1
|
Tsuji T, Onogawa R, Tatsukawa H, Murai A, Hitomi K. Potential activity of chicken amniotic fluid in epidermal development by promoting keratinocyte differentiation. Arch Biochem Biophys 2025; 768:110365. [PMID: 40020982 DOI: 10.1016/j.abb.2025.110365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/07/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Epidermal barrier formation during fetal development, a fundamental biological process in mammals and birds, occurs in the amniotic cavity filled with amniotic fluid (AF). In keratinocytes, indispensable proteins for barrier formation are produced during differentiation, including transglutaminase 1 (TG1) and structural proteins encoded by a gene cluster, epidermal differentiation complex. In general, the chicken fetus rapidly forms a robust epidermal barrier during a relatively short embryonic day (ED); however, little is known about how chicken AF (cAF) contributes to the controls of gene expression of the factors involved in epidermal development. Here, we first demonstrated that the cross-linking activity of TG1 gradually increased, followed by the development of barrier function until ED18 in the chicken fetal epidermis. Then, we revealed that cAF harvested at specific fetal stages had the ability to enhance the expression and activity of TG1, and to facilitate the expression of genes for the other epidermal transglutaminases, structural proteins, and differentiation-related transcription factors in human cultured keratinocytes. Furthermore, the thermal denaturation of cAF components reduced cAF efficacy in promoting the expression of those factors. The fractionated proteinaceous solution of cAF possessed the activity to induce the protein expression of barrier formation-related factors, such as the transcription factor zinc finger protein 750. These results indicated that proteinaceous molecules in cAF have the potential to activate the gene expression networks involved in epidermal barrier formation. This finding will provide novel insights into the physiological role of AF in fetal epidermal development.
Collapse
Affiliation(s)
- Tokuji Tsuji
- Laboratory of Cellular Biochemistry, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan.
| | - Ryo Onogawa
- Laboratory of Cellular Biochemistry, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Hideki Tatsukawa
- Laboratory of Cellular Biochemistry, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Atsushi Murai
- Laboratory of Animal Nutrition, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Kiyotaka Hitomi
- Laboratory of Cellular Biochemistry, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan
| |
Collapse
|
2
|
He Q, Li R, Zhong N, Ma J, Nie F, Zhang R. The role and molecular mechanisms of the early growth response 3 gene in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32969. [PMID: 38327141 DOI: 10.1002/ajmg.b.32969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024]
Abstract
Schizophrenia is a chronic, debilitating mental illness caused by both genetic and environmental factors. Genetic factors play a major role in schizophrenia development. Early growth response 3 (EGR3) is a member of the EGR family, which is associated with schizophrenia. Accumulating studies have investigated the relationship between EGR3 and schizophrenia. However, the role of EGR3 in schizophrenia pathogenesis remains unclear. In the present review, we focus on the progress of research related to the role of EGR3 in schizophrenia, including association studies between EGR3 and schizophrenia, abnormal gene expressional analysis of EGR3 in schizophrenia, biological function studies of EGR3 in schizophrenia, the molecular regulatory mechanism of EGR3 and schizophrenia susceptibility candidate genes, and possible role of EGR3 in the immune system function in schizophrenia. In summary, EGR3 is a schizophrenia risk candidate factor and has comprehensive regulatory roles in schizophrenia pathogenesis. Further studies investigating the molecular mechanisms of EGR3 in schizophrenia are warranted for understanding the pathophysiology of this disorder as well as the development of new therapeutic strategies for the treatment and control of this disorder.
Collapse
Affiliation(s)
- Qi He
- School of Basic Medicine, Shaanxi Key Laboratory of Acupuncture and Medicine, Shannxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Ruochun Li
- Department of Medical Technology, Guiyang Healthcare Vocational University, Guiyang, Guizhou, China
| | - Nannan Zhong
- Department of Medical Technology, Guiyang Healthcare Vocational University, Guiyang, Guizhou, China
| | - Jie Ma
- Department of Electron Microscope, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Fayi Nie
- School of Basic Medicine, Shaanxi Key Laboratory of Acupuncture and Medicine, Shannxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Rui Zhang
- Department of Medical Technology, Guiyang Healthcare Vocational University, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Yue L, Yu HF, Tian XC, Guo B, Zheng LW. Egr3 as an important regulator of uterine decidualization through targeting Hand2. Cell Biol Int 2023; 47:406-416. [PMID: 36317452 DOI: 10.1002/cbin.11933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 09/26/2022] [Indexed: 01/13/2023]
Abstract
Early growth response 3 (Egr3) is required for embryogenesis, but little understanding is usable about its function in embryo implantation and decidualization. The present study exhibited an obvious localization of Egr3 in luminal epithelium and subluminal stroma at implantation sites. Administration of estrogen brought about a distinct gather of Egr3 mRNA in uterine luminal and glandular epithelia. Meanwhile, Egr3 was visualized in the decidua where it might facilitate the proliferation of stromal cells via Ccnd3 and accelerate stromal differentiation, testifying the significance of Egr3 in decidualization. In ovariectomized mice uteri or stromal cells, progesterone advanced the expression of Egr3 whose obstruction counteracted the inducement of stromal differentiation by progesterone. Consistently, Egr3 mediated the influence of cAMP and heparin-binding EGF-like growth factor (HB-EGF) on the differentiation program. Additionally, cAMP-protein kinase A (PKA) signaling mediated the adjustment of progesterone on Egr3. Impediment of HB-EGF antagonized the ascendance of Egr3 conferred by cAMP. In stromal cells, Egr3 activated the transcription of Hand2 whose promoter region exhibited the binding enrichment of Egr3. Activation of Hand2 relieved the weakness of stromal differentiation by Egr3 hinderance, whereas knockdown of Hand2 neutralized the guidance of Egr3 overexpression on the differentiation program. Collectively, Egr3 was identified as an important regulator of uterine decidualization through targeting Hand2 in response to progesterone/cAMP/HB-EGF pathway.
Collapse
Affiliation(s)
- Liang Yue
- Department of Obstetrics and Gynecology, Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Hai-Fan Yu
- Department of Animal Histology and Embryology, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Xue-Chao Tian
- Department of Animal Histology and Embryology, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Bin Guo
- Department of Animal Histology and Embryology, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Lian-Wen Zheng
- Department of Obstetrics and Gynecology, Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
4
|
Mitra S, Thomas SA, Martin JA, Williams J, Woodhouse K, Chandra R, Li JX, Lobo MK, Sim FJ, Dietz DM. EGR3 regulates opioid-related nociception and motivation in male rats. Psychopharmacology (Berl) 2022; 239:3539-3550. [PMID: 36098762 PMCID: PMC10094589 DOI: 10.1007/s00213-022-06226-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/24/2022] [Indexed: 01/11/2023]
Abstract
Chronic pain can be a debilitating condition, leading to profound changes in nearly every aspect of life. However, the reliance on opioids such as oxycodone for pain management is thought to initiate dependence and addiction liability. The neurobiological intersection at which opioids relieve pain and possibly transition to addiction is poorly understood. Using RNA sequencing pathway analysis in rats with complete Freund's adjuvant (CFA)-induced chronic inflammation, we found that the transcriptional signatures in the medial prefrontal cortex (mPFC; a brain region where pain and reward signals integrate) elicited by CFA in combination with oxycodone differed from those elicited by CFA or oxycodone alone. However, the expression of Egr3 was augmented in all animals receiving oxycodone. Furthermore, virus-mediated overexpression of EGR3 in the mPFC increased mechanical pain relief but not the affective aspect of pain in animals receiving oxycodone, whereas pharmacological inhibition of EGR3 via NFAT attenuated mechanical pain relief. Egr3 overexpression also increased the motivation to obtain oxycodone infusions in a progressive ratio test without altering the acquisition or maintenance of oxycodone self-administration. Taken together, these data suggest that EGR3 in the mPFC is at the intersection of nociceptive and addictive-like behaviors.
Collapse
Affiliation(s)
- Swarup Mitra
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA.
- Department of Biomedical Sciences, John C. Edwards School of Medicine, Marshall University, 1700, 3rd Avenue, Huntington, WV, 25755, USA.
| | - Shruthi A Thomas
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - Jennifer A Martin
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - Jamal Williams
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - Kristen Woodhouse
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, MD, USA
| | - Jun Xu Li
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, MD, USA
| | - Fraser J Sim
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - David M Dietz
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
5
|
Zhou Q, Meng D, Li F, Zhang X, Liu L, Zhu Y, Liu S, Xu M, Deng J, Lei Z, Sluijter JP, Xiao J. Inhibition of HIPK2 protects stress-induced pathological cardiac remodeling. EBioMedicine 2022; 85:104274. [PMID: 36182775 PMCID: PMC9526139 DOI: 10.1016/j.ebiom.2022.104274] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022] Open
|
6
|
Abdolahi S, Zare-Chahoki A, Noorbakhsh F, Gorji A. A Review of Molecular Interplay between Neurotrophins and miRNAs in Neuropsychological Disorders. Mol Neurobiol 2022; 59:6260-6280. [PMID: 35916975 PMCID: PMC9463196 DOI: 10.1007/s12035-022-02966-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/17/2022] [Indexed: 01/10/2023]
Abstract
Various neurotrophins (NTs), including nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4, promote cellular differentiation, survival, and maintenance, as well as synaptic plasticity, in the peripheral and central nervous system. The function of microRNAs (miRNAs) and other small non-coding RNAs, as regulators of gene expression, is pivotal for the appropriate control of cell growth and differentiation. There are positive and negative loops between NTs and miRNAs, which exert modulatory effects on different signaling pathways. The interplay between NTs and miRNAs plays a crucial role in the regulation of several physiological and pathological brain procedures. Emerging evidence suggests the diagnostic and therapeutic roles of the interactions between NTs and miRNAs in several neuropsychological disorders, including epilepsy, multiple sclerosis, Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, schizophrenia, anxiety disorders, depression, post-traumatic stress disorder, bipolar disorder, and drug abuse. Here, we review current data regarding the regulatory interactions between NTs and miRNAs in neuropsychological disorders, for which novel diagnostic and/or therapeutic strategies are emerging. Targeting NTs-miRNAs interactions for diagnostic or therapeutic approaches needs to be validated by future clinical studies.
Collapse
Affiliation(s)
- Sara Abdolahi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Ameneh Zare-Chahoki
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neurosurgery, Westfälische Wilhelms-Universität, Münster, Germany.
- Department of Neurology and Institute for Translational Neurology, Westfälische Wilhelms-Universität, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität, 48149, Münster, Germany.
| |
Collapse
|
7
|
Labade AS, Salvi A, Kar S, Karmodiya K, Sengupta K. Nup93 and CTCF modulate spatiotemporal dynamics and function of the HOXA gene locus during differentiation. J Cell Sci 2021; 134:273378. [PMID: 34746948 DOI: 10.1242/jcs.259307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/30/2021] [Indexed: 11/20/2022] Open
Abstract
Nucleoporins regulate nuclear transport and are also involved in DNA damage, repair, cell cycle, chromatin organization, and gene expression. Here, we studied the role of nucleoporin Nup93 and the chromatin organizer CTCF in regulating HOXA expression during differentiation. ChIP sequencing revealed a significant overlap between Nup93 and CTCF peaks. Interestingly, Nup93 and CTCF are associated with the 3' and 5'HOXA genes respectively. Depletions of Nup93 and CTCF antagonistically modulate expression levels of 3'and 5'HOXA genes in undifferentiated NT2/D1 cells. Nup93 also regulates the localization of the HOXA gene locus, which disengages from the nuclear periphery upon Nup93 but not CTCF depletion, consistent with its upregulation. The dynamic association of Nup93 and CTCF with the HOXA locus during differentiation correlates with its spatial positioning and expression. While Nup93 tethers the HOXA locus to the nuclear periphery, CTCF potentially regulates looping of the HOXA gene cluster in a temporal manner. In summary, Nup93 and CTCF complement one another in modulating the spatiotemporal dynamics and function of the HOXA gene locus during differentiation.
Collapse
Affiliation(s)
- Ajay S Labade
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 411008 Maharashtra, INDIA
| | - Adwait Salvi
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 411008 Maharashtra, INDIA
| | - Saswati Kar
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 411008 Maharashtra, INDIA
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 411008 Maharashtra, INDIA
| | - Kundan Sengupta
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 411008 Maharashtra, INDIA
| |
Collapse
|
8
|
Abstract
The sympathetic nervous system prepares the body for 'fight or flight' responses and maintains homeostasis during daily activities such as exercise, eating a meal or regulation of body temperature. Sympathetic regulation of bodily functions requires the establishment and refinement of anatomically and functionally precise connections between postganglionic sympathetic neurons and peripheral organs distributed widely throughout the body. Mechanistic studies of key events in the formation of postganglionic sympathetic neurons during embryonic and early postnatal life, including axon growth, target innervation, neuron survival, and dendrite growth and synapse formation, have advanced the understanding of how neuronal development is shaped by interactions with peripheral tissues and organs. Recent progress has also been made in identifying how the cellular and molecular diversity of sympathetic neurons is established to meet the functional demands of peripheral organs. In this Review, we summarize current knowledge of signalling pathways underlying the development of the sympathetic nervous system. These findings have implications for unravelling the contribution of sympathetic dysfunction stemming, in part, from developmental perturbations to the pathophysiology of peripheral neuropathies and cardiovascular and metabolic disorders.
Collapse
|
9
|
Gao W, Li G, Han X, Song Z, Zhao S, Sun F, Ma H, Cui A, Wang Y, Liu X, Chen Y, Zhang L, Ma G, Tang X. Regional brain network and behavioral alterations in EGR3 gene transfected rat model of schizophrenia. Brain Imaging Behav 2021; 15:2606-2615. [PMID: 33723811 DOI: 10.1007/s11682-021-00462-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/31/2020] [Accepted: 06/10/2020] [Indexed: 12/25/2022]
Abstract
Schizophrenia is a severe psychiatric disease while its etiology and effective treatment are not completely clear. A rat model of schizophrenia was previously established by transfecting EGR3 gene into the hippocampus of rats. This study aimed to investigate the behavioral and cerebral alterations of the schizophrenic model rats and the risperidone effects. Twenty-six rats were divided into 3 groups: schizophrenia model group (E group), risperidone treatment group (T group), and healthy control group (H group). Morris water maze and open field test were used as behavioral tests, resting-state functional magnetic resonance imaging (fMRI) was performed after EGR3 gene transfection and risperidone therapy. Graph analyses were used for examining cerebral alterations of the rats. Behavioral tests demonstrated reduced spatial working memory and exploring unfamiliar space ability in schizophrenic model rats. Graph analyses revealed reduced regional architectures in the olfactory bulb, nucleus accumbens, and pineal gland in group E compared to group H (p < 0.05), while group T showed increased regional architecture in pineal gland compared to group E (p < 0.05). Besides, the regional architectures in the olfactory bulb, nucleus accumbens were lower in group T than group H, while the hippocampus showed increased regional architecture in group T compared to group H (p < 0.05). Schizophrenia induced several regional alterations in the cerebrum while risperidone can reverse part of these alterations. This study lends support for future research on the pathology of schizophrenia and provides new insights on the role of risperidone in schizophrenia.
Collapse
Affiliation(s)
- Wenwen Gao
- Department of Radiology, China-Japan Friendship Hospital, No.2 Yinghuayuan East Street, Chaoyang District, Beijing, 100029, China
| | - Guangfei Li
- School of Life Science, Beijing Institute of Technology, No.5 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Xiaowei Han
- Department of Radiology, China-Japan Friendship Hospital, No.2 Yinghuayuan East Street, Chaoyang District, Beijing, 100029, China
- Graduate School of Peking Union Medical College, Beijing, 100006, China
| | - Zeyu Song
- School of Life Science, Beijing Institute of Technology, No.5 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Shuai Zhao
- Changzhi Medical College, Shanxi, 046000, China
| | - Feiyi Sun
- School of Life Science, Beijing Institute of Technology, No.5 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Hong Ma
- School of Life Science, Beijing Institute of Technology, No.5 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Ailing Cui
- Anatomy Department of Changzhi Medical College, Shanxi, 046000, China
| | - Yige Wang
- Department of Radiology, China-Japan Friendship Hospital, No.2 Yinghuayuan East Street, Chaoyang District, Beijing, 100029, China
| | - Xiuxiu Liu
- Department of Radiology, China-Japan Friendship Hospital, No.2 Yinghuayuan East Street, Chaoyang District, Beijing, 100029, China
| | - Yue Chen
- Department of Radiology, China-Japan Friendship Hospital, No.2 Yinghuayuan East Street, Chaoyang District, Beijing, 100029, China
| | - Lu Zhang
- Department of Science and Education, Shangluo Central Hospital, Shangluo, 726000, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, No.2 Yinghuayuan East Street, Chaoyang District, Beijing, 100029, China.
| | - Xiaoying Tang
- School of Life Science, Beijing Institute of Technology, No.5 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
10
|
Jiao B, Wang M, Feng H, Bao H, Zhang F, Wu H, Wang J, Tang B, Jin P, Shen L. Downregulation of TOP2 modulates neurodegeneration caused by GGGGCC expanded repeats. Hum Mol Genet 2021; 30:893-901. [PMID: 33749734 DOI: 10.1093/hmg/ddab079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/18/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
GGGGCC repeats in a non-coding region of the C9orf72 gene have been identified as a major genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. We previously showed that the GGGGCC expanded repeats alone were sufficient to cause neurodegeneration in Drosophila. Recent evidence indicates that GGGGCC expanded repeats can modify various gene transcriptomes. To determine the role of these genes in GGGGCC-mediated neurotoxicity, we screened an established Drosophila model expressing GGGGCC expanded repeats in this study. Our results showed that knockdown of the DNA topoisomerase II (Top2) gene can specifically modulate GGGGCC-associated neurodegeneration of the eye. Furthermore, chemical inhibition of Top2 or siRNA-induced Top2 downregulation could alleviate the GGGGCC-mediated neurotoxicity in Drosophila assessed by eye neurodegeneration and locomotion impairment. By contrast, upregulated Top2 levels were detected in Drosophila strains, and moreover, TOP2A level was also upregulated in Neuro-2a cells expressing GGGGCC expanded repeats, as well as in the brains of Sod1G93A model mice. This indicated that elevated levels of TOP2A may be involved in a pathway common to the pathophysiology of distinct ALS forms. Moreover, through RNA-sequencing, a total of 67 genes, involved in the pathways of intracellular signaling cascades, peripheral nervous system development, and others, were identified as potential targets of TOP2A to modulate GGGGCC-mediated neurodegeneration.
Collapse
Affiliation(s)
- Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China
| | - Mengli Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Hao Feng
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Han Bao
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Feiran Zhang
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
11
|
Nie F, Zhang Q, Ma J, Wang P, Gu R, Han J, Zhang R. Schizophrenia risk candidate EGR3 is a novel transcriptional regulator of RELN and regulates neurite outgrowth via the Reelin signal pathway in vitro. J Neurochem 2020; 157:1745-1758. [PMID: 33113163 DOI: 10.1111/jnc.15225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/06/2020] [Accepted: 10/15/2020] [Indexed: 01/09/2023]
Abstract
Schizophrenia is a severe psychiatric disorder with a strong hereditary component that affects approximately 1% of the world's population. The disease is most likely caused by the altered expression of a number of genes that function at the level of biological pathways or gene networks. Transcription factors (TF) are indispensable regulators of gene expression. EGR3 is a TF associated with schizophrenia. In the current study, DNA microarray and ingenuity pathway analyses (IPA) demonstrated that EGR3 regulates Reelin signaling pathway in SH-SY5Y cells. ChIP and luciferase reporter studies confirmed that EGR3 directly binds to the promoter region of RELN thereby activating RELN expression. The expression of both EGR3 and RELN was decreased during neuronal differentiation induced by retinoic acid (RA) in SH-SY5Y cells, and EGR3 over-expression reduced neurite outgrowth which could be partially reversed by the knockdown of RELN. The expression levels of EGR3 and RELN in peripheral blood of subjects with schizophrenia were found to be down-regulated (compared with healthy controls), and were positively correlated. Furthermore, data mining from public databases revealed that the expression levels of EGR3 and RELN were presented a positive correlation in post-mortem brain tissue of subjects with schizophrenia. Taken together, this study suggests that EGR3 is a novel TF of the RELN gene and regulates neurite outgrowth via the Reelin signaling pathway. Our findings contribute to the understanding of the regulatory role of EGR3 in the pathophysiology and molecular mechanisms of schizophrenia, and potentially to the development of new therapies and diagnostic biomarkers for the disorder.
Collapse
Affiliation(s)
- Fayi Nie
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Qiaoxia Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Jie Ma
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Medical Research Center, Xi'an No. 3 Hospital, Xi'an, Shaanxi, China
| | - Pengjie Wang
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Ruiying Gu
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Jing Han
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Rui Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
12
|
Han S, Zhu T, Ding S, Wen J, Lin Z, Lu G, Zhang Y, Xiao W, Ding Y, Jia X, Chen H, Gong W. Early growth response genes 2 and 3 induced by AP-1 and NF-κB modulate TGF-β1 transcription in NK1.1 - CD4 + NKG2D + T cells. Cell Signal 2020; 76:109800. [PMID: 33011290 DOI: 10.1016/j.cellsig.2020.109800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
NK1.1- CD4+ NKG2D+ T cells are a subpopulation of regulatory T cells that downregulate the functions of CD4+ T, CD8+ T, natural killer (NK) cells, and macrophages through TGF-β1 production. Early growth response genes 2 (Egr2) and 3 (Egr3) maintain immune homeostasis by modulating T lymphocyte development, inhibiting effector T cell function, and promoting the induction of regulatory T cells. Whether Egr2 and Egr3 directly regulate TGF-β1 transcription in NK1.1- CD4+ NKG2D+ T cells remains elusive. The expression levels of Egr2 and Egr3 were higher in NK1.1- CD4+ NKG2D+ T cells than in NK1.1- CD4+ NKG2D- T cells. Egr2 and Egr3 expression were remarkably increased after stimulating NK1.1- CD4+ NKG2D+ T cells with sRAE or α-CD3/sRAE. The ectopic expression of Egr2 or Egr3 resulted in the enhancement of TGF-β1 expression, while knockdown of Egr2 or Egr3 led to the decreased expression of TGF-β1 in NK1.1- CD4+ NKG2D+ T cells. Egr2 and Egr3 directly bound with the TGF-β1 promoter as demonstrated by the electrophoretic mobility shift assay and dual-luciferase gene reporter assay. Furthermore, the Egr2 and Egr3 expression of NK1.1- CD4+ NKG2D+ T cells could be induced by the AP-1 and NF-κB transcriptional factors, but had no involvement with the activation of NF-AT and STAT3. In conclusion, Egr2 and Egr3 induced by AP-1 and NF-κB directly initiate TGF-β1 transcription in NK1.1- CD4+ NKG2D+ T cells. This study indicates that manipulating Egr2 and Egr3 expression would potentiate or alleviate the regulatory function of NK1.1- CD4+ NKG2D+ T cells and this strategy could be used in the therapy for patients with autoimmune diseases or tumor.
Collapse
Affiliation(s)
- Sen Han
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou 225000, PR China; Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Tao Zhu
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou 225000, PR China
| | - Shizhen Ding
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou 225000, PR China
| | - Jianqiang Wen
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou 225000, PR China
| | - Zhijie Lin
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou 225000, PR China
| | - Guotao Lu
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou 225000, PR China; Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou 225000, PR China
| | - Yu Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou 225000, PR China
| | - Weiming Xiao
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou 225000, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou 225000, PR China
| | - Yanbing Ding
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou 225000, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou 225000, PR China
| | - Xiaoqin Jia
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou 225000, PR China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou 225000, PR China
| | - Huabiao Chen
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Weijuan Gong
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou 225000, PR China; Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou 225000, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou 225000, PR China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou 225000, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, PR China.
| |
Collapse
|
13
|
Shin SH, Kim I, Lee JE, Lee M, Park JW. Loss of EGR3 is an independent risk factor for metastatic progression in prostate cancer. Oncogene 2020; 39:5839-5854. [PMID: 32796959 DOI: 10.1038/s41388-020-01418-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
Identification of pro-metastatic genomic alterations is urgently needed to help understand and prevent the fatal course of prostate cancer. Here, we found that the transcription factor EGR3, located at chromosome 8p21.3, is a critical metastasis suppressor. Aberrant deletion of EGR3 was found in up to 59.76% (deep deletions, 16.87%; shallow deletions, 42.89%) of prostate cancer patients. In informatics analysis, EGR3 loss was associated with prostate cancer progression and low survival rates. EGR3 expression inversely correlated with the expressions of epithelial-to-mesenchymal transition (EMT) and metastasis-related gene sets in prostate cancer tissues. In prostate cancer cells, EGR3 blocked the EMT process and suppressed cell migration and invasion. In a mouse model for cancer metastasis, EGR3 overexpression significantly suppressed bone metastases of PC3 and 22Rv1 prostate cancer cells. Mechanistically, EGR3 transcriptionally activated ZFP36, GADD45B, and SOCS3 genes by directly binding to their promoter regions. The EMT-inhibitory and tumor-suppressive roles of the EGR3 downstream genes were identified through in vitro and in silico analyses. Together, our results showed that EGR3 may be a biomarker to predict clinical outcomes and that it plays an important role in the metastatic progression of prostate cancer.
Collapse
Affiliation(s)
- Seung-Hyun Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Iljin Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jae Eun Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Mingyu Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea.,Obstructive Upper airway Research (OUaR) Laboratory, Seoul National University College of Medicine, Seoul, South Korea
| | - Jong-Wan Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea. .,Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea. .,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea. .,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
14
|
Clayton RW, Langan EA, Ansell DM, de Vos IJHM, Göbel K, Schneider MR, Picardo M, Lim X, van Steensel MAM, Paus R. Neuroendocrinology and neurobiology of sebaceous glands. Biol Rev Camb Philos Soc 2020; 95:592-624. [PMID: 31970855 DOI: 10.1111/brv.12579] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
The nervous system communicates with peripheral tissues through nerve fibres and the systemic release of hypothalamic and pituitary neurohormones. Communication between the nervous system and the largest human organ, skin, has traditionally received little attention. In particular, the neuro-regulation of sebaceous glands (SGs), a major skin appendage, is rarely considered. Yet, it is clear that the SG is under stringent pituitary control, and forms a fascinating, clinically relevant peripheral target organ in which to study the neuroendocrine and neural regulation of epithelia. Sebum, the major secretory product of the SG, is composed of a complex mixture of lipids resulting from the holocrine secretion of specialised epithelial cells (sebocytes). It is indicative of a role of the neuroendocrine system in SG function that excess circulating levels of growth hormone, thyroxine or prolactin result in increased sebum production (seborrhoea). Conversely, growth hormone deficiency, hypothyroidism, and adrenal insufficiency result in reduced sebum production and dry skin. Furthermore, the androgen sensitivity of SGs appears to be under neuroendocrine control, as hypophysectomy (removal of the pituitary) renders SGs largely insensitive to stimulation by testosterone, which is crucial for maintaining SG homeostasis. However, several neurohormones, such as adrenocorticotropic hormone and α-melanocyte-stimulating hormone, can stimulate sebum production independently of either the testes or the adrenal glands, further underscoring the importance of neuroendocrine control in SG biology. Moreover, sebocytes synthesise several neurohormones and express their receptors, suggestive of the presence of neuro-autocrine mechanisms of sebocyte modulation. Aside from the neuroendocrine system, it is conceivable that secretion of neuropeptides and neurotransmitters from cutaneous nerve endings may also act on sebocytes or their progenitors, given that the skin is richly innervated. However, to date, the neural controls of SG development and function remain poorly investigated and incompletely understood. Botulinum toxin-mediated or facial paresis-associated reduction of human sebum secretion suggests that cutaneous nerve-derived substances modulate lipid and inflammatory cytokine synthesis by sebocytes, possibly implicating the nervous system in acne pathogenesis. Additionally, evidence suggests that cutaneous denervation in mice alters the expression of key regulators of SG homeostasis. In this review, we examine the current evidence regarding neuroendocrine and neurobiological regulation of human SG function in physiology and pathology. We further call attention to this line of research as an instructive model for probing and therapeutically manipulating the mechanistic links between the nervous system and mammalian skin.
Collapse
Affiliation(s)
- Richard W Clayton
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore
| | - Ewan A Langan
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Department of Dermatology, Allergology und Venereology, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| | - David M Ansell
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, U.K
| | - Ivo J H M de Vos
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore
| | - Klaus Göbel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore.,Department of Dermatology, Cologne Excellence Cluster on Stress Responses in Aging Associated Diseases (CECAD), and Centre for Molecular Medicine Cologne, The University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany
| | - Marlon R Schneider
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, Berlin, 10589, Germany
| | - Mauro Picardo
- Cutaneous Physiopathology and Integrated Centre of Metabolomics Research, San Gallicano Dermatological Institute IRCCS, Via Elio Chianesi 53, Rome, 00144, Italy
| | - Xinhong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Maurice A M van Steensel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Ralf Paus
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Dr. Phllip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB 2023A, Miami, FL, 33136, U.S.A.,Monasterium Laboratory, Mendelstraße 17, Münster, 48149, Germany
| |
Collapse
|
15
|
Cipolla-Neto J, Amaral FGD. Melatonin as a Hormone: New Physiological and Clinical Insights. Endocr Rev 2018; 39:990-1028. [PMID: 30215696 DOI: 10.1210/er.2018-00084] [Citation(s) in RCA: 360] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
Melatonin is a ubiquitous molecule present in almost every live being from bacteria to humans. In vertebrates, besides being produced in peripheral tissues and acting as an autocrine and paracrine signal, melatonin is centrally synthetized by a neuroendocrine organ, the pineal gland. Independently of the considered species, pineal hormone melatonin is always produced during the night and its production and secretory episode duration are directly dependent on the length of the night. As its production is tightly linked to the light/dark cycle, melatonin main hormonal systemic integrative action is to coordinate behavioral and physiological adaptations to the environmental geophysical day and season. The circadian signal is dependent on its daily production regularity, on the contrast between day and night concentrations, and on specially developed ways of action. During its daily secretory episode, melatonin coordinates the night adaptive physiology through immediate effects and primes the day adaptive responses through prospective effects that will only appear at daytime, when melatonin is absent. Similarly, the annual history of the daily melatonin secretory episode duration primes the central nervous/endocrine system to the seasons to come. Remarkably, maternal melatonin programs the fetuses' behavior and physiology to cope with the environmental light/dark cycle and season after birth. These unique ways of action turn melatonin into a biological time-domain-acting molecule. The present review focuses on the above considerations, proposes a putative classification of clinical melatonin dysfunctions, and discusses general guidelines to the therapeutic use of melatonin.
Collapse
Affiliation(s)
- José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
16
|
Villarroel-Campos D, Schiavo G, Lazo OM. The many disguises of the signalling endosome. FEBS Lett 2018; 592:3615-3632. [PMID: 30176054 PMCID: PMC6282995 DOI: 10.1002/1873-3468.13235] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/29/2018] [Indexed: 01/09/2023]
Abstract
Neurons are highly complex and polarised cells that must overcome a series of logistic challenges to maintain homeostasis across their morphological domains. A very clear example is the propagation of neurotrophic signalling from distal axons, where target-released neurotrophins bind to their receptors and initiate signalling, towards the cell body, where nuclear and cytosolic responses are integrated. The mechanisms of propagation of neurotrophic signalling have been extensively studied and, eventually, the model of a 'signalling endosome', transporting activated receptors and associated complexes, has emerged. Nevertheless, the exact nature of this organelle remains elusive. In this Review, we examine the evidence for the retrograde transport of neurotrophins and their receptors in endosomes, outline some of their diverse physiological and pathological roles, and discuss the main interactors, morphological features and trafficking destinations of a highly flexible endosomal signalling organelle with multiple molecular signatures.
Collapse
Affiliation(s)
- David Villarroel-Campos
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, UK.,UK Dementia Research Institute at UCL, London, UK.,Discoveries Centre for Regenerative and Precision Medicine, University College London Campus, UK
| | - Oscar Marcelo Lazo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, UK
| |
Collapse
|
17
|
Scott-Solomon E, Kuruvilla R. Mechanisms of neurotrophin trafficking via Trk receptors. Mol Cell Neurosci 2018; 91:25-33. [PMID: 29596897 DOI: 10.1016/j.mcn.2018.03.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/19/2018] [Accepted: 03/26/2018] [Indexed: 12/31/2022] Open
Abstract
In neurons, long-distance communication between axon terminals and cell bodies is a critical determinant in establishing and maintaining neural circuits. Neurotrophins are soluble factors secreted by post-synaptic target tissues that retrogradely control axon and dendrite growth, survival, and synaptogenesis of innervating neurons. Neurotrophins bind Trk receptor tyrosine kinases in axon terminals to promote endocytosis of ligand-bound phosphorylated receptors into signaling endosomes. Trk-harboring endosomes function locally in axons to acutely promote growth events, and can also be retrogradely transported long-distances to remote cell bodies and dendrites to stimulate cytoplasmic and transcriptional signaling necessary for neuron survival, morphogenesis, and maturation. Neuronal responsiveness to target-derived neurotrophins also requires the precise axonal targeting of newly synthesized Trk receptors. Recent studies suggest that anterograde delivery of Trk receptors is regulated by retrograde neurotrophin signaling. In this review, we summarize current knowledge on the functions and mechanisms of retrograde trafficking of Trk signaling endosomes, and highlight recent discoveries on the forward trafficking of nascent receptors.
Collapse
Affiliation(s)
- Emily Scott-Solomon
- Department of Biology, Johns Hopkins University, 3400 N. Charles St, 227 Mudd Hall, Baltimore, MD 21218, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, 3400 N. Charles St, 227 Mudd Hall, Baltimore, MD 21218, USA.
| |
Collapse
|
18
|
Pfaffenseller B, Kapczinski F, Gallitano AL, Klamt F. EGR3 Immediate Early Gene and the Brain-Derived Neurotrophic Factor in Bipolar Disorder. Front Behav Neurosci 2018; 12:15. [PMID: 29459824 PMCID: PMC5807664 DOI: 10.3389/fnbeh.2018.00015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 01/17/2018] [Indexed: 01/09/2023] Open
Abstract
Bipolar disorder (BD) is a severe psychiatric illness with a consistent genetic influence, involving complex interactions between numerous genes and environmental factors. Immediate early genes (IEGs) are activated in the brain in response to environmental stimuli, such as stress. The potential to translate environmental stimuli into long-term changes in brain has led to increased interest in a potential role for these genes influencing risk for psychiatric disorders. Our recent finding using network-based approach has shown that the regulatory unit of early growth response gene 3 (EGR3) of IEGs family was robustly repressed in postmortem prefrontal cortex of BD patients. As a central transcription factor, EGR3 regulates an array of target genes that mediate critical neurobiological processes such as synaptic plasticity, memory and cognition. Considering that EGR3 expression is induced by brain-derived neurotrophic factor (BDNF) that has been consistently related to BD pathophysiology, we suggest a link between BDNF and EGR3 and their potential role in BD. A growing body of data from our group and others has shown that peripheral BDNF levels are reduced during mood episodes and also with illness progression. In this same vein, BDNF has been proposed as an important growth factor in the impaired cellular resilience related to BD. Taken together with the fact that EGR3 regulates the expression of the neurotrophin receptor p75NTR and may also indirectly induce BDNF expression, here we propose a feed-forward gene regulatory network involving EGR3 and BDNF and its potential role in BD.
Collapse
Affiliation(s)
- Bianca Pfaffenseller
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Flavio Kapczinski
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Amelia L Gallitano
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, AZ, United States
| | - Fábio Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
19
|
Integrating genome-wide association study and expression quantitative trait loci data identifies multiple genes and gene set associated with neuroticism. Prog Neuropsychopharmacol Biol Psychiatry 2017; 78:149-152. [PMID: 28552732 DOI: 10.1016/j.pnpbp.2017.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 11/23/2022]
Abstract
Neuroticism is a fundamental personality trait with significant genetic determinant. To identify novel susceptibility genes for neuroticism, we conducted an integrative analysis of genomic and transcriptomic data of genome wide association study (GWAS) and expression quantitative trait locus (eQTL) study. GWAS summary data was driven from published studies of neuroticism, totally involving 170,906 subjects. eQTL dataset containing 927,753 eQTLs were obtained from an eQTL meta-analysis of 5311 samples. Integrative analysis of GWAS and eQTL data was conducted by summary data-based Mendelian randomization (SMR) analysis software. To identify neuroticism associated gene sets, the SMR analysis results were further subjected to gene set enrichment analysis (GSEA). The gene set annotation dataset (containing 13,311 annotated gene sets) of GSEA Molecular Signatures Database was used. SMR single gene analysis identified 6 significant genes for neuroticism, including MSRA (p value=2.27×10-10), MGC57346 (p value=6.92×10-7), BLK (p value=1.01×10-6), XKR6 (p value=1.11×10-6), C17ORF69 (p value=1.12×10-6) and KIAA1267 (p value=4.00×10-6). Gene set enrichment analysis observed significant association for Chr8p23 gene set (false discovery rate=0.033). Our results provide novel clues for the genetic mechanism studies of neuroticism.
Collapse
|
20
|
O'Donovan KJ. Intrinsic Axonal Growth and the Drive for Regeneration. Front Neurosci 2016; 10:486. [PMID: 27833527 PMCID: PMC5081384 DOI: 10.3389/fnins.2016.00486] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/10/2016] [Indexed: 02/01/2023] Open
Abstract
Following damage to the adult nervous system in conditions like stroke, spinal cord injury, or traumatic brain injury, many neurons die and most of the remaining spared neurons fail to regenerate. Injured neurons fail to regrow both because of the inhibitory milieu in which they reside as well as a loss of the intrinsic growth capacity of the neurons. If we are to develop effective therapeutic interventions that promote functional recovery for the devastating injuries described above, we must not only better understand the molecular mechanisms of developmental axonal growth in hopes of re-activating these pathways in the adult, but at the same time be aware that re-activation of adult axonal growth may proceed via distinct mechanisms. With this knowledge in hand, promoting adult regeneration of central nervous system neurons can become a more tractable and realistic therapeutic endeavor.
Collapse
Affiliation(s)
- Kevin J O'Donovan
- Department of Chemistry and Life Science, United States Military Academy West Point, NY, USA
| |
Collapse
|
21
|
Egr3-dependent muscle spindle stretch receptor intrafusal muscle fiber differentiation and fusimotor innervation homeostasis. J Neurosci 2015; 35:5566-78. [PMID: 25855173 DOI: 10.1523/jneurosci.0241-15.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Muscle stretch proprioceptors (muscle spindles) are required for stretch reflexes and locomotor control. Proprioception abnormalities are observed in many human neuropathies, but the mechanisms involved in establishing and maintaining muscle spindle innervation and function are still poorly understood. During skeletal muscle development, sensory (Ia-afferent) innervation induces contacted myotubes to transform into intrafusal muscle fibers that form the stretch receptor core. The transcriptional regulator Egr3 is induced in Ia-afferent contacted myotubes by Neuregulin1 (Nrg1)/ErbB receptor signaling and it has an essential role in spindle morphogenesis and function. Because Egr3 is widely expressed during development and has a pleiotropic function, whether Egr3 functions primarily in skeletal muscle, Ia-afferent neurons, or in Schwann cells that myelinate Ia-afferent axons remains unresolved. In the present studies, cell-specific ablation of Egr3 in mice showed that it has a skeletal muscle autonomous function in stretch receptor development. Moreover, using genetic tracing, we found that Ia-afferent contacted Egr3-deficient myotubes were induced in normal numbers, but their development was blocked to generate one to two shortened fibers that failed to express some characteristic myosin heavy chain (MyHC) proteins. These "spindle remnants" persisted into adulthood, remained innervated by Ia-afferents, and expressed neurotrophin3 (NT3), which is required for Ia-afferent neuron survival. However, they were not innervated by fusimotor axons and they did not express glial derived neurotrophic factor (GDNF), which is essential for fusimotor neuron survival. These results demonstrate that Egr3 has an essential role in regulating gene expression that promotes normal intrafusal muscle fiber differentiation and fusimotor innervation homeostasis.
Collapse
|
22
|
Song T, Nie B, Ma E, Che J, Sun S, Wang Y, Shan B, Liu Y, Luo S, Ma G, Li K. Functional magnetic resonance imaging reveals abnormal brain connectivity in EGR3 gene transfected rat model of schizophrenia. Biochem Biophys Res Commun 2015; 460:678-683. [PMID: 25817788 DOI: 10.1016/j.bbrc.2015.03.089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/10/2015] [Indexed: 11/22/2022]
Abstract
Schizophrenia is characterized by the disorder of "social brain". However, the alternation of connectivity density in brain areas of schizophrenia patients remains largely unknown. In this study, we successfully created a rat model of schizophrenia by the transfection of EGR3 gene into rat brain. We then investigated the connectivity density of schizophrenia susceptible regions in rat brain using functional magnetic resonance imaging (fMRI) in combination with multivariate Granger causality (GC) model. We found that the average signal strength in prefrontal lobe and hippocampus of schizophrenia model group was significantly higher than the control group. Bidirectional Granger causality connection was observed between hippocampus and thalamic in schizophrenia model group. Both connectivity density and Granger causality connection were changed in prefrontal lobe, hippocampus and thalamus after risperidone treatment. Our results indicated that fMRI in combination with GC connection analysis may be used as an important method in diagnosis of schizophrenia and evaluation the effect of antipsychotic treatment. These findings support the connectivity disorder hypothesis of schizophrenia and increase our understanding of the neural mechanisms of schizophrenia.
Collapse
Affiliation(s)
- Tianbin Song
- Department of Radiology, Beijing Shunyi Hospital, Beijing 101300, China
| | - Binbin Nie
- Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049, China
| | - Ensen Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jing Che
- Department of Ultrasound, Aerospace Central Hospital, Beijing 100049, China
| | - Shilong Sun
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yuli Wang
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Baoci Shan
- Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049, China
| | - Yawu Liu
- Department of Neurology, University of Eastern Finland, Kuopio University Hospital, Kuopio, Finland; Department of Clinical Radiology, University of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Senlin Luo
- School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China.
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Kefeng Li
- School of Medicine, University of California, San Diego, CA 92103, USA
| |
Collapse
|
23
|
Jackson MZ, Gruner KA, Qin C, Tourtellotte WG. A neuron autonomous role for the familial dysautonomia gene ELP1 in sympathetic and sensory target tissue innervation. Development 2014; 141:2452-61. [PMID: 24917501 DOI: 10.1242/dev.107797] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Familial dysautonomia (FD) is characterized by severe and progressive sympathetic and sensory neuron loss caused by a highly conserved germline point mutation of the human ELP1/IKBKAP gene. Elp1 is a subunit of the hetero-hexameric transcriptional elongator complex, but how it functions in disease-vulnerable neurons is unknown. Conditional knockout mice were generated to characterize the role of Elp1 in migration, differentiation and survival of migratory neural crest (NC) progenitors that give rise to sympathetic and sensory neurons. Loss of Elp1 in NC progenitors did not impair their migration, proliferation or survival, but there was a significant impact on post-migratory sensory and sympathetic neuron survival and target tissue innervation. Ablation of Elp1 in post-migratory sympathetic neurons caused highly abnormal target tissue innervation that was correlated with abnormal neurite outgrowth/branching and abnormal cellular distribution of soluble tyrosinated α-tubulin in Elp1-deficient primary sympathetic and sensory neurons. These results indicate that neuron loss and physiologic impairment in FD is not a consequence of abnormal neuron progenitor migration, differentiation or survival. Rather, loss of Elp1 leads to neuron death as a consequence of failed target tissue innervation associated with impairments in cytoskeletal regulation.
Collapse
Affiliation(s)
- Marisa Z Jackson
- Department of Pathology (Division of Neuropathology), Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA Northwestern University Integrated Neuroscience (NUIN) Program, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Katherine A Gruner
- Department of Pathology (Division of Neuropathology), Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Charles Qin
- Department of Pathology (Division of Neuropathology), Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Warren G Tourtellotte
- Department of Pathology (Division of Neuropathology), Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA Northwestern University Integrated Neuroscience (NUIN) Program, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| |
Collapse
|
24
|
Abstract
The rodent superior cervical ganglion (SCG) is a useful and readily accessible source of neurons for studying the mechanisms of sympathetic nervous system (SNS) development and growth in vitro. The sympathetic nervous system (SNS) of early postnatal animals undergoes a great deal of remodeling and development; thus, neurons taken from mice at this age are primed to re-grow and establish synaptic connections after in situ removal. The stereotypic location and size of the SCG make it ideal for rapid isolation and dissociation. The protocol described here details the requirements for the dissection, culture and differentiation of SCG neurons. The protocol is suitable for culturing neurons from late embryonic gestation to approximately postnatal day 3. The culture technique discussed below utilizes glass coverslips for the microscopic examination of fixed cells.
Collapse
Affiliation(s)
- Marisa Jackson
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Warren Tourtellotte
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, USA
| |
Collapse
|
25
|
Ma G, Song T, Chen M, Fu Y, Xu Y, Ma E, Wang W, Du J, Huang M. Hippocampal and thalamic neuronal metabolism in a putative rat model of schizophrenia. Neural Regen Res 2013; 8:2415-2423. [PMID: 25206551 PMCID: PMC4146111 DOI: 10.3969/j.issn.1673-5374.2013.26.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/01/2013] [Indexed: 12/17/2022] Open
Abstract
The transcription factor early growth response protein 3 (EGR3) is involved in schizophrenia. We developed a putative rat model of schizophrenia by transfecting lentiviral particles carrying the Egr3 gene into bilateral hippocampal dentate gyrus. We assessed spatial working memory using the Morris water maze test, and neuronal metabolite levels in bilateral hippocampus and thalamus were determined by 3.0 T proton magnetic resonance spectroscopy. Choline content was significantly greater in the hippocampus after transfection, while N-acetylaspartate and the ratio of N-acetylaspartate to creatine/phosphocreatine in the thalamus were lower than in controls. This study is the first to report evaluation of brain metabolites using 3.0 T proton magnetic resonance spectroscopy in rats transfected with Egr3, and reveals metabolic abnormalities in the hippocampus and thalamus in this putative model of schizophrenia.
Collapse
Affiliation(s)
- Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Tianbin Song
- Department of Radiology, Beijing Shunyi Hospital, Beijing 101300, China
| | - Min Chen
- Department of Radiology, Beijing Hospital Affiliated to the Ministry of Public Health, Beijing 100730, China
| | - Yuan Fu
- Department of Radiology, Beijing Hospital Affiliated to the Ministry of Public Health, Beijing 100730, China
| | - Yong Xu
- Department of Mental Health, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Ensen Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wu Wang
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA 92103-8226, USA
| | - Mingxiong Huang
- Radiology Imaging Laboratory, Department of Radiology, University of California, San Diego, CA 92121, USA
| |
Collapse
|
26
|
Guzmán YF, Tronson NC, Jovasevic V, Sato K, Guedea AL, Mizukami H, Nishimori K, Radulovic J. Fear-enhancing effects of septal oxytocin receptors. Nat Neurosci 2013; 16:1185-7. [PMID: 23872596 PMCID: PMC3758455 DOI: 10.1038/nn.3465] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/17/2013] [Indexed: 01/24/2023]
Abstract
The nonapeptide oxytocin is considered beneficial to mental health due to its anxiolytic, prosocial and antistress effects, but evidence for anxiogenic actions of oxytocin in humans has recently emerged. Using region-specific manipulations of the mouse oxytocin receptor (Oxtr) gene (Oxtr), we identified the lateral septum as the brain region mediating fear-enhancing effects of Oxtr. These effects emerge after social defeat and require Oxtr specifically coupled to the extracellular signal-regulated protein kinase pathway.
Collapse
Affiliation(s)
- Yomayra F Guzmán
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Association of decreased prefrontal hemodynamic response during a verbal fluency task with EGR3 gene polymorphism in patients with schizophrenia and in healthy individuals. Neuroimage 2013; 85 Pt 1:527-34. [PMID: 23962955 DOI: 10.1016/j.neuroimage.2013.08.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 08/08/2013] [Accepted: 08/10/2013] [Indexed: 12/19/2022] Open
Abstract
The early growth response 3 (EGR3) gene is an immediate early gene that is expressed throughout the brain and has been suggested as a potential susceptibility gene for schizophrenia (SZ). EGR3 impairment is associated with various neurodevelopmental dysfunctions, and some animal studies have reported a role for EGR3 function in the prefrontal cortex. Therefore, EGR3 genotype variation may be reflected in prefrontal function. By using multi-channel near-infrared spectroscopy (NIRS) in an imaging genetics approach, we tested for an association between the EGR3 gene polymorphism and prefrontal hemodynamic response during a cognitive task in patients with SZ. We assessed 73 chronic patients with SZ and 73 age-, gender-, and genotype-matched healthy controls (HC) who provided written informed consent. We used NIRS to measure changes in prefrontal oxygenated hemoglobin concentration (oxyHb) during the letter version of a verbal fluency task (VFT). Statistical comparisons were performed among EGR3 genotype subgroups (rs35201266, GG/GA/AA). The AA genotype group showed significantly smaller oxyHb increases in the left dorsolateral prefrontal cortex (DLPFC) during the VFT than the GG and GA genotype groups; this was true for both patients with SZ and HC. Our findings provide in vivo human evidence of a significant influence of EGR3 polymorphisms on prefrontal hemodynamic activation level in healthy adults and in patients with SZ. Genetic variation in EGR3 may affect prefrontal function through neurodevelopment. This study illustrates the usefulness of NIRS in imaging genetics investigations on psychiatric disorders.
Collapse
|
28
|
Fang F, Shangguan AJ, Kelly K, Wei J, Gruner K, Ye B, Wang W, Bhattacharyya S, Hinchcliff ME, Tourtellotte WG, Varga J. Early growth response 3 (Egr-3) is induced by transforming growth factor-β and regulates fibrogenic responses. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1197-1208. [PMID: 23906810 DOI: 10.1016/j.ajpath.2013.06.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/01/2013] [Accepted: 06/19/2013] [Indexed: 01/09/2023]
Abstract
Members of the early growth response (Egr) gene family of transcription factors have nonredundant biological functions. Although Egr-3 is implicated primarily in neuromuscular development and immunity, its regulation and role in tissue repair and fibrosis has not been studied. We now show that in normal skin fibroblasts, Egr-3 was potently induced by transforming growth factor-β via canonical Smad3. Moreover, transient Egr-3 overexpression was sufficient to stimulate fibrotic gene expression, whereas deletion of Egr-3 resulted in substantially attenuated transforming growth factor-β responses. Genome-wide expression profiling in fibroblasts showed that genes associated with tissue remodeling and wound healing were prominently up-regulated by Egr-3. Notably, <5% of fibroblast genes regulated by Egr-1 or Egr-2 were found to be coregulated by Egr-3, revealing substantial functional divergence among these Egr family members. In a mouse model of scleroderma, development of dermal fibrosis was accompanied by accumulation of Egr-3-positive myofibroblasts in the lesional tissue. Moreover, skin biopsy samples from patients with scleroderma showed elevated Egr-3 levels in the dermis, and Egr-3 mRNA levels correlated with the extent of skin involvement. These results provide the first evidence that Egr-3, a functionally distinct member of the Egr family with potent effects on inflammation and immunity, is up-regulated in scleroderma and is necessary and sufficient for profibrotic responses, suggesting important and distinct roles in the pathogenesis of fibrosis.
Collapse
Affiliation(s)
- Feng Fang
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Anna J Shangguan
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kathleen Kelly
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jun Wei
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Katherine Gruner
- Department of Pathology and Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Boping Ye
- College of Life and Science, China Pharmaceutical University, Nanjing, China
| | - Wenxia Wang
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Swati Bhattacharyya
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Monique E Hinchcliff
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Warren G Tourtellotte
- Department of Pathology and Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - John Varga
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
29
|
Abstract
Cell proliferation during nervous system development is poorly understood outside the mouse neocortex. We measured cell cycle dynamics in the embryonic mouse sympathetic stellate ganglion, where neuroblasts continue to proliferate following neuronal differentiation. At embryonic day (E) 9.5, when neural crest-derived cells were migrating and coalescing into the ganglion primordium, all cells were cycling, cell cycle length was only 10.6 h, and S-phase comprised over 65% of the cell cycle; these values are similar to those previously reported for embryonic stem cells. At E10.5, Sox10(+) cells lengthened their cell cycle to 38 h and reduced the length of S-phase. As cells started to express the neuronal markers Tuj1 and tyrosine hydroxylase (TH) at E10.5, they exited the cell cycle. At E11.5, when >80% of cells in the ganglion were Tuj1(+)/TH(+) neuroblasts, all cells were again cycling. Neuroblast cell cycle length did not change significantly after E11.5, and 98% of Sox10(-)/TH(+) cells had exited the cell cycle by E18.5. The cell cycle length of Sox10(+)/TH(-) cells increased during late embryonic development, and ∼25% were still cycling at E18.5. Loss of Ret increased neuroblast cell cycle length at E16.5 and decreased the number of neuroblasts at E18.5. A mathematical model generated from our data successfully predicted the relative change in proportions of neuroblasts and non-neuroblasts in wild-type mice. Our results show that, like other neurons, sympathetic neuron differentiation is associated with exit from the cell cycle; sympathetic neurons are unusual in that they then re-enter the cell cycle before later permanently exiting.
Collapse
|
30
|
A sympathetic neuron autonomous role for Egr3-mediated gene regulation in dendrite morphogenesis and target tissue innervation. J Neurosci 2013; 33:4570-83. [PMID: 23467373 DOI: 10.1523/jneurosci.5481-12.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Egr3 is a nerve growth factor (NGF)-induced transcriptional regulator that is essential for normal sympathetic nervous system development. Mice lacking Egr3 in the germline have sympathetic target tissue innervation abnormalities and physiologic sympathetic dysfunction similar to humans with dysautonomia. However, since Egr3 is widely expressed and has pleiotropic function, it has not been clear whether it has a role within sympathetic neurons and if so, what target genes it regulates to facilitate target tissue innervation. Here, we show that Egr3 expression within sympathetic neurons is required for their normal innervation since isolated sympathetic neurons lacking Egr3 have neurite outgrowth abnormalities when treated with NGF and mice with sympathetic neuron-restricted Egr3 ablation have target tissue innervation abnormalities similar to mice lacking Egr3 in all tissues. Microarray analysis performed on sympathetic neurons identified many target genes deregulated in the absence of Egr3, with some of the most significantly deregulated genes having roles in axonogenesis, dendritogenesis, and axon guidance. Using a novel genetic technique to visualize axons and dendrites in a subpopulation of randomly labeled sympathetic neurons, we found that Egr3 has an essential role in regulating sympathetic neuron dendrite morphology and terminal axon branching, but not in regulating sympathetic axon guidance to their targets. Together, these results indicate that Egr3 has a sympathetic neuron autonomous role in sympathetic nervous system development that involves modulating downstream target genes affecting the outgrowth and branching of sympathetic neuron dendrites and axons.
Collapse
|
31
|
Early growth response 3 (Egr3) is highly over-expressed in non-relapsing prostate cancer but not in relapsing prostate cancer. PLoS One 2013; 8:e54096. [PMID: 23342084 PMCID: PMC3544741 DOI: 10.1371/journal.pone.0054096] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 12/10/2012] [Indexed: 01/01/2023] Open
Abstract
Members of the early growth response (EGR) family of transcription factors play diverse functions in response to many cellular stimuli, including growth, stress, and inflammation. Egr3 has gone relatively unstudied, but here through use of the SPECS (Strategic Partners for the Evaluation of Predictive Signatures of Prostate Cancer) Affymetrix whole genome gene expression database we report that Egr3 mRNA is significantly over-expressed in prostate cancer compared to normal prostate tissue (5-fold). The Human Protein Atlas (http://www.proteinatlas.org), a database of tissue microarrays labeled with antibodies against over 11,000 human proteins, was utilized to quantify Egr3 protein expression in normal prostate and prostate cancer patients. In agreement with the SPECS data, we found that Egr3 protein is significantly increased in prostate cancer. The SPECS database has the benefit of extensive clinical follow up for the prostate cancer patients. Analysis of Egr3 mRNA expression in relation to the relapse status reveals that Egr3 mRNA expression is increased in tumor cells of non-relapsed samples (n = 63) compared to normal prostate cells, but is significantly lower in relapsed samples (n = 38) compared to non-relapse. The observations were confirmed using an independent data set. A list of genes correlating with this unique expression pattern was determined. These Egr3-correlated genes were enriched with Egr binding sites in their promoters. The gene list contains inflammatory genes such as IL-6, IL-8, IL1β and COX-2, which have extensive connections to prostate cancer.
Collapse
|
32
|
Ascano M, Bodmer D, Kuruvilla R. Endocytic trafficking of neurotrophins in neural development. Trends Cell Biol 2012; 22:266-73. [PMID: 22444728 DOI: 10.1016/j.tcb.2012.02.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/17/2012] [Accepted: 02/17/2012] [Indexed: 01/19/2023]
Abstract
During the formation of neuronal circuits, neurons respond to diffusible cues secreted by target tissues. Often, target-derived signals act on nerve terminals to influence local growth events; in other cases, they are transported long distances back to neuronal cell bodies to effect transcriptional changes necessary for neuronal survival and differentiation. Neurotrophins provide one of the best examples of target-derived cues that elicit an astonishingly diverse array of neuronal responses. Endocytic trafficking of neurotrophins and their receptors is a fundamental feature of neurotrophin signaling, allowing neurotrophins to control neuronal survival by retrograde transport of signaling endosomes containing ligand-receptor complexes. In this review we summarize recent findings that provide new insight into the interplay between neurotrophin signaling and trafficking.
Collapse
Affiliation(s)
- Maria Ascano
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
33
|
Harris RM, Weiss J, Jameson JL. Male hypogonadism and germ cell loss caused by a mutation in Polo-like kinase 4. Endocrinology 2011; 152:3975-85. [PMID: 21791561 PMCID: PMC3176650 DOI: 10.1210/en.2011-1106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The genetic etiologies of male infertility remain largely unknown. To identify genes potentially involved in spermatogenesis and male infertility, we performed genome-wide mutagenesis in mice with N-ethyl-N-nitrosourea and identified a line with dominant hypogonadism and patchy germ cell loss. Genomic mapping and DNA sequence analysis identified a novel heterozygous missense mutation in the kinase domain of Polo-like kinase 4 (Plk4), altering an isoleucine to asparagine at residue 242 (I242N). Genetic complementation studies using a gene trap line with disruption in the Plk4 locus confirmed that the putative Plk4 missense mutation was causative. Plk4 is known to be involved in centriole formation and cell cycle progression. However, a specific role in mammalian spermatogenesis has not been examined. PLK4 was highly expressed in the testes both pre- and postnatally. In the adult, PLK4 expression was first detected in stage VIII pachytene spermatocytes and was present through step 16 elongated spermatids. Because the homozygous Plk4(I242N/I242N) mutation was embryonic lethal, all analyses were performed using the heterozygous Plk4(+/I242N) mice. Testis size was reduced by 17%, and histology revealed discrete regions of germ cell loss, leaving only Sertoli cells in these defective tubules. Testis cord formation (embryonic day 13.5) was normal. Testis histology was also normal at postnatal day (P)1, but germ cell loss was detected at P10 and subsequent ages. We conclude that the I242N heterozygous mutation in PLK4 is causative for patchy germ cell loss beginning at P10, suggesting a role for PLK4 during the initiation of spermatogenesis.
Collapse
Affiliation(s)
- Rebecca M Harris
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
34
|
Egr3 dependent sympathetic target tissue innervation in the absence of neuron death. PLoS One 2011; 6:e25696. [PMID: 21980528 PMCID: PMC3182249 DOI: 10.1371/journal.pone.0025696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/08/2011] [Indexed: 01/19/2023] Open
Abstract
Nerve Growth Factor (NGF) is a target tissue derived neurotrophin required for normal sympathetic neuron survival and target tissue innervation. NGF signaling regulates gene expression in sympathetic neurons, which in turn mediates critical aspects of neuron survival, axon extension and terminal axon branching during sympathetic nervous system (SNS) development. Egr3 is a transcription factor regulated by NGF signaling in sympathetic neurons that is essential for normal SNS development. Germline Egr3-deficient mice have physiologic dysautonomia characterized by apoptotic sympathetic neuron death and abnormal innervation to many target tissues. The extent to which sympathetic innervation abnormalities in the absence of Egr3 is caused by altered innervation or by neuron death during development is unknown. Using Bax-deficient mice to abrogate apoptotic sympathetic neuron death in vivo, we show that Egr3 has an essential role in target tissue innervation in the absence of neuron death. Sympathetic target tissue innervation is abnormal in many target tissues in the absence of neuron death, and like NGF, Egr3 also appears to effect target tissue innervation heterogeneously. In some tissues, such as heart, spleen, bowel, kidney, pineal gland and the eye, Egr3 is essential for normal innervation, whereas in other tissues such as lung, stomach, pancreas and liver, Egr3 appears to have little role in innervation. Moreover, in salivary glands and heart, two tissues where Egr3 has an essential role in sympathetic innervation, NGF and NT-3 are expressed normally in the absence of Egr3 indicating that abnormal target tissue innervation is not due to deregulation of these neurotrophins in target tissues. Taken together, these results clearly demonstrate a role for Egr3 in mediating sympathetic target tissue innervation that is independent of neuron survival or neurotrophin deregulation.
Collapse
|
35
|
Weigelt K, Carvalho LA, Drexhage RC, Wijkhuijs A, de Wit H, van Beveren NJM, Birkenhäger TK, Bergink V, Drexhage HA. TREM-1 and DAP12 expression in monocytes of patients with severe psychiatric disorders. EGR3, ATF3 and PU.1 as important transcription factors. Brain Behav Immun 2011; 25:1162-9. [PMID: 21421043 DOI: 10.1016/j.bbi.2011.03.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/08/2011] [Accepted: 03/08/2011] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Immune activation is a characteristic of schizophrenia (SCZ), bipolar disorder (BD) and unipolar major depressive disorder (MDD). The triggering receptor expressed on myeloid cells 1 (TREM-1), its' adaptor molecule DAP12 and their transcription factor (TF) PU.1 are important key genes in inflammation and expressed in activated monocytes and microglia. AIM To test: (1) if the expressions of TREM-1, DAP12 and PU.1 are increased in monocytes of patients with severe psychiatric disorders and (2) if PU.1 and the TFs ATF3 and EGR3 (which have been found as prominent increased monocyte genes in previous studies) are involved in the regulation of TREM-1 and DAP12 expression. METHODS Using Q-PCR, we studied the gene expression of TREM-1, DAP12, PU.1, ATF3 and EGR3 in the monocytes of 73 patients with severe psychiatric disorders (27 recent onset SCZ patients, 22 BD patients and 24 MDD patients) and of 79 healthy controls (HC). Using in silico TF binding site prediction and in vivo chromatin immunoprecipitation (ChIP), we studied the actual binding of EGR3, ATF3 and PU.1 to the promoter regions of TREM-1 and DAP12. RESULTS 1. TREM-1 gene expression was increased in the monocytes of SCZ and BD patients and tended to be increased in the monocytes of MDD patients. 2. DAP12 gene levels were neither increased in the monocytes of SCZ, BD, nor MDD patients. 3. PU.1 expression levels were increased in the monocytes of MDD patients, but not in those of SCZ and BD patients. 4. TREM-1 expression levels correlated in particular to ATF3 and EGR3 expression levels, DAP12 expression levels correlated in particular to PU.1 expression levels. 5. We found using binding site prediction and ChIP assays that the TFs EGR3 and ATF3 indeed bound to the TREM-1 promoter, PU.1 bound to both the TREM-1 and DAP12 promoter. CONCLUSION In this study, we provide evidence that TREM-1 gene expression is significantly increased in monocytes of SCZ and BD patients and that the TREM-1 gene is a target gene of the TFs ATF3 and EGR3. In MDD patients, PU.1 gene expression was increased with a tendency for TREM-1 gene over expression. Our observations support the concept that monocytes are in a pro-inflammatory state in severe psychiatric conditions and suggest differences in monocyte inflammatory set points between SCZ, BD and MDD.
Collapse
Affiliation(s)
- Karin Weigelt
- Department of Immunology, Erasmus Medical Centre Rotterdam, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Park HG, Kim SH, Kim HS, Ahn YM, Kang UG, Kim YS. Repeated electroconvulsive seizure treatment in rats reduces inducibility of early growth response genes and hyperactivity in response to cocaine administration. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1014-21. [PMID: 21334415 DOI: 10.1016/j.pnpbp.2011.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/28/2011] [Accepted: 02/11/2011] [Indexed: 12/27/2022]
Abstract
Regulated expression of immediate early genes (IEGs) in the brain reflects neuronal activity in response to various stimuli and recruits specific gene programs involved in long-term neuronal modification and behavioral alterations. Repeated electroconvulsive seizure (ECS) treatment reduces the expression level of several IEGs, such as c-fos, which play important roles in psychostimulant-induced behavioral changes. In this study, we investigated the effects of repeated ECS treatment on the basal expression level of IEGs and its effects on cocaine-induced activation of IEGs and locomotor activity in rats. Repeated ECS treatment for 10days (E10×) reduced Egr1, Egr2, Egr3, and c-fos mRNA and protein levels in the rat frontal cortex at 24h after the last ECS treatment, and these changes were evident in the neuronal cells of the prefrontal cortex. In particular, downregulation of Egr1 and c-fos was evident until 5days after the last ECS treatment. Moreover, E10× pretreatment attenuated the cocaine-induced increase in Egr1, Egr2, and c-fos expression in the rat frontal cortex, whereas phosphorylation of ERK1/2, one of the representative upstream activators of these genes, increased significantly following cocaine treatment. Additionally, E10× pretreatment attenuated the increase in locomotor activity in response to a cocaine injection. In conclusion, repeated ECS treatment reduced the expression and inducibility of Egrs and c-fos, which could attenuate the response of the brain to psychostimulants.
Collapse
Affiliation(s)
- Hong Geun Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
37
|
Lejard V, Blais F, Guerquin MJ, Bonnet A, Bonnin MA, Havis E, Malbouyres M, Bidaud CB, Maro G, Gilardi-Hebenstreit P, Rossert J, Ruggiero F, Duprez D. EGR1 and EGR2 involvement in vertebrate tendon differentiation. J Biol Chem 2010; 286:5855-67. [PMID: 21173153 DOI: 10.1074/jbc.m110.153106] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The molecules involved in vertebrate tendon formation during development remain largely unknown. To date, only two DNA-binding proteins have been identified as being involved in vertebrate tendon formation, the basic helix-loop-helix transcription factor Scleraxis and, recently, the Mohawk homeobox gene. We investigated the involvement of the early growth response transcription factors Egr1 and Egr2 in vertebrate tendon formation. We established that Egr1 and Egr2 expression in tendon cells was correlated with the increase of collagen expression during tendon cell differentiation in embryonic limbs. Vertebrate tendon differentiation relies on a muscle-derived FGF (fibroblast growth factor) signal. FGF4 was able to activate the expression of Egr genes and that of the tendon-associated collagens in chick limbs. Egr gene misexpression experiments using the chick model allowed us to establish that either Egr gene has the ability to induce de novo expression of the reference tendon marker scleraxis, the main tendon collagen Col1a1, and other tendon-associated collagens Col3a1, Col5a1, Col12a1, and Col14a1. Mouse mutants for Egr1 or Egr2 displayed reduced amounts of Col1a1 transcripts and a decrease in the number of collagen fibrils in embryonic tendons. Moreover, EGR1 and EGR2 trans-activated the mouse Col1a1 proximal promoter and were recruited to the tendon regulatory regions of this promoter. These results identify EGRs as novel DNA-binding proteins involved in vertebrate tendon differentiation by regulating type I collagen production.
Collapse
Affiliation(s)
- Véronique Lejard
- Université Pierre et Marie Curie, CNRS UMR 7622, Paris 75005, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Neurosteroid withdrawal regulates GABA-A receptor α4-subunit expression and seizure susceptibility by activation of progesterone receptor-independent early growth response factor-3 pathway. Neuroscience 2010; 170:865-80. [PMID: 20670676 DOI: 10.1016/j.neuroscience.2010.07.037] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/02/2010] [Accepted: 07/20/2010] [Indexed: 02/08/2023]
Abstract
Neurosteroids regulate GABA-A receptor plasticity. Neurosteroid withdrawal occurs during menstruation and is associated with a marked increase in expression of GABA-A receptor α4-subunit, a key subunit linked to enhanced neuronal excitability, seizure susceptibility and benzodiazepine resistance. However, the molecular mechanisms underlying the upregulation of α4-subunit expression remain unclear. Here we utilized the progesterone receptor (PR) knockout mouse to investigate molecular pathways of PR and the transcription factor early growth response factor-3 (Egr3) in regulation of the GABA-A receptor α4-subunit expression in the hippocampus in a mouse neurosteroid withdrawal paradigm. Neurosteroid withdrawal induced a threefold increase in α4-subunit expression in wild-type mice, but this upregulation was unchanged in PR knockout mice. The expression of Egr3, which controls α4-subunit transcription, was increased significantly following neurosteroid withdrawal in wild-type and PR knockout mice. Neurosteroid withdrawal-induced α4-subunit upregulation was completely suppressed by antisense Egr3 inhibition. In the hippocampus kindling model of epilepsy, there was heightened seizure activity, significant reduction in the antiseizure sensitivity of diazepam (a benzodiazepine insensitive at α4βγ-receptors) and conferral of increased seizure protection of flumazenil (a low-affinity agonist at α4βγ-receptors) in neurosteroid-withdrawn wild-type and PR knockout mice. These observations are consistent with enhanced α4-containing receptor abundance in vivo. Neurosteroid withdrawal-induced seizure exacerbation, diazepam insensitivity, and flumazenil efficacy in the kindling model were reversed by inhibition of Egr3. These results indicate that neurosteroid withdrawal-induced upregulation of GABA-A receptor α4-subunit expression is mediated by the Egr3 via a PR-independent signaling pathway. These findings help advance our understanding of the molecular basis of catamenial epilepsy, a neuroendocrine condition that occurs around the perimenstrual period and is characterized by neurosteroid withdrawal-linked seizure exacerbations in women with epilepsy.
Collapse
|
39
|
Somel M, Guo S, Fu N, Yan Z, Hu HY, Xu Y, Yuan Y, Ning Z, Hu Y, Menzel C, Hu H, Lachmann M, Zeng R, Chen W, Khaitovich P. MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain. Genome Res 2010; 20:1207-18. [PMID: 20647238 DOI: 10.1101/gr.106849.110] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Changes in gene expression levels determine differentiation of tissues involved in development and are associated with functional decline in aging. Although development is tightly regulated, the transition between development and aging, as well as regulation of post-developmental changes, are not well understood. Here, we measured messenger RNA (mRNA), microRNA (miRNA), and protein expression in the prefrontal cortex of humans and rhesus macaques over the species' life spans. We find that few gene expression changes are unique to aging. Instead, the vast majority of miRNA and gene expression changes that occur in aging represent reversals or extensions of developmental patterns. Surprisingly, many gene expression changes previously attributed to aging, such as down-regulation of neural genes, initiate in early childhood. Our results indicate that miRNA and transcription factors regulate not only developmental but also post-developmental expression changes, with a number of regulatory processes continuing throughout the entire life span. Differential evolutionary conservation of the corresponding genomic regions implies that these regulatory processes, although beneficial in development, might be detrimental in aging. These results suggest a direct link between developmental regulation and expression changes taking place in aging.
Collapse
Affiliation(s)
- Mehmet Somel
- Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Guo AY, Sun J, Jia P, Zhao Z. A novel microRNA and transcription factor mediated regulatory network in schizophrenia. BMC SYSTEMS BIOLOGY 2010; 4:10. [PMID: 20156358 PMCID: PMC2834616 DOI: 10.1186/1752-0509-4-10] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/15/2010] [Indexed: 01/02/2023]
Abstract
Background Schizophrenia is a complex brain disorder with molecular mechanisms that have yet to be elucidated. Previous studies have suggested that changes in gene expression may play an important role in the etiology of schizophrenia, and that microRNAs (miRNAs) and transcription factors (TFs) are primary regulators of this gene expression. So far, several miRNA-TF mediated regulatory modules have been verified. We hypothesized that miRNAs and TFs might play combinatory regulatory roles for schizophrenia genes and, thus, explored miRNA-TF regulatory networks in schizophrenia. Results We identified 32 feed-forward loops (FFLs) among our compiled schizophrenia-related miRNAs, TFs and genes. Our evaluation revealed that these observed FFLs were significantly enriched in schizophrenia genes. By converging the FFLs and mutual feedback loops, we constructed a novel miRNA-TF regulatory network for schizophrenia. Our analysis revealed EGR3 and hsa-miR-195 were core regulators in this regulatory network. We next proposed a model highlighting EGR3 and miRNAs involved in signaling pathways and regulatory networks in the nervous system. Finally, we suggested several single nucleotide polymorphisms (SNPs) located on miRNAs, their target sites, and TFBSs, which may have an effect in schizophrenia gene regulation. Conclusions This study provides many insights on the regulatory mechanisms of genes involved in schizophrenia. It represents the first investigation of a miRNA-TF regulatory network for a complex disease, as demonstrated in schizophrenia.
Collapse
Affiliation(s)
- An-Yuan Guo
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | |
Collapse
|