1
|
Zhang R, Tang J, Li T, Zhou J, Pan W. INPP5E and Coordination of Signaling Networks in Cilia. Front Mol Biosci 2022; 9:885592. [PMID: 35463949 PMCID: PMC9019342 DOI: 10.3389/fmolb.2022.885592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Primary cilia are ubiquitous mechanosensory organelles that specifically coordinate a series of cellular signal transduction pathways to control cellular physiological processes during development and in tissue homeostasis. Defects in the function or structure of primary cilia have been shown to be associated with a large range of diseases called ciliopathies. Inositol polyphosphate-5-phosphatase E (INPP5E) is an inositol polyphosphate 5-phosphatase that is localized on the ciliary membrane by anchorage via its C-terminal prenyl moiety and hydrolyzes both phosphatidylinositol-4, 5-bisphosphate (PtdIns(4,5)P2) and PtdIns(3,4,5)P3, leading to changes in the phosphoinositide metabolism, thereby resulting in a specific phosphoinositide distribution and ensuring proper localization and trafficking of proteins in primary cilia. In addition, INPP5E also works synergistically with cilia membrane-related proteins by playing key roles in the development and maintenance homeostasis of cilia. The mutation of INPP5E will cause deficiency of primary cilia signaling transduction, ciliary instability and ciliopathies. Here, we present an overview of the role of INPP5E and its coordination of signaling networks in primary cilia.
Collapse
Affiliation(s)
- Renshuai Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Jianming Tang
- Zhenjiang Hospital of Traditional Chinese Medicine, Zhenjiang, China
| | - Tianliang Li
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Wei Pan
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
2
|
Li J, Zhang L, Yin L, Ma N, Wang T, Wu Y, Wang M, Yang X, Xu H, Hao C, Li W, Wei W, Xu Y, Zhang F, Breslin P, Zhang J, Zhang J. In Vitro Expansion of Hematopoietic Stem Cells by Inhibition of Both GSK3 and p38 Signaling. Stem Cells Dev 2019; 28:1486-1497. [PMID: 31552804 DOI: 10.1089/scd.2019.0119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem cell (HSC) transplantation therapy is one of the most effective treatments for life-threatening hematopoietic diseases. Bone marrow (BM) and mobilized peripheral blood are the major sources of HSCs, but these resources are limited by a paucity of human leukocyte antigen (HLA)-matched donors. Umbilical cord blood (UCB) is the most promising alternative to obtain HSCs for transplantation therapy. However, UCB transplantation therapy is limited by low numbers of HSCs per unit of UCB. In vitro HSC expansion is believed to be the most effective and applicable strategy to address this issue. Here we report that a moderate concentration of GSK3 inhibitor promotes HSC expansion by inducing moderate levels of β-catenin activity in HSCs. However, such a concentration of GSK3 inhibitor also stimulates myeloid cells to produce inflammatory cytokines, which attenuate HSC expansion by inducing p38 activation. Thus, when unpurified HSCs were used in culture, inhibition of p38-induced inflammatory cytokine signaling was required to ensure HSC expansion induced by the low concentration of GSK3 inhibitor. Our study suggests that the combination of a moderate concentration of p38 inhibitor plus a GSK3 inhibitor synergistically promotes the expansion of both murine BM HSCs and human UCB HSCs.
Collapse
Affiliation(s)
- Jing Li
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Lei Zhang
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China.,Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, Illinois
| | - Lizhi Yin
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Na Ma
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Tian Wang
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yuanyuan Wu
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Ming Wang
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xingxing Yang
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hui Xu
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Caiqin Hao
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Wenyan Li
- Department of Gynaecology and Obstetrics, Lanzhou University Second Hospital, Lanzhou, China
| | - Wei Wei
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, Illinois
| | - Yan Xu
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Feng Zhang
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Peter Breslin
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, Illinois.,Department of Biology, Loyola University Chicago, Chicago, Illinois.,Department of Molecular/Cellular Physiology, Loyola University Chicago, Chicago, Illinois
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, Illinois.,Department of Pathology, Loyola University Medical Center, Maywood, Illinois
| | - Jun Zhang
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
3
|
Macedo CES, da Conti G, Catena AS, Bruneska D, Rosa M, Noronha CG, Santa Cruz F, Ferraz ÁAB. Assessment of TCF7L2 expression after bariatric surgery. PLoS One 2019; 14:e0216627. [PMID: 31083695 PMCID: PMC6513086 DOI: 10.1371/journal.pone.0216627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/24/2019] [Indexed: 01/18/2023] Open
Abstract
Objective To assess the influence of bariatric surgery on transcription factor 7-like 2 (TCF7L2) expression and its association with body mass index (BMI) and Type 2 diabetes mellitus (T2DM). Methods Prospective study performed between 2016 and 2018, where 26 obese patients undergoing bariatric surgery were divided into two subgroups: diabetics and non-diabetics. The RNAs were extracted from peripheral blood samples that were obtained from each patient in two different moments: before surgery and after 12 months of follow-up. The relative expression of TCF7L2 was determined according to the delta-Ct method. Results The linear regression model of BMI x delta-Ct showed a positive correlation (p = 0.037). In the subgroups, an inversely proportional relationship was found between delta-Ct and BMI in the diabetic group and a directly proportional relationship in the non-diabetic group (p>0.05 in both). In the postoperative period, the regression model was similar to the preoperative, except when analyzing the subgroups, where diabetic patients showed a directly proportional relationship (p>0.05). The relative expression of TCF7L2 showed an average of 1.16 ± 0.91, CI-95% 0.79–1.53. There was an increase in relative expression of 48% in the non-diabetic group (p = 0.021), and a decrease of 27% in the T2DM group (p>0.05) in the postoperative. There was a positive correlation between a greater decrease in BMI and increased relative expression (p = 0.027). Conclusion Our results showed that generally, the TCF7L2 expression increase with a decrease in BMI, however, for patients with T2DM, it exhibits an inverse pattern, which is normalized one year after bariatric surgery.
Collapse
Affiliation(s)
- Carlos Eduardo S. Macedo
- General Surgery Unit, Hospital das Clínicas, Federal University of Pernambuco, Recife, PE, Brazil
| | - Guilherme da Conti
- General Surgery Unit, Hospital das Clínicas, Federal University of Pernambuco, Recife, PE, Brazil
| | - Andriu S. Catena
- Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Recife, PE, Brazil
| | - Danyelly Bruneska
- Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Recife, PE, Brazil
- Department of Biochemistry, Federal University of Pernambuco, Recife, PE, Brazil
| | - Malu Rosa
- Federal University of Pernambuco School of Medicine, Recife, PE, Brazil
| | - Clarissa G. Noronha
- General Surgery Unit, Hospital das Clínicas, Federal University of Pernambuco, Recife, PE, Brazil
| | - Fernando Santa Cruz
- Federal University of Pernambuco School of Medicine, Recife, PE, Brazil
- * E-mail:
| | - Álvaro A. B. Ferraz
- General Surgery Unit, Hospital das Clínicas, Federal University of Pernambuco, Recife, PE, Brazil
- Department of Surgery, Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
4
|
Qi J, Lee HJ, Saquet A, Cheng XN, Shao M, Zheng JJ, Shi DL. Autoinhibition of Dishevelled protein regulated by its extreme C terminus plays a distinct role in Wnt/β-catenin and Wnt/planar cell polarity (PCP) signaling pathways. J Biol Chem 2017; 292:5898-5908. [PMID: 28223363 DOI: 10.1074/jbc.m116.772509] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/19/2017] [Indexed: 12/20/2022] Open
Abstract
Dishevelled (Dvl) is a key intracellular signaling molecule that mediates the activation of divergent Wnt pathways. It contains three highly conserved domains known as DIX, PDZ, and DEP, the functions of which have been well characterized in β-catenin-dependent canonical and β-catenin-independent noncanonical Wnt signaling. The C-terminal region is also highly conserved from invertebrates to vertebrates. However, its function in regulating the activation of different Wnt signals remains unclear. We reported previously that Dvl conformational change triggered by the highly conserved PDZ-binding C terminus is important for the pathway specificity. Here we provide further evidence demonstrating that binding of the C terminus to the PDZ domain results in Dvl autoinhibition in the Wnt signaling pathways. Therefore, the forced binding of the C terminus to the PDZ domain reduces the activity of Dvl in noncanonical Wnt signaling, whereas obstruction of this interaction releases Dvl autoinhibition, impairs its functional interaction with LRP6 in canonical Wnt signaling, and increases its specificity in noncanonical Wnt signaling, which is closely correlated with an enhanced Dvl membrane localization. Our findings highlight the importance of the C terminus in keeping Dvl in an appropriate autoinhibited state, accessible for regulation by other partners to switch pathway specificity. Particularly, the C-terminally tagged Dvl fusion proteins that have been widely used to study the function and cellular localization of Dvl may not truly represent the wild-type Dvl because those proteins cannot be autoinhibited.
Collapse
Affiliation(s)
- Jing Qi
- From the School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China.,the Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China, and
| | - Ho-Jin Lee
- the Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678
| | - Audrey Saquet
- the Institut de Biologie Paris-Seine (IBPS)-Developmental Biology Laboratory, Sorbonne Universités-Université Pierre et Marie Curie (UPMC), University of Paris 06, CNRS UMR7622, 75005 Paris, France
| | - Xiao-Ning Cheng
- From the School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China
| | - Ming Shao
- From the School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China
| | - Jie J Zheng
- the Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, .,the Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095.,the Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - De-Li Shi
- From the School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China, .,the Institut de Biologie Paris-Seine (IBPS)-Developmental Biology Laboratory, Sorbonne Universités-Université Pierre et Marie Curie (UPMC), University of Paris 06, CNRS UMR7622, 75005 Paris, France
| |
Collapse
|
5
|
Monin MB, Krause P, Stelling R, Bocuk D, Niebert S, Klemm F, Pukrop T, Koenig S. The anthelmintic niclosamide inhibits colorectal cancer cell lines via modulation of the canonical and noncanonical Wnt signaling pathway. J Surg Res 2016; 203:193-205. [PMID: 27338550 DOI: 10.1016/j.jss.2016.03.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 03/09/2016] [Accepted: 03/22/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Wnt/β-catenin signaling is known to play an important role in colorectal cancer (CRC). Niclosamide, a salicylamide derivative used in the treatment of tapeworm infections, targets the Wnt/β-catenin pathway. The objective of this study was to investigate niclosamide as a therapeutic agent against CRC. METHODS The antiproliferative effects of 1, 3, 10, and 50 μM concentrations of niclosamide on human (SW480 and SW620) and rodent (CC531) CRC cell lines were determined by MTS assay and direct cell count. The lymphoid enhancer-binding factor 1/transcription factor (LEF/TCF) reporter assay monitored the activity of Wnt signaling. Immunofluorescence staining demonstrated the expression pattern of active β-catenin. Gene expression of canonical and noncanonical Wnt signaling components was analyzed using qRT-PCR. Western blot analysis was performed with antibodies detecting nuclear localization of β-catenin and c-jun. RESULTS Cell proliferation in CRC cell lines was blocked dose dependently after 12 and 24 h of incubation. The Wnt promoter activity of LEF/TCF significantly decreased with niclosamide concentrations of 10 and 50 μM after 12 h of incubation. Active β-catenin did not shift from the nuclear to the cytosolic pool. However, canonical target genes (met, MMP7, and cyclin D1) as well as the coactivating factor Bcl9 were downregulated, whereas the noncanonical key player c-jun was clearly activated. CONCLUSIONS Niclosamide treatment is associated with an inhibitory effect on CRC development and reduced Wnt activity. It may exert its effect by interfering with the nuclear β-catenin-Bcl9-LEF/TCF triple-complex and by upregulation of c-jun representing noncanonical Wnt/JNK signaling. Thus, our findings warrant further research into this substance as a treatment option for patients with advanced CRC.
Collapse
Affiliation(s)
- Malte B Monin
- Department of General, Visceral and Paediatric Surgery, University Medical Centre, Georg-August-University Goettingen, Göttingen, Germany
| | - Petra Krause
- Department of General, Visceral and Paediatric Surgery, University Medical Centre, Georg-August-University Goettingen, Göttingen, Germany
| | - Robin Stelling
- Department of General, Visceral and Paediatric Surgery, University Medical Centre, Georg-August-University Goettingen, Göttingen, Germany
| | - Derya Bocuk
- Department of General, Visceral and Paediatric Surgery, University Medical Centre, Georg-August-University Goettingen, Göttingen, Germany
| | - Sabine Niebert
- Department of General, Visceral and Paediatric Surgery, University Medical Centre, Georg-August-University Goettingen, Göttingen, Germany
| | - Florian Klemm
- Department of Haematology and Oncology, University Medical Centre, Georg-August-University Goettingen, Göttingen, Germany
| | - Tobias Pukrop
- Department of Haematology and Oncology, University Medical Centre, Georg-August-University Goettingen, Göttingen, Germany; Department for Internal Medicine III, Hematology/Oncology, University Clinic Regensburg, Regensburg, Germany
| | - Sarah Koenig
- Department of General, Visceral and Paediatric Surgery, University Medical Centre, Georg-August-University Goettingen, Göttingen, Germany; University Hospital Wuerzburg, Julius-Maximilians-University Wuerzburg, Chair of Medical Teaching and Medical Education Research, Josef-Schneider-Str. 2/D6, D-97080 Wuerzburg, Germany.
| |
Collapse
|
6
|
Abstract
The phosphoprotein scaffold Dishevelled is an essential component of both Wnt signalling and of the signalsome that constitutes the supermolecular 'punctae' of assembled proteins often observed in fluorescence microscopy. The C-terminal region beyond the DEP domain displays unique and interesting character, exploited herein by careful analysis of the primary structure. Human Dishevelled-1, -2, -3 and fly Dishevelled (Dsh) sequences were downloaded and interrogated in silico. The C-terminus of Dishevelled-3 is revealed by FoldIndex(®) to be rich in ordered structure. It displays primary sequence that is unique and divergent in important ways from vertebrate isoforms as well as from the fly Dsh. The region is amphipathic, high in prolyl content, and harbours polyprolines. Dishevelled-3 displays some regions, where the proline content is >40%. Polyprolyl sequences (2-4 residues) likely constitute important sites of interaction with other Dishevelled isoforms. Several histidine-single amino acid repeats are notable. The 637,638/647,648 repeats of Dvl3 are essential for Wnt non-canonical, but not canonical signalling. Mutagenesis reveals that the C-terminal sequence is essential for the formation of punctae, made visible by fluorescence microscopy. These Dvl3-based signalsomes are very large (25-35 MDa-MW), supermolecular complexes that display dynamic reorganization in response to Wnt stimulation. Dishevelled-3 C-terminus is rich in structure and unique motifs, worthy of detailed analysis with modern molecular tools.
Collapse
Affiliation(s)
- Hsien-yu Wang
- Departments of Physiology & Biophysics, Health Sciences Center, School of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794-8661 U.S.A
| | - Craig C. Malbon
- Department of Pharmacology, Health Sciences Center, School of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794-8651 U.S.A
| |
Collapse
|
7
|
Brembeck FH, Wiese M, Zatula N, Grigoryan T, Dai Y, Fritzmann J, Birchmeier W. BCL9-2 promotes early stages of intestinal tumor progression. Gastroenterology 2011; 141:1359-70, 1370.e1-3. [PMID: 21703997 DOI: 10.1053/j.gastro.2011.06.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 06/01/2011] [Accepted: 06/07/2011] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The roles of the 2 BCL9 and 2 Pygopus genes in Wnt to β-catenin signaling are not clear in vertebrates. We examined their expression and function in normal and tumor intestinal epithelia in mice and humans. METHODS Specific antibodies were generated to characterize the BCL9 and Pygopus proteins in normal intestine and in colon tumors. Targets of BCL9 and Pygopus in colon cancer cells were analyzed using small interfering RNA analysis. Transgenic mice were created that overexpressed BCL9-2 in intestine; these were crossed with APCMin/+ mice to create BCL9-2;APCMin/+ mice. RESULTS BCL9 and Pygopus2 were expressed in all normal intestinal and colon cancer cells. BCL9-2 was detectable only in the villi, not in the crypts of normal intestine. BCL9-2 was up-regulated in adenomas and in almost all colon tumors, with a concomitant increase of Pygopus2, whereas levels of BCL9 were similar between normal and cancer cells. Transgenic overexpression of BCL9-2 in the intestine of BCL9-2; APCMin/+ mice increased formation of adenomas that progressed to invasive tumors, resulting in reduced survival time. Using small interfering RNA analysis, we found that BCL9s and Pygopus are not targets of Wnt in colon cancer cells, but Wnt signaling correlated with levels of BCL9-2. BCL9-2 regulated expression of β-catenin-dependent and -independent target genes that have been associated with early stages of intestinal tumorigenesis. CONCLUSIONS BCL9-2 promotes early phases of intestinal tumor progression in humans and in transgenic mice. BCL9-2 increases the expression of a subset of canonical Wnt target genes but also regulates genes that are required for early stages of tumor progression.
Collapse
|
8
|
Lasocki AL, Stark Z, Orchard D. A case of mosaic Goltz syndrome (focal dermal hypoplasia) in a male patient. Australas J Dermatol 2011; 52:48-51. [PMID: 21332693 DOI: 10.1111/j.1440-0960.2010.00662.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We present the case of a boy with a clinical diagnosis of Goltz (focal dermal hypoplasia) syndrome. This is a rare genodermatosis characterized by widespread dysplasia of mesodermal and ectodermal tissues. It is inherited in an X-linked dominant fashion and is normally lethal in male patients. Mutations in the PORCN gene (Xp11.23), the proteins of which are key regulators in embryonic development, have been found to be responsible for the syndrome. Sequencing of the PORCN gene was negative in our patient. This case highlights some of the challenges of obtaining a molecular diagnosis in male patients with suspected Goltz syndrome in the clinical setting.
Collapse
Affiliation(s)
- Anita L Lasocki
- Department of Dermatology, The Royal Children's Hospital, Victoria, Australia.
| | | | | |
Collapse
|
9
|
Clements SE, Mellerio JE, Holden ST, McCauley J, McGrath JA. PORCN gene mutations and the protean nature of focal dermal hypoplasia. Br J Dermatol 2009; 160:1103-9. [PMID: 19292719 DOI: 10.1111/j.1365-2133.2009.09048.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Focal dermal hypoplasia (FDH) is an X-linked dominant disorder featuring developmental abnormalities of ectodermal and mesodermal tissues. Pathogenic mutations in the PORCN gene (locus Xp11.23) were identified in 2007 and thus far 27 different mutations have been reported. PORCN encodes a putative O-acyltransferase which facilitates secretion of Wnt proteins required for ectomesodermal tissue development. We investigated PORCN gene pathology and pattern of X-chromosome inactivation analysis in two unrelated Caucasian female patients who presented with multiple developmental abnormalities consistent with FDH. We also reviewed the clinical and molecular data for all reported PORCN mutations and assessed genotype-phenotype correlation for sporadic and familial cases of FDH. DNA sequencing revealed two new PORCN gene mutations: p.W282X and c.74delG (p.G25fsX51). X-chromosome inactivation analysis revealed a random pattern in one case but was uninformative in the other. Collectively, point/small mutations account for 24 out of the 29 PORCN mutations and are typically seen in sporadic cases; larger deletions are more common in familial cases. Identification of two new PORCN gene mutations confirms the importance of PORCN-associated Wnt signalling in embryogenesis. Both new cases showed Blaschko-linear dermal hypoplasia and extensive ectomesodermal abnormalities, including severe limb developmental anomalies and a giant cell tumour of bone in one patient. Clinical variability can be attributed to the degree of lyonization and postzygotic genomic mosaicism, which are important mechanisms in determining the clinical presentation.
Collapse
Affiliation(s)
- S E Clements
- Genetic Skin Disease Group, St John's Institute of Dermatology, King's College London, Guy's Campus, London, UK
| | | | | | | | | |
Collapse
|
10
|
Jin T, Liu L. The Wnt signaling pathway effector TCF7L2 and type 2 diabetes mellitus. Mol Endocrinol 2008; 22:2383-92. [PMID: 18599616 DOI: 10.1210/me.2008-0135] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Since the relationship between TCF7L2 (also known as TCF-4) polymorphisms and type 2 diabetes mellitus was identified in 2006, extensive genome-wide association examinations in different ethnic groups have further confirmed this relationship. As a component of the bipartite transcription factor beta-catenin/TCF, TCF7L2 is important in conveying Wnt signaling during embryonic development and in regulating gene expression during adulthood. Although we still do not know mechanistically how the polymorphisms within the intron regions of TCF7L2 affect the risk of type 2 diabetes, this transcriptional regulator was shown to be involved in stimulating the proliferation of pancreatic beta-cells and the production of the incretin hormone glucagon-like peptide-1 in intestinal endocrine L cells. In this review, we introduce background knowledge of TCF7L2 as a component of the Wnt signaling pathway, summarize recent findings demonstrating the association between TCF7L2 polymorphisms and the risk of type 2 diabetes, outline experimental evidence of the potential function of TCF7L2 in pancreatic and intestinal endocrine cells, and present our perspective views.
Collapse
Affiliation(s)
- Tianru Jin
- Department of Medicine, Physiology, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| | | |
Collapse
|
11
|
Wnt signaling pathway and lung disease. Transl Res 2008; 151:175-80. [PMID: 18355764 DOI: 10.1016/j.trsl.2007.12.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 12/27/2007] [Accepted: 12/31/2007] [Indexed: 02/08/2023]
Abstract
The Wnt pathway plays an important role in development and in regulating adult stem cell systems. A variety of cellular processes is mediated by Wnt signaling, which includes cellular proliferation, differentiation, survival, apoptosis, and cell motility. Loss of regulation of these pathways can lead to tumorigenesis, and the Wnt pathway has been implicated in the development of several types of cancers, including colon, lung, leukemia, breast, thyroid, and prostate. The Wnt pathway has also been associated with other lung diseases such as interstitial lung disease (ILD) and asthma. Our increasing understanding of the Wnt pathway offers great hope that new molecular-based screening tests and pharmaceutical agents that selectively target this pathway will be developed to diagnose and treat these diseases in the future.
Collapse
|
12
|
Vergés M. Retromer: multipurpose sorting and specialization in polarized transport. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 271:153-98. [PMID: 19081543 DOI: 10.1016/s1937-6448(08)01204-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Retromer is an evolutionary conserved protein complex required for endosome-to-Golgi retrieval of lysosomal hydrolases' receptors. A dimer of two sorting nexins-typically, SNX1 and/or SNX2-deforms the membrane and thus cooperates with retromer to ensure cargo sorting. Research in various model organisms indicates that retromer participates in sorting of additional molecules whose proper transport has important repercussions in development and disease. The role of retromer as well as SNXs in endosomal protein (re)cycling and protein targeting to specialized plasma membrane domains in polarized cells adds further complexity and has implications in growth control, the establishment of developmental patterns, cell adhesion, and migration. This chapter will discuss the functions of retromer described in various model systems and will focus on relevant aspects in polarized transport.
Collapse
Affiliation(s)
- Marcel Vergés
- Laboratory of Epithelial Cell Biology, Centro de Investigación Príncipe Felipe, C/E.P. Avda. Autopista del Saler, Valencia, Spain
| |
Collapse
|
13
|
Affiliation(s)
- Meredith Tennis
- Veterans Administration Medical Center, Denver, Colorado, USA
| | | | | |
Collapse
|
14
|
Michaelidis TM, Lie DC. Wnt signaling and neural stem cells: caught in the Wnt web. Cell Tissue Res 2007; 331:193-210. [PMID: 17828608 DOI: 10.1007/s00441-007-0476-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 07/13/2007] [Indexed: 12/22/2022]
Abstract
Wnt proteins have now been identified as major physiological regulators of multiple aspects of stem cell biology, from self-renewal and pluripotency to precursor cell competence and terminal differentiation. Neural stem cells are the cellular building blocks of the developing nervous system and provide the basis for continued neurogenesis in the adult mammalian central nervous system. Here, we outline the most recent advances in the field about the critical factors and regulatory networks involved in Wnt signaling and discuss recent findings on how this increasingly intricate pathway contributes to the shaping of the developing and adult nervous system on the level of the neural stem cell.
Collapse
Affiliation(s)
- Theologos M Michaelidis
- GSF-National Research Center for Environment and Health, Institute of Developmental Genetics, Ingolstädter Landstrasse 1, 85764, Munich-Neuherberg, Germany
| | | |
Collapse
|
15
|
Grzeschik KH, Bornholdt D, Oeffner F, König A, del Carmen Boente M, Enders H, Fritz B, Hertl M, Grasshoff U, Höfling K, Oji V, Paradisi M, Schuchardt C, Szalai Z, Tadini G, Traupe H, Happle R. Deficiency of PORCN, a regulator of Wnt signaling, is associated with focal dermal hypoplasia. Nat Genet 2007; 39:833-5. [PMID: 17546031 DOI: 10.1038/ng2052] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 04/27/2007] [Indexed: 12/31/2022]
Abstract
Focal dermal hypoplasia (FDH) is an X-linked dominant multisystem birth defect affecting tissues of ectodermal and mesodermal origin. Using a stepwise approach of (i) genetic mapping of FDH, (ii) high-resolution comparative genome hybridization to seek deletions in candidate chromosome areas and (iii) point mutation analysis in candidate genes, we identified PORCN, encoding a putative O-acyltransferase and potentially crucial for cellular export of Wnt signaling proteins, as the gene mutated in FDH. The findings implicate FDH as a developmental disorder caused by a deficiency in PORCN.
Collapse
Affiliation(s)
- Karl-Heinz Grzeschik
- Department of Human Genetics, University of Marburg, Bahnhofstr. 7, 35033 Marburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Christensen ST, Pedersen LB, Schneider L, Satir P. Sensory cilia and integration of signal transduction in human health and disease. Traffic 2007; 8:97-109. [PMID: 17241444 DOI: 10.1111/j.1600-0854.2006.00516.x] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The primary cilium is a hallmark of mammalian tissue cells. Recent research has shown that these organelles display unique sets of selected signal transduction modules including receptors, ion channels, effector proteins and transcription factors that relay chemical and physical stimuli from the extracellular environment in order to control basic cellular processes during embryonic and postnatal development, as well as in tissue homeostasis in adulthood. Consequently, defects in building of the cilium or in transport or function of ciliary signal proteins are associated with a series of pathologies, including developmental disorders and cancer. In this review, we highlight recent examples of the mechanisms by which signal components are selectively targeted and transported to the ciliary membrane and we present an overview of the signal transduction pathways associated with primary and motile cilia in vertebrate cells, including platelet-derived growth factor receptor-alpha (PDGFRalpha), hedgehog and Wnt signaling pathways. Finally, we discuss the functions of these cilia-associated signal transduction pathways and their role in human health and development.
Collapse
Affiliation(s)
- Søren T Christensen
- Department of Molecular Biology, Section of Biochemistry, The August Krogh Building, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen OE, Denmark.
| | | | | | | |
Collapse
|
17
|
Abstract
Aberrant activation of the Wnt pathway is implicated in driving the formation of various human cancers, particularly those of the digestive tract. Inhibition of aberrant Wnt pathway activity in cancer cell lines efficiently blocks their growth, highlighting the great potential of therapeutics designed to achieve this in cancer patients. Here we provide an overview of the promise and pitfalls of current drug development strategies striving to inhibit the Wnt pathway and present new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Nick Barker
- Hubrecht laboratory, Netherlands Institute for Developmental Biology, Uppsalalaan 8 3584CT, Utrecht, The Netherlands.
| | | |
Collapse
|
18
|
Guder C, Philipp I, Lengfeld T, Watanabe H, Hobmayer B, Holstein TW. The Wnt code: cnidarians signal the way. Oncogene 2006; 25:7450-60. [PMID: 17143289 DOI: 10.1038/sj.onc.1210052] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cnidarians are the simplest metazoans with a nervous system. They are well known for their regeneration capacity, which is based on the restoration of a signalling centre (organizer). Recent work has identified the canonical Wnt pathway in the freshwater polyp Hydra, where it acts in organizer formation and regeneration. Wnt signalling is also essential for cnidarian embryogenesis. In the sea anemone Nematostella vectensis 11 of the 12 known wnt gene subfamilies were identified. Different wnt genes exhibit serial and overlapping expression domains along the oral-aboral axis of the embryo (the 'wnt code'). This is reminiscent of the hox code (cluster) in bilaterian embryogenesis that is, however, absent in cnidarians. It is proposed that the common ancestor of cnidarians and bilaterians invented a set of wnt genes that patterned the ancient main body axis. Major antagonists of Wnt ligands (e.g. Dkk 1/2/4) that were previously known only from chordates, are also present in cnidarians and exhibit a similar conserved function. The unexpectedly high level of genetic complexity of wnt genes evolved in early multi-cellular animals about 650 Myr ago and suggests a radical expansion of the genetic repertoire, concurrent with the evolution of multi-cellularity and the diversification of eumetazoan body plans.
Collapse
Affiliation(s)
- C Guder
- Department of Molecular Evolution and Genomics, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|