institute, New York, NY, USA, 10021-5608
| | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, SE-75185, Uppsala, Sweden
| | - Claudia Bellomo
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123 Uppsala, Sweden. Ludwig Cancer Research, Science for Life Laboratory, Box 595, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Kalliopi Tzavlaki
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123 Uppsala, Sweden. Ludwig Cancer Research, Science for Life Laboratory, Box 595, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Anita Morén
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123 Uppsala, Sweden. Ludwig Cancer Research, Science for Life Laboratory, Box 595, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Jordi Carreras-Puigvert
- Department of Pharmaceutical Biosciences, Box 591, Biomedical Center, Uppsala University, SE-75123, Uppsala, Sweden
| | - Laia Caja
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123 Uppsala, Sweden. Ludwig Cancer Research, Science for Life Laboratory, Box 595, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| |
Collapse
|
23
|
Mo J, Moye SL, McKay RM, Le LQ. Neurofibromin and suppression of tumorigenesis: beyond the GAP. Oncogene 2022; 41:1235-1251. [PMID: 35066574 PMCID: PMC9063229 DOI: 10.1038/s41388-021-02156-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disease and one of the most common inherited tumor predisposition syndromes, affecting 1 in 3000 individuals worldwide. The NF1 gene encodes neurofibromin, a large protein with RAS GTP-ase activating (RAS-GAP) activity, and loss of NF1 results in increased RAS signaling. Neurofibromin contains many other domains, and there is considerable evidence that these domains play a role in some manifestations of NF1. Investigating the role of these domains as well as the various signaling pathways that neurofibromin regulates and interacts with will provide a better understanding of how neurofibromin acts to suppress tumor development and potentially open new therapeutic avenues. In this review, we discuss what is known about the structure of neurofibromin, its interactions with other proteins and signaling pathways, its role in development and differentiation, and its function as a tumor suppressor. Finally, we discuss the latest research on potential therapeutics for neurofibromin-deficient neoplasms.
Collapse
Affiliation(s)
- Juan Mo
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Stefanie L Moye
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Renee M McKay
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- UTSW Comprehensive Neurofibromatosis Clinic, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
| |
Collapse
|
24
|
Treatment during a developmental window prevents NF1-associated optic pathway gliomas by targeting Erk-dependent migrating glial progenitors. Dev Cell 2021; 56:2871-2885.e6. [PMID: 34428430 DOI: 10.1016/j.devcel.2021.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/11/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022]
Abstract
The mechanism of vulnerability to pediatric low-grade gliomas (pLGGs)-the most common brain tumor in children-during development remains largely unknown. Using mouse models of neurofibromatosis type 1 (NF1)-associated pLGGs in the optic pathway (NF1-OPG), we demonstrate that NF1-OPG arose from the vulnerability to the dependency of Mek-Erk/MAPK signaling during gliogenesis of one of the two developmentally transient precursor populations in the optic nerve, brain-derived migrating glial progenitors (GPs), but not local progenitors. Hyperactive Erk/MAPK signaling by Nf1 loss overproduced GPs by disrupting the balance between stem-cell maintenance and gliogenesis of hypothalamic ventricular zone radial glia (RG). Persistence of RG-like GPs initiated NF1-OPG, causing Bax-dependent apoptosis in retinal ganglion cells. Removal of three Mek1/Mek2 alleles or transient post-natal treatment with a low-dose MEK inhibitor normalized differentiation of Nf1-/- RG-like GPs, preventing NF1-OPG formation and neuronal degeneration. We provide the proof-of-concept evidence for preventing pLGGs before tumor-associated neurological damage enters an irreversible phase.
Collapse
|
25
|
Abstract
Neurofibromatosis type 1 (NF1) is one of the most common neurocutaneous genetic disorders, presenting with different cutaneous features such as café-au-lait macules, intertriginous skin freckling, and neurofibromas. Although most of the disease manifestations are benign, patients are at risk for a variety of malignancies, including malignant transformation of plexiform neurofibromas. Numerous studies have investigated the mechanisms by which these characteristic neurofibromas develop, with progress made toward unraveling the various players involved in their complex pathogenesis. In this review, we summarize the current understanding of the cells that give rise to NF1 neoplasms as well as the molecular mechanisms and cellular changes that confer tumorigenic potential. We also discuss the role of the tumor microenvironment and the key aspects of its various cell types that contribute to NF1-associated tumorigenesis. An increased understanding of these intrinsic and extrinsic components is critical for developing novel therapeutic approaches for affected patients.
Collapse
Affiliation(s)
- Ashley Bui
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chunhui Jiang
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Renee M McKay
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Laura J Klesse
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Comprehensive Neurofibromatosis Clinic, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lu Q Le
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Comprehensive Neurofibromatosis Clinic, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
26
|
Talley MJ, Nardini D, Shabbir N, Ehrman LA, Prada CE, Waclaw RR. Generation of a Mouse Model to Study the Noonan Syndrome Gene Lztr1 in the Telencephalon. Front Cell Dev Biol 2021; 9:673995. [PMID: 34222248 PMCID: PMC8242193 DOI: 10.3389/fcell.2021.673995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/07/2021] [Indexed: 12/28/2022] Open
Abstract
The leucine zipper-like transcriptional regulator 1 (Lztr1) is a BTB-Kelch domain protein involved in RAS/MAPK pathway regulation. Mutations in LZTR1 are associated with cancers and Noonan syndrome, the most common RASopathy. The expression and function of Lztr1 in the developing brain remains poorly understood. Here we show that Lztr1 is expressed in distinct regions of the telencephalon, the most anterior region of the forebrain. Lztr1 expression was robust in the cortex, amygdala, hippocampus, and oligodendrocytes in the white matter. To gain insight into the impact of Lztr1 deficiency, we generated a conditional knockout (cKO) restricted to the telencephalon using Foxg1IREScre/+. Lztr1 cKOs are viable to postnatal stages and show reduced Lztr1 expression in the telencephalon. Interestingly, Lztr1 cKOs exhibit an increase in MAPK pathway activation in white matter regions and subsequently show an altered expression of stage-specific markers in the oligodendrocyte lineage with increased oligodendrocyte progenitor cells (OPCs) and decreased markers of oligodendrocyte differentiation. Moreover, Lztr1 cKOs also exhibit an increased expression of the astrocyte marker GFAP. These results highlight the generation of a new mouse model to study Lztr1 deficiency in the brain and reveal a novel role for Lztr1 in normal oligodendrocyte and astrocyte development in the telencephalon.
Collapse
Affiliation(s)
- Mary Jo Talley
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Diana Nardini
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Nisha Shabbir
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Lisa A Ehrman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Carlos E Prada
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Ronald R Waclaw
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
27
|
Pan Y, Hysinger JD, Barron T, Schindler NF, Cobb O, Guo X, Yalçın B, Anastasaki C, Mulinyawe SB, Ponnuswami A, Scheaffer S, Ma Y, Chang KC, Xia X, Toonen JA, Lennon JJ, Gibson EM, Huguenard JR, Liau LM, Goldberg JL, Monje M, Gutmann DH. NF1 mutation drives neuronal activity-dependent initiation of optic glioma. Nature 2021; 594:277-282. [PMID: 34040258 PMCID: PMC8346229 DOI: 10.1038/s41586-021-03580-6] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 04/21/2021] [Indexed: 12/16/2022]
Abstract
Neurons have recently emerged as essential cellular constituents of the tumour microenvironment, and their activity has been shown to increase the growth of a diverse number of solid tumours1. Although the role of neurons in tumour progression has previously been demonstrated2, the importance of neuronal activity to tumour initiation is less clear-particularly in the setting of cancer predisposition syndromes. Fifteen per cent of individuals with the neurofibromatosis 1 (NF1) cancer predisposition syndrome (in which tumours arise in close association with nerves) develop low-grade neoplasms of the optic pathway (known as optic pathway gliomas (OPGs)) during early childhood3,4, raising the possibility that postnatal light-induced activity of the optic nerve drives tumour initiation. Here we use an authenticated mouse model of OPG driven by mutations in the neurofibromatosis 1 tumour suppressor gene (Nf1)5 to demonstrate that stimulation of optic nerve activity increases optic glioma growth, and that decreasing visual experience via light deprivation prevents tumour formation and maintenance. We show that the initiation of Nf1-driven OPGs (Nf1-OPGs) depends on visual experience during a developmental period in which Nf1-mutant mice are susceptible to tumorigenesis. Germline Nf1 mutation in retinal neurons results in aberrantly increased shedding of neuroligin 3 (NLGN3) within the optic nerve in response to retinal neuronal activity. Moreover, genetic Nlgn3 loss or pharmacological inhibition of NLGN3 shedding blocks the formation and progression of Nf1-OPGs. Collectively, our studies establish an obligate role for neuronal activity in the development of some types of brain tumours, elucidate a therapeutic strategy to reduce OPG incidence or mitigate tumour progression, and underscore the role of Nf1mutation-mediated dysregulation of neuronal signalling pathways in mouse models of the NF1 cancer predisposition syndrome.
Collapse
Affiliation(s)
- Yuan Pan
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Jared D. Hysinger
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Tara Barron
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Nicki F. Schindler
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Olivia Cobb
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Xiaofan Guo
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Belgin Yalçın
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Sara B. Mulinyawe
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Anitha Ponnuswami
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Suzanne Scheaffer
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Yu Ma
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Kun-Che Chang
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA, USA
| | - Xin Xia
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA, USA
| | - Joseph A. Toonen
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - James J. Lennon
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Erin M. Gibson
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - John R. Huguenard
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Linda M. Liau
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeffrey L. Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA. .,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA. .,Department of Pediatrics, Stanford University, Stanford, CA, USA. .,Department of Neurosurgery, Stanford University, Stanford, CA, USA. .,Department of Pathology, Stanford University, Stanford, CA, USA.
| | - David H. Gutmann
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA,Correspondence and requests for materials should be addressed to M.M. or D.H.G. ;
| |
Collapse
|
28
|
Yuan M, White D, Resar L, Bar E, Groves M, Cohen A, Jackson E, Bynum J, Rubens J, Mumm J, Chen L, Jiang L, Raabe E, Rodriguez FJ, Eberhart CG. Conditional reprogramming culture conditions facilitate growth of lower-grade glioma models. Neuro Oncol 2021; 23:770-782. [PMID: 33258947 DOI: 10.1093/neuonc/noaa263] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The conditional reprogramming cell culture method was developed to facilitate growth of senescence-prone normal and neoplastic epithelial cells, and involves co-culture with irradiated fibroblasts and the addition of a small molecule Rho kinase (ROCK) inhibitor. The aim of this study was to determine whether this approach would facilitate the culture of compact low-grade gliomas. METHODS We attempted to culture 4 pilocytic astrocytomas, 2 gangliogliomas, 2 myxopapillary ependymomas, 2 anaplastic gliomas, 2 difficult-to-classify low-grade neuroepithelial tumors, a desmoplastic infantile ganglioglioma, and an anaplastic pleomorphic xanthoastrocytoma using a modified conditional reprogramming cell culture approach. RESULTS Conditional reprogramming resulted in robust increases in growth for a majority of these tumors, with fibroblast conditioned media and ROCK inhibition both required. Switching cultures to standard serum containing media, or serum-free neurosphere conditions, with or without ROCK inhibition, resulted in decreased proliferation and induction of senescence markers. Rho kinase inhibition and conditioned media both promoted Akt and Erk1/2 activation. Several cultures, including one derived from a NF1-associated pilocytic astrocytoma (JHH-NF1-PA1) and one from a BRAF p.V600E mutant anaplastic pleomorphic xanthoastrocytoma (JHH-PXA1), exhibited growth sufficient for preclinical testing in vitro. In addition, JHH-NF1-PA1 cells survived and migrated in larval zebrafish orthotopic xenografts, while JHH-PXA1 formed orthotopic xenografts in mice histopathologically similar to the tumor from which it was derived. CONCLUSIONS These studies highlight the potential for the conditional reprogramming cell culture method to promote the growth of glial and glioneuronal tumors in vitro, in some cases enabling the establishment of long-term culture and in vivo models.
Collapse
Affiliation(s)
- Ming Yuan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David White
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Linda Resar
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eli Bar
- Department of Pathology, University of Maryland, Baltimore, Maryland, USA
| | - Mari Groves
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alan Cohen
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer Bynum
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey Rubens
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeff Mumm
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Liam Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Liqun Jiang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric Raabe
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fausto J Rodriguez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Charles G Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
29
|
Packer RJ, Iavarone A, Jones DTW, Blakeley JO, Bouffet E, Fisher MJ, Hwang E, Hawkins C, Kilburn L, MacDonald T, Pfister SM, Rood B, Rodriguez FJ, Tabori U, Ramaswamy V, Zhu Y, Fangusaro J, Johnston SA, Gutmann DH. Implications of new understandings of gliomas in children and adults with NF1: report of a consensus conference. Neuro Oncol 2021; 22:773-784. [PMID: 32055852 PMCID: PMC7283027 DOI: 10.1093/neuonc/noaa036] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gliomas are the most common primary central nervous system tumors occurring in children and adults with neurofibromatosis type 1 (NF1). Over the past decade, discoveries of the molecular basis of low-grade gliomas (LGGs) have led to new approaches for diagnosis and treatments. However, these new understandings have not been fully applied to the management of NF1-associated gliomas. A consensus panel consisting of experts in NF1 and gliomas was convened to review the current molecular knowledge of NF1-associated low-grade “transformed” and high-grade gliomas; insights gained from mouse models of NF1-LGGs; challenges in diagnosing and treating older patients with NF1-associated gliomas; and advances in molecularly targeted treatment and potential immunologic treatment of these tumors. Next steps are recommended to advance the management and outcomes for NF1-associated gliomas.
Collapse
Affiliation(s)
- Roger J Packer
- Center for Neuroscience and Behavioral Medicine, Washington, DC, USA.,Gilbert Family Neurofibromatosis Institute, Brain Tumor Institute, and Children's National Hospital, Washington, DC, USA
| | - Antonio Iavarone
- Departments of Neurology and Pathology Institute for Cancer Genetics Columbia University Medical Center, New York, New York, USA
| | - David T W Jones
- Division of Pediatric Neuro-Oncology German Cancer Research Center Hopp Children's Cancer Center Heidelberg, Germany
| | - Jaishri O Blakeley
- Departments of Neurology; Oncology; Neurosurgery, Baltimore, Maryland, USA
| | - Eric Bouffet
- Pediatric Neuro-Oncology Program; Research Institute; and The Arthur and Sonia Labatt; Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Michael J Fisher
- Department of Pediatric Oncology; Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Eugene Hwang
- Gilbert Family Neurofibromatosis Institute, Brain Tumor Institute, and Children's National Hospital, Washington, DC, USA
| | - Cynthia Hawkins
- Pediatric Neuro-Oncology Program; Research Institute; and The Arthur and Sonia Labatt; Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Lindsay Kilburn
- Gilbert Family Neurofibromatosis Institute, Brain Tumor Institute, and Children's National Hospital, Washington, DC, USA
| | - Tobey MacDonald
- Department of Pediatrics; Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stefan M Pfister
- Division of Pediatric Neuro-Oncology German Cancer Research Center Hopp Children's Cancer Center Heidelberg, Germany
| | - Brian Rood
- Gilbert Family Neurofibromatosis Institute, Brain Tumor Institute, and Children's National Hospital, Washington, DC, USA
| | - Fausto J Rodriguez
- Pathology; The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Uri Tabori
- Pediatric Neuro-Oncology Program; Research Institute; and The Arthur and Sonia Labatt; Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Vijay Ramaswamy
- Pediatric Neuro-Oncology Program; Research Institute; and The Arthur and Sonia Labatt; Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Yuan Zhu
- Gilbert Family Neurofibromatosis Institute, Brain Tumor Institute, and Children's National Hospital, Washington, DC, USA
| | - Jason Fangusaro
- Department of Pediatrics; Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stephen A Johnston
- Center for Innovations in Medicine; Biodesign Institute; Arizona State University, Tempe, Arizona, USA
| | - David H Gutmann
- Department of Neurology; Washington University, St Louis, Missouri, USA
| |
Collapse
|
30
|
Talley MJ, Nardini D, Qin S, Prada CE, Ehrman LA, Waclaw RR. A role for sustained MAPK activity in the mouse ventral telencephalon. Dev Biol 2021; 476:137-147. [PMID: 33775695 DOI: 10.1016/j.ydbio.2021.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/14/2021] [Accepted: 03/21/2021] [Indexed: 11/28/2022]
Abstract
The MAPK pathway is a major growth signal that has been implicated during the development of progenitors, neurons, and glia in the embryonic brain. Here, we show that the MAPK pathway plays an important role in the generation of distinct cell types from progenitors in the ventral telencephalon. Our data reveal that phospho-p44/42 (called p-ERK1/2) and the ETS transcription factor Etv5, both downstream effectors in the MAPK pathway, show a regional bias in expression during ventral telencephalic development, with enriched expression in the dorsal region of the LGE and ventral region of the MGE at E13.5 and E15.5. Interestingly, expression of both factors becomes more uniform in ventricular zone (VZ) progenitors by E18.5. To gain insight into the role of MAPK activity during progenitor cell development, we used a cre inducible constitutively active MEK1 allele (RosaMEK1DD/+) in combination with a ventral telencephalon enriched cre (Gsx2e-cre) or a dorsal telencephalon enriched cre (Emx1cre/+). Sustained MEK/MAPK activity in the ventral telencephalon (Gsx2e-cre; RosaMEK1DD/+) expanded dorsal lateral ganglionic eminence (dLGE) enriched genes (Gsx2 and Sp8) and oligodendrocyte progenitor cell (OPC) markers (Olig2, Pdgfrα, and Sox10), and also reduced markers in the ventral (v) LGE domain (Isl1 and Foxp1). Activation of MEK/MAPK activity in the dorsal telencephalon (Emx1cre/+; RosaMEK1DD/+) did not initially activate the expression of dLGE or OPC genes at E15.5 but ectopic expression of Gsx2 and OPC markers were observed at E18.5. These results support the idea that MAPK activity as readout by p-ERK1/2 and Etv5 expression is enriched in distinct subdomains of ventral telencephalic progenitors during development. In addition, sustained activation of the MEK/MAPK pathway in the ventral or dorsal telencephalon influences dLGE and OPC identity from progenitors.
Collapse
Affiliation(s)
- Mary Jo Talley
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Diana Nardini
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Shenyue Qin
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Carlos E Prada
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Lisa A Ehrman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Ronald R Waclaw
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
31
|
Gao X, Zhang Z, Mashimo T, Shen B, Nyagilo J, Wang H, Wang Y, Liu Z, Mulgaonkar A, Hu XL, Piccirillo SGM, Eskiocak U, Davé DP, Qin S, Yang Y, Sun X, Fu YX, Zong H, Sun W, Bachoo RM, Ge WP. Gliomas Interact with Non-glioma Brain Cells via Extracellular Vesicles. Cell Rep 2021; 30:2489-2500.e5. [PMID: 32101730 DOI: 10.1016/j.celrep.2020.01.089] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/22/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence suggests that crosstalk between glioma cells and the brain microenvironment may influence brain tumor growth. To date, known reciprocal interactions among these cells have been limited to the release of paracrine factors. Combining a genetic strategy with longitudinal live imaging, we find that individual gliomas communicate with distinct sets of non-glioma cells, including glial cells, neurons, and vascular cells. Transfer of genetic material is achieved mainly through extracellular vesicles (EVs), although cell fusion also plays a minor role. We further demonstrate that EV-mediated communication leads to the increase of synaptic activity in neurons. Blocking EV release causes a reduction of glioma growth in vivo. Our findings indicate that EV-mediated interaction between glioma cells and non-glioma brain cells alters the tumor microenvironment and contributes to glioma development.
Collapse
Affiliation(s)
- Xiaofei Gao
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhaohuan Zhang
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neurology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Tomoyuki Mashimo
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bo Shen
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - James Nyagilo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hao Wang
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yihui Wang
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 4300030, China
| | - Zhida Liu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aditi Mulgaonkar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiao-Ling Hu
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara G M Piccirillo
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ugur Eskiocak
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Digant P Davé
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Bioengineering, University of Texas, Arlington, TX 76010, USA
| | - Song Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yongjie Yang
- Department of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hui Zong
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Wenzhi Sun
- Chinese Institute for Brain Research, Beijing 102206, China; School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Robert M Bachoo
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Woo-Ping Ge
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
32
|
Noorani I, de la Rosa J, Choi YH, Strong A, Ponstingl H, Vijayabaskar MS, Lee J, Lee E, Richard-Londt A, Friedrich M, Furlanetto F, Fuente R, Banerjee R, Yang F, Law F, Watts C, Rad R, Vassiliou G, Kim JK, Santarius T, Brandner S, Bradley A. PiggyBac mutagenesis and exome sequencing identify genetic driver landscapes and potential therapeutic targets of EGFR-mutant gliomas. Genome Biol 2020; 21:181. [PMID: 32727536 PMCID: PMC7392733 DOI: 10.1186/s13059-020-02092-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/06/2020] [Indexed: 12/25/2022] Open
Abstract
Background Glioma is the most common intrinsic brain tumor and also occurs in the spinal cord. Activating EGFR mutations are common in IDH1 wild-type gliomas. However, the cooperative partners of EGFR driving gliomagenesis remain poorly understood. Results We explore EGFR-mutant glioma evolution in conditional mutant mice by whole-exome sequencing, transposon mutagenesis forward genetic screening, and transcriptomics. We show mutant EGFR is sufficient to initiate gliomagenesis in vivo, both in the brain and spinal cord. We identify significantly recurrent somatic alterations in these gliomas including mutant EGFR amplifications and Sub1, Trp53, and Tead2 loss-of-function mutations. Comprehensive functional characterization of 96 gliomas by genome-wide piggyBac insertional mutagenesis in vivo identifies 281 known and novel EGFR-cooperating driver genes, including Cdkn2a, Nf1, Spred1, and Nav3. Transcriptomics confirms transposon-mediated effects on expression of these genes. We validate the clinical relevance of new putative tumor suppressors by showing these are frequently altered in patients’ gliomas, with prognostic implications. We discover shared and distinct driver mutations in brain and spinal gliomas and confirm in vivo differential tumor suppressive effects of Pten between these tumors. Functional validation with CRISPR-Cas9-induced mutations in novel genes Tead2, Spred1, and Nav3 demonstrates heightened EGFRvIII-glioma cell proliferation. Chemogenomic analysis of mutated glioma genes reveals potential drug targets, with several investigational drugs showing efficacy in vitro. Conclusion Our work elucidates functional driver landscapes of EGFR-mutant gliomas, uncovering potential therapeutic strategies, and provides new tools for functional interrogation of gliomagenesis.
Collapse
Affiliation(s)
- Imran Noorani
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK. .,Department of Neurosurgery, Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Jorge de la Rosa
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Yoon Ha Choi
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.,Department of New Biology, DGIST, 333, Techno Jungang Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, South Korea
| | - Alexander Strong
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Hannes Ponstingl
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - M S Vijayabaskar
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Jusung Lee
- Department of New Biology, DGIST, 333, Techno Jungang Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, South Korea
| | - Eunmin Lee
- Department of New Biology, DGIST, 333, Techno Jungang Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, South Korea
| | - Angela Richard-Londt
- Division of Neuropathology and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, Mailbox 126, London, WC1N 3BG, UK
| | - Mathias Friedrich
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.,Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Federica Furlanetto
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Rocio Fuente
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Ruby Banerjee
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Fengtang Yang
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Frances Law
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Colin Watts
- Department of Neurosurgery, Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.,Birmingham Brain Cancer Program, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Roland Rad
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675, Munich, Germany
| | - George Vassiliou
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Jong Kyoung Kim
- Department of New Biology, DGIST, 333, Techno Jungang Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, South Korea
| | - Thomas Santarius
- Department of Neurosurgery, Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Sebastian Brandner
- Division of Neuropathology and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, Mailbox 126, London, WC1N 3BG, UK
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| |
Collapse
|
33
|
Brosseau JP, Liao CP, Le LQ. Translating current basic research into future therapies for neurofibromatosis type 1. Br J Cancer 2020; 123:178-186. [PMID: 32439933 PMCID: PMC7374719 DOI: 10.1038/s41416-020-0903-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/25/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a hereditary tumour syndrome that predisposes to benign and malignant tumours originating from neural crest cells. Biallelic inactivation of the tumour-suppressor gene NF1 in glial cells in the skin, along a nerve plexus or in the brain results in the development of benign tumours: cutaneous neurofibroma, plexiform neurofibroma and glioma, respectively. Despite more than 40 years of research, only one medication was recently approved for treatment of plexiform neurofibroma and no drugs have been specifically approved for the management of other tumours. Work carried out over the past several years indicates that inhibiting different cellular signalling pathways (such as Hippo, Janus kinase/signal transducer and activator of transcription, mitogen-activated protein kinase and those mediated by sex hormones) in tumour cells or targeting cells in the microenvironment (nerve cells, macrophages, mast cells and T cells) might benefit NF1 patients. In this review, we outline previous strategies aimed at targeting these signalling pathways or cells in the microenvironment, agents that are currently in clinical trials, and the latest advances in basic research that could culminate in the development of novel therapeutics for patients with NF1.
Collapse
Affiliation(s)
- Jean-Philippe Brosseau
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada.
| | - Chung-Ping Liao
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- UTSW Comprehensive Neurofibromatosis Clinic, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
| |
Collapse
|
34
|
Nix JS, Blakeley J, Rodriguez FJ. An update on the central nervous system manifestations of neurofibromatosis type 1. Acta Neuropathol 2020; 139:625-641. [PMID: 30963251 DOI: 10.1007/s00401-019-02002-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
Neurofibromatosis 1 (NF1) is an autosomal dominant genetic disorder that presents with variable phenotypes as a result of mutations in the neurofibromatosis type 1 (NF1) gene and subsequently, abnormal function of the protein product, neurofibromin. Patients with NF1 are at increased risk for central nervous system (CNS) manifestations including structural, functional, and neoplastic disease. The mechanisms underlying the varied manifestations of NF1 are incompletely understood, but the loss of functional neurofibromin, resulting in sustained activation of the oncoprotein RAS, is responsible for tumorigenesis throughout the body, including the CNS. Much of our understanding of NF1-related CNS manifestations is from a combination of data from animal models and natural history studies of people with NF1 and CNS disease. Data from animal models suggest the importance of both Nf1 mutations and somatic genetic alterations, such as Tp53 loss, for development of neoplasms, as well as the role of the timing of the acquisition of such alterations on the variability of CNS manifestations. A variety of non-neoplastic structural (macrocephaly, hydrocephalus, aqueductal stenosis, and vasculopathy) and functional (epilepsy, impaired cognition, attention deficits, and autism spectrum disorder) abnormalities occur with variable frequency in individuals with NF1. In addition, there is increasing evidence that similar appearing CNS neoplasms in people with and without the NF1 syndrome are due to distinct oncogenic pathways. Gliomas in people with NF1 show alterations in the RAS/MAPK pathway, generally in the absence of BRAF alterations (common to sporadic pilocytic astrocytomas) or IDH or histone H3 mutations (common to diffuse gliomas subsets). A subset of low-grade astrocytomas in these patients remain difficult to classify using standard criteria, and occasionally demonstrate morphologic features resembling subependymal giant cell astrocytomas that afflict patients with tuberous sclerosis complex ("SEGA-like astrocytomas"). There is also emerging evidence that NF1-associated high-grade astrocytomas have frequent co-existing alterations such as ATRX mutations and an alternative lengthening of telomeres (ALT) phenotype responsible for unique biologic properties. Ongoing efforts are seeking to improve diagnostic accuracy for CNS neoplasms in the setting of NF1 versus sporadic tumors. In addition, MEK inhibitors, which act on the RAS/MAPK pathway, continue to be studied as rational targets for the treatment of NF1-associated tumors, including CNS tumors.
Collapse
|
35
|
Kang M, Lee YS. The impact of RASopathy-associated mutations on CNS development in mice and humans. Mol Brain 2019; 12:96. [PMID: 31752929 PMCID: PMC6873535 DOI: 10.1186/s13041-019-0517-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/28/2019] [Indexed: 01/04/2023] Open
Abstract
The RAS signaling pathway is involved in the regulation of developmental processes, including cell growth, proliferation, and differentiation, in the central nervous system (CNS). Germline mutations in the RAS signaling pathway genes are associated with a group of neurodevelopmental disorders, collectively called RASopathy, which includes neurofibromatosis type 1, Noonan syndrome, cardio-facio-cutaneous syndrome, and Costello syndrome. Most mutations associated with RASopathies increase the activity of the RAS-ERK signaling pathway, and therefore, most individuals with RASopathies share common phenotypes, such as a short stature, heart defects, facial abnormalities, and cognitive impairments, which are often accompanied by abnormal CNS development. Recent studies using mouse models of RASopathies demonstrated that particular mutations associated with each disorder disrupt CNS development in a mutation-specific manner. Here, we reviewed the recent literatures that investigated the developmental role of RASopathy-associated mutations using mutant mice, which provided insights into the specific contribution of RAS-ERK signaling molecules to CNS development and the subsequent impact on cognitive function in adult mice.
Collapse
Affiliation(s)
- Minkyung Kang
- Department of Physiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 03080, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Yong-Seok Lee
- Department of Physiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 03080, South Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea. .,Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 03080, South Korea.
| |
Collapse
|
36
|
Optic Pathway Glioma in Type 1 Neurofibromatosis: Review of Its Pathogenesis, Diagnostic Assessment, and Treatment Recommendations. Cancers (Basel) 2019; 11:cancers11111790. [PMID: 31739524 PMCID: PMC6896195 DOI: 10.3390/cancers11111790] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Type 1 neurofibromatosis (NF1) is a dominantly inherited condition predisposing to tumor development. Optic pathway glioma (OPG) is the most frequent central nervous system tumor in children with NF1, affecting approximately 15-20% of patients. The lack of well-established prognostic markers and the wide clinical variability with respect to tumor progression and visual outcome make the clinical management of these tumors challenging, with significant differences among distinct centers. We reviewed published articles on OPG diagnostic protocol, follow-up and treatment in NF1. Cohorts of NF1 children with OPG reported in the literature and patients prospectively collected in our center were analyzed with regard to clinical data, tumor anatomical site, diagnostic workflow, treatment and outcome. In addition, we discussed the recent findings on the pathophysiology of OPG development in NF1. This review provides a comprehensive overview about the clinical management of NF1-associated OPG, focusing on the most recent advances from preclinical studies with genetically engineered models and the ongoing clinical trials.
Collapse
|
37
|
Holter MC, Hewitt LT, Koebele SV, Judd JM, Xing L, Bimonte-Nelson HA, Conrad CD, Araki T, Neel BG, Snider WD, Newbern JM. The Noonan Syndrome-linked Raf1L613V mutation drives increased glial number in the mouse cortex and enhanced learning. PLoS Genet 2019; 15:e1008108. [PMID: 31017896 PMCID: PMC6502435 DOI: 10.1371/journal.pgen.1008108] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 05/06/2019] [Accepted: 03/22/2019] [Indexed: 12/19/2022] Open
Abstract
RASopathies are a family of related syndromes caused by mutations in regulators of the RAS/Extracellular Regulated Kinase 1/2 (ERK1/2) signaling cascade that often result in neurological deficits. RASopathy mutations in upstream regulatory components, such as NF1, PTPN11/SHP2, and RAS have been well-characterized, but mutation-specific differences in the pathogenesis of nervous system abnormalities remain poorly understood, especially those involving mutations downstream of RAS. Here, we assessed cellular and behavioral phenotypes in mice expressing a Raf1L613V gain-of-function mutation associated with the RASopathy, Noonan Syndrome. We report that Raf1L613V/wt mutants do not exhibit a significantly altered number of excitatory or inhibitory neurons in the cortex. However, we observed a significant increase in the number of specific glial subtypes in the forebrain. The density of GFAP+ astrocytes was significantly increased in the adult Raf1L613V/wt cortex and hippocampus relative to controls. OLIG2+ oligodendrocyte progenitor cells were also increased in number in mutant cortices, but we detected no significant change in myelination. Behavioral analyses revealed no significant changes in voluntary locomotor activity, anxiety-like behavior, or sociability. Surprisingly, Raf1L613V/wt mice performed better than controls in select aspects of the water radial-arm maze, Morris water maze, and cued fear conditioning tasks. Overall, these data show that increased astrocyte and oligodendrocyte progenitor cell (OPC) density in the cortex coincides with enhanced cognition in Raf1L613V/wt mutants and further highlight the distinct effects of RASopathy mutations on nervous system development and function. The RASopathies are a large and complex family of syndromes caused by mutations in the RAS/MAPK signaling cascade with no known cure. Individuals with these syndromes often present with heart defects, craniofacial differences, and neurological abnormalities, such as developmental delay, cognitive changes, epilepsy, and an increased risk of autism. However, there is wide variation in the extent of intellectual ability between individuals. It is currently unclear how different RASopathy mutations affect brain development. Here, we describe the cellular and behavioral consequences of a mutation in a gene called Raf1 that is associated with a common RASopathy, Noonan Syndrome. We find that mice harboring a mutation in Raf1 show moderate increases in the number of two subsets of glial cells, which is also observed in a number of other RASopathy brain samples. Surprisingly, we found that Raf1 mutant mice show improved performance in several learning and memory tasks. Our work highlights potential mutation-specific changes in RASopathy brain function and helps set the framework for future personalized therapeutic approaches.
Collapse
Affiliation(s)
- Michael C. Holter
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Lauren. T. Hewitt
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Stephanie V. Koebele
- Department of Psychology, Arizona State University, Tempe, Arizona, United States of America
- Arizona Alzheimer’s Consortium, Phoenix, Arizona, United States of America
| | - Jessica M. Judd
- Department of Psychology, Arizona State University, Tempe, Arizona, United States of America
| | - Lei Xing
- Neuroscience Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Heather A. Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, Arizona, United States of America
- Arizona Alzheimer’s Consortium, Phoenix, Arizona, United States of America
| | - Cheryl D. Conrad
- Department of Psychology, Arizona State University, Tempe, Arizona, United States of America
| | - Toshiyuki Araki
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, United States of America
| | - Benjamin G. Neel
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, United States of America
| | - William D. Snider
- Neuroscience Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Jason M. Newbern
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
38
|
NF1 deficiency correlates with estrogen receptor signaling and diminished survival in breast cancer. NPJ Breast Cancer 2018; 4:29. [PMID: 30182054 PMCID: PMC6117327 DOI: 10.1038/s41523-018-0080-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/11/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022] Open
Abstract
The key negative regulatory gene of the RAS pathway, NF1, is mutated or deleted in numerous cancer types and is associated with increased cancer risk and drug resistance. Even though women with neurofibromatosis (germline NF1 mutations) have a substantially increased breast cancer risk at a young age and NF1 is commonly mutated in sporadic breast cancers, we have a limited understanding of the role of NF1 in breast cancer. We utilized CRISPR-Cas9 gene editing to create Nf1 rat models to evaluate the effect of Nf1 deficiency on tumorigenesis. The resulting Nf1 indels induced highly penetrant, aggressive mammary adenocarcinomas that express estrogen receptor (ER) and progesterone receptor (PR). We identified distinct Nf1 mRNA and protein isoforms that were altered during tumorigenesis. To evaluate NF1 in human breast cancer, we analyzed genomic changes in a data set of 2000 clinically annotated breast cancers. We found NF1 shallow deletions in 25% of sporadic breast cancers, which correlated with poor clinical outcome. To identify biological networks impacted by NF1 deficiency, we constructed gene co-expression networks using weighted gene correlation network analysis (WGCNA) and identified a network connected to ESR1 (estrogen receptor). Moreover, NF1-deficient cancers correlated with established RAS activation signatures. Estrogen-dependence was verified by estrogen-ablation in Nf1 rats where rapid tumor regression was observed. Additionally, Nf1 deficiency correlated with increased estrogen receptor phosphorylation in mammary adenocarcinomas. These results demonstrate a significant role for NF1 in both NF1-related breast cancer and sporadic breast cancer, and highlight a potential functional link between neurofibromin and the estrogen receptor.
Collapse
|
39
|
Freret ME, Gutmann DH. Insights into optic pathway glioma vision loss from mouse models of neurofibromatosis type 1. J Neurosci Res 2018; 97:45-56. [PMID: 29704429 DOI: 10.1002/jnr.24250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a common cancer predisposition syndrome caused by mutations in the NF1 gene. The NF1-encoded protein (neurofibromin) is an inhibitor of the oncoprotein RAS and controls cell growth and survival. Individuals with NF1 are prone to developing low-grade tumors of the optic nerves, chiasm, tracts, and radiations, termed optic pathway gliomas (OPGs), which can cause vision loss. A paucity of surgical tumor specimens and of patient-derived xenografts for investigative studies has limited our understanding of human NF1-associated OPG (NF1-OPG). However, mice genetically engineered to harbor Nf1 gene mutations develop optic gliomas that share many features of their human counterparts. These genetically engineered mouse (GEM) strains have provided important insights into the cellular and molecular determinants that underlie mouse Nf1 optic glioma development, maintenance, and associated vision loss, with relevance by extension to human NF1-OPG disease. Herein, we review our current understanding of NF1-OPG pathobiology and describe the mechanisms responsible for tumor initiation, growth, and associated vision loss in Nf1 GEM models. We also discuss how Nf1 GEM and other preclinical models can be deployed to identify and evaluate molecularly targeted therapies for OPG, particularly as they pertain to future strategies aimed at preventing or improving tumor-associated vision loss in children with NF1.
Collapse
Affiliation(s)
- Morgan E Freret
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
40
|
Pan Y, Xiong M, Chen R, Ma Y, Corman C, Maricos M, Kindler U, Semtner M, Chen YH, Dahiya S, Gutmann DH. Athymic mice reveal a requirement for T-cell-microglia interactions in establishing a microenvironment supportive of Nf1 low-grade glioma growth. Genes Dev 2018; 32:491-496. [PMID: 29632086 PMCID: PMC5959233 DOI: 10.1101/gad.310797.117] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/13/2018] [Indexed: 12/21/2022]
Abstract
Murine Neurofibromatosis-1 (Nf1) optic low-grade glioma (LGG) stem cells (o-GSCs) form glioma-like lesions in wild-type, but not athymic, mice following transplantation. Here, Pan et al. show that the inability of athymic mice to support o-GSC engraftment results from impaired brain microglia/macrophage function, including reduced expression of Ccr2 and Ccl5, both of which are required for o-GSC engraftment and Nf1 optic glioma growth. Pediatric low-grade gliomas (LGGs) frequently do not engraft in immunocompromised mice, limiting their use as an experimental platform. In contrast, murine Neurofibromatosis-1 (Nf1) optic LGG stem cells (o-GSCs) form glioma-like lesions in wild-type, but not athymic, mice following transplantation. Here, we show that the inability of athymic mice to support o-GSC engraftment results from impaired microglia/macrophage function, including reduced expression of Ccr2 and Ccl5, both of which are required for o-GSC engraftment and Nf1 optic glioma growth. Impaired Ccr2 and Ccl5 expression in athymic microglia/macrophages was restored by T-cell exposure, establishing T-cell–microglia/macrophage interactions as critical stromal determinants that support NF1 LGG growth.
Collapse
Affiliation(s)
- Yuan Pan
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Min Xiong
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ran Chen
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Yu Ma
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Courtney Corman
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Meron Maricos
- Cellular Neuroscience, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| | - Urs Kindler
- Cellular Neuroscience, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| | - Marcus Semtner
- Cellular Neuroscience, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| | - Yi-Hsien Chen
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Genome Engineering and iPSC Center (GEIC), Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Sonika Dahiya
- Division of Neuropathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
41
|
Toonen JA, Ma Y, Gutmann DH. Defining the temporal course of murine neurofibromatosis-1 optic gliomagenesis reveals a therapeutic window to attenuate retinal dysfunction. Neuro Oncol 2018; 19:808-819. [PMID: 28039362 DOI: 10.1093/neuonc/now267] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Optic gliomas arising in the neurofibromatosis type 1 (NF1) cancer predisposition syndrome cause reduced visual acuity in 30%-50% of affected children. Since human specimens are rare, genetically engineered mouse (GEM) models have been successfully employed for preclinical therapeutic discovery and validation. However, the sequence of cellular and molecular events that culminate in retinal dysfunction and vision loss has not been fully defined relevant to potential neuroprotective treatment strategies. Methods Nf1flox/mut GFAP-Cre (FMC) mice and age-matched Nf1flox/flox (FF) controls were euthanized at defined intervals from 2 weeks to 24 weeks of age. Optic nerve volumes were measured, and optic nerves/retinae analyzed by immunohistochemistry. Optical coherence tomography (OCT) was performed on anesthetized mice. FMC mice were treated with lovastatin from 12 to 16 weeks of age. Results The earliest event in tumorigenesis was a persistent elevation in proliferation (4 wk), which preceded sustained microglia numbers and incremental increases in S100+ glial cells. Microglia activation, as evidenced by increased interleukin (IL)-1β expression and morphologic changes, coincided with axonal injury and retinal ganglion cell (RGC) apoptosis (6 wk). RGC loss and retinal nerve fiber layer (RNFL) thinning then ensued (9 wk), as revealed by direct measurements and live-animal OCT. Lovastatin administration at 12 weeks prevented further RGC loss and RNFL thinning both immediately and 8 weeks after treatment completion. Conclusion By defining the chronology of the cellular and molecular events associated with optic glioma pathogenesis, we demonstrate critical periods for neuroprotective intervention and visual preservation, as well as establish OCT as an accurate biomarker of RGC loss.
Collapse
Affiliation(s)
- Joseph A Toonen
- Department of Neurology, Washington University School of Medicine (WUSM), St Louis, Missouri, USA
| | - Yu Ma
- Department of Neurology, Washington University School of Medicine (WUSM), St Louis, Missouri, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine (WUSM), St Louis, Missouri, USA
| |
Collapse
|
42
|
Aoidi R, Houde N, Landry-Truchon K, Holter M, Jacquet K, Charron L, Krishnaswami SR, Yu BD, Rauen KA, Bisson N, Newbern J, Charron J. Mek1Y130C mice recapitulate aspects of human cardio-facio-cutaneous syndrome. Dis Model Mech 2018; 11:dmm.031278. [PMID: 29590634 PMCID: PMC5897723 DOI: 10.1242/dmm.031278] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 02/07/2018] [Indexed: 12/28/2022] Open
Abstract
The RAS/MAPK signaling pathway is one of the most investigated pathways, owing to its established role in numerous cellular processes and implication in cancer. Germline mutations in genes encoding members of the RAS/MAPK pathway also cause severe developmental syndromes collectively known as RASopathies. These syndromes share overlapping characteristics, including craniofacial dysmorphology, cardiac malformations, cutaneous abnormalities and developmental delay. Cardio-facio-cutaneous syndrome (CFC) is a rare RASopathy associated with mutations in BRAF, KRAS, MEK1 (MAP2K1) and MEK2 (MAP2K2). MEK1 and MEK2 mutations are found in ∼25% of the CFC patients and the MEK1Y130C substitution is the most common one. However, little is known about the origins and mechanisms responsible for the development of CFC. To our knowledge, no mouse model carrying RASopathy-linked Mek1 or Mek2 gene mutations has been reported. To investigate the molecular and developmental consequences of the Mek1Y130C mutation, we generated a mouse line carrying this mutation. Analysis of mice from a Mek1 allelic series revealed that the Mek1Y130C allele expresses both wild-type and Y130C mutant forms of MEK1. However, despite reduced levels of MEK1 protein and the lower abundance of MEK1 Y130C protein than wild type, Mek1Y130C mutants showed increased ERK (MAPK) protein activation in response to growth factors, supporting a role for MEK1 Y130C in hyperactivation of the RAS/MAPK pathway, leading to CFC. Mek1Y130C mutant mice exhibited pulmonary artery stenosis, cranial dysmorphia and neurological anomalies, including increased numbers of GFAP+ astrocytes and Olig2+ oligodendrocytes in regions of the cerebral cortex. These data indicate that the Mek1Y130C mutation recapitulates major aspects of CFC, providing a new animal model to investigate the physiopathology of this RASopathy. This article has an associated First Person interview with the first author of the paper. Summary: A mouse model for cardio-facio-cutaneous syndrome caused by MEK1 Y130C mutant protein reveals the role of hyperactivation of the RAS/MAPK pathway in the development of the syndrome.
Collapse
Affiliation(s)
- Rifdat Aoidi
- Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec G1V 0A6, Canada
| | - Nicolas Houde
- Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec G1V 0A6, Canada
| | - Kim Landry-Truchon
- Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec G1V 0A6, Canada
| | - Michael Holter
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Kevin Jacquet
- Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec G1V 0A6, Canada
| | - Louis Charron
- Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada
| | - Suguna Rani Krishnaswami
- Institute for Genomic Medicine, Division of Dermatology, University of California San Diego, La Jolla, CA 92093-0761, USA
| | - Benjamin D Yu
- Institute for Genomic Medicine, Division of Dermatology, University of California San Diego, La Jolla, CA 92093-0761, USA.,Interpreta Inc., San Diego, CA 92121, USA
| | - Katherine A Rauen
- Department of Pediatrics, Division of Genomic Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Nicolas Bisson
- Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec G1V 0A6, Canada
| | - Jason Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jean Charron
- Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada .,Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec G1V 0A6, Canada
| |
Collapse
|
43
|
Boussiotis VA, Charest A. Immunotherapies for malignant glioma. Oncogene 2018; 37:1121-1141. [PMID: 29242608 PMCID: PMC5828703 DOI: 10.1038/s41388-017-0024-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/31/2022]
Abstract
Glioblastoma multiforme (GBM) is a highly malignant primary brain cancer with a dreadful overall survival and for which treatment options are limited. Recent breakthroughs in novel immune-related treatment strategies for cancer have spurred interests in usurping the power of the patient's immune system to recognize and eliminate GBM. Here, we discuss the unique properties of GBM's tumor microenvironment, the effects of GBM standard on care therapy on tumor-associated immune cells, and review several approaches aimed at therapeutically targeting the immune system for GBM treatment. We believe that a comprehensive understanding of the intricate micro-environmental landscape of GBM will abound into the development of novel immunotherapy strategies for GBM patients.
Collapse
Affiliation(s)
- Vassiliki A Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Alain Charest
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA, USA.
- Division of Genetics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Khatua S, Gutmann DH, Packer RJ. Neurofibromatosis type 1 and optic pathway glioma: Molecular interplay and therapeutic insights. Pediatr Blood Cancer 2018; 65. [PMID: 29049847 DOI: 10.1002/pbc.26838] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/21/2017] [Accepted: 09/02/2017] [Indexed: 12/17/2022]
Abstract
Children with neurofibromatosis type 1 (NF1) are predisposed to develop central nervous system neoplasms, the most common of which are low-grade gliomas (LGGs). The absence of human NF1 associated LGG-derived cell lines, coupled with an inability to generate patient-derived xenograft models, represents barriers to profile molecularly targeted therapies for these tumors. Thus, genetically engineered mouse models have been identified to evaluate the interplay between Nf1-deficient tumor cells and nonneoplastic stromal cells to evaluate potential therapies for these neoplasms. Future treatments might also consider targeting the nonneoplastic cells in NF1-LGGs to reduce tumor growth and neurologic morbidity in affected children.
Collapse
Affiliation(s)
- Soumen Khatua
- Department of Pediatrics, MD Anderson Cancer Center, Houston, Texas
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Roger J Packer
- Center for Neuroscience and Behavioral Medicine, Children's National Medical Center, Washington, District of Columbia
| |
Collapse
|
45
|
Abstract
Neurofibromatosis type 1 (NF1) is one of the most common brain tumor predisposition syndromes, in which affected children are prone to the development of low-grade gliomas. While NF1-associated gliomas can be found in several brain regions, the majority arise in the optic nerves, chiasm, tracts, and radiations (optic pathway gliomas; OPGs). Owing to their location, 35-50% of affected children present with reduced visual acuity. Unfortunately, despite tumor stabilization following chemotherapy, vision does not improve in most children. For this reasons, more effective therapies are being sought that reflect a deeper understanding of the NF1 gene and the use of authenticated Nf1 genetically-engineered mouse strains. The implementation of these models for drug discovery and validation has galvanized molecularly-targeted clinical trials in children with NF1-OPG. Future research focused on defining the cellular and molecular factors that underlie optic glioma development and progression also has the potential to provide personalized risk assessment strategies for this pediatric population.
Collapse
Affiliation(s)
| | - David H. Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis MO
| |
Collapse
|
46
|
|
47
|
Monroe CL, Dahiya S, Gutmann DH. Dissecting Clinical Heterogeneity in Neurofibromatosis Type 1. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 12:53-74. [PMID: 28135565 DOI: 10.1146/annurev-pathol-052016-100228] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a common neurogenetic disorder in which affected children and adults are predisposed to the development of benign and malignant nervous system tumors. Caused by a germline mutation in the NF1 tumor suppressor gene, individuals with NF1 are prone to optic gliomas, malignant gliomas, neurofibromas, and malignant peripheral nerve sheath tumors, as well as behavioral, cognitive, motor, bone, cardiac, and pigmentary abnormalities. Although NF1 is a classic monogenic syndrome, the clinical features of the disorder and their impact on patient morbidity are variable, even within individuals who bear the same germline NF1 gene mutation. As such, NF1 affords unique opportunities to define the factors that contribute to disease heterogeneity and to develop therapies personalized to a given individual (precision medicine). This review highlights the clinical features of NF1 and the use of genetically engineered mouse models to define the molecular and cellular pathogenesis of NF1-associated nervous system tumors.
Collapse
Affiliation(s)
- Courtney L Monroe
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110;
| | - Sonika Dahiya
- Division of Neuropathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110;
| |
Collapse
|
48
|
Packer RJ, Pfister S, Bouffet E, Avery R, Bandopadhayay P, Bornhorst M, Bowers DC, Ellison D, Fangusaro J, Foreman N, Fouladi M, Gajjar A, Haas-Kogan D, Hawkins C, Ho CY, Hwang E, Jabado N, Kilburn LB, Lassaletta A, Ligon KL, Massimino M, Meeteren SV, Mueller S, Nicolaides T, Perilongo G, Tabori U, Vezina G, Warren K, Witt O, Zhu Y, Jones DT, Kieran M. Pediatric low-grade gliomas: implications of the biologic era. Neuro Oncol 2017; 19:750-761. [PMID: 27683733 PMCID: PMC5464436 DOI: 10.1093/neuonc/now209] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
For the past decade, it has been recognized that pediatric low-grade gliomas (LGGs) and glial-neuronal tumors carry distinct molecular alterations with resultant aberrant intracellular signaling in the Ras-mitogen-activated protein kinase pathway. The conclusions and recommendations of a consensus conference of how best to integrate the growing body of molecular genetic information into tumor classifications and, more importantly, for future treatment of pediatric LGGs are summarized here. There is uniform agreement that molecular characterization must be incorporated into classification and is increasingly critical for appropriate management. Molecular-targeted therapies should be integrated expeditiously, but also carefully into the management of these tumors and success measured not only by radiographic responses or stability, but also by functional outcomes. These trials need to be carried out with the caveat that the long-term impact of molecularly targeted therapy on the developing nervous system, especially with long duration treatment, is essentially unknown.
Collapse
Affiliation(s)
- Roger J Packer
- Center for Neuroscience and Behavioral Medicine, Washington, District of Columbia, USA
- Gilbert Family Neurofibromatosis Institute, Washington, District of Columbia, USA
- Brain Tumor Institute, Washington, District of Columbia, USA
| | - Stephan Pfister
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Eric Bouffet
- Paediatric Neuro-Oncology Program, Research Institute and The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Robert Avery
- Center for Neuroscience and Behavioral Medicine, Washington, District of Columbia, USA
- Gilbert Family Neurofibromatosis Institute, Washington, District of Columbia, USA
- Brain Tumor Institute, Washington, District of Columbia, USA
| | - Pratiti Bandopadhayay
- Department of Pediatrics, Brigham and Women's Hospital, Harvard Medical School, and the Broad Institute, Dana-Farber/Boston Children's Cancer and Blood Disorders Centre, Boston, Massachusetts, USA
| | - Miriam Bornhorst
- Center for Neuroscience and Behavioral Medicine, Washington, District of Columbia, USA
- Gilbert Family Neurofibromatosis Institute, Washington, District of Columbia, USA
- Brain Tumor Institute, Washington, District of Columbia, USA
- Center for Cancer and Immunology Research, Washington, District of Columbia, USA
| | - Daniel C Bowers
- Department of Pediatrics, UT Southwestern Medical School, Dallas, Texas, USA
| | - David Ellison
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee. USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jason Fangusaro
- Ann and Robert H. Lurie Children's Hospital of Chicago Department of Pediatric Hematology/Oncology and Stem Cell Transplantation, University of Colorado, Aurora, Colorado, USA
| | - Nicholas Foreman
- Northwestern Feinberg School of Medicine, Chicago, Illinois; Children's Hospital Colorado, University of Colorado, Aurora, Colorado, USA
| | - Maryam Fouladi
- Brain Tumor Center, Brain Tumor Translational Research, UC Department of Pediatrics, Cincinnati, Ohio, USA
| | - Amar Gajjar
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, and the Broad Institute, Dana-Farber/Boston Children's Cancer and Blood Disorders Centre, Boston, Massachusetts, USA
| | - Cynthia Hawkins
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee. USA
| | - Cheng-Ying Ho
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Eugene Hwang
- Center for Neuroscience and Behavioral Medicine, Washington, District of Columbia, USA
- Brain Tumor Institute, Washington, District of Columbia, USA
- Center for Cancer and Immunology Research, Washington, District of Columbia, USA
| | - Nada Jabado
- Ann and Robert H. Lurie Children's Hospital of Chicago Department of Pediatric Hematology/Oncology and Stem Cell Transplantation, University of Colorado, Aurora, Colorado, USA
| | - Lindsay B Kilburn
- Brain Tumor Institute, Washington, District of Columbia, USA
- Center for Cancer and Immunology Research, Washington, District of Columbia, USA
| | - Alvaro Lassaletta
- Northwestern Feinberg School of Medicine, Chicago, Illinois; Children's Hospital Colorado, University of Colorado, Aurora, Colorado, USA
| | - Keith L Ligon
- Brain Tumor Center, Brain Tumor Translational Research, UC Department of Pediatrics, Cincinnati, Ohio, USA
- Brain Tumor Center, Brain Tumor Translational Research, UC Department of Pediatrics, Cincinnati, Ohio, USA
| | - Maura Massimino
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, and the Broad Institute, Dana-Farber/Boston Children's Cancer and Blood Disorders Centre, Boston, Massachusetts, USA
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, and the Broad Institute, Dana-Farber/Boston Children's Cancer and Blood Disorders Centre, Boston, Massachusetts, USA
| | | | - Sabine Mueller
- Department of Neurology, Pediatrics and Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | - Theo Nicolaides
- Department of Neurology, Pediatrics and Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | - Giorgio Perilongo
- Department of Woman's and Child's Health, University of Padua, Padua, Italy
| | - Uri Tabori
- Division of Haematology/Oncology, Research Institute and The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Gilbert Vezina
- Gilbert Family Neurofibromatosis Institute, Washington, District of Columbia, USA
- Brain Tumor Institute, Washington, District of Columbia, USA
- Division of Neuroradiology, Washington, District of Columbia, USA
| | - Katherine Warren
- National Cancer Institute, Pediatric Oncology and Neuro-Oncology Branches, Bethesda, Maryland, USA
| | - Olaf Witt
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yuan Zhu
- Center for Neuroscience and Behavioral Medicine, Washington, District of Columbia, USA
- Gilbert Family Neurofibromatosis Institute, Washington, District of Columbia, USA
- Center for Cancer and Immunology Research, Washington, District of Columbia, USA
| | - David T Jones
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark Kieran
- Brain Tumor Center, Brain Tumor Translational Research, UC Department of Pediatrics, Cincinnati, Ohio, USA
| |
Collapse
|
49
|
Wegscheid ML, Anastasaki C, Gutmann DH. Human stem cell modeling in neurofibromatosis type 1 (NF1). Exp Neurol 2017; 299:270-280. [PMID: 28392281 DOI: 10.1016/j.expneurol.2017.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/15/2017] [Accepted: 04/05/2017] [Indexed: 01/03/2023]
Abstract
The future of precision medicine is heavily reliant on the use of human tissues to identify the key determinants that account for differences between individuals with the same disorder. This need is exemplified by the neurofibromatosis type 1 (NF1) neurogenetic condition. As such, individuals with NF1 are born with a germline mutation in the NF1 gene, but may develop numerous distinct neurological problems, ranging from autism and attention deficit to brain and peripheral nerve sheath tumors. Coupled with accurate preclinical mouse models, the availability of NF1 patient-derived induced pluripotent stem cells (iPSCs) provides new opportunities to define the critical factors that underlie NF1-associated nervous system disease pathogenesis and progression. In this review, we discuss the generation and potential applications of iPSC technology to the study of NF1.
Collapse
Affiliation(s)
- Michelle L Wegscheid
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
50
|
Abstract
The RAS/MAPK signaling pathway plays key roles in development, cell survival and proliferation, as well as in cancer pathogenesis. Molecular genetic studies have identified a group of developmental syndromes, the RASopathies, caused by germ line mutations in this pathway. The syndromes included within this classification are neurofibromatosis type 1 (NF1), Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NS-ML, formerly known as LEOPARD syndrome), Costello syndrome (CS), cardio-facio-cutaneous syndrome (CFC), Legius syndrome (LS, NF1-like syndrome), capillary malformation-arteriovenous malformation syndrome (CM-AVM), and hereditary gingival fibromatosis (HGF) type 1. Although these syndromes present specific molecular alterations, they are characterized by a large spectrum of functional and morphological abnormalities, which include heart defects, short stature, neurocognitive impairment, craniofacial malformations, and, in some cases, cancer predisposition. The development of genetically modified animals, such as mice (Mus musculus), flies (Drosophila melanogaster), and zebrafish (Danio rerio), has been instrumental in elucidating the molecular and cellular bases of these syndromes. Moreover, these models can also be used to determine tumor predisposition, the impact of different genetic backgrounds on the variable phenotypes found among the patients and to evaluate preventative and therapeutic strategies. Here, we review a wide range of genetically modified mouse models used in the study of RASopathies and the potential application of novel technologies, which hopefully will help us resolve open questions in the field.
Collapse
|