1
|
Hollingsworth EW, Liu TA, Alcantara JA, Chen CX, Jacinto SH, Kvon EZ. Rapid and quantitative functional interrogation of human enhancer variant activity in live mice. Nat Commun 2025; 16:409. [PMID: 39762235 PMCID: PMC11704014 DOI: 10.1038/s41467-024-55500-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Functional analysis of non-coding variants associated with congenital disorders remains challenging due to the lack of efficient in vivo models. Here we introduce dual-enSERT, a robust Cas9-based two-color fluorescent reporter system which enables rapid, quantitative comparison of enhancer allele activities in live mice in less than two weeks. We use this technology to examine and measure the gain- and loss-of-function effects of enhancer variants previously linked to limb polydactyly, autism spectrum disorder, and craniofacial malformation. By combining dual-enSERT with single-cell transcriptomics, we characterise gene expression in cells where the enhancer is normally and ectopically active, revealing candidate pathways that may lead to enhancer misregulation. Finally, we demonstrate the widespread utility of dual-enSERT by testing the effects of fifteen previously uncharacterised rare and common non-coding variants linked to neurodevelopmental disorders. In doing so we identify variants that reproducibly alter the in vivo activity of OTX2 and MIR9-2 brain enhancers, implicating them in autism. Dual-enSERT thus allows researchers to go from identifying candidate enhancer variants to analysis of comparative enhancer activity in live embryos in under two weeks.
Collapse
Affiliation(s)
- Ethan W Hollingsworth
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Medical Scientist Training Program, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Taryn A Liu
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Joshua A Alcantara
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Cindy X Chen
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Sandra H Jacinto
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Evgeny Z Kvon
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA.
| |
Collapse
|
2
|
Trompet D, Melis S, Chagin AS, Maes C. Skeletal stem and progenitor cells in bone development and repair. J Bone Miner Res 2024; 39:633-654. [PMID: 38696703 DOI: 10.1093/jbmr/zjae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
Bone development, growth, and repair are complex processes involving various cell types and interactions, with central roles played by skeletal stem and progenitor cells. Recent research brought new insights into the skeletal precursor populations that mediate intramembranous and endochondral bone development. Later in life, many of the cellular and molecular mechanisms determining development are reactivated upon fracture, with powerful trauma-induced signaling cues triggering a variety of postnatal skeletal stem/progenitor cells (SSPCs) residing near the bone defect. Interestingly, in this injury context, the current evidence suggests that the fates of both SSPCs and differentiated skeletal cells can be considerably flexible and dynamic, and that multiple cell sources can be activated to operate as functional progenitors generating chondrocytes and/or osteoblasts. The combined implementation of in vivo lineage tracing, cell surface marker-based cell selection, single-cell molecular analyses, and high-resolution in situ imaging has strongly improved our insights into the diversity and roles of developmental and reparative stem/progenitor subsets, while also unveiling the complexity of their dynamics, hierarchies, and relationships. Albeit incompletely understood at present, findings supporting lineage flexibility and possibly plasticity among sources of osteogenic cells challenge the classical dogma of a single primitive, self-renewing, multipotent stem cell driving bone tissue formation and regeneration from the apex of a hierarchical and strictly unidirectional differentiation tree. We here review the state of the field and the newest discoveries in the origin, identity, and fates of skeletal progenitor cells during bone development and growth, discuss the contributions of adult SSPC populations to fracture repair, and reflect on the dynamism and relationships among skeletal precursors and differentiated cell lineages. Further research directed at unraveling the heterogeneity and capacities of SSPCs, as well as the regulatory cues determining their fate and functioning, will offer vital new options for clinical translation toward compromised fracture healing and bone regenerative medicine.
Collapse
Affiliation(s)
- Dana Trompet
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Seppe Melis
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Andrei S Chagin
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Christa Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Horbaly H. Covariance in human limb joint articular morphology. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 182:401-411. [PMID: 37702982 DOI: 10.1002/ajpa.24826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 06/12/2023] [Accepted: 06/23/2023] [Indexed: 09/14/2023]
Abstract
OBJECTIVES Limb synovial joints exhibit complex shapes that must accommodate often-antagonistic demands of function, mobility, and stability. These demands presumably dictate coordination among joint articular shapes, but the structure of morphological covariance within and among joints is unknown. This study analyzes the human shoulder, elbow, hip, and knee to determine how articular covariance is structured in relation to joint structure, accessory cartilage, and function. MATERIALS AND METHODS Surface models were created from the CT scans of 200 modern skeletons from the University of Tennessee Donated Skeletal Collection. Three-dimensional landmarks were collected on the shoulder, elbow, hip, and knee joints. Two-block partial least squares were conducted to determine associations between surfaces of conarticular shapes, functionally analogous articulations, and articulations belonging to the same bone. RESULTS Except for the components of the shoulder, all conarticular pairs exhibit covariance, though the strength of these relationships appears unrelated to the amount of accessory cartilage in the joint. Only the analogous articulations of the humerus and femur exhibit significant covariance, but it is unlikely that this pattern is due to function alone. Stronger covariance within the lower limb than the upper limb is consistent broader primate patterns of within-limb integration. DISCUSSION With the exception of the elbow, complementary joint function does not appear to promote strong covariance between articulations. Analogous humeral and femoral surfaces are also serially homologous, which may result in the articular associations observed between these bones. Broadly, these patterns highlight the indirect relationship between joint congruence and covariance.
Collapse
Affiliation(s)
- Haley Horbaly
- Department of Health and Human Performance, Congdon School of Health Sciences, High Point University, High Point, North Carolina, USA
- Department of Physician Assistant Studies, Congdon School of Health Sciences, High Point University, High Point, North Carolina, USA
| |
Collapse
|
4
|
Xu J, Zhu J, Li Y, Yao Y, Xuan A, Li D, Yu T, Zhu D. Three-dimensional mapping reveals heterochronic development of the neuromuscular system in postnatal mouse skeletal muscles. Commun Biol 2022; 5:1200. [PMID: 36347940 PMCID: PMC9643545 DOI: 10.1038/s42003-022-04159-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
The development of the neuromuscular system, including muscle growth and intramuscular neural development, in addition to central nervous system maturation, determines motor ability improvement. Motor development occurs asynchronously from cephalic to caudal. However, whether the structural development of different muscles is heterochronic is unclear. Here, based on the characteristics of motor behavior in postnatal mice, we examined the 3D structural features of the neuromuscular system in different muscles by combining tissue clearing with optical imaging techniques. Quantitative analyses of the structural data and related mRNA expression revealed that there was continued myofiber hyperplasia of the forelimb and hindlimb muscles until around postnatal day 3 (P3) and P6, respectively, as well as continued axonal arborization and neuromuscular junction formation until around P3 and P9, respectively; feature alterations of the cervical muscle ended at birth. Such structural heterochrony of muscles in different body parts corresponds to their motor function. Structural data on the neuromuscular system of neonatal muscles provide a 3D perspective in the understanding of the structural status during motor development.
Collapse
Affiliation(s)
- Jianyi Xu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
- Optics Valley Laboratory, 430074, Wuhan, Hubei, China
| | - Jingtan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
- Optics Valley Laboratory, 430074, Wuhan, Hubei, China
| | - Yusha Li
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
- Optics Valley Laboratory, 430074, Wuhan, Hubei, China
| | - Yingtao Yao
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
- Optics Valley Laboratory, 430074, Wuhan, Hubei, China
| | - Ang Xuan
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
- Optics Valley Laboratory, 430074, Wuhan, Hubei, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
- Optics Valley Laboratory, 430074, Wuhan, Hubei, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China.
- Optics Valley Laboratory, 430074, Wuhan, Hubei, China.
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China.
- Optics Valley Laboratory, 430074, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Li J, Glover JD, Zhang H, Peng M, Tan J, Mallick CB, Hou D, Yang Y, Wu S, Liu Y, Peng Q, Zheng SC, Crosse EI, Medvinsky A, Anderson RA, Brown H, Yuan Z, Zhou S, Xu Y, Kemp JP, Ho YYW, Loesch DZ, Wang L, Li Y, Tang S, Wu X, Walters RG, Lin K, Meng R, Lv J, Chernus JM, Neiswanger K, Feingold E, Evans DM, Medland SE, Martin NG, Weinberg SM, Marazita ML, Chen G, Chen Z, Zhou Y, Cheeseman M, Wang L, Jin L, Headon DJ, Wang S. Limb development genes underlie variation in human fingerprint patterns. Cell 2022; 185:95-112.e18. [PMID: 34995520 PMCID: PMC8740935 DOI: 10.1016/j.cell.2021.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/20/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022]
Abstract
Fingerprints are of long-standing practical and cultural interest, but little is known about the mechanisms that underlie their variation. Using genome-wide scans in Han Chinese cohorts, we identified 18 loci associated with fingerprint type across the digits, including a genetic basis for the long-recognized "pattern-block" correlations among the middle three digits. In particular, we identified a variant near EVI1 that alters regulatory activity and established a role for EVI1 in dermatoglyph patterning in mice. Dynamic EVI1 expression during human development supports its role in shaping the limbs and digits, rather than influencing skin patterning directly. Trans-ethnic meta-analysis identified 43 fingerprint-associated loci, with nearby genes being strongly enriched for general limb development pathways. We also found that fingerprint patterns were genetically correlated with hand proportions. Taken together, these findings support the key role of limb development genes in influencing the outcome of fingerprint patterning.
Collapse
Affiliation(s)
- Jinxi Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200438, PRC; CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC
| | - James D Glover
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Haiguo Zhang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, PRC
| | - Meifang Peng
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, PRC
| | - Jingze Tan
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, PRC
| | - Chandana Basu Mallick
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK; Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Dan Hou
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC
| | - Yajun Yang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, PRC
| | - Sijie Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200438, PRC; CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC
| | - Yu Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC
| | - Qianqian Peng
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC
| | - Shijie C Zheng
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC
| | - Edie I Crosse
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | | | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Helen Brown
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Ziyu Yuan
- Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu 225326, PRC
| | - Shen Zhou
- Shanghai Foreign Language School, Shanghai 200083, PRC
| | - Yanqing Xu
- Forest Ridge School of the Sacred Heart, Bellevue, WA 98006, USA
| | - John P Kemp
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD, Australia
| | - Yvonne Y W Ho
- QIMR Berghofer Medical Rese Institute, Brisbane, QLD, Australia
| | - Danuta Z Loesch
- Psychology Department, La Trobe University, Melbourne, VIC, Australia
| | | | | | | | - Xiaoli Wu
- WeGene, Shenzhen, Guangdong 518040, PRC
| | - Robin G Walters
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Medical Research Council Population Health Research Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Kuang Lin
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Ruogu Meng
- Center for Data Science in Health and Medicine, Peking University, Beijing 100191, PRC
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, PRC
| | - Jonathan M Chernus
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Katherine Neiswanger
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - David M Evans
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD, Australia; Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia; MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Sarah E Medland
- QIMR Berghofer Medical Rese Institute, Brisbane, QLD, Australia
| | | | - Seth M Weinberg
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Anthropology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Mary L Marazita
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA 15219, USA; Clinical and Translational Science, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Gang Chen
- WeGene, Shenzhen, Guangdong 518040, PRC
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Medical Research Council Population Health Research Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Yong Zhou
- Clinical Research Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PRC
| | - Michael Cheeseman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Lan Wang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200438, PRC; CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC; Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai 200438, PRC.
| | - Denis J Headon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, PRC.
| |
Collapse
|
6
|
Diaz-Cuadros M, Pourquié O, El-Sherif E. Patterning with clocks and genetic cascades: Segmentation and regionalization of vertebrate versus insect body plans. PLoS Genet 2021; 17:e1009812. [PMID: 34648490 PMCID: PMC8516289 DOI: 10.1371/journal.pgen.1009812] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Oscillatory and sequential processes have been implicated in the spatial patterning of many embryonic tissues. For example, molecular clocks delimit segmental boundaries in vertebrates and insects and mediate lateral root formation in plants, whereas sequential gene activities are involved in the specification of regional identities of insect neuroblasts, vertebrate neural tube, vertebrate limb, and insect and vertebrate body axes. These processes take place in various tissues and organisms, and, hence, raise the question of what common themes and strategies they share. In this article, we review 2 processes that rely on the spatial regulation of periodic and sequential gene activities: segmentation and regionalization of the anterior-posterior (AP) axis of animal body plans. We study these processes in species that belong to 2 different phyla: vertebrates and insects. By contrasting 2 different processes (segmentation and regionalization) in species that belong to 2 distantly related phyla (arthropods and vertebrates), we elucidate the deep logic of patterning by oscillatory and sequential gene activities. Furthermore, in some of these organisms (e.g., the fruit fly Drosophila), a mode of AP patterning has evolved that seems not to overtly rely on oscillations or sequential gene activities, providing an opportunity to study the evolution of pattern formation mechanisms.
Collapse
Affiliation(s)
- Margarete Diaz-Cuadros
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
| | - Ezzat El-Sherif
- Division of Developmental Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
7
|
Elzanowski A, Louchart A. Metric variation in the postcranial skeleton of ostriches, Struthio (Aves: Palaeognathae), with new data on extinct subspecies. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
As a result of numerous fossil and subfossil finds of ostriches, there is great demand for a comprehensive osteometric dataset for the living species and subspecies of the genus Struthio. We meet this demand by providing a set of > 100 measurements for a sample of 18 sexed skeletons, including all living and recently extinct species and subspecies of ostriches. We provide the first mensural data for two extinct subspecies, the hitherto questioned Struthio camelus spatzi from north-western Africa and the Arabian ostrich, Struthio camelus syriacus. The unique skeletal proportions of S. c. spatzi, with a relatively short wing, broad pelvis, short tarsometatarsus and big third toe, confirm the validity of this taxon and suggest an increased stability at the expense of cursoriality, which might have contributed to its extermination by humans. Our biometric analysis of the entire sample suggests a subtle sexual dimorphism in the ostrich skeleton, with females having more robust limb bones (especially wider and/or deeper at the ends) despite being on average smaller than males. If confirmed by further research, this size-independent dimorphism might reflect the independent regulation of the longitudinal and transverse dimensions of bones as revealed by several independent studies of morphological integration (covariance among morphological traits) in the avian skeleton.
Collapse
Affiliation(s)
| | - Antoine Louchart
- Univ Lyon, UCBL, ENSL, UJM, CNRS, LGL-TPE, F-69622, Villeurbanne, France
| |
Collapse
|
8
|
Wachholz GE, Rengel BD, Vargesson N, Fraga LR. From the Farm to the Lab: How Chicken Embryos Contribute to the Field of Teratology. Front Genet 2021; 12:666726. [PMID: 34367238 PMCID: PMC8339958 DOI: 10.3389/fgene.2021.666726] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/11/2021] [Indexed: 02/04/2023] Open
Abstract
Congenital anomalies and its causes, particularly, by external factors are the aim of the field called teratology. The external factors studied by teratology are known as teratogens and can be biological or environmental factors for example, chemicals, medications, recreational drugs, environmental pollutants, physical agents (e.g., X-rays and maternal hyperthermia) and maternal metabolic conditions. Proving the teratogenicity of a factor is a difficult task requiring epidemiology studies as well as experimental teratology evidence from the use of animal models, one of which is the chicken embryo. This model in particular has the advantage of being able to follow development live and in vivo, with rapid development hatching around 21 days, is cheap and easy to manipulate and to observe development. All this allows the chicken embryo to be used in drug screening studies, teratogenic evaluation and studies of mechanisms of teratogenicity. The chicken embryo shares morphological, biochemical and genetic similarities with humans as well as mammalian species, making them ideal to ascertain the actions of teratogens, as well as screen drugs to test for their safety. Pre-clinical trials for new drugs are carried out in rodents and rabbits, however, chicken embryos have been used to screen new compounds or analogs of thalidomide as well as to investigate how some drugs can lead to congenital malformations. Indeed, the chicken embryo has proved valuable in understanding how many congenital anomalies, seen in humans, arise following teratogen exposure. The aim of this review is to highlight the role of the chicken embryo as an experimental model for studies in teratology, exploring its use in drug screening studies, phenotypic evaluation and studies of teratogenic mechanisms of action. Here, we discuss many known teratogens, that have been evaluated using the chicken embryo model including some medicines, such as, thalidomide, valproic acid; recreational drugs including alcohol; environmental influences, such as viruses, specifically ZIKV, which is a newly discovered human teratogen. In addition, we discuss how the chicken embryo has provided insight on the mechanisms of teratogenesis of many compounds and also how this impact on drug safety.
Collapse
Affiliation(s)
- Gabriela Elis Wachholz
- Postgraduate Program of Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Teratogen Information Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Bruna Duarte Rengel
- Postgraduate Program of Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Teratogen Information Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Lucas Rosa Fraga
- Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Teratogen Information Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
9
|
Qiu Y, Fung L, Schilling TF, Nie Q. Multiple morphogens and rapid elongation promote segmental patterning during development. PLoS Comput Biol 2021; 17:e1009077. [PMID: 34161317 PMCID: PMC8259987 DOI: 10.1371/journal.pcbi.1009077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 07/06/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
The vertebrate hindbrain is segmented into rhombomeres (r) initially defined by distinct domains of gene expression. Previous studies have shown that noise-induced gene regulation and cell sorting are critical for the sharpening of rhombomere boundaries, which start out rough in the forming neural plate (NP) and sharpen over time. However, the mechanisms controlling simultaneous formation of multiple rhombomeres and accuracy in their sizes are unclear. We have developed a stochastic multiscale cell-based model that explicitly incorporates dynamic morphogenetic changes (i.e. convergent-extension of the NP), multiple morphogens, and gene regulatory networks to investigate the formation of rhombomeres and their corresponding boundaries in the zebrafish hindbrain. During pattern initiation, the short-range signal, fibroblast growth factor (FGF), works together with the longer-range morphogen, retinoic acid (RA), to specify all of these boundaries and maintain accurately sized segments with sharp boundaries. At later stages of patterning, we show a nonlinear change in the shape of rhombomeres with rapid left-right narrowing of the NP followed by slower dynamics. Rapid initial convergence improves boundary sharpness and segment size by regulating cell sorting and cell fate both independently and coordinately. Overall, multiple morphogens and tissue dynamics synergize to regulate the sizes and boundaries of multiple segments during development. In segmental pattern formation, chemical gradients control gene expression in a concentration-dependent manner to specify distinct gene expression domains. Despite the stochasticity inherent to such biological processes, precise and accurate borders form between segmental gene expression domains. Previous work has revealed synergy between gene regulation and cell sorting in sharpening borders that are initially rough. However, it is still poorly understood how size and boundary sharpness of multiple segments are regulated in a tissue that changes dramatically in its morphology as the embryo develops. Here we develop a stochastic multiscale cell-base model to investigate these questions. Two novel strategies synergize to promote accurate segment formation, a combination of long- and short-range morphogens plus rapid tissue convergence, with one responsible for pattern initiation and the other enabling pattern refinement.
Collapse
Affiliation(s)
- Yuchi Qiu
- Department of Mathematics, University of California, Irvine, California, United States of America
| | - Lianna Fung
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California, United States of America
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California, United States of America
- * E-mail: (TFS); (QN)
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, California, United States of America
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California, United States of America
- * E-mail: (TFS); (QN)
| |
Collapse
|
10
|
Abstract
The perceived distance between two touches is anisotropic on many parts of the body. Generally, tactile distances oriented across body width are perceived as larger than distances oriented along body length, though the magnitude of such biases differs substantially across the body. In this study, we investigated tactile distance perception on the back. Participants made verbal estimates of the perceived distance between pairs of touches oriented either across body width or along body length on (a) the left hand, (b) the left upper back, and (c) the left lower back. There were clear tactile distance anisotropies on the hand and upper back, with distances oriented across body width overestimated relative to those along body length/height, consistent with previous results. On the lower back, however, an anisotropy in exactly the opposite direction was found. These results provide further evidence that tactile distance anisotropies vary systematically across the body and suggest that the spatial representation of touch on the lower back may differ qualitatively from that on other regions of the body.
Collapse
|
11
|
Biallelic variant in DACH1, encoding Dachshund Homolog 1, defines a novel candidate locus for recessive postaxial polydactyly type A. Genomics 2021; 113:2495-2502. [PMID: 34022343 DOI: 10.1016/j.ygeno.2021.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/08/2021] [Accepted: 05/17/2021] [Indexed: 01/13/2023]
Abstract
Polydactyly or hexadactyly is characterized by an extra digit/toe with or without a bone. Currently, variants in ten genes have been implicated in the non-syndromic form of polydactyly. DNA from a single affected individual having bilateral postaxial polydactyly was subjected to whole exome sequencing (WES), followed by Sanger sequencing. Homology modeling was performed for the identified variant and advance microscopy imaging approaches were used to reveal the localization of the DACH1 protein at the base of primary cilia. A disease-causing biallelic missense variant (c.563G > A; p.Cys188Tyr; NM_080760.5) was identified in the DACH1 gene segregating perfectly within the family. Structural analysis using homology modeling of the DACH1 protein revealed secondary structure change that might result in loss of function or influence downstream interactions. Moreover, siRNA-mediated depletion of DACH1 showed a key role of DACH1 in ciliogenesis and cilia function. This study provides the first evidence of involvement of the DACH1 gene in digits development in humans and its role in primary cilia. This signifies the importance and yet unexplored role of DACH1.
Collapse
|
12
|
Saxena A, Cooper KL. Diversification of the vertebrate limb: sequencing the events. Curr Opin Genet Dev 2021; 69:42-47. [PMID: 33647833 DOI: 10.1016/j.gde.2021.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
Naturalists leading up to the early 20th century were captivated by the diversity of limb form and function and described its development in a variety of species. The advent of discoveries in genetics followed by molecular biology led to focused efforts in few 'model' species, namely mouse and chicken, to understand conserved mechanisms of limb axis specification and development of the musculoskeletal system. 'Non-traditional' species largely fell by the wayside until their recent resurgence into the spotlight with advances in next-generation sequencing technologies (NGS). In this review, we focus on how the use of NGS has provided insights into the development, loss, and diversification of amniote limbs. Coupled with advances in chromatin interrogation techniques and functional tests in vivo, NGS is opening possibilities to understand the genetic mechanisms that govern the remarkable radiation of vertebrate limb form and function.
Collapse
Affiliation(s)
- Aditya Saxena
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Kimberly L Cooper
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
13
|
Congenital Malformations in Sea Turtles: Puzzling Interplay between Genes and Environment. Animals (Basel) 2021; 11:ani11020444. [PMID: 33567785 PMCID: PMC7915190 DOI: 10.3390/ani11020444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Congenital malformations can lead to embryonic mortality in many species, and sea turtles are no exception. Genetic and/or environmental alterations occur during early development in the embryo, and may produce aberrant phenotypes, many of which are incompatible with life. Causes of malformations are multifactorial; genetic factors may include mutations, chromosomal aberrations, and inbreeding effects, whereas non-genetic factors may include nutrition, hyperthermia, low moisture, radiation, and contamination. It is possible to monitor and control some of these factors (such as temperature and humidity) in nesting beaches, and toxic compounds in feeding areas, which can be transferred to the embryo through their lipophilic properties. In this review, we describe possible causes of different types of malformations observed in sea turtle embryos, as well as some actions that may help reduce embryonic mortality. Abstract The completion of embryonic development depends, in part, on the interplay between genetic factors and environmental conditions, and any alteration during development may affect embryonic genetic and epigenetic regulatory pathways leading to congenital malformations, which are mostly incompatible with life. Oviparous reptiles, such as sea turtles, that produce numerous eggs in a clutch that is buried on the beach provide an opportunity to study embryonic mortality associated with malformations that occur at different times during development, or that prevent the hatchling from emerging from the nest. In sea turtles, the presence of congenital malformations frequently leads to mortality. A few years ago, a detailed study was performed on external congenital malformations in three species of sea turtles from the Mexican Pacific and Caribbean coasts, the hawksbill turtle, Eretmochelys imbricata (n = 23,559 eggs), the green turtle, Chelonia mydas (n = 17,690 eggs), and the olive ridley, Lepidochelys olivacea (n = 20,257 eggs), finding 63 types of congenital malformations, of which 38 were new reports. Of the three species, the olive ridley showed a higher incidence of severe anomalies in the craniofacial region (49%), indicating alterations of early developmental pathways; however, several malformations were also observed in the body, including defects in the carapace (45%) and limbs (33%), as well as pigmentation disorders (20%), indicating that deviations occurred during the middle and later stages of development. Although intrinsic factors (i.e., genetic mutations or epigenetic modifications) are difficult to monitor in the field, some environmental factors (such as the incubation temperature, humidity, and probably the status of feeding areas) are, to some extent, less difficult to monitor and/or control. In this review, we describe the aetiology of different malformations observed in sea turtle embryos, and provide some actions that can reduce embryonic mortality.
Collapse
|
14
|
Lin GH, Zhang L. Apical ectodermal ridge regulates three principal axes of the developing limb. J Zhejiang Univ Sci B 2020; 21:757-766. [PMID: 33043642 PMCID: PMC7606201 DOI: 10.1631/jzus.b2000285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/06/2020] [Indexed: 11/11/2022]
Abstract
Understanding limb development not only gives insights into the outgrowth and differentiation of the limb, but also has clinical relevance. Limb development begins with two paired limb buds (forelimb and hindlimb buds), which are initially undifferentiated mesenchymal cells tipped with a thickening of the ectoderm, termed the apical ectodermal ridge (AER). As a transitional embryonic structure, the AER undergoes four stages and contributes to multiple axes of limb development through the coordination of signalling centres, feedback loops, and other cell activities by secretory signalling and the activation of gene expression. Within the scope of proximodistal patterning, it is understood that while fibroblast growth factors (FGFs) function sequentially over time as primary components of the AER signalling process, there is still no consensus on models that would explain proximodistal patterning itself. In anteroposterior patterning, the AER has a dual-direction regulation by which it promotes the sonic hedgehog (Shh) gene expression in the zone of polarizing activity (ZPA) for proliferation, and inhibits Shh expression in the anterior mesenchyme. In dorsoventral patterning, the AER activates Engrailed-1 (En1) expression, and thus represses Wnt family member 7a (Wnt7a) expression in the ventral ectoderm by the expression of Fgfs, Sp6/8, and bone morphogenetic protein (Bmp) genes. The AER also plays a vital role in shaping the individual digits, since levels of Fgf4/8 and Bmps expressed in the AER affect digit patterning by controlling apoptosis. In summary, the knowledge of crosstalk within AER among the three main axes is essential to understand limb growth and pattern formation, as the development of its areas proceeds simultaneously.
Collapse
Affiliation(s)
- Guo-hao Lin
- Centre for Anatomy and Human Identification, University of Dundee, Dundee DD1 5EH, UK
- Collaborative Innovation Center for Sports Health Promotion, Shandong Sport University, Jinan 250102, China
| | - Lan Zhang
- Collaborative Innovation Center for Sports Health Promotion, Shandong Sport University, Jinan 250102, China
| |
Collapse
|
15
|
Self-sustained planar intercalations due to mechanosignaling feedbacks lead to robust axis extension during morphogenesis. Sci Rep 2020; 10:10973. [PMID: 32620834 PMCID: PMC7334228 DOI: 10.1038/s41598-020-67413-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/04/2020] [Indexed: 12/31/2022] Open
Abstract
Tissue elongation is a necessary process in metazoans to implement their body plans that is not fully understood. Here we propose a mechanism based on the interplay between cellular mechanics and primordia patterning that results in self-sustained planar intercalations. Thus, we show that a location-dependent modulation of the mechanical properties of cells leads to robust axis extension. To illustrate the plausibility of this mechanism, we test it against different patterning models by means of computer simulations of tissues where we implemented mechano-signaling feedbacks. Our results suggest that robust elongation relies on a trade-off between cellular and tissue strains that is orchestrated through the cleavage orientation. In the particular context of axis extension in Turing-patterned tissues, we report that different directional cell activities cooperate synergetically to achieve elongation. Altogether, our findings help to understand how the axis extension phenomenon emerges from the dynamics of individual cells.
Collapse
|
16
|
Zhang W, Das P, Kelangi S, Bei M. Potassium channels as potential drug targets for limb wound repair and regeneration. PRECISION CLINICAL MEDICINE 2020; 3:22-33. [PMID: 32257531 PMCID: PMC7093894 DOI: 10.1093/pcmedi/pbz029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 12/22/2019] [Indexed: 12/02/2022] Open
Abstract
Background Ion channels are a large family of transmembrane proteins, accessible by soluble membrane-impermeable molecules, and thus are targets for development of therapeutic drugs. Ion channels are the second most common target for existing drugs, after G protein-coupled receptors, and are expected to make a big impact on precision medicine in many different diseases including wound repair and regeneration. Research has shown that endogenous bioelectric signaling mediated by ion channels is critical in non-mammalian limb regeneration. However, the role of ion channels in regeneration of limbs in mammalian systems is not yet defined. Methods To explore the role of potassium channels in limb wound repair and regeneration, the hindlimbs of mouse embryos were amputated at E12.5 when the wound is expected to regenerate and E15.5 when the wound is not expected to regenerate, and gene expression of potassium channels was studied. Results Most of the potassium channels were downregulated, except for the potassium channel kcnj8 (Kir6.1) which was upregulated in E12.5 embryos after amputation. Conclusion This study provides a new mouse limb regeneration model and demonstrates that potassium channels are potential drug targets for limb wound healing and regeneration.
Collapse
Affiliation(s)
- Wengeng Zhang
- Center for Engineering in Medicine, Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02114, USA.,Shriners Hospital for Children, Boston, MA 02114, USA
| | - Pragnya Das
- Center for Regenerative Developmental Biology, The Forsyth Institute, Cambridge, MA 02116, USA
| | - Sarah Kelangi
- Center for Engineering in Medicine, Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02114, USA.,Shriners Hospital for Children, Boston, MA 02114, USA
| | - Marianna Bei
- Center for Engineering in Medicine, Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02114, USA.,Shriners Hospital for Children, Boston, MA 02114, USA
| |
Collapse
|
17
|
Durston AJ. A Tribute to Lewis Wolpert and His Ideas on the 50th Anniversary of the Publication of His Paper 'Positional Information and the Spatial Pattern of Differentiation'. Evidence for a Timing Mechanism for Setting Up the Vertebrate Anterior-Posterior (A-P) Axis. Int J Mol Sci 2020; 21:E2552. [PMID: 32272563 PMCID: PMC7177403 DOI: 10.3390/ijms21072552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 11/16/2022] Open
Abstract
This article is a tribute to Lewis Wolpert and his ideas on the occasion of the recent 50th anniversary of the publication of his article 'Positional Information and the Spatial Pattern of Differentiation'. This tribute relates to another one of his ideas: his early 'Progress Zone' timing model for limb development. Recent evidence is reviewed showing a mechanism sharing features with this model patterning the main body axis in early vertebrate development. This tribute celebrates the golden era of Developmental Biology.
Collapse
Affiliation(s)
- Antony J Durston
- Institute of Biology, University of Leiden, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
18
|
Mathematical modeling of chondrogenic pattern formation during limb development: Recent advances in continuous models. Math Biosci 2020; 322:108319. [PMID: 32001201 DOI: 10.1016/j.mbs.2020.108319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 11/20/2022]
Abstract
The phenomenon of chondrogenic pattern formation in the vertebrate limb is one of the best studied examples of organogenesis. Many different models, mathematical as well as conceptual, have been proposed for it in the last fifty years or so. In this review, we give a brief overview of the fundamental biological background, then describe in detail several models which aim to describe qualitatively and quantitatively the corresponding biological phenomena. We concentrate on several new models that have been proposed in recent years, taking into account recent experimental progress. The major mathematical tools in these approaches are ordinary and partial differential equations. Moreover, we discuss models with non-local flux terms used to account for cell-cell adhesion forces and a structured population model with diffusion. We also include a detailed list of gene products and potential morphogens which have been identified to play a role in the process of limb formation and its growth.
Collapse
|
19
|
Marín-Llera JC, Garciadiego-Cázares D, Chimal-Monroy J. Understanding the Cellular and Molecular Mechanisms That Control Early Cell Fate Decisions During Appendicular Skeletogenesis. Front Genet 2019; 10:977. [PMID: 31681419 PMCID: PMC6797607 DOI: 10.3389/fgene.2019.00977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/13/2019] [Indexed: 12/02/2022] Open
Abstract
The formation of the vertebrate skeleton is orchestrated in time and space by a number of gene regulatory networks that specify and position all skeletal tissues. During embryonic development, bones have two distinct origins: bone tissue differentiates directly from mesenchymal progenitors, whereas most long bones arise from cartilaginous templates through a process known as endochondral ossification. Before endochondral bone development takes place, chondrocytes form a cartilage analgen that will be sequentially segmented to form joints; thus, in the cartilage template, either the cartilage maturation programme or the joint formation programme is activated. Once the cartilage differentiation programme starts, the growth plate begins to form. In contrast, when the joint formation programme is activated, a capsule begins to form that contains special articular cartilage and synovium to generate a functional joint. In this review, we will discuss the mechanisms controlling the earliest molecular events that regulate cell fate during skeletogenesis in long bones. We will explore the initial processes that lead to the recruitment of mesenchymal stem/progenitor cells, the commitment of chondrocyte lineages, and the formation of skeletal elements during morphogenesis. Thereafter, we will review the process of joint specification and joint morphogenesis. We will discuss the links between transcription factor activity, cell–cell interactions, cell–extracellular matrix interactions, growth factor signalling, and other molecular interactions that control mesenchymal stem/progenitor cell fate during embryonic skeletogenesis.
Collapse
Affiliation(s)
- Jessica Cristina Marín-Llera
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | | | - Jesús Chimal-Monroy
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| |
Collapse
|
20
|
Yamashita S, Kataoka K, Yamamoto H, Kato T, Hara S, Yamaguchi K, Renard-Guillet C, Katou Y, Shirahige K, Ochi H, Ogino H, Uchida T, Inui M, Takada S, Shigenobu S, Asahara H. Comparative analysis demonstrates cell type-specific conservation of SOX9 targets between mouse and chicken. Sci Rep 2019; 9:12560. [PMID: 31467356 PMCID: PMC6715657 DOI: 10.1038/s41598-019-48979-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
SRY (sex-determining region Y)-box 9 (SOX9) is a transcription factor regulating both chondrogenesis and sex determination. Among vertebrates, SOX9's functions in chondrogenesis are well conserved, while they vary in sex determination. To investigate the conservation of SOX9's regulatory functions in chondrogenesis and gonad development among species, we performed chromatin immunoprecipitation sequencing (ChIP-seq) using developing limb buds and male gonads from embryos of two vertebrates, mouse and chicken. In both mouse and chicken, SOX9 bound to intronic and distal regions of genes more frequently in limb buds than in male gonads, while SOX9 bound to the proximal upstream regions of genes more frequently in male gonads than in limb buds. In both species, SOX palindromic repeats were identified more frequently in SOX9 binding regions in limb bud genes compared with those in male gonad genes. The conservation of SOX9 binding regions was significantly higher in limb bud genes. In addition, we combined RNA expression analysis (RNA sequencing) with the ChIP-seq results at the same stage in developing chondrocytes and Sertoli cells and determined SOX9 target genes in these cells of the two species and disclosed that SOX9 targets showed high similarity of targets in chondrocytes, but not in Sertoli cells.
Collapse
Affiliation(s)
- Satoshi Yamashita
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Systems BioMedicine, National Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Kensuke Kataoka
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hiroto Yamamoto
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Anesthesiology, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Tomoko Kato
- Department of Systems BioMedicine, National Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Satoshi Hara
- Department of Systems BioMedicine, National Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology, 38, Nishigonaka Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Claire Renard-Guillet
- Laboratory of Genome Structure and Function Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Yuki Katou
- Laboratory of Genome Structure and Function Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata, 990-9585, Japan
| | - Hajime Ogino
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Tokujiro Uchida
- Department of Anesthesiology, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masafumi Inui
- Department of Systems BioMedicine, National Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
- Laboratory of Animal Regeneration Systemology, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology, 38, Nishigonaka Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
- Department of Molecular Medicine, The Scripps Research Institute, California, 92037, USA.
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.
| |
Collapse
|
21
|
Woods JD, Payton KSE, Sanchez-Lara PA, Au M, Simmons CF, Graham JM. Non-Cystic Fibrosis-Related Meconium Ileus: GUCY2C-Associated Disease Discovered through Rapid Neonatal Whole-Exome Sequencing. J Pediatr 2019; 211:207-210. [PMID: 31079856 DOI: 10.1016/j.jpeds.2019.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/18/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
Abstract
Meconium ileus is caused by cystic fibrosis; however, mutations in the GUCY2C gene also cause this disease. We report non-cystic fibrosis meconium ileus in an infant of non-Middle Eastern origin with compound heterozygous mutations in GUCY2C.
Collapse
Affiliation(s)
- Jeremy D Woods
- David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA
| | | | | | - Margaret Au
- Cedars-Sinai Medical Center, Los Angeles, CA
| | | | | |
Collapse
|
22
|
Abstract
The polarizing region of the developing limb bud is an important organizing center that is involved in anteroposterior (thumb to little finger) patterning and has three main functions that are now considered to depend on the secreted protein Sonic hedgehog (Shh). These are (1) specifying anteroposterior positional values by autocrine and graded paracrine signaling; (2) promoting growth in adjacent mesenchyme; (3) maintaining the distal epithelium that is essential for limb outgrowth by induction of a factor in adjacent mesenchyme. The polarizing region was identified using classical tissue grafting techniques in chicken embryos. Here we describe this procedure using tissue from transgenic Green Fluorescent Protein-expressing chicken embryos that allows the long-term fate of the polarizing region to be determined. This technique provides a highly useful and effective method to understand how the polarizing region patterns the limb and has implications for other organizing centers.
Collapse
Affiliation(s)
- Holly Stainton
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Matthew Towers
- Department of Biomedical Science, University of Sheffield, Sheffield, UK.
| |
Collapse
|
23
|
Pigeon foot feathering reveals conserved limb identity networks. Dev Biol 2019; 454:128-144. [PMID: 31247188 DOI: 10.1016/j.ydbio.2019.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022]
Abstract
The tetrapod limb is a stunning example of evolutionary diversity, with dramatic variation not only among distantly related species, but also between the serially homologous forelimbs (FLs) and hindlimbs (HLs) within species. Despite this variation, highly conserved genetic and developmental programs underlie limb development and identity in all tetrapods, raising the question of how limb diversification is generated from a conserved toolkit. In some breeds of domestic pigeon, shifts in the expression of two conserved limb identity transcription factors, PITX1 and TBX5, are associated with the formation of feathered HLs with partial FL identity. To determine how modulation of PITX1 and TBX5 expression affects downstream gene expression, we compared the transcriptomes of embryonic limb buds from pigeons with scaled and feathered HLs. We identified a set of differentially expressed genes enriched for genes encoding transcription factors, extracellular matrix proteins, and components of developmental signaling pathways with important roles in limb development. A subset of the genes that distinguish scaled and feathered HLs are also differentially expressed between FL and scaled HL buds in pigeons, pinpointing a set of gene expression changes downstream of PITX1 and TBX5 in the partial transformation from HL to FL identity. We extended our analyses by comparing pigeon limb bud transcriptomes to chicken, anole lizard, and mammalian datasets to identify deeply conserved PITX1- and TBX5-responsive components of the limb identity program. Our analyses reveal a suite of predominantly low-level gene expression changes that are conserved across amniotes to regulate the identity of morphologically distinct limbs.
Collapse
|
24
|
Rudolf H, Zellner C, El-Sherif E. Speeding up anterior-posterior patterning of insects by differential initialization of the gap gene cascade. Dev Biol 2019; 460:20-31. [PMID: 31075221 DOI: 10.1016/j.ydbio.2019.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 01/28/2023]
Abstract
Recently, it was shown that anterior-posterior patterning genes in the red flour beetle Tribolium castaneum are expressed sequentially in waves. However, in the fruit fly Drosophila melanogaster, an insect with a derived mode of embryogenesis compared to Tribolium, anterior-posterior patterning genes quickly and simultaneously arise as mature gene expression domains that, afterwards, undergo slight posterior-to-anterior shifts. This raises the question of how a fast and simultaneous mode of patterning, like that of Drosophila, could have evolved from a rather slow sequential mode of patterning, like that of Tribolium. In this paper, we propose a mechanism for this evolutionary transition based on a switch from a uniform to a gradient-mediated initialization of the gap gene cascade by maternal Hb. The model is supported by computational analyses and experiments.
Collapse
Affiliation(s)
- Heike Rudolf
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, Erlangen, 91058, Germany
| | - Christine Zellner
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, Erlangen, 91058, Germany
| | - Ezzat El-Sherif
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, Erlangen, 91058, Germany.
| |
Collapse
|
25
|
Umair M, Bilal M, Ali RH, Alhaddad B, Ahmad F, Abdullah, Haack TB, Alfadhel M, Ansar M, Meitinger T, Ahmad W. Whole‐exome sequencing revealed a nonsense mutation in
STKLD1
causing non‐syndromic pre‐axial polydactyly type A affecting only upper limb. Clin Genet 2019; 96:134-139. [DOI: 10.1111/cge.13547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health ScienceMinistry of National Guard‐Health Affairs (MNGHA) Riyadh Saudi Arabia
- Department of BiochemistryQuaid‐i‐Azam University Islamabad Pakistan
- Institute of Human GeneticsTechnische Universitat Munchen Munchen Germany
| | - Muhammad Bilal
- Department of BiochemistryQuaid‐i‐Azam University Islamabad Pakistan
| | - Raja H. Ali
- Department of BiochemistryQuaid‐i‐Azam University Islamabad Pakistan
- Division of Hematology/OncologyBoston Children's Hospital Boston Massachusetts
| | - Bader Alhaddad
- Institute of Human GeneticsTechnische Universitat Munchen Munchen Germany
| | - Farooq Ahmad
- Department of BiochemistryQuaid‐i‐Azam University Islamabad Pakistan
| | - Abdullah
- Department of BiochemistryQuaid‐i‐Azam University Islamabad Pakistan
| | - Tobias B. Haack
- Institute of Human GeneticsTechnische Universitat Munchen Munchen Germany
| | - Majid Alfadhel
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health ScienceMinistry of National Guard‐Health Affairs (MNGHA) Riyadh Saudi Arabia
- Division of Genetics, Department of PediatricsKing Abdullah Specialized Children's Hospital Riyadh Saudi Arabia
| | - Muhammad Ansar
- Department of BiochemistryQuaid‐i‐Azam University Islamabad Pakistan
| | - Thomas Meitinger
- Institute of Human GeneticsTechnische Universitat Munchen Munchen Germany
| | - Wasim Ahmad
- Department of BiochemistryQuaid‐i‐Azam University Islamabad Pakistan
| |
Collapse
|
26
|
Yakushiji-Kaminatsui N, Lopez-Delisle L, Bolt CC, Andrey G, Beccari L, Duboule D. Similarities and differences in the regulation of HoxD genes during chick and mouse limb development. PLoS Biol 2018; 16:e3000004. [PMID: 30475793 PMCID: PMC6283595 DOI: 10.1371/journal.pbio.3000004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/06/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022] Open
Abstract
In all tetrapods examined thus far, the development and patterning of limbs require the activation of gene members of the HoxD cluster. In mammals, they are regulated by a complex bimodal process that controls first the proximal patterning and then the distal structure. During the shift from the former to the latter regulation, this bimodal regulatory mechanism allows the production of a domain with low Hoxd gene expression, at which both telomeric (T-DOM) and centromeric regulatory domains (C-DOM) are silent. These cells generate the future wrist and ankle articulations. We analyzed the implementation of this regulatory mechanism in chicken, i.e., in an animal for which large morphological differences exist between fore- and hindlimbs. We report that although this bimodal regulation is globally conserved between the mouse and the chick, some important modifications evolved at least between these two model systems, in particular regarding the activity of specific enhancers, the width of the TAD boundary separating the two regulations, and the comparison between the forelimb versus hindlimb regulatory controls. At least one aspect of these regulations seems to be more conserved between chick and bats than with mouse, which may relate to the extent to which forelimbs and hindlimbs of these various animals differ in their morphologies. A comparison of Hox gene regulation during the development of limbs in birds and mammals reveals that whereas the characteristic bimodal regulatory system, based on large chromatin domains, is largely conserved between these morphologically distinct structures, some differences are revealed in the way this is implemented in various vertebrates. The shapes of limbs vary greatly among tetrapod species, even between the forelimbs and hindlimbs of the same animal. Hox genes regulate the proper growth and patterning of tetrapod limbs. In order to evaluate whether variations in the complex regulation of a cluster of Hox genes—the Hoxd genes—during limb development contribute to the differences in limb shape, we compared their transcriptional control during limb bud development in the forelimbs and hindlimbs of mouse and chicken embryos. We found that the regulatory mechanism underlying Hoxd gene expression is highly conserved, but some clear differences exist. For instance, we observed a variation in the topologically associating domain (TAD; a self-interacting genomic region) boundary interval between the mouse and the chick, as well as differences in the activity of a conserved enhancer element situated within the telomeric regulatory domain. In contrast to the mouse, the chicken enhancer has a stronger activity in the forelimb buds than in the hindlimb buds, which is correlated with the striking differences in the mRNA levels of the genes. We conclude that differences in both the timing and duration of TAD activities and in the width of their boundary may parallel the important decrease in Hoxd gene transcription in chick hindlimb buds versus forelimb buds. These differences may also account for the slightly distinct regulatory strategies implemented by mammals and birds at this locus.
Collapse
Affiliation(s)
| | - Lucille Lopez-Delisle
- School of Life Sciences, Federal Institute of Technology, Lausanne, Lausanne, Switzerland
| | - Christopher Chase Bolt
- School of Life Sciences, Federal Institute of Technology, Lausanne, Lausanne, Switzerland
| | - Guillaume Andrey
- School of Life Sciences, Federal Institute of Technology, Lausanne, Lausanne, Switzerland
| | - Leonardo Beccari
- Department of Genetics and Evolution, University of Geneva, Geneva 4, Switzerland
| | - Denis Duboule
- School of Life Sciences, Federal Institute of Technology, Lausanne, Lausanne, Switzerland
- Department of Genetics and Evolution, University of Geneva, Geneva 4, Switzerland
- * E-mail:
| |
Collapse
|
27
|
Alibardi L. Perspective: Appendage regeneration in amphibians and some reptiles derived from specific evolutionary histories. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:396-405. [DOI: 10.1002/jez.b.22835] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 10/30/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Lorenzo Alibardi
- Comparative HistolabPadova Italy
- Department of BiologyUniversity of BolognaBologna Italy
| |
Collapse
|
28
|
Makanae A, Satoh A. Ectopic Fgf signaling induces the intercalary response in developing chicken limb buds. ZOOLOGICAL LETTERS 2018; 4:8. [PMID: 29721334 PMCID: PMC5907462 DOI: 10.1186/s40851-018-0090-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Intercalary pattern formation is an important regulatory step in amphibian limb regeneration. Amphibian limb regeneration is composed of multiple steps, including wounding, blastema formation, and intercalary pattern formation. Attempts have been made to transfer insights from regeneration-competent animals to regeneration-incompetent animalsat each step in the regeneration process. In the present study, we focused on the intercalary mechanism in chick limb buds. In amphibian limb regeneration, a proximodistal axis is organized as soon as a regenerating blastema is induced. Intermediate structures are subsequently induced (intercalated) between the established proximal and distal identities. Intercalary tissues are derived from proximal tissues. Fgf signaling mediates the intercalary response in amphibian limb regeneration. RESULTS We attempted to transfer insights into intercalary regeneration from amphibian models to the chick limb bud. The zeugopodial part was dissected out, and the distal and proximal parts were conjunct at st. 24. Delivering ectopic Fgf2 + Fgf8 between the distal and proximal parts resulted in induction of zeugopodial elements. Examination of HoxA11 expression, apoptosis, and cell proliferation provides insights to compare with those in the intercalary mechanism of amphibian limb regeneration. Furthermore, the cellular contribution was investigated in both the chicken intercalary response and that of axolotl limb regeneration. CONCLUSIONS We developed new insights into cellular contribution in amphibian intercalary regeneration, and found consistency between axolotl and chicken intercalary responses. Our findings demonstrate that the same principal of limb regeneration functions between regeneration-competent and -incompetent animals. In this context, we propose the feasibility of the induction of the regeneration response in amniotes.
Collapse
Affiliation(s)
- Aki Makanae
- Research Core for Interdisciplinary Sciences (RCIS), Okayama University, 3-1-1, Tsushimanaka, Kita-ku, Okayama, 700-8530 Japan
| | - Akira Satoh
- Research Core for Interdisciplinary Sciences (RCIS), Okayama University, 3-1-1, Tsushimanaka, Kita-ku, Okayama, 700-8530 Japan
| |
Collapse
|
29
|
Arvind V, Huang AH. Mechanobiology of limb musculoskeletal development. Ann N Y Acad Sci 2017; 1409:18-32. [PMID: 28833194 DOI: 10.1111/nyas.13427] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 12/26/2022]
Abstract
While there has been considerable progress in identifying molecular regulators of musculoskeletal development, the role of physical forces in regulating induction, differentiation, and patterning events is less well understood. Here, we highlight recent findings in this area, focusing primarily on model systems that test the mechanical regulation of skeletal and tendon development in the limb. We also discuss a few of the key signaling pathways and mechanisms that have been implicated in mechanotransduction and highlight current gaps in knowledge and opportunities for further research in the field.
Collapse
Affiliation(s)
- Varun Arvind
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alice H Huang
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
30
|
Vargesson N. Developmental angiogenesis. Reprod Toxicol 2017; 70:1-2. [PMID: 28602455 DOI: 10.1016/j.reprotox.2017.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, AB25 5EZ, Aberdeen, United Kingdom.
| |
Collapse
|
31
|
Lange A, Müller GB. Polydactyly in Development, Inheritance, and Evolution. QUARTERLY REVIEW OF BIOLOGY 2017; 92:1-38. [DOI: 10.1086/690841] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Tickle C, Towers M. Sonic Hedgehog Signaling in Limb Development. Front Cell Dev Biol 2017; 5:14. [PMID: 28293554 PMCID: PMC5328949 DOI: 10.3389/fcell.2017.00014] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/08/2017] [Indexed: 02/04/2023] Open
Abstract
The gene encoding the secreted protein Sonic hedgehog (Shh) is expressed in the polarizing region (or zone of polarizing activity), a small group of mesenchyme cells at the posterior margin of the vertebrate limb bud. Detailed analyses have revealed that Shh has the properties of the long sought after polarizing region morphogen that specifies positional values across the antero-posterior axis (e.g., thumb to little finger axis) of the limb. Shh has also been shown to control the width of the limb bud by stimulating mesenchyme cell proliferation and by regulating the antero-posterior length of the apical ectodermal ridge, the signaling region required for limb bud outgrowth and the laying down of structures along the proximo-distal axis (e.g., shoulder to digits axis) of the limb. It has been shown that Shh signaling can specify antero-posterior positional values in limb buds in both a concentration- (paracrine) and time-dependent (autocrine) fashion. Currently there are several models for how Shh specifies positional values over time in the limb buds of chick and mouse embryos and how this is integrated with growth. Extensive work has elucidated downstream transcriptional targets of Shh signaling. Nevertheless, it remains unclear how antero-posterior positional values are encoded and then interpreted to give the particular structure appropriate to that position, for example, the type of digit. A distant cis-regulatory enhancer controls limb-bud-specific expression of Shh and the discovery of increasing numbers of interacting transcription factors indicate complex spatiotemporal regulation. Altered Shh signaling is implicated in clinical conditions with congenital limb defects and in the evolution of the morphological diversity of vertebrate limbs.
Collapse
Affiliation(s)
- Cheryll Tickle
- Department of Biology and Biochemistry, University of BathBath, UK
| | - Matthew Towers
- Department of Biomedical Science, The Bateson Centre, University of SheffieldWestern Bank, Sheffield, UK
| |
Collapse
|
33
|
Mammadova A, Zhou H, Carels CE, Von den Hoff JW. Retinoic acid signalling in the development of the epidermis, the limbs and the secondary palate. Differentiation 2016; 92:326-335. [DOI: 10.1016/j.diff.2016.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/20/2016] [Accepted: 05/02/2016] [Indexed: 01/06/2023]
|
34
|
Tornini VA, Puliafito A, Slota LA, Thompson JD, Nachtrab G, Kaushik AL, Kapsimali M, Primo L, Di Talia S, Poss KD. Live Monitoring of Blastemal Cell Contributions during Appendage Regeneration. Curr Biol 2016; 26:2981-2991. [PMID: 27839971 DOI: 10.1016/j.cub.2016.08.072] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/18/2016] [Accepted: 08/31/2016] [Indexed: 01/23/2023]
Abstract
The blastema is a mass of progenitor cells that enables regeneration of amputated salamander limbs or fish fins. Methodology to label and track blastemal cell progeny has been deficient, restricting our understanding of appendage regeneration. Here, we created a system for clonal analysis and quantitative imaging of hundreds of blastemal cells and their respective progeny in living adult zebrafish undergoing fin regeneration. Amputation stimulates resident cells within a limited recruitment zone to reset proximodistal (PD) positional information and assemble the blastema. Within the newly formed blastema, the spatial coordinates of connective tissue progenitors are predictive of their ultimate contributions to regenerated skeletal structures, indicating early development of an approximate PD pre-pattern. Calcineurin regulates size recovery by controlling the average number of progeny divisions without disrupting this pre-pattern. Our longitudinal clonal analyses of regenerating zebrafish fins provide evidence that connective tissue progenitors are rapidly organized into a scalable blueprint of lost structures.
Collapse
Affiliation(s)
- Valerie A Tornini
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Leslie A Slota
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - John D Thompson
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Gregory Nachtrab
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | - Luca Primo
- Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin 10060, Italy; Department of Oncology, University of Torino, Turin 10060, Italy
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
35
|
Huang BL, Trofka A, Furusawa A, Norrie JL, Rabinowitz AH, Vokes SA, Mark Taketo M, Zakany J, Mackem S. An interdigit signalling centre instructs coordinate phalanx-joint formation governed by 5'Hoxd-Gli3 antagonism. Nat Commun 2016; 7:12903. [PMID: 27713395 PMCID: PMC5059757 DOI: 10.1038/ncomms12903] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 08/12/2016] [Indexed: 12/20/2022] Open
Abstract
The number of phalanges and joints are key features of digit 'identity' and are central to limb functionality and evolutionary adaptation. Prior chick work indicated that digit phalanges and their associated joints arise in a different manner than the more sparsely jointed long bones, and their identity is regulated by differential signalling from adjacent interdigits. Currently, there is no genetic evidence for this model, and the molecular mechanisms governing digit joint specification remain poorly understood. Using genetic approaches in mouse, here we show that functional 5'Hoxd-Gli3 antagonism acts indirectly, through Bmp signalling from the interdigital mesenchyme, to regulate specification of joint progenitors, which arise in conjunction with phalangeal precursors at the digit tip. Phalanx number, although co-regulated, can be uncoupled from joint specification. We propose that 5'Hoxd genes and Gli3 are part of an interdigital signalling centre that sets net Bmp signalling levels from different interdigits to coordinately regulate phalanx and joint formation.
Collapse
Affiliation(s)
- Bau-Lin Huang
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, Maryland 21702, USA
| | - Anna Trofka
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, Maryland 21702, USA
| | - Aki Furusawa
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, Maryland 21702, USA
| | - Jacqueline L. Norrie
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Adam H. Rabinowitz
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Steven A. Vokes
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - M. Mark Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606–8501, Japan
| | - Jozsef Zakany
- Department of Genetics and Evolution, University of Geneva, Geneva 4 1211, Switzerland
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, Maryland 21702, USA
| |
Collapse
|
36
|
A Computational Approach of the French Flag Model to Connect Growth and Specification in Developmental Biology. Cognit Comput 2016. [DOI: 10.1007/s12559-016-9426-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
A Joint Less Ordinary: Intriguing Roles for Hedgehog Signalling in the Development of the Temporomandibular Synovial Joint. J Dev Biol 2016; 4:jdb4030025. [PMID: 29615589 PMCID: PMC5831777 DOI: 10.3390/jdb4030025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/08/2016] [Accepted: 08/17/2016] [Indexed: 12/14/2022] Open
Abstract
This review highlights the essential role of Hedgehog (Hh) signalling in the developmental steps of temporomandibular joint (TMJ) formation. We review evidence for intra- and potentially inter-tissue Hh signaling as well as Glioma-Associated Oncogene Homolog (GLI) dependent and independent functions. Morphogenesis and maturation of the TMJ’s individual components and the general landscape of Hh signalling is also covered. Comparison of the appendicular knee and axial TMJ also reveals interesting differences and similarities in their mechanisms of development, chondrogenesis and reliance on Hh signalling.
Collapse
|
38
|
Kinsella E, Dora N, Mellis D, Lettice L, Deveney P, Hill R, Ditzel M. Use of a Conditional Ubr5 Mutant Allele to Investigate the Role of an N-End Rule Ubiquitin-Protein Ligase in Hedgehog Signalling and Embryonic Limb Development. PLoS One 2016; 11:e0157079. [PMID: 27299863 PMCID: PMC4907512 DOI: 10.1371/journal.pone.0157079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/24/2016] [Indexed: 01/16/2023] Open
Abstract
Hedgehog (Hh) signalling is a potent regulator of cell fate and function. While much is known about the events within a Hh-stimulated cell, far less is known about the regulation of Hh-ligand production. Drosophila Hyperplastic Discs (Hyd), a ubiquitin-protein ligase, represents one of the few non-transcription factors that independently regulates both hh mRNA expression and pathway activity. Using a murine embryonic stem cell system, we revealed that shRNAi of the mammalian homologue of hyd, Ubr5, effectively prevented retinoic-acid-induced Sonic hedgehog (Shh) expression. We next investigated the UBR5:Hh signalling relationship in vivo by generating and validating a mouse bearing a conditional Ubr5 loss-of-function allele. Conditionally deleting Ubr5 in the early embryonic limb-bud mesenchyme resulted in a transient decrease in Indian hedgehog ligand expression and decreased Hh pathway activity, around E13.5. Although Ubr5-deficient limbs and digits were, on average, shorter than control limbs, the effects were not statistically significant. Hence, while loss of UBR5 perturbed Hedgehog signalling in the developing limb, there were no obvious morphological defects. In summary, we report the first conditional Ubr5 mutant mouse and provide evidence for a role for UBR5 in influencing Hh signalling, but are uncertain to whether the effects on Hedgehog signaling were direct (cell autonomous) or indirect (non-cell-autonomous). Elaboration of the cellular/molecular mechanism(s) involved may help our understanding on diseases and developmental disorders associated with aberrant Hh signalling.
Collapse
Affiliation(s)
- Elaine Kinsella
- Edinburgh CRUK Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Natalie Dora
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - David Mellis
- Edinburgh CRUK Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Laura Lettice
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Paul Deveney
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Robert Hill
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Mark Ditzel
- Edinburgh CRUK Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, UK
| |
Collapse
|
39
|
Barreto RDSN, Rodrigues MN, Carvalho RC, De Oliveira E Silva FM, Rigoglio NN, Jacob JCF, Gastal EL, Miglino MA. Organogenesis of the Musculoskeletal System in Horse Embryos and Early Fetuses. Anat Rec (Hoboken) 2016; 299:722-9. [PMID: 26934175 DOI: 10.1002/ar.23339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 01/19/2016] [Accepted: 02/01/2016] [Indexed: 12/29/2022]
Abstract
Musculoskeletal system development involves heterotypical inductive interactions between tendons, muscles, and cartilage and knowledge on organogenesis is required for clarification of its function. The aim of this study was to describe the organogenesis of horse musculoskeletal system between 21 and 105 days of gestation, using detailed macroscopic and histological analyses focusing on essential developmental steps. At day 21 of gestation the skin was translucid, but epithelial condensation and fibrocartilaginous tissues were observed on day 25 of pregnancy. Smooth muscle was seen in lymphatic and blood vessel walls and the beginning of cartilaginous chondrocranium was detected at day 30 of gestation. At day 45, typical chondroblasts and chondrocytes were observed and at day 55, mandibular processes expanded toward the ventral midline of the pharynx. At day 75, muscles became thicker and muscle fibers were seen developing in carpal and metacarpal joints with the beginning of the ossification process. At day 105, major muscle groups, similar to those seen in an adult equine, were observed. The caudal area of the nasal capsule and trabecular cartilages increased in size and became ossified, developing into the ethmoid bone. The presence of nasal, frontal, parietal, and occipital bones was observed. In conclusion, novel features of equine musculoskeletal system development have been described here and each process was linked with an early musculoskeletal event. Data presented herein will facilitate a better understanding of the equine muscular system organogenesis and aid in the detection of congenital deformities. Anat Rec, 299:722-729, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Márcio Nogueira Rodrigues
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Rafael Cardoso Carvalho
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Náthia Nathaly Rigoglio
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Júlio César Ferraz Jacob
- Department of Reproduction and Animal Evaluation, Federal Rural University of Rio de Janeiro, Seropedica, Rio de Janeiro, Brazil
| | - Eduardo Leite Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois
| | - Maria Angélica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
40
|
Kim M, Kim J, Park SR, Park DY, Kim YJ, Choi BH, Min BH. Comparison of fetal cartilage-derived progenitor cells isolated at different developmental stages in a rat model. Dev Growth Differ 2016; 58:167-79. [PMID: 26889876 DOI: 10.1111/dgd.12267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/24/2015] [Accepted: 01/05/2016] [Indexed: 11/30/2022]
Abstract
Fetal cartilage-derived progenitor cells (FCPCs) could be a useful cell source in cell-based therapies for cartilage disorders. However, their characteristics can vary depending on the developmental stages. The aim of this study was to compare the characteristics of rat FCPCs from the hind limb on embryonic day 14 (E14), E16 and E20 regarding proliferation, pluripotency, and differentiation. Morphologically, rat fetal cartilage tissue showed an increase in cartilaginous differentiation features (Safranin-O, type II collagen) and decrease in pluripotency marker (Sox2) in the order of E14, E16 and E20. E14 FCPCs showed significantly higher doubling time compared to E16 and E20 FCPCs. While the E14 FCPCs expressed pluripotent genes (Sox2, Oct4, Nanog), the E16 and E20 FCPCs expressed chondrogenic markers (Sox9, Col2a1, Acan). E20 FCPCs showed the highest ability to both chondrogenic and adipogenic differentiation and E14 FCPCs showed relatively better activity in osteogenic differentiation. Further analysis showed that E20 FCPCs expressed both adipogenic (C/ebpß) and osteogenic (Runx2, Sp7, Taz) transcription factors as well as chondrogenic transcription factors. Our results show an inverse relationship overall between the expression of pluripotency genes and that of chondrogenic and lineage-specific genes in FCPCs under development. Due to its exceptional proliferation and chondrogenic differentiation ability, fetal cells from epiphyseal cartilage (E20 in rats) may be a suitable cell source for cartilage regeneration.
Collapse
Affiliation(s)
- Mijin Kim
- Department of Molecular Science & Technology, 206 Worldcup-ro Yongtong-gu, Suwon, 16499, Korea.,Cell Therapy Center, Ajou University Hospital, 164 Worldcup-ro Yongtong-gu, Suwon, 16499, Korea
| | - Jiyoung Kim
- Inha Research Institute for Medical Sciences, Inha University College of Medicine, 100 Inha-ro Nam-gu, Incheon, 22212, Korea
| | - So Ra Park
- Inha Research Institute for Medical Sciences, Inha University College of Medicine, 100 Inha-ro Nam-gu, Incheon, 22212, Korea
| | - Do Young Park
- Department of Anatomy, School of Medicine, 206 Worldcup-ro Yongtong-gu, Suwon, 16499, Korea
| | - Young Jick Kim
- Cell Therapy Center, Ajou University Hospital, 164 Worldcup-ro Yongtong-gu, Suwon, 16499, Korea
| | - Byung Hyune Choi
- Department of Biomedical Sciences, Inha University College of Medicine, 100 Inha-ro Nam-gu, Incheon, 22212, Korea
| | - Byoung-Hyun Min
- Department of Molecular Science & Technology, 206 Worldcup-ro Yongtong-gu, Suwon, 16499, Korea.,Cell Therapy Center, Ajou University Hospital, 164 Worldcup-ro Yongtong-gu, Suwon, 16499, Korea.,Department of Orthopedic Surgery, School of Medicine, 206 Worldcup-ro Yongtong-gu, Suwon, 16499, Korea
| |
Collapse
|
41
|
The many lives of SHH in limb development and evolution. Semin Cell Dev Biol 2016; 49:116-24. [DOI: 10.1016/j.semcdb.2015.12.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 01/17/2023]
|
42
|
Zuniga A. Next generation limb development and evolution: old questions, new perspectives. Development 2015; 142:3810-20. [DOI: 10.1242/dev.125757] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The molecular analysis of limb bud development in vertebrates continues to fuel our understanding of the gene regulatory networks that orchestrate the patterning, proliferation and differentiation of embryonic progenitor cells. In recent years, systems biology approaches have moved our understanding of the molecular control of limb organogenesis to the next level by incorporating next generation ‘omics’ approaches, analyses of chromatin architecture, enhancer-promoter interactions and gene network simulations based on quantitative datasets into experimental analyses. This Review focuses on the insights these studies have given into the gene regulatory networks that govern limb development and into the fin-to-limb transition and digit reductions that occurred during the evolutionary diversification of tetrapod limbs.
Collapse
Affiliation(s)
- Aimée Zuniga
- Developmental Genetics, Department of Biomedicine, University of Basel, Mattenstrasse 28, Basel CH-4058, Switzerland
| |
Collapse
|
43
|
Wattanarat O, Kantaputra PN. Preaxial polydactyly associated with a MSX1 mutation and report of two novel mutations. Am J Med Genet A 2015; 170A:254-9. [PMID: 26463473 DOI: 10.1002/ajmg.a.37417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/22/2015] [Indexed: 01/23/2023]
Abstract
We report two novel heterozygous missense MSX1 mutations in two Thai families (c.739C>T; p.Pro247Ser and c.607G>A; p.Ala203Thr). The p.Ala203Thr mutation was found in a female patient, her sister, and their father and is associated with unilateral cleft lip and palate, hypodontia, and microdontia. The p.Pro247Ser mutation was found in a three-generation Thai family and was associated with bilateral cleft lip and palate, hypodontia, microdontia, and dens invaginatus. The proband also had preaxial polydactyly of the left hand. The role of Msx1 in limb development in mice is discussed. Intrafamilial variability of the phenotypes is clearly evident. This is the first time that a limb anomaly has been reported to be associated with a mutation in MSX1.
Collapse
Affiliation(s)
- Onnida Wattanarat
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai, Thailand.,Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Piranit Nik Kantaputra
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai, Thailand.,Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.,DENTALAND CLINIC, Chiang Mai, Thailand
| |
Collapse
|
44
|
Martínez-Abadías N, Mateu R, Niksic M, Russo L, Sharpe J. Geometric Morphometrics on Gene Expression Patterns Within Phenotypes: A Case Example on Limb Development. Syst Biol 2015; 65:194-211. [PMID: 26377442 PMCID: PMC4748747 DOI: 10.1093/sysbio/syv067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/11/2015] [Indexed: 01/12/2023] Open
Abstract
How the genotype translates into the phenotype through development is critical to fully understand the evolution of phenotypes. We propose a novel approach to directly assess how changes in gene expression patterns are associated with changes in morphology using the limb as a case example. Our method combines molecular biology techniques, such as whole-mount in situ hybridization, with image and shape analysis, extending the use of Geometric Morphometrics to the analysis of nonanatomical shapes, such as gene expression domains. Elliptical Fourier and Procrustes-based semilandmark analyses were used to analyze the variation and covariation patterns of the limb bud shape with the expression patterns of two relevant genes for limb morphogenesis, Hoxa11 and Hoxa13. We devised a multiple thresholding method to semiautomatically segment gene domains at several expression levels in large samples of limb buds from C57Bl6 mouse embryos between 10 and 12 postfertilization days. Besides providing an accurate phenotyping tool to quantify the spatiotemporal dynamics of gene expression patterns within developing structures, our morphometric analyses revealed high, non-random, and gene-specific variation undergoing canalization during limb development. Our results demonstrate that Hoxa11 and Hoxa13, despite being paralogs with analogous functions in limb patterning, show clearly distinct dynamic patterns, both in shape and size, and are associated differently with the limb bud shape. The correspondence between our results and already well-established molecular processes underlying limb development confirms that this morphometric approach is a powerful tool to extract features of development regulating morphogenesis. Such multilevel analyses are promising in systems where not so much molecular information is available and will advance our understanding of the genotype–phenotype map. In systematics, this knowledge will increase our ability to infer how evolution modified a common developmental pattern to generate a wide diversity of morphologies, as in the vertebrate limb.
Collapse
Affiliation(s)
- Neus Martínez-Abadías
- EMBL-CRG Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Roger Mateu
- EMBL-CRG Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Martina Niksic
- EMBL-CRG Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Lucia Russo
- EMBL-CRG Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - James Sharpe
- EMBL-CRG Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
45
|
Barrios N, González-Pérez E, Hernández R, Campuzano S. The Homeodomain Iroquois Proteins Control Cell Cycle Progression and Regulate the Size of Developmental Fields. PLoS Genet 2015; 11:e1005463. [PMID: 26305360 PMCID: PMC4549242 DOI: 10.1371/journal.pgen.1005463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/23/2015] [Indexed: 01/09/2023] Open
Abstract
During development, proper differentiation and final organ size rely on the control of territorial specification and cell proliferation. Although many regulators of these processes have been identified, how both are coordinated remains largely unknown. The homeodomain Iroquois/Irx proteins play a key, evolutionarily conserved, role in territorial specification. Here we show that in the imaginal discs, reduced function of Iroquois genes promotes cell proliferation by accelerating the G1 to S transition. Conversely, their increased expression causes cell-cycle arrest, down-regulating the activity of the Cyclin E/Cdk2 complex. We demonstrate that physical interaction of the Iroquois protein Caupolican with Cyclin E-containing protein complexes, through its IRO box and Cyclin-binding domains, underlies its activity in cell-cycle control. Thus, Drosophila Iroquois proteins are able to regulate cell-autonomously the growth of the territories they specify. Moreover, our results provide a molecular mechanism for a role of Iroquois/Irx genes as tumour suppressors. The correct development of body organs, with their characteristic size and shape, requires the coordination of cell division and cell differentiation. Here we show that the Iroquois proteins (Irx in vertebrates) slow down cell division in the Drosophila imaginal discs, in addition to their well-known role in cell fate and territorial specification. In humans, inactivating mutations at the Irx genes are associated to several types of cancer, thus allowing their classification as tumour suppressor genes. We have observed that Drosophila Iroquois genes similarly behave as tumour suppressor genes. Iroquois proteins belong to a family of homeodomain-containing transcriptional regulators. However, our results indicate that they control cell division by a transcription independent mechanism based on their physical interaction with Cyclin E containing complexes, a key player in cell-cycle progression. We have identified two evolutionary conserved domains of Iroquois proteins, different from the homeodomain, involved in that interaction. This new function of Iroquois proteins places them in a key position to coordinate growth and differentiation during normal development. Our results further suggest a molecular mechanism for their role in tumour suppression. Future studies of Irx genes should help to determine if a similar mechanism could operate to help cancer progression when Irx activity is compromised.
Collapse
Affiliation(s)
- Natalia Barrios
- Department of Development and Differentiation, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Esther González-Pérez
- Department of Development and Differentiation, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Rosario Hernández
- Department of Development and Differentiation, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Sonsoles Campuzano
- Department of Development and Differentiation, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| |
Collapse
|
46
|
Nödl MT, Fossati SM, Domingues P, Sánchez FJ, Zullo L. The making of an octopus arm. EvoDevo 2015; 6:19. [PMID: 26052417 PMCID: PMC4458049 DOI: 10.1186/s13227-015-0012-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/13/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Most of our current findings on appendage formation and patterning stem from studies on chordate and ecdysozoan model organisms. However, in order to fully understand the evolution of animal appendages, it is essential to include information on appendage development from lophotrochozoan representatives. Here, we examined the basic dynamics of the Octopus vulgaris arm's formation and differentiation - as a highly evolved member of the lophotrochozoan super phylum - with a special focus on the formation of the arm's musculature. RESULTS The octopus arm forms during distinct phases, including an early outgrowth from an epithelial thickening, an elongation, and a late differentiation into mature tissue types. During early arm outgrowth, uniform proliferation leads to the formation of a rounded bulge, which subsequently elongates along its proximal-distal axis by means of actin-mediated epithelial cell changes. Further differentiation of all tissue layers is initiated but end-differentiation is postponed to post-hatching stages. Interestingly, muscle differentiation shows temporal differences in the formation of distinct muscle layers. Particularly, first myocytes appear in the area of the future transverse prior to the longitudinal muscle layer, even though the latter represents the more dominant muscle type at hatching stage. Sucker rudiments appear as small epithelial outgrowths with a mesodermal and ectodermal component on the oral part of the arm. During late differentiation stages, cell proliferation becomes localized to a distal arm region termed the growth zone of the arm. CONCLUSIONS O. vulgaris arm formation shows both, similarities to known model species as well as species-specific patterns of arm formation. Similarities include early uniform cell proliferation and actin-mediated cell dynamics, which lead to an elongation along the proximal-distal axis. Furthermore, the switch to an adult-like progressive distal growth mode during late differentiation stages is reminiscent of the vertebrate progress zone. However, tissue differentiation shows a species-specific delay, which is correlated to a paralarval pelagic phase after hatching and concomitant emerging behavioral modifications. By understanding the general dynamics of octopus arm formation, we established a basis for further studies on appendage patterning, growth, and differentiation in a representative of the lophotrochozoan super phylum.
Collapse
Affiliation(s)
- Marie-Therese Nödl
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Sara M Fossati
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Pedro Domingues
- Centro Oceanografico de Vigo, Instituto Español de Oceanografia, Subida Radio Faro, 50 36390 Vigo, Spain
| | - Francisco J Sánchez
- Centro Oceanografico de Vigo, Instituto Español de Oceanografia, Subida Radio Faro, 50 36390 Vigo, Spain
| | - Letizia Zullo
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
47
|
Deterministic HOX patterning in human pluripotent stem cell-derived neuroectoderm. Stem Cell Reports 2015; 4:632-44. [PMID: 25843047 PMCID: PMC4400649 DOI: 10.1016/j.stemcr.2015.02.018] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 11/25/2022] Open
Abstract
Colinear HOX expression during hindbrain and spinal cord development diversifies and assigns regional neural phenotypes to discrete rhombomeric and vertebral domains. Despite the precision of HOX patterning in vivo, in vitro approaches for differentiating human pluripotent stem cells (hPSCs) to posterior neural fates coarsely pattern HOX expression thereby generating cultures broadly specified to hindbrain or spinal cord regions. Here, we demonstrate that successive activation of fibroblast growth factor, Wnt/β-catenin, and growth differentiation factor signaling during hPSC differentiation generates stable, homogenous SOX2+/Brachyury+ neuromesoderm that exhibits progressive, full colinear HOX activation over 7 days. Switching to retinoic acid treatment at any point during this process halts colinear HOX activation and transitions the neuromesoderm into SOX2+/PAX6+ neuroectoderm with predictable, discrete HOX gene/protein profiles that can be further differentiated into region-specific cells, e.g., motor neurons. This fully defined approach significantly expands capabilities to derive regional neural phenotypes from diverse hindbrain and spinal cord domains. Deterministic HOX expression in hPSC-derived neuromesoderm progenitors (NMPs) Wnt/β-catenin, FGF, and GDF signaling regulate HOX activation in NMPs Retinoic acid (RA) transitions NMPs to neuroectoderm and halts HOX activation Neural cells can be patterned to any rostrocaudal hindbrain or spinal cord domain
Collapse
|
48
|
Wang Y, Beck C. Distinct patterns of endosulfatase gene expression during Xenopus laevis limb development and regeneration. ACTA ACUST UNITED AC 2015; 2:19-25. [PMID: 27499864 PMCID: PMC4895329 DOI: 10.1002/reg2.27] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/01/2014] [Accepted: 12/05/2014] [Indexed: 12/20/2022]
Abstract
The heparan sulfate 6‐O‐endosulfatases sulf1 and sulf2 regulate multiple cellular processes and organ development. Sulfs modulate a range of heparan‐sulfate‐dependent extracellular pathways, including the fibroblast growth factor, bone morphogenetic protein, and wingless/wnt signaling pathways. Known patterns of sulf transcript expression together with functional experiments have implicated the sulfs in chondrogenesis and muscle regeneration in mammals. Here, we describe the expression patterns of Xenopus laevis sulf1 and sulf2 in developing forelimbs and hindlimbs and demonstrate novel expression of the sulf transcripts in the regenerating hindlimbs, with prominent sulf2 expression in the proliferating blastema and transient expression of sulf1 in the redeveloping apical epidermal ridge. These findings further suggest involvement of the sulfs in successful limb regeneration in amphibians.
Collapse
Affiliation(s)
- Yi‐Hsuan Wang
- Department of ZoologyUniversity of OtagoPO Box 56DunedinNew Zealand
| | - Caroline Beck
- Department of ZoologyUniversity of OtagoPO Box 56DunedinNew Zealand
| |
Collapse
|
49
|
Yakushiji-Kaminatsui N, Kondo T, Endo TA, Koseki Y, Kondo K, Ohara O, Vidal M, Koseki H. RING1 contributes to early proximal-distal specification of the forelimb bud by restricting Meis2 expression. Development 2015; 143:276-85. [DOI: 10.1242/dev.127506] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/08/2015] [Indexed: 12/30/2022]
Abstract
Polycomb group (PcG) proteins play a pivotal role in silencing development-related genes and help to maintain various stem and precursor cells and regulate their differentiation. PcG factors also regulate dynamic and complex regional specification, particularly in mammals, but this activity is mechanistically not well understood. In this study, we focused on proximal-distal (PD) patterning of the forelimb bud to elucidate how PcG factors contribute to a regional specification process that depends on developmental signals. Depletion of RING1 proteins, which are essential components of the Polycomb repressive complex-1 (PRC1), led to severe defects in forelimb formation along the PD axis. We show that preferential defects in early distal specification in Ring1-deficient forelimb buds accompany failures in repression of proximal signal circuitry bound by RING1B, including Meis2/1, and activation of distal signal circuitry in the prospective distal region. Additional deletion of Meis2 induced partial restoration of distal gene expression and limb formation seen in the Ring1-deficient mice, suggesting a critical role for RING1-dependent repression of Meis2 and likely Meis1 for distal specification. We suggest that the RING1/MEIS2/1 axis is regulated by early PD signals and contributes to initiation or maintenance of the distal signal circuitry.
Collapse
Affiliation(s)
- Nayuta Yakushiji-Kaminatsui
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takashi Kondo
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- CREST, Japan Science and Technology Agency, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- KAST, Project on Health and Anti-aging, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Takaho A. Endo
- Laboratory for Integrative Genomics, RIKEN IMS, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yoko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- CREST, Japan Science and Technology Agency, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kaori Kondo
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- CREST, Japan Science and Technology Agency, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- KAST, Project on Health and Anti-aging, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN IMS, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Miguel Vidal
- Centro de Investigaciones Biológicas, Department of Cellular and Molecular Biology, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- CREST, Japan Science and Technology Agency, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
50
|
Abstract
This review will focus on the use of the chicken and quail as model systems to analyze myogenesis and as such will emphasize the experimental approaches that are strongest in these systems-the amenability of the avian embryo to manipulation and in ovo observation. During somite differentiation, a wide spectrum of developmental processes occur such as cellular differentiation, migration, and fusion. Cell lineage studies combined with recent advancements in cell imaging allow these biological phenomena to be readily observed and hypotheses tested extremely rapidly-a strength that is restricted to the avian system. A clear weakness of the chicken in the past has been genetic approaches to modulate gene function. Recent advances in the electroporation of expression vectors, siRNA constructs, and use of tissue specific reporters have opened the door to increasingly sophisticated experiments that address questions of interest not only to the somite/muscle field in particular but also fundamental to biology in general. Importantly, an ever-growing body of evidence indicates that somite differentiation in birds is indistinguishable to that of mammals; therefore, these avian studies complement the complex genetic models of the mouse.
Collapse
Affiliation(s)
- Claire E Hirst
- EMBL Australia, Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, VIC, 3800, Australia,
| | | |
Collapse
|