1
|
Kwokdinata C, Chew SY. Additive manufacturing in spatial patterning for spinal cord injury treatment. Adv Drug Deliv Rev 2025; 218:115523. [PMID: 39880332 DOI: 10.1016/j.addr.2025.115523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/03/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Combinatorial treatments integrating cells and biomolecules within scaffolds have been investigated to address the multifactorial nature of spinal cord injury (SCI). Current regenerative treatments have been ineffective as they do not consider the spatial positions of various cell types to effectively form functional neural pathways. Emulating the complex heterogeneity of cells in the native spinal cord requires translating the existing biological understanding of spatial patterning in neural development, as well as the influence of biomolecule and mechanical patterning on regional specification and axonal regeneration, to engineer a scaffold for spinal cord regeneration. This review explores the potential of 3D bioprinting to precisely control material, cell and drug patterns in scaffolds, achieving spatial phenotype specification and providing axonal guidance to form appropriate connections. We also discuss the application of extrusion-based and digital light processing bioprinting in integrating mechanical, chemical and biological cues within a scaffold to advance spatially patterned 3D bioprinted scaffold, as well as current challenges and future perspectives in these bioengineering strategies.
Collapse
Affiliation(s)
- Christy Kwokdinata
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 637459 Singapore
| | - Sing Yian Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 637459 Singapore; Critical Analytics for Manufacturing Personalized-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology, Campus for Research Excellence and Technological Enterprise 138602 Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University 308232 Singapore; School of Materials Science and Engineering 639798 Singapore; National Neuroscience Institute, 11 Jalan Tan Tock Seng 308433 Singapore.
| |
Collapse
|
2
|
Grass T, Dokuzluoglu Z, Rodríguez-Muela N. Neuromuscular Organoids to Study Spinal Cord Development and Disease. Methods Mol Biol 2024. [PMID: 39570548 DOI: 10.1007/7651_2024_574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Many aspects of neurodegenerative disease pathology remain unresolved. Why do certain neuronal subpopulations acquire vulnerability to stress or mutations in ubiquitously expressed genes, while others remain resilient? Do these neurons harbor intrinsic marks that make them prone to degeneration? Do these diseases have a neurodevelopmental component? Lacking this fundamental knowledge hampers the discovery of efficacious treatments. While it is well established that human organoids enable the modeling of brain-related diseases, we still lack an organoid model that recapitulates the regionalization complexity and physiology of the spinal cord. Here, we describe an advanced experimental protocol to generate neuromuscular organoids composed of a wide rostro-caudal (RC) diversity of spinal motor neurons (spMNs) and mesodermal progenitor-derived muscle cells. This model therefore allows for the robust and reproducible study of neuromuscular unit development and disease.
Collapse
Affiliation(s)
- Tobias Grass
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany
| | - Zeynep Dokuzluoglu
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany
| | - Natalia Rodríguez-Muela
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany.
- Technische Universität Dresden (TUD), Center for Regenerative Therapies Dresden, Dresden, Germany.
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
3
|
Grass T, Dokuzluoglu Z, Buchner F, Rosignol I, Thomas J, Caldarelli A, Dalinskaya A, Becker J, Rost F, Marass M, Wirth B, Beyer M, Bonaguro L, Rodriguez-Muela N. Isogenic patient-derived organoids reveal early neurodevelopmental defects in spinal muscular atrophy initiation. Cell Rep Med 2024; 5:101659. [PMID: 39067446 PMCID: PMC11384962 DOI: 10.1016/j.xcrm.2024.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/26/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Whether neurodevelopmental defects underlie postnatal neuronal death in neurodegeneration is an intriguing hypothesis only recently explored. Here, we focus on spinal muscular atrophy (SMA), a neuromuscular disorder caused by reduced survival of motor neuron (SMN) protein levels leading to spinal motor neuron (MN) loss and muscle wasting. Using the first isogenic patient-derived induced pluripotent stem cell (iPSC) model and a spinal cord organoid (SCO) system, we show that SMA SCOs exhibit abnormal morphological development, reduced expression of early neural progenitor markers, and accelerated expression of MN progenitor and MN markers. Longitudinal single-cell RNA sequencing reveals marked defects in neural stem cell specification and fewer MNs, favoring mesodermal progenitors and muscle cells, a bias also seen in early SMA mouse embryos. Surprisingly, SMN2-to-SMN1 conversion does not fully reverse these developmental abnormalities. These suggest that early neurodevelopmental defects may underlie later MN degeneration, indicating that postnatal SMN-increasing interventions might not completely amend SMA pathology in all patients.
Collapse
Affiliation(s)
- Tobias Grass
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany.
| | - Zeynep Dokuzluoglu
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany
| | - Felix Buchner
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany
| | - Ines Rosignol
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany; Technische Universität Dresden (TUD), Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Joshua Thomas
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany
| | - Antonio Caldarelli
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany
| | - Anna Dalinskaya
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany
| | - Jutta Becker
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | - Fabian Rost
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering, TUD, Dresden, Germany
| | - Michele Marass
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Center for Rare Diseases, University Hospital of Cologne, Cologne, Germany
| | - Marc Beyer
- Systems Medicine, DZNE, Bonn, Germany; PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE & University of Bonn and West German Genome Center, Bonn, Germany; Immunogenomics & Neurodegeneration, DZNE, Bonn, Germany
| | - Lorenzo Bonaguro
- Systems Medicine, DZNE, Bonn, Germany; Genomics & Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| | - Natalia Rodriguez-Muela
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany; Technische Universität Dresden (TUD), Center for Regenerative Therapies Dresden, Dresden, Germany; Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
4
|
Miller A, Dasen JS. Establishing and maintaining Hox profiles during spinal cord development. Semin Cell Dev Biol 2024; 152-153:44-57. [PMID: 37029058 PMCID: PMC10524138 DOI: 10.1016/j.semcdb.2023.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/18/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
The chromosomally-arrayed Hox gene family plays central roles in embryonic patterning and the specification of cell identities throughout the animal kingdom. In vertebrates, the relatively large number of Hox genes and pervasive expression throughout the body has hindered understanding of their biological roles during differentiation. Studies on the subtype diversification of spinal motor neurons (MNs) have provided a tractable system to explore the function of Hox genes during differentiation, and have provided an entry point to explore how neuronal fate determinants contribute to motor circuit assembly. Recent work, using both in vitro and in vivo models of MN subtype differentiation, have revealed how patterning morphogens and regulation of chromatin structure determine cell-type specific programs of gene expression. These studies have not only shed light on basic mechanisms of rostrocaudal patterning in vertebrates, but also have illuminated mechanistic principles of gene regulation that likely operate in the development and maintenance of terminal fates in other systems.
Collapse
Affiliation(s)
- Alexander Miller
- NYU Neuroscience Institute and Developmental Genetics Programs, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| | - Jeremy S Dasen
- NYU Neuroscience Institute and Developmental Genetics Programs, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
5
|
Lozovska A, Korovesi AG, Duarte P, Casaca A, Assunção T, Mallo M. The control of transitions along the main body axis. Curr Top Dev Biol 2023; 159:272-308. [PMID: 38729678 DOI: 10.1016/bs.ctdb.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Although vertebrates display a large variety of forms and sizes, the mechanisms controlling the layout of the basic body plan are substantially conserved throughout the clade. Following gastrulation, head, trunk, and tail are sequentially generated through the continuous addition of tissue at the caudal embryonic end. Development of each of these major embryonic regions is regulated by a distinct genetic network. The transitions from head-to-trunk and from trunk-to-tail development thus involve major changes in regulatory mechanisms, requiring proper coordination to guarantee smooth progression of embryonic development. In this review, we will discuss the key cellular and embryological events associated with those transitions giving particular attention to their regulation, aiming to provide a cohesive outlook of this important component of vertebrate development.
Collapse
Affiliation(s)
| | | | - Patricia Duarte
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Ana Casaca
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Tereza Assunção
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Moises Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal.
| |
Collapse
|
6
|
Driss LB, Lian J, Walker RG, Howard JA, Thompson TB, Rubin LL, Wagers AJ, Lee RT. GDF11 and aging biology - controversies resolved and pending. THE JOURNAL OF CARDIOVASCULAR AGING 2023; 3:42. [PMID: 38235060 PMCID: PMC10793994 DOI: 10.20517/jca.2023.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Since the exogenous administration of GDF11, a TGF-ß superfamily member, was reported to have beneficial effects in some models of human disease, there have been many research studies in GDF11 biology. However, many studies have now confirmed that exogenous administration of GDF11 can improve physiology in disease models, including cardiac fibrosis, experimental stroke, and disordered metabolism. GDF11 is similar to GDF8 (also called Myostatin), differing only by 11 amino acids in their mature signaling domains. These two proteins are now known to be biochemically different both in vitro and in vivo. GDF11 is much more potent than GDF8 and induces more strongly SMAD2 phosphorylation in the myocardium compared to GDF8. GDF8 and GDF11 prodomain are only 52% identical and are cleaved by different Tolloid proteases to liberate the mature signaling domain from inhibition of the prodomain. Here, we review the state of GDF11 biology, highlighting both resolved and remaining controversies.
Collapse
Affiliation(s)
- Laura Ben Driss
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - John Lian
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Ryan G. Walker
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - James A. Howard
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Thomas B. Thompson
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Lee L. Rubin
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amy J. Wagers
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Joslin Diabetes Center, Boston, MA 02115, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
7
|
Pratiwi HM, Hirasawa M, Kato K, Munakata K, Ueda S, Moriyama Y, Yu R, Kawanishi T, Tanaka M. Heterochronic development of pelvic fins in zebrafish: possible involvement of temporal regulation of pitx1 expression. Front Cell Dev Biol 2023; 11:1170691. [PMID: 37691823 PMCID: PMC10483283 DOI: 10.3389/fcell.2023.1170691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023] Open
Abstract
Anterior and posterior paired appendages of vertebrates are notable examples of heterochrony in the relative timing of their development. In teleosts, posterior paired appendages (pelvic fin buds) emerge much later than their anterior paired appendages (pectoral fin buds). Pelvic fin buds of zebrafish (Danio rerio) appear at 3 weeks post-fertilization (wpf) during the larva-to-juvenile transition (metamorphosis), whereas pectoral fin buds arise from the lateral plate mesoderm on the yolk surface at the embryonic stage. Here we explored the mechanism by which presumptive pelvic fin cells maintain their fate, which is determined at the embryonic stage, until the onset of metamorphosis. Expression analysis revealed that transcripts of pitx1, one of the key factors for the development of posterior paired appendages, became briefly detectable in the posterior lateral plate mesoderm at early embryonic stages. Further analysis indicated that the pelvic fin-specific pitx1 enhancer was in the poised state at the larval stage and is activated at the juvenile stage. We discuss the implications of these findings for the heterochronic development of pelvic fin buds.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mikiko Tanaka
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
8
|
Fan Y, Hackland J, Baggiolini A, Hung LY, Zhao H, Zumbo P, Oberst P, Minotti AP, Hergenreder E, Najjar S, Huang Z, Cruz NM, Zhong A, Sidharta M, Zhou T, de Stanchina E, Betel D, White RM, Gershon M, Margolis KG, Studer L. hPSC-derived sacral neural crest enables rescue in a severe model of Hirschsprung's disease. Cell Stem Cell 2023; 30:264-282.e9. [PMID: 36868194 PMCID: PMC10034921 DOI: 10.1016/j.stem.2023.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 11/22/2022] [Accepted: 02/02/2023] [Indexed: 03/05/2023]
Abstract
The enteric nervous system (ENS) is derived from both the vagal and sacral component of the neural crest (NC). Here, we present the derivation of sacral ENS precursors from human PSCs via timed exposure to FGF, WNT, and GDF11, which enables posterior patterning and transition from posterior trunk to sacral NC identity, respectively. Using a SOX2::H2B-tdTomato/T::H2B-GFP dual reporter hPSC line, we demonstrate that both trunk and sacral NC emerge from a double-positive neuro-mesodermal progenitor (NMP). Vagal and sacral NC precursors yield distinct neuronal subtypes and migratory behaviors in vitro and in vivo. Remarkably, xenografting of both vagal and sacral NC lineages is required to rescue a mouse model of total aganglionosis, suggesting opportunities in the treatment of severe forms of Hirschsprung's disease.
Collapse
Affiliation(s)
- Yujie Fan
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
| | - James Hackland
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Arianna Baggiolini
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lin Y Hung
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Huiyong Zhao
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA
| | - Polina Oberst
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew P Minotti
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
| | - Emiliano Hergenreder
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
| | - Sarah Najjar
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Zixing Huang
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Nelly M Cruz
- Cancer Biology and Genetics and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aaron Zhong
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; The SKI Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mega Sidharta
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; The SKI Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ting Zhou
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; The SKI Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Richard M White
- Cancer Biology and Genetics and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael Gershon
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Kara Gross Margolis
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; Department of Pediatrics, NYU Grossman School of Medicine, New York, NY 10010, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
9
|
Lian J, Walker RG, D'Amico A, Vujic A, Mills MJ, Messemer KA, Mendello KR, Goldstein JM, Leacock KA, Epp S, Stimpfl EV, Thompson TB, Wagers AJ, Lee RT. Functional substitutions of amino acids that differ between GDF11 and GDF8 impact skeletal development and skeletal muscle. Life Sci Alliance 2023; 6:e202201662. [PMID: 36631218 PMCID: PMC9834663 DOI: 10.26508/lsa.202201662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023] Open
Abstract
Growth differentiation factor 11 (GDF11) and GDF8 (MSTN) are closely related TGF-β family proteins that interact with nearly identical signaling receptors and antagonists. However, GDF11 appears to activate SMAD2/3 more potently than GDF8 in vitro and in vivo. The ligands possess divergent structural properties, whereby substituting unique GDF11 amino acids into GDF8 enhanced the activity of the resulting chimeric GDF8. We investigated potentially distinct endogenous activities of GDF11 and GDF8 in vivo by genetically modifying their mature signaling domains. Full recoding of GDF8 to that of GDF11 yielded mice lacking GDF8, with GDF11 levels ∼50-fold higher than normal, and exhibiting modestly decreased muscle mass, with no apparent negative impacts on health or survival. Substitution of two specific amino acids in the fingertip region of GDF11 with the corresponding GDF8 residues resulted in prenatal axial skeletal transformations, consistent with Gdf11-deficient mice, without apparent perturbation of skeletal or cardiac muscle development or homeostasis. These experiments uncover distinctive features between the GDF11 and GDF8 mature domains in vivo and identify a specific requirement for GDF11 in early-stage skeletal development.
Collapse
Affiliation(s)
- John Lian
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Ryan G Walker
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Andrea D'Amico
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Ana Vujic
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Melanie J Mills
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Kathleen A Messemer
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Kourtney R Mendello
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Jill M Goldstein
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Krystynne A Leacock
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Soraya Epp
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Emma V Stimpfl
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, OH, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Joslin Diabetes Center, Boston, MA, USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| |
Collapse
|
10
|
Moigneu C, Abdellaoui S, Ramos-Brossier M, Pfaffenseller B, Wollenhaupt-Aguiar B, de Azevedo Cardoso T, Camus C, Chiche A, Kuperwasser N, Azevedo da Silva R, Pedrotti Moreira F, Li H, Oury F, Kapczinski F, Lledo PM, Katsimpardi L. Systemic GDF11 attenuates depression-like phenotype in aged mice via stimulation of neuronal autophagy. NATURE AGING 2023; 3:213-228. [PMID: 37118117 PMCID: PMC10154197 DOI: 10.1038/s43587-022-00352-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 12/19/2022] [Indexed: 04/30/2023]
Abstract
Cognitive decline and mood disorders increase in frequency with age. Many efforts are focused on the identification of molecules and pathways to treat these conditions. Here, we demonstrate that systemic administration of growth differentiation factor 11 (GDF11) in aged mice improves memory and alleviates senescence and depression-like symptoms in a neurogenesis-independent manner. Mechanistically, GDF11 acts directly on hippocampal neurons to enhance neuronal activity via stimulation of autophagy. Transcriptomic and biochemical analyses of these neurons reveal that GDF11 reduces the activity of mammalian target of rapamycin (mTOR), a master regulator of autophagy. Using a murine model of corticosterone-induced depression-like phenotype, we also show that GDF11 attenuates the depressive-like behavior of young mice. Analysis of sera from young adults with major depressive disorder (MDD) reveals reduced GDF11 levels. These findings identify mechanistic pathways related to GDF11 action in the brain and uncover an unknown role for GDF11 as an antidepressant candidate and biomarker.
Collapse
Affiliation(s)
- Carine Moigneu
- Perception and Memory Lab, Institut Pasteur, Université Paris Cité, CNRS UMR3571, Paris, France
| | - Soumia Abdellaoui
- Perception and Memory Lab, Institut Pasteur, Université Paris Cité, CNRS UMR3571, Paris, France
- Institut Necker Enfants Malades, INSERM UMR-S1151, Université Paris Cité, Paris, France
| | | | - Bianca Pfaffenseller
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | | | | | - Claire Camus
- Perception and Memory Lab, Institut Pasteur, Université Paris Cité, CNRS UMR3571, Paris, France
| | - Aurélie Chiche
- Cellular Plasticity in Age-Related Pathologies Laboratory, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Paris, France
| | - Nicolas Kuperwasser
- Institut Necker Enfants Malades, INSERM UMR-S1151, Université Paris Cité, Paris, France
| | | | | | - Han Li
- Cellular Plasticity in Age-Related Pathologies Laboratory, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Paris, France
| | - Franck Oury
- Institut Necker Enfants Malades, INSERM UMR-S1151, Université Paris Cité, Paris, France
| | - Flávio Kapczinski
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, Brazil
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Pierre-Marie Lledo
- Perception and Memory Lab, Institut Pasteur, Université Paris Cité, CNRS UMR3571, Paris, France.
| | - Lida Katsimpardi
- Perception and Memory Lab, Institut Pasteur, Université Paris Cité, CNRS UMR3571, Paris, France.
- Institut Necker Enfants Malades, INSERM UMR-S1151, Université Paris Cité, Paris, France.
| |
Collapse
|
11
|
FU JIAWEI, WU CHUNSHUAI, XU GUANHUA, ZHANG JINLONG, LI YIQIU, JI CHUNYAN, CUI ZHIMING. Role of necroptosis in spinal cord injury and its therapeutic implications. BIOCELL 2023. [DOI: 10.32604/biocell.2023.026881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
12
|
Iyer NR, Shin J, Cuskey S, Tian Y, Nicol NR, Doersch TE, Seipel F, McCalla SG, Roy S, Ashton RS. Modular derivation of diverse, regionally discrete human posterior CNS neurons enables discovery of transcriptomic patterns. SCIENCE ADVANCES 2022; 8:eabn7430. [PMID: 36179024 PMCID: PMC9524835 DOI: 10.1126/sciadv.abn7430] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 08/16/2022] [Indexed: 06/02/2023]
Abstract
Our inability to derive the neuronal diversity that comprises the posterior central nervous system (pCNS) using human pluripotent stem cells (hPSCs) poses an impediment to understanding human neurodevelopment and disease in the hindbrain and spinal cord. Here, we establish a modular, monolayer differentiation paradigm that recapitulates both rostrocaudal (R/C) and dorsoventral (D/V) patterning, enabling derivation of diverse pCNS neurons with discrete regional specificity. First, neuromesodermal progenitors (NMPs) with discrete HOX profiles are converted to pCNS progenitors (pCNSPs). Then, by tuning D/V signaling, pCNSPs are directed to locomotor or somatosensory neurons. Expansive single-cell RNA-sequencing (scRNA-seq) analysis coupled with a novel computational pipeline allowed us to detect hundreds of transcriptional markers within region-specific phenotypes, enabling discovery of gene expression patterns across R/C and D/V developmental axes. These findings highlight the potential of these resources to advance a mechanistic understanding of pCNS development, enhance in vitro models, and inform therapeutic strategies.
Collapse
Affiliation(s)
- Nisha R. Iyer
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Junha Shin
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Stephanie Cuskey
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Yucheng Tian
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Noah R. Nicol
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Tessa E. Doersch
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Frank Seipel
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Sunnie Grace McCalla
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Sushmita Roy
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Randolph S. Ashton
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
13
|
Iyer NR, Ashton RS. Bioengineering the human spinal cord. Front Cell Dev Biol 2022; 10:942742. [PMID: 36092702 PMCID: PMC9458954 DOI: 10.3389/fcell.2022.942742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
Three dimensional, self-assembled organoids that recapitulate key developmental and organizational events during embryogenesis have proven transformative for the study of human central nervous system (CNS) development, evolution, and disease pathology. Brain organoids have predominated the field, but human pluripotent stem cell (hPSC)-derived models of the spinal cord are on the rise. This has required piecing together the complex interactions between rostrocaudal patterning, which specifies axial diversity, and dorsoventral patterning, which establishes locomotor and somatosensory phenotypes. Here, we review how recent insights into neurodevelopmental biology have driven advancements in spinal organoid research, generating experimental models that have the potential to deepen our understanding of neural circuit development, central pattern generation (CPG), and neurodegenerative disease along the body axis. In addition, we discuss the application of bioengineering strategies to drive spinal tissue morphogenesis in vitro, current limitations, and future perspectives on these emerging model systems.
Collapse
Affiliation(s)
- Nisha R. Iyer
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
- Wisconsin Institute for Discovery, University of Wisconsin—Madison, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin—Madison, Madison, WI, United States
| | - Randolph S. Ashton
- Wisconsin Institute for Discovery, University of Wisconsin—Madison, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin—Madison, Madison, WI, United States
| |
Collapse
|
14
|
Cooper F, Gentsch GE, Mitter R, Bouissou C, Healy LE, Rodriguez AH, Smith JC, Bernardo AS. Rostrocaudal patterning and neural crest differentiation of human pre-neural spinal cord progenitors in vitro. Stem Cell Reports 2022; 17:894-910. [PMID: 35334218 PMCID: PMC9023813 DOI: 10.1016/j.stemcr.2022.02.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 01/09/2023] Open
Abstract
The spinal cord emerges from a niche of neuromesodermal progenitors (NMPs) formed and maintained by WNT/fibroblast growth factor (FGF) signals at the posterior end of the embryo. NMPs can be generated from human pluripotent stem cells and hold promise for spinal cord replacement therapies. However, NMPs are transient, which compromises production of the full range of rostrocaudal spinal cord identities in vitro. Here we report the generation of NMP-derived pre-neural progenitors (PNPs) with stem cell-like self-renewal capacity. PNPs maintain pre-spinal cord identity for 7-10 passages, dividing to self-renew and to make neural crest progenitors, while gradually adopting a more posterior identity by activating colinear HOX gene expression. The HOX clock can be halted through GDF11-mediated signal inhibition to produce a PNP and NC population with a thoracic identity that can be maintained for up to 30 passages.
Collapse
Affiliation(s)
- Fay Cooper
- Developmental Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - George E Gentsch
- Developmental Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Richard Mitter
- Bioinformatics & Biostatistics Core Facility, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Camille Bouissou
- Developmental Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Lyn E Healy
- Human Embryo and Stem Cell Unit, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ana Hernandez Rodriguez
- Developmental Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - James C Smith
- Developmental Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andreia S Bernardo
- Developmental Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; National Heart and Lung Institute, Imperial College London, London SW7 2BX, UK
| |
Collapse
|
15
|
Lee SJ, Lehar A, Rydzik R, Youngstrom DW, Bhasin S, Liu Y, Germain-Lee EL. Functional replacement of myostatin with GDF-11 in the germline of mice. Skelet Muscle 2022; 12:7. [PMID: 35287700 PMCID: PMC8922734 DOI: 10.1186/s13395-022-00290-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Myostatin (MSTN) is a transforming growth factor-ß superfamily member that acts as a major regulator of skeletal muscle mass. GDF-11, which is highly related to MSTN, plays multiple roles during embryonic development, including regulating development of the axial skeleton, kidneys, nervous system, and pancreas. As MSTN and GDF-11 share a high degree of amino acid sequence identity, behave virtually identically in cell culture assays, and utilize similar regulatory and signaling components, a critical question is whether their distinct biological functions result from inherent differences in their abilities to interact with specific regulatory and signaling components or whether their distinct biological functions mainly reflect their differing temporal and spatial patterns of expression. METHODS We generated and characterized mice in which we precisely replaced in the germline the portion of the Mstn gene encoding the mature C-terminal peptide with the corresponding region of Gdf11. RESULTS In mice homozygous for the knock-in allele, all of the circulating MSTN protein was replaced with GDF-11, resulting in ~ 30-40-fold increased levels of circulating GDF-11. Male mice homozygous for the knock-in allele had slightly decreased muscle weights, slightly increased weight gain in response to a high-fat diet, slightly increased plasma cholesterol and HDL levels, and significantly decreased bone density and bone mass, whereas female mice were mostly unaffected. CONCLUSIONS GDF-11 appears to be capable of nearly completely functionally replacing MSTN in the control of muscle mass. The developmental and physiological consequences of replacing MSTN with GDF-11 are strikingly limited.
Collapse
Affiliation(s)
- Se-Jin Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA. .,Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Adam Lehar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Renata Rydzik
- Department of Orthopaedic Surgery, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Shalender Bhasin
- Brigham Research Assay Core Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yewei Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Emily L Germain-Lee
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, USA.,Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT, USA.,Division of Endocrinology & Diabetes and Center for Rare Bone Disorders, Connecticut Children's, Farmington, CT, USA
| |
Collapse
|
16
|
Needham J, Metzis V. Heads or tails: Making the spinal cord. Dev Biol 2022; 485:80-92. [DOI: 10.1016/j.ydbio.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/15/2021] [Accepted: 03/02/2022] [Indexed: 12/14/2022]
|
17
|
Xu Y, Hu X, Li F, Zhang H, Lou J, Wang X, Wang H, Yin L, Ni W, Kong J, Wang X, Li Y, Zhou K, Xu H. GDF-11 Protects the Traumatically Injured Spinal Cord by Suppressing Pyroptosis and Necroptosis via TFE3-Mediated Autophagy Augmentation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8186877. [PMID: 34712387 PMCID: PMC8548157 DOI: 10.1155/2021/8186877] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) refers to a major worldwide cause of accidental death and disability. However, the complexity of the pathophysiological mechanism can result in less-effective clinical treatment. Growth differentiation factor 11 (GDF-11), an antiageing factor, was reported to affect the development of neurogenesis and exert a neuroprotective effect after cerebral ischaemic injury. The present work is aimed at investigating the influence of GDF-11 on functional recovery following SCI, in addition to the potential mechanisms involved. We employed a mouse model of spinal cord contusion injury and assessed functional outcomes via the Basso Mouse Scale and footprint analysis following SCI. Using western blot assays and immunofluorescence, we analysed the levels of pyroptosis, autophagy, necroptosis, and molecules related to the AMPK-TRPML1-calcineurin signalling pathway. The results showed that GDF-11 noticeably optimized function-related recovery, increased autophagy, inhibited pyroptosis, and alleviated necroptosis following SCI. Furthermore, the conducive influences exerted by GDF-11 were reversed with the application of 3-methyladenine (3MA), an autophagy suppressor, indicating that autophagy critically impacted the therapeutically related benefits of GDF-11 on recovery after SCI. In the mechanistic study described herein, GDF-11 stimulated autophagy improvement and subsequently inhibited pyroptosis and necroptosis, which were suggested to be mediated by TFE3; this effect resulted from the activity of TFE3 through the AMPK-TRPML1-calcineurin signalling cascade. Together, GDF-11 protects the injured spinal cord by suppressing pyroptosis and necroptosis via TFE3-mediated autophagy augmentation and is a potential agent for SCI therapy.
Collapse
Affiliation(s)
- Yu Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Xinli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Feida Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Junsheng Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Xingyu Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Hui Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Lingyan Yin
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Jianzhong Kong
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Hui Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
18
|
Diaz-Cuadros M, Pourquié O, El-Sherif E. Patterning with clocks and genetic cascades: Segmentation and regionalization of vertebrate versus insect body plans. PLoS Genet 2021; 17:e1009812. [PMID: 34648490 PMCID: PMC8516289 DOI: 10.1371/journal.pgen.1009812] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Oscillatory and sequential processes have been implicated in the spatial patterning of many embryonic tissues. For example, molecular clocks delimit segmental boundaries in vertebrates and insects and mediate lateral root formation in plants, whereas sequential gene activities are involved in the specification of regional identities of insect neuroblasts, vertebrate neural tube, vertebrate limb, and insect and vertebrate body axes. These processes take place in various tissues and organisms, and, hence, raise the question of what common themes and strategies they share. In this article, we review 2 processes that rely on the spatial regulation of periodic and sequential gene activities: segmentation and regionalization of the anterior-posterior (AP) axis of animal body plans. We study these processes in species that belong to 2 different phyla: vertebrates and insects. By contrasting 2 different processes (segmentation and regionalization) in species that belong to 2 distantly related phyla (arthropods and vertebrates), we elucidate the deep logic of patterning by oscillatory and sequential gene activities. Furthermore, in some of these organisms (e.g., the fruit fly Drosophila), a mode of AP patterning has evolved that seems not to overtly rely on oscillations or sequential gene activities, providing an opportunity to study the evolution of pattern formation mechanisms.
Collapse
Affiliation(s)
- Margarete Diaz-Cuadros
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
| | - Ezzat El-Sherif
- Division of Developmental Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
19
|
Ravenscroft TA, Phillips JB, Fieg E, Bajikar SS, Peirce J, Wegner J, Luna AA, Fox EJ, Yan YL, Rosenfeld JA, Zirin J, Kanca O, Benke PJ, Cameron ES, Strehlow V, Platzer K, Jamra RA, Klöckner C, Osmond M, Licata T, Rojas S, Dyment D, Chong JSC, Lincoln S, Stoler JM, Postlethwait JH, Wangler MF, Yamamoto S, Krier J, Westerfield M, Bellen HJ. Heterozygous loss-of-function variants significantly expand the phenotypes associated with loss of GDF11. Genet Med 2021; 23:1889-1900. [PMID: 34113007 PMCID: PMC8487929 DOI: 10.1038/s41436-021-01216-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Growth differentiation factor 11 (GDF11) is a key signaling protein required for proper development of many organ systems. Only one prior study has associated an inherited GDF11 variant with a dominant human disease in a family with variable craniofacial and vertebral abnormalities. Here, we expand the phenotypic spectrum associated with GDF11 variants and document the nature of the variants. METHODS We present a cohort of six probands with de novo and inherited nonsense/frameshift (4/6 patients) and missense (2/6) variants in GDF11. We generated gdf11 mutant zebrafish to model loss of gdf11 phenotypes and used an overexpression screen in Drosophila to test variant functionality. RESULTS Patients with variants in GDF11 presented with craniofacial (5/6), vertebral (5/6), neurological (6/6), visual (4/6), cardiac (3/6), auditory (3/6), and connective tissue abnormalities (3/6). gdf11 mutant zebrafish show craniofacial abnormalities and body segmentation defects that match some patient phenotypes. Expression of the patients' variants in the fly showed that one nonsense variant in GDF11 is a severe loss-of-function (LOF) allele whereas the missense variants in our cohort are partial LOF variants. CONCLUSION GDF11 is needed for human development, particularly neuronal development, and LOF GDF11 alleles can affect the development of numerous organs and tissues.
Collapse
Affiliation(s)
- Thomas A Ravenscroft
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA
| | | | | | - Sameer S Bajikar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA
| | - Judy Peirce
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Jeremy Wegner
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Alia A Luna
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Eric J Fox
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Yi-Lin Yan
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Jonathan Zirin
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA
| | - Paul J Benke
- Joe DiMaggio Children's Hospital, Hollywood, FL, USA
| | | | - Vincent Strehlow
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Chiara Klöckner
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Matthew Osmond
- Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Thomas Licata
- Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Samantha Rojas
- Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - David Dyment
- Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Josephine S C Chong
- The Chinese University of Hong Kong-Baylor College of Medicine Joint Center of Medical Genetics, Hong Kong Special Administrative Region, The People's Republic of China
| | | | | | | | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Joel Krier
- Brigham and Women's Hospital, Boston, MA, USA
| | | | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
20
|
Frohlich J, Mazza T, Sobolewski C, Foti M, Vinciguerra M. GDF11 rapidly increases lipid accumulation in liver cancer cells through ALK5-dependent signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158920. [PMID: 33684566 DOI: 10.1016/j.bbalip.2021.158920] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the fastest-growing causes of cancer-related mortalities worldwide and this trend is mimicked by the surge of non-alcoholic fatty liver disease (NAFLD). Altered hepatic lipid metabolism promotes HCC development through inflammation and activation of oncogenes. GDF11 is a member of the TGF-β superfamily and recent data have implicated GDF11 as an anti-aging factor that can alleviate high-fat diet induced obesity, hyperglycemia, insulin resistance and NAFLD. However, its role in hepatic lipid metabolism is still not fully delineated. The aim of the present study was to characterize the role of GDF11 in hepatic and HCC cells lipid accumulation. To achieve this, we performed imaging, biochemical, lipidomic, and transcriptomic analyses in primary hepatocytes and in HCC cells treated with GDF11 to study the GDF11-activated signaling pathways. GDF11 treatment rapidly triggered ALK5-dependent SMAD2/3 nuclear translocation and elevated lipid droplets in HCC cells, but not in primary hepatocytes. In HCC cells, ALK5 inhibition hampered GDF11-mediated SMAD2/3 signaling and attenuated lipid accumulation. Using ultra-high-performance liquid chromatography/mass spectrometry, we detected increased accumulation of longer acyl-chain di/tri-acylglycerols and glycerophospholipids. Unbiased transcriptomic analysis identified TGF-β and PI3K-AKT signaling among the top pathways/cellular processes activated in GDF11 treated HCC cells. In summary, GDF11 supplementation promotes pro-lipogenic gene expression and lipid accumulation in HCC cells. Integration of our "omics" data pointed to a GDF11-induced upregulation of de novo lipogenesis through activation of ALK5/SMAD2/3/PI3K-AKT pathways. Thus, GDF11 could contribute to metabolic reprogramming and dysregulation of lipid metabolism in HCC cells, without effects on healthy hepatocytes.
Collapse
Affiliation(s)
- Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Cyril Sobolewski
- Department of Cell Physiology & Metabolism and Translational Research Centre in Onco-haematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Michelangelo Foti
- Department of Cell Physiology & Metabolism and Translational Research Centre in Onco-haematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic; Department of Translational Stem Cell Biology, Medical University of Varna, Varna, Bulgaria; Institute of Liver and Digestive Health, Division of Medicine, University College London (UCL), London, United Kingdom.
| |
Collapse
|
21
|
Mouilleau V, Vaslin C, Robert R, Gribaudo S, Nicolas N, Jarrige M, Terray A, Lesueur L, Mathis MW, Croft G, Daynac M, Rouiller-Fabre V, Wichterle H, Ribes V, Martinat C, Nedelec S. Dynamic extrinsic pacing of the HOX clock in human axial progenitors controls motor neuron subtype specification. Development 2021; 148:148/6/dev194514. [PMID: 33782043 DOI: 10.1242/dev.194514] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022]
Abstract
Rostro-caudal patterning of vertebrates depends on the temporally progressive activation of HOX genes within axial stem cells that fuel axial embryo elongation. Whether the pace of sequential activation of HOX genes, the 'HOX clock', is controlled by intrinsic chromatin-based timing mechanisms or by temporal changes in extrinsic cues remains unclear. Here, we studied HOX clock pacing in human pluripotent stem cell-derived axial progenitors differentiating into diverse spinal cord motor neuron subtypes. We show that the progressive activation of caudal HOX genes is controlled by a dynamic increase in FGF signaling. Blocking the FGF pathway stalled induction of HOX genes, while a precocious increase of FGF, alone or with GDF11 ligand, accelerated the HOX clock. Cells differentiated under accelerated HOX induction generated appropriate posterior motor neuron subtypes found along the human embryonic spinal cord. The pacing of the HOX clock is thus dynamically regulated by exposure to secreted cues. Its manipulation by extrinsic factors provides synchronized access to multiple human neuronal subtypes of distinct rostro-caudal identities for basic and translational applications.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Vincent Mouilleau
- Institut du Fer à Moulin, 75005 Paris, France.,Inserm, UMR-S 1270, 75005 Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France.,I-STEM, UMR 861, Inserm, UEPS, 91100 Corbeil-Essonnes, France
| | - Célia Vaslin
- Institut du Fer à Moulin, 75005 Paris, France.,Inserm, UMR-S 1270, 75005 Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| | - Rémi Robert
- Institut du Fer à Moulin, 75005 Paris, France.,Inserm, UMR-S 1270, 75005 Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| | - Simona Gribaudo
- Institut du Fer à Moulin, 75005 Paris, France.,Inserm, UMR-S 1270, 75005 Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| | - Nour Nicolas
- Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, UMR 967, INSERM, CEA/DSV/iRCM/SCSR, Université Paris Diderot, Sorbonne Paris Cité, Université Paris-Sud, Université Paris-Saclay, Fontenay aux Roses F-92265, France
| | - Margot Jarrige
- I-STEM, UMR 861, Inserm, UEPS, 91100 Corbeil-Essonnes, France
| | - Angélique Terray
- Institut du Fer à Moulin, 75005 Paris, France.,Inserm, UMR-S 1270, 75005 Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| | - Léa Lesueur
- I-STEM, UMR 861, Inserm, UEPS, 91100 Corbeil-Essonnes, France
| | - Mackenzie W Mathis
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY 10032, USA
| | - Gist Croft
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY 10032, USA
| | - Mathieu Daynac
- Institut du Fer à Moulin, 75005 Paris, France.,Inserm, UMR-S 1270, 75005 Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| | - Virginie Rouiller-Fabre
- Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, UMR 967, INSERM, CEA/DSV/iRCM/SCSR, Université Paris Diderot, Sorbonne Paris Cité, Université Paris-Sud, Université Paris-Saclay, Fontenay aux Roses F-92265, France
| | - Hynek Wichterle
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY 10032, USA
| | - Vanessa Ribes
- Université de Paris, CNRS, Institut Jacques Monod, 15 rue Hélène Brion, 75013 Paris, France
| | - Cécile Martinat
- I-STEM, UMR 861, Inserm, UEPS, 91100 Corbeil-Essonnes, France
| | - Stéphane Nedelec
- Institut du Fer à Moulin, 75005 Paris, France .,Inserm, UMR-S 1270, 75005 Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| |
Collapse
|
22
|
Frohlich J, Kovacovicova K, Mazza T, Emma MR, Cabibi D, Foti M, Sobolewski C, Oben JA, Peyrou M, Villarroya F, Soresi M, Rezzani R, Cervello M, Bonomini F, Alisi A, Vinciguerra M. GDF11 induces mild hepatic fibrosis independent of metabolic health. Aging (Albany NY) 2020; 12:20024-20046. [PMID: 33126224 PMCID: PMC7655202 DOI: 10.18632/aging.104182] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Growth Differentiation Factor 11 (GDF11) is an anti-aging factor, yet its role in liver diseases is not established. We evaluated the role of GDF11 in healthy conditions and in the transition from non-alcoholic fatty liver disease (NAFLD) to non-alcoholic steatohepatitis (NASH). RESULTS GDF11 mRNA levels positively correlated with NAFLD activity score and with CPT1, SREBP, PPARγ and Col1A1 mRNA levels, and associated to portal fibrosis, in morbidly obese patients with NAFLD/NASH. GDF11-treated mice showed mildly exacerbated hepatic collagen deposition, accompanied by weight loss and without changes in liver steatosis or inflammation. GDF11 triggered ALK5-dependent SMAD2/3 nuclear translocation and the pro-fibrogenic activation of HSC. CONCLUSIONS GDF11 supplementation promotes mild liver fibrosis. Even considering its beneficial metabolic effects, caution should be taken when considering therapeutics that regulate GDF11. METHODS We analyzed liver biopsies from a cohort of 33 morbidly obese adults with NAFLD/NASH. We determined the correlations in mRNA expression levels between GDF11 and genes involved in NAFLD-to-NASH progression and with pathological features. We also exposed wild type or obese mice with NAFLD to recombinant GDF11 by daily intra-peritoneal injection and monitor the hepatic pathological changes. Finally, we analyzed GDF11-activated signaling pathways in hepatic stellate cells (HSC).
Collapse
Affiliation(s)
- Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Kristina Kovacovicova
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Maria R. Emma
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Daniela Cabibi
- Department of Health Promotion Sciences, Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jude A. Oben
- Institute for Liver and Digestive Health, Division of Medicine, University College London (UCL), London, United Kingdom
| | - Marion Peyrou
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of the University of Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Catalonia, Spain
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of the University of Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Catalonia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Catalonia, Spain
| | - Maurizio Soresi
- Department of Health Promotion Sciences, Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”, University of Brescia, Brescia, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Francesca Bonomini
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”, University of Brescia, Brescia, Italy
| | - Anna Alisi
- Research Area for Multifactorial Diseases, Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Institute for Liver and Digestive Health, Division of Medicine, University College London (UCL), London, United Kingdom
| |
Collapse
|
23
|
Similar sequences but dissimilar biological functions of GDF11 and myostatin. Exp Mol Med 2020; 52:1673-1693. [PMID: 33077875 PMCID: PMC8080601 DOI: 10.1038/s12276-020-00516-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/27/2022] Open
Abstract
Growth differentiation factor 11 (GDF11) and myostatin (MSTN) are closely related TGFβ family members that are often believed to serve similar functions due to their high homology. However, genetic studies in animals provide clear evidence that they perform distinct roles. While the loss of Mstn leads to hypermuscularity, the deletion of Gdf11 results in abnormal skeletal patterning and organ development. The perinatal lethality of Gdf11-null mice, which contrasts with the long-term viability of Mstn-null mice, has led most research to focus on utilizing recombinant GDF11 proteins to investigate the postnatal functions of GDF11. However, the reported outcomes of the exogenous application of recombinant GDF11 proteins are controversial partly because of the different sources and qualities of recombinant GDF11 used and because recombinant GDF11 and MSTN proteins are nearly indistinguishable due to their similar structural and biochemical properties. Here, we analyze the similarities and differences between GDF11 and MSTN from an evolutionary point of view and summarize the current understanding of the biological processing, signaling, and physiological functions of GDF11 and MSTN. Finally, we discuss the potential use of recombinant GDF11 as a therapeutic option for a wide range of medical conditions and the possible adverse effects of GDF11 inhibition mediated by MSTN inhibitors.
Collapse
|
24
|
Dias A, Lozovska A, Wymeersch FJ, Nóvoa A, Binagui-Casas A, Sobral D, Martins GG, Wilson V, Mallo M. A Tgfbr1/Snai1-dependent developmental module at the core of vertebrate axial elongation. eLife 2020; 9:56615. [PMID: 32597756 PMCID: PMC7324159 DOI: 10.7554/elife.56615] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022] Open
Abstract
Formation of the vertebrate postcranial body axis follows two sequential but distinct phases. The first phase generates pre-sacral structures (the so-called primary body) through the activity of the primitive streak on axial progenitors within the epiblast. The embryo then switches to generate the secondary body (post-sacral structures), which depends on axial progenitors in the tail bud. Here we show that the mammalian tail bud is generated through an independent functional developmental module, concurrent but functionally different from that generating the primary body. This module is triggered by convergent Tgfbr1 and Snai1 activities that promote an incomplete epithelial to mesenchymal transition on a subset of epiblast axial progenitors. This EMT is functionally different from that coordinated by the primitive streak, as it does not lead to mesodermal differentiation but brings axial progenitors into a transitory state, keeping their progenitor activity to drive further axial body extension.
Collapse
Affiliation(s)
- André Dias
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Filip J Wymeersch
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Ana Nóvoa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Anahi Binagui-Casas
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Gabriel G Martins
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Valerie Wilson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Moises Mallo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
25
|
Zhao Y, Wang LH, Peng A, Liu XY, Wang Y, Huang SH, Liu T, Wang XJ, Chen ZY. The neuroprotective and neurorestorative effects of growth differentiation factor 11 in cerebral ischemic injury. Brain Res 2020; 1737:146802. [PMID: 32220534 DOI: 10.1016/j.brainres.2020.146802] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/13/2020] [Accepted: 03/21/2020] [Indexed: 02/02/2023]
Abstract
Growth differentiation factor 11 (GDF11), a member of the transforming growth factor-β (TGF-β) superfamily, regulates various biological processes in mammals. The effect of GDF11 in brain injury has not been fully elucidated. Our aim was to investigate the effects of GDF11 in cerebral ischemic injury. The expression level of GDF11 increased significantly in the peri-infarct cerebral cortex. Next, the effect of the intracerebroventricular injection of a GDF11 overexpression lentivirus or rGDF11 was investigated in middle cerebral artery occlusion (MCAO) rats. The preventative effects of the GDF11 overexpression virus on stroke were observed. The delivery of the lentivirus into rats before MCAO significantly reduced the infarct volume and the percentage of apoptotic cells and improved motor function in MCAO rats. Furthermore, it elevated the expression of p-Smad2/3 and promoted neurogenesis and angiogenesis in the ipsilateral SVZ during ischemic injury. More importantly, the therapeutic effects of rGDF11 on stroke were subsequently explored. The results in MCAO rats treated with rGDF11 were found similar to that in those treated with the GDF11 overexpression lentivirus. Together, these findings indicate that GDF11 has neuroprotective and neurorestorative effects in cerebral ischemic injury and provide new insights into the function and mechanism of GDF11 in stroke models.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Cell Biology and Neurobiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China; Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, PR China
| | - Li-Hong Wang
- Department of Cell Biology and Neurobiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Ai Peng
- Department of Cell Biology and Neurobiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Xing-Yu Liu
- Department of Cell Biology and Neurobiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Yue Wang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Shu-Hong Huang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Ting Liu
- Department of Cell Biology and Neurobiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Xiao-Jing Wang
- Department of Cell Biology and Neurobiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China.
| | - Zhe-Yu Chen
- Department of Cell Biology and Neurobiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
26
|
Saito S, Suzuki T. How do signaling and transcription factors regulate both axis elongation and Hox gene expression along the anteroposterior axis? Dev Growth Differ 2020; 62:363-375. [DOI: 10.1111/dgd.12682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Seiji Saito
- Division of Biological Science Graduate School of Science Nagoya University Nagoya Japan
| | - Takayuki Suzuki
- Avian Bioscience Research Center Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| |
Collapse
|
27
|
Mallo M. The vertebrate tail: a gene playground for evolution. Cell Mol Life Sci 2020; 77:1021-1030. [PMID: 31559446 PMCID: PMC11104866 DOI: 10.1007/s00018-019-03311-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/25/2022]
Abstract
The tail of all vertebrates, regardless of size and anatomical detail, derive from a post-anal extension of the embryo known as the tail bud. Formation, growth and differentiation of this structure are closely associated with the activity of a group of cells that derive from the axial progenitors that build the spinal cord and the muscle-skeletal case of the trunk. Gdf11 activity switches the development of these progenitors from a trunk to a tail bud mode by changing the regulatory network that controls their growth and differentiation potential. Recent work in the mouse indicates that the tail bud regulatory network relies on the interconnected activities of the Lin28/let-7 axis and the Hox13 genes. As this network is likely to be conserved in other mammals, it is possible that the final length and anatomical composition of the adult tail result from the balance between the progenitor-promoting and -repressing activities provided by those genes. This balance might also determine the functional characteristics of the adult tail. Particularly relevant is its regeneration potential, intimately linked to the spinal cord. In mammals, known for their complete inability to regenerate the tail, the spinal cord is removed from the embryonic tail at late stages of development through a Hox13-dependent mechanism. In contrast, the tail of salamanders and lizards keep a functional spinal cord that actively guides the tail's regeneration process. I will argue that the distinct molecular networks controlling tail bud development provided a collection of readily accessible gene networks that were co-opted and combined during evolution either to end the active life of those progenitors or to make them generate the wide diversity of tail shapes and sizes observed among vertebrates.
Collapse
Affiliation(s)
- Moisés Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.
| |
Collapse
|
28
|
Generating ventral spinal organoids from human induced pluripotent stem cells. Methods Cell Biol 2020; 159:257-277. [DOI: 10.1016/bs.mcb.2020.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
29
|
Severe head dysgenesis resulting from imbalance between anterior and posterior ontogenetic programs. Cell Death Dis 2019; 10:812. [PMID: 31649239 PMCID: PMC6813351 DOI: 10.1038/s41419-019-2040-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 12/16/2022]
Abstract
Head dysgenesis is a major cause of fetal demise and craniofacial malformation. Although mutations in genes of the head ontogenetic program have been reported, many cases remain unexplained. Head dysgenesis has also been related to trisomy or amplification of the chromosomal region overlapping the CDX2 homeobox gene, a master element of the trunk ontogenetic program. Hence, we investigated the repercussion on head morphogenesis of the imbalance between the head and trunk ontogenetic programs, by means of ectopic rostral expression of CDX2 at gastrulation. This caused severe malformations affecting the forebrain and optic structures, and also the frontonasal process associated with defects in neural crest cells colonization. These malformations are the result of the downregulation of genes of the head program together with the abnormal induction of trunk program genes. Together, these data indicate that the imbalance between the anterior and posterior ontogenetic programs in embryos is a new possible cause of head dysgenesis during human development, linked to defects in setting up anterior neuroectodermal structures.
Collapse
|
30
|
Trawczynski M, Liu G, David BT, Fessler RG. Restoring Motor Neurons in Spinal Cord Injury With Induced Pluripotent Stem Cells. Front Cell Neurosci 2019; 13:369. [PMID: 31474833 PMCID: PMC6707336 DOI: 10.3389/fncel.2019.00369] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological disorder that damages motor, sensory, and autonomic pathways. Recent advances in stem cell therapy have allowed for the in vitro generation of motor neurons (MNs) showing electrophysiological and synaptic activity, expression of canonical MN biomarkers, and the ability to graft into spinal lesions. Clinical translation, especially the transplantation of MN precursors in spinal lesions, has thus far been elusive because of stem cell heterogeneity and protocol variability, as well as a hostile microenvironment such as inflammation and scarring, which yield inconsistent pre-clinical results without a consensus best-practice therapeutic strategy. Induced pluripotent stem cells (iPSCs) in particular have lower ethical and immunogenic concerns than other stem cells, which could make them more clinically applicable. In this review, we focus on the differentiation of iPSCs into neural precursors, MN progenitors, mature MNs, and MN subtype fates. Previous reviews have summarized MN development and differentiation, but an up-to-date summary of technological and experimental advances holding promise for bench-to-bedside translation, especially those targeting individual MN subtypes in SCI, is currently lacking. We discuss biological mechanisms of MN lineage, recent experimental protocols and techniques for MN differentiation from iPSCs, and transplantation of neural precursors and MN lineage cells in spinal cord lesions to restore motor function. We emphasize efficient, clinically safe, and personalized strategies for the application of MN and their subtypes as therapy in spinal lesions.
Collapse
Affiliation(s)
- Matthew Trawczynski
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
| | - Gele Liu
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
| | - Brian T David
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
| | - Richard G Fessler
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
31
|
Suh J, Eom JH, Kim NK, Woo KM, Baek JH, Ryoo HM, Lee SJ, Lee YS. Growth differentiation factor 11 locally controls anterior-posterior patterning of the axial skeleton. J Cell Physiol 2019; 234:23360-23368. [PMID: 31183862 PMCID: PMC6772169 DOI: 10.1002/jcp.28904] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 12/14/2022]
Abstract
Growth and differentiation factor 11 (GDF11) is a transforming growth factor β family member that has been identified as the central player of anterior-posterior (A-P) axial skeletal patterning. Mice homozygous for Gdf11 deletion exhibit severe anterior homeotic transformations of the vertebrae and craniofacial defects. During early embryogenesis, Gdf11 is expressed predominantly in the primitive streak and tail bud regions, where new mesodermal cells arise. On the basis of this expression pattern of Gdf11 and the phenotype of Gdf11 mutant mice, it has been suggested that GDF11 acts to specify positional identity along the A-P axis either by local changes in levels of signaling as development proceeds or by acting as a morphogen. To further investigate the mechanism of action of GDF11 in the vertebral specification, we used a Cdx2-Cre transgene to generate mosaic mice in which Gdf11 expression is removed in posterior regions including the tail bud, but not in anterior regions. The skeletal analysis revealed that these mosaic mice display patterning defects limited to posterior regions where Gdf11 expression is deficient, whereas displaying normal skeletal phenotype in anterior regions where Gdf11 is normally expressed. Specifically, the mosaic mice exhibited seven true ribs, a pattern observed in wild-type (wt) mice (vs. 10 true ribs in Gdf11-/- mice), in the anterior axis and nine lumbar vertebrae, a pattern observed in Gdf11 null mice (vs. six lumbar vertebrae in wt mice), in the posterior axis. Our findings suggest that GDF11, rather than globally acting as a morphogen secreted from the tail bud, locally regulates axial vertebral patterning.
Collapse
Affiliation(s)
- Joonho Suh
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Je-Hyun Eom
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Na-Kyung Kim
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Kyung Mi Woo
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Hwa Baek
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Se-Jin Lee
- The Jackson Laboratory, Farmington, Connecticut.,Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut, Farmington, Connecticut
| | - Yun-Sil Lee
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Jin Q, Qiao C, Li J, Xiao B, Li J, Xiao X. A GDF11/myostatin inhibitor, GDF11 propeptide-Fc, increases skeletal muscle mass and improves muscle strength in dystrophic mdx mice. Skelet Muscle 2019; 9:16. [PMID: 31133057 PMCID: PMC6537384 DOI: 10.1186/s13395-019-0197-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/10/2019] [Indexed: 01/27/2023] Open
Abstract
Background Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor β superfamily. The GDF11 propeptide, which is derived from the GDF11 precursor protein, blocks the activity of GDF11 and its homolog, myostatin, which are both potent inhibitors of muscle growth. Thus, treatment with GDF11 propeptide may be a potential therapeutic strategy for diseases associated with muscle atrophy like sarcopenia and the muscular dystrophies. Here, we evaluate the impact of GDF11 propeptide-Fc (GDF11PRO-Fc) gene delivery on skeletal muscle in normal and dystrophic adult mice. Methods A pull-down assay was used to obtain physical confirmation of a protein-protein interaction between GDF11PRO-Fc and GDF11 or myostatin. Next, differentiated C2C12 myotubes were treated with AAV6-GDF11PRO-Fc and challenged with GDF11 or myostatin to determine if GDF11PRO-Fc could block GDF11/myostatin-induced myotube atrophy. Localized expression of GDF11PRO-Fc was evaluated via a unilateral intramuscular injection of AAV9-GDF11PRO-Fc into the hindlimb of C57BL/6J mice. In mdx mice, intravenous injection of AAV9-GDF11PRO-Fc was used to achieve systemic expression. The impact of GDF11PRO-Fc on muscle mass, function, and pathological features were assessed. Results GDF11PRO-Fc was observed to bind both GDF11 and myostatin. In C2C12 myotubes, expression of GDF11PRO-Fc was able to mitigate GDF11/myostatin-induced atrophy. Following intramuscular injection in C57BL/6J mice, increased grip strength and localized muscle hypertrophy were observed in the injected hindlimb after 10 weeks. In mdx mice, systemic expression of GDF11PRO-Fc resulted in skeletal muscle hypertrophy without a significant change in cardiac mass after 12 weeks. In addition, grip strength and rotarod latency time were improved. Intramuscular fibrosis was also reduced in treated mdx mice; however, there was no change seen in central nucleation, membrane permeability to serum IgG or serum creatine kinase levels. Conclusions GDF11PRO-Fc induces skeletal muscle hypertrophy and improvements in muscle strength via inhibition of GDF11/myostatin signaling. However, GDF11PRO-Fc does not significantly improve the dystrophic pathology in mdx mice. Electronic supplementary material The online version of this article (10.1186/s13395-019-0197-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Quan Jin
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| | - Chunping Qiao
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Jianbin Li
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Bin Xiao
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Juan Li
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Xiao Xiao
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
33
|
The influence of GDF11 on brain fate and function. GeroScience 2019; 41:1-11. [PMID: 30729414 DOI: 10.1007/s11357-019-00054-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/18/2019] [Indexed: 10/27/2022] Open
Abstract
Growth differentiation factor 11 (GDF11) is a transforming growth factor β (TGFβ) protein that regulates aspects of central nervous system (CNS) formation and health throughout the lifespan. During development, GDF11 influences CNS patterning and the genesis, differentiation, maturation, and activity of new cells, which may be primarily dependent on local production and action. In the aged brain, exogenous, peripherally delivered GDF11 may enhance neurogenesis and angiogenesis, as well as improve neuropathological outcomes. This is in contrast to a predominantly negative influence on neurogenesis in the developing CNS. Seemingly antithetical effects may correspond to the cell types and mechanisms activated by local versus circulating concentrations of GDF11. Yet undefined, distinct mechanisms of action in young and aged brains may also play a role, which could include differential receptor and binding partner interactions. Exogenously increasing circulating GDF11 concentrations may be a viable approach for improving deleterious aspects of brain aging and neuropathology. Caution is warranted, however, since GDF11 appears to negatively influence muscle health and body composition. Nevertheless, an expanding understanding of GDF11 biology suggests that it is an important regulator of CNS formation and fate, and its manipulation may improve aspects of brain health in older organisms.
Collapse
|
34
|
Reassessing the Role of Hox Genes during Vertebrate Development and Evolution. Trends Genet 2018; 34:209-217. [PMID: 29269261 DOI: 10.1016/j.tig.2017.11.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022]
Abstract
Since their discovery Hox genes have been at the core of the established models explaining the development and evolution of the vertebrate body plan as well as its paired appendages. Recent work brought new light to their role in the patterning processes along the main body axis. These studies show that Hox genes do not control the basic layout of the vertebrate body plan but carry out region-specific patterning instructions loaded on the derivatives of axial progenitors by Hox-independent processes. Furthermore, the finding that Hox clusters are embedded in functional chromatin domains, which critically impacts their expression, has significantly altered our understanding of the mechanisms of Hox gene regulation. This new conceptual framework has broadened our understanding of both limb development and the evolution of vertebrate paired appendages.
Collapse
|
35
|
Hayashi Y, Mikawa S, Masumoto K, Katou F, Sato K. GDF11 expression in the adult rat central nervous system. J Chem Neuroanat 2018; 89:21-36. [PMID: 29448002 DOI: 10.1016/j.jchemneu.2018.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/16/2017] [Accepted: 02/10/2018] [Indexed: 01/12/2023]
Abstract
Growth differentiation factor 11 (GDF11), also known as bone morphogenetic protein 11 (BMP11), is a member of the transforming growth factor β (TGF-β) superfamily. Although GDF11 plays pivotal roles during development, including anterior/posterior patterning, formation of the kidney, stomach, spleen and endocrine pancreas, little information is available for GDF11 expression in the adult central nervous system (CNS). We, thus, investigated GDF11 expression in the adult rat CNS using immunohistochemistry. GDF11 was intensely expressed in most neurons and their axons. Furthermore, we found that astrocytes and ependymal cells also express GDF11 protein. These data indicate that GDF11 is widely expressed throughout the adult CNS, and its abundant expression in the adult brain strongly supports the idea that GDF11 plays important roles in the adult brain.
Collapse
Affiliation(s)
- Yutaro Hayashi
- Department of Dentistry and Oral and Maxillofacial Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka, 431-3192, Japan; Department of Organ & Tissue Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Sumiko Mikawa
- Department of Organ & Tissue Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kazuma Masumoto
- Department of Dentistry and Oral and Maxillofacial Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Fuminori Katou
- Department of Dentistry and Oral and Maxillofacial Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kohji Sato
- Department of Organ & Tissue Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka, 431-3192, Japan.
| |
Collapse
|
36
|
Abstract
Collinear regulation of Hox genes in space and time has been an outstanding question ever since the initial work of Ed Lewis in 1978. Here we discuss recent advances in our understanding of this phenomenon in relation to novel concepts associated with large-scale regulation and chromatin structure during the development of both axial and limb patterns. We further discuss how this sequential transcriptional activation marks embryonic stem cell-like axial progenitors in mammals and, consequently, how a temporal genetic system is further translated into spatial coordinates via the fate of these progenitors. In this context, we argue the benefit and necessity of implementing this unique mechanism as well as the difficulty in evolving an alternative strategy to deliver this critical positional information.
Collapse
Affiliation(s)
- Jacqueline Deschamps
- Hubrecht Institute, University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Denis Duboule
- School of Life Sciences, Ecole Polytechnique Fédérale, Lausanne, 1015 Lausanne, Switzerland.,Department of Genetics and Evolution, University of Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
37
|
Interaction with the GDF8/11 pathway reveals treatment options for adenocarcinoma of the breast. Breast 2017; 37:134-141. [PMID: 29156385 DOI: 10.1016/j.breast.2017.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/10/2017] [Indexed: 12/27/2022] Open
Abstract
Breast adenocarcinoma continues to be the most frequently diagnosed tumor entity. Despite established therapy options, mortality for breast cancer remains to be as high as 40,000 patients in the US annually. Thus, a need to develop a patient-oriented, targeted therapy exists. In this study, we investigated the interaction of breast adenocarcinoma with the ubiquitously present protein Follistatin and subsequently the GDF8/11 pathway. We analyzed primary histological samples from adenocarcinoma patients for expression of Follistatin and GDF8/11. Furthermore, expression levels of Follistatin and GDF8/11 in MCF7 were compared with MCF10a cells. From the resulting data, GDF8 and Follistatin were used as chemotherapeutic agents in MCF7 cells and their migratory, proliferative behavior and viability were measured. From the experiments, we were able to detect a significantly increased expression of Follistatin and GDF8/11 in the low malignant breast adenocarcinoma (G1) as compared to benign breast fibroadenoma. Interestingly, a decrease was demonstrated in higher grade malignancies. These findings were accompanied by the clinical observation that increased expression of Follistatin and GDF8 is associated with a higher overall survival rate of breasts cancer patients. Substitution of GDF8 and Follistatin reduces the viability of the MCF7 cells and disrupts the migrative and proliferative potential. In summary, MCF7 cells show high chemosensitivity to Follistatin and especially GDF8 and both proteins might serve as targets to improve systemic treatment in breast cancer. In contrast to most established chemotherapy regimens Follistatin and GDF8 show no cytotoxicity to other organs.
Collapse
|
38
|
Angelini F, Pagano F, Bordin A, Picchio V, De Falco E, Chimenti I. Getting Old through the Blood: Circulating Molecules in Aging and Senescence of Cardiovascular Regenerative Cells. Front Cardiovasc Med 2017; 4:62. [PMID: 29057227 PMCID: PMC5635266 DOI: 10.3389/fcvm.2017.00062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/19/2017] [Indexed: 12/11/2022] Open
Abstract
Global aging is a hallmark of our century. The natural multifactorial process resulting in aging involves structural and functional changes, affecting molecules, cells, and tissues. As the western population is getting older, we are witnessing an increase in the burden of cardiovascular events, some of which are known to be directly linked to cellular senescence and dysfunction. In this review, we will focus on the description of a few circulating molecules, which have been correlated to life span, aging, and cardiovascular homeostasis. We will review the current literature concerning the circulating levels and related signaling pathways of selected proteins (insulin-like growth factor 1, growth and differentiation factor-11, and PAI-1) and microRNAs of interest (miR-34a, miR-146a, miR-21), whose bloodstream levels have been associated to aging in different organisms. In particular, we will also discuss their potential role in the biology and senescence of cardiovascular regenerative cell types, such as endothelial progenitor cells, mesenchymal stromal cells, and cardiac progenitor cells.
Collapse
Affiliation(s)
- Francesco Angelini
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Francesca Pagano
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Antonella Bordin
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| |
Collapse
|
39
|
Role of growth differentiation factor 11 in development, physiology and disease. Oncotarget 2017; 8:81604-81616. [PMID: 29113418 PMCID: PMC5655313 DOI: 10.18632/oncotarget.20258] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 07/28/2017] [Indexed: 12/31/2022] Open
Abstract
Growth differentiation factor (GDF11) is a member of TGF-β/BMP superfamily that activates Smad and non-Smad signaling pathways and regulates expression of its target nuclear genes. Since its discovery in 1999, studies have shown the involvement of GDF11 in normal physiological processes, such as embryonic development and erythropoiesis, as well as in the pathophysiology of aging, cardiovascular disease, diabetes mellitus, and cancer. In addition, there are contradictory reports regarding the role of GDF11 in aging, cardiovascular disease, diabetes mellitus, osteogenesis, skeletal muscle development, and neurogenesis. In this review, we describe the GDF11 signaling pathway and its potential role in development, physiology and disease.
Collapse
|
40
|
Matsubara Y, Hirasawa T, Egawa S, Hattori A, Suganuma T, Kohara Y, Nagai T, Tamura K, Kuratani S, Kuroiwa A, Suzuki T. Anatomical integration of the sacral-hindlimb unit coordinated by GDF11 underlies variation in hindlimb positioning in tetrapods. Nat Ecol Evol 2017; 1:1392-1399. [PMID: 29046533 DOI: 10.1038/s41559-017-0247-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/22/2017] [Indexed: 11/09/2022]
Abstract
Elucidating how body parts from different primordia are integrated during development is essential for understanding the nature of morphological evolution. In tetrapod evolution, while the position of the hindlimb has diversified along with the vertebral formula, the mechanism responsible for this coordination has not been well understood. However, this synchronization suggests the presence of an evolutionarily conserved developmental mechanism that coordinates the positioning of the hindlimb skeleton derived from the lateral plate mesoderm with that of the sacral vertebrae derived from the somites. Here we show that GDF11 secreted from the posterior axial mesoderm is a key factor in the integration of sacral vertebrae and hindlimb positioning by inducing Hox gene expression in two different primordia. Manipulating the onset of GDF11 activity altered the position of the hindlimb in chicken embryos, indicating that the onset of Gdf11 expression is responsible for the coordinated positioning of the sacral vertebrae and hindlimbs. Through comparative analysis with other vertebrate embryos, we also show that each tetrapod species has a unique onset timing of Gdf11 expression, which is tightly correlated with the anteroposterior levels of the hindlimb bud. We conclude that the evolutionary diversity of hindlimb positioning resulted from heterochronic shifts in Gdf11 expression, which led to coordinated shifts in the sacral-hindlimb unit along the anteroposterior axis.
Collapse
Affiliation(s)
- Yoshiyuki Matsubara
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | | | - Shiro Egawa
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Ayumi Hattori
- Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku Sendai, 980-8575, Japan
| | - Takaya Suganuma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Yuhei Kohara
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Tatsuya Nagai
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Koji Tamura
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | | | - Atsushi Kuroiwa
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.
| | - Takayuki Suzuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.
| |
Collapse
|
41
|
Li H, Li Y, Xiang L, Zhang J, Zhu B, Xiang L, Dong J, Liu M, Xiang G. GDF11 Attenuates Development of Type 2 Diabetes via Improvement of Islet β-Cell Function and Survival. Diabetes 2017; 66:1914-1927. [PMID: 28450417 DOI: 10.2337/db17-0086] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/18/2017] [Indexed: 11/13/2022]
Abstract
Growth differentiation factor 11 (GDF11) has been implicated in the regulation of islet development and a variety of aging conditions, but little is known about the physiological functions of GDF11 in adult pancreatic islets. Here, we showed that systematic replenishment of GDF11 not only preserved insulin secretion but also improved the survival and morphology of β-cells and improved glucose metabolism in both nongenetic and genetic mouse models of type 2 diabetes (T2D). Conversely, anti-GDF11 monoclonal antibody treatment caused β-cell failure and lethal T2D. In vitro treatment of isolated murine islets and MIN6 cells with recombinant GDF11 attenuated glucotoxicity-induced β-cell dysfunction and apoptosis. Mechanistically, the GDF11-mediated protective effects could be attributed to the activation of transforming growth factor-β/Smad2 and phosphatidylinositol-4,5-bisphosphate 3-kinase-AKT-FoxO1 signaling. These findings suggest that GDF11 repletion may improve β-cell function and mass and thus may lead to a new therapeutic approach for T2D.
Collapse
Affiliation(s)
- Huan Li
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei Province, China
| | - Yixiang Li
- Radiation-Diagnostic/Oncology School of Medicine, Emory University, Atlanta, GA
| | - Lingwei Xiang
- Mathematics and Statistics Department, Georgia State University, Atlanta, GA
| | - JiaJia Zhang
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei Province, China
| | - Biao Zhu
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei Province, China
| | - Lin Xiang
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei Province, China
| | - Jing Dong
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei Province, China
| | - Min Liu
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei Province, China
| | - Guangda Xiang
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei Province, China
| |
Collapse
|
42
|
Walker RG, Czepnik M, Goebel EJ, McCoy JC, Vujic A, Cho M, Oh J, Aykul S, Walton KL, Schang G, Bernard DJ, Hinck AP, Harrison CA, Martinez-Hackert E, Wagers AJ, Lee RT, Thompson TB. Structural basis for potency differences between GDF8 and GDF11. BMC Biol 2017; 15:19. [PMID: 28257634 PMCID: PMC5336696 DOI: 10.1186/s12915-017-0350-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/18/2017] [Indexed: 01/11/2023] Open
Abstract
Background Growth/differentiation factor 8 (GDF8) and GDF11 are two highly similar members of the transforming growth factor β (TGFβ) family. While GDF8 has been recognized as a negative regulator of muscle growth and differentiation, there are conflicting studies on the function of GDF11 and whether GDF11 has beneficial effects on age-related dysfunction. To address whether GDF8 and GDF11 are functionally identical, we compared their signaling and structural properties. Results Here we show that, despite their high similarity, GDF11 is a more potent activator of SMAD2/3 and signals more effectively through the type I activin-like receptor kinase receptors ALK4/5/7 than GDF8. Resolution of the GDF11:FS288 complex, apo-GDF8, and apo-GDF11 crystal structures reveals unique properties of both ligands, specifically in the type I receptor binding site. Lastly, substitution of GDF11 residues into GDF8 confers enhanced activity to GDF8. Conclusions These studies identify distinctive structural features of GDF11 that enhance its potency, relative to GDF8; however, the biological consequences of these differences remain to be determined. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0350-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ryan G Walker
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Magdalena Czepnik
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Erich J Goebel
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Jason C McCoy
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Ana Vujic
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Miook Cho
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.,Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, 02115, USA
| | - Juhyun Oh
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.,Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, 02115, USA
| | - Senem Aykul
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Kelly L Walton
- Hudson Institute of Medical Research, Clayton, Australia.,Department of Physiology, Monash University, Clayton, Australia
| | - Gauthier Schang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Craig A Harrison
- Hudson Institute of Medical Research, Clayton, Australia.,Department of Physiology, Monash University, Clayton, Australia
| | - Erik Martinez-Hackert
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Amy J Wagers
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.,Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, 02115, USA
| | - Richard T Lee
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, 45267, USA. .,University of Cincinnati, 231 Albert Sabin Way ML 0524, Cincinnati, OH, 45267, USA.
| |
Collapse
|
43
|
Walker RG, Poggioli T, Katsimpardi L, Buchanan SM, Oh J, Wattrus S, Heidecker B, Fong YW, Rubin LL, Ganz P, Thompson TB, Wagers AJ, Lee RT. Biochemistry and Biology of GDF11 and Myostatin: Similarities, Differences, and Questions for Future Investigation. Circ Res 2016; 118:1125-41; discussion 1142. [PMID: 27034275 DOI: 10.1161/circresaha.116.308391] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 03/07/2016] [Indexed: 02/06/2023]
Abstract
Growth differentiation factor 11 (GDF11) and myostatin (or GDF8) are closely related members of the transforming growth factor β superfamily and are often perceived to serve similar or overlapping roles. Yet, despite commonalities in protein sequence, receptor utilization and signaling, accumulating evidence suggests that these 2 ligands can have distinct functions in many situations. GDF11 is essential for mammalian development and has been suggested to regulate aging of multiple tissues, whereas myostatin is a well-described negative regulator of postnatal skeletal and cardiac muscle mass and modulates metabolic processes. In this review, we discuss the biochemical regulation of GDF11 and myostatin and their functions in the heart, skeletal muscle, and brain. We also highlight recent clinical findings with respect to a potential role for GDF11 and/or myostatin in humans with heart disease. Finally, we address key outstanding questions related to GDF11 and myostatin dynamics and signaling during development, growth, and aging.
Collapse
Affiliation(s)
- Ryan G Walker
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Tommaso Poggioli
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Lida Katsimpardi
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Sean M Buchanan
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Juhyun Oh
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Sam Wattrus
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Bettina Heidecker
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Yick W Fong
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Lee L Rubin
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Peter Ganz
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Thomas B Thompson
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Amy J Wagers
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.).
| | - Richard T Lee
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.).
| |
Collapse
|
44
|
Aires R, Jurberg AD, Leal F, Nóvoa A, Cohn MJ, Mallo M. Oct4 Is a Key Regulator of Vertebrate Trunk Length Diversity. Dev Cell 2016; 38:262-74. [DOI: 10.1016/j.devcel.2016.06.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/19/2016] [Accepted: 06/15/2016] [Indexed: 01/13/2023]
|
45
|
Developmental Mechanism of Limb Field Specification along the Anterior-Posterior Axis during Vertebrate Evolution. J Dev Biol 2016; 4:jdb4020018. [PMID: 29615584 PMCID: PMC5831784 DOI: 10.3390/jdb4020018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/19/2022] Open
Abstract
In gnathostomes, limb buds arise from the lateral plate mesoderm at discrete positions along the body axis. Specification of these limb-forming fields can be subdivided into several steps. The lateral plate mesoderm is regionalized into the anterior lateral plate mesoderm (ALPM; cardiac mesoderm) and the posterior lateral plate mesoderm (PLPM). Subsequently, Hox genes appear in a nested fashion in the PLPM and provide positional information along the body axis. The lateral plate mesoderm then splits into the somatic and splanchnic layers. In the somatic layer of the PLPM, the expression of limb initiation genes appears in the limb-forming region, leading to limb bud initiation. Furthermore, past and current work in limbless amphioxus and lampreys suggests that evolutionary changes in developmental programs occurred during the acquisition of paired fins during vertebrate evolution. This review presents these recent advances and discusses the mechanisms of limb field specification during development and evolution, with a focus on the role of Hox genes in this process.
Collapse
|
46
|
Neural Conversion and Patterning of Human Pluripotent Stem Cells: A Developmental Perspective. Stem Cells Int 2016; 2016:8291260. [PMID: 27069483 PMCID: PMC4812494 DOI: 10.1155/2016/8291260] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/24/2016] [Indexed: 01/19/2023] Open
Abstract
Since the reprogramming of adult human terminally differentiated somatic cells into induced pluripotent stem cells (hiPSCs) became a reality in 2007, only eight years have passed. Yet over this relatively short period, myriad experiments have revolutionized previous stem cell dogmata. The tremendous promise of hiPSC technology for regenerative medicine has fuelled rising expectations from both the public and scientific communities alike. In order to effectively harness hiPSCs to uncover fundamental mechanisms of disease, it is imperative to first understand the developmental neurobiology underpinning their lineage restriction choices in order to predictably manipulate cell fate to desired derivatives. Significant progress in developmental biology provides an invaluable resource for rationalising directed differentiation of hiPSCs to cellular derivatives of the nervous system. In this paper we begin by reviewing core developmental concepts underlying neural induction in order to provide context for how such insights have guided reductionist in vitro models of neural conversion from hiPSCs. We then discuss early factors relevant in neural patterning, again drawing upon crucial knowledge gained from developmental neurobiological studies. We conclude by discussing open questions relating to these concepts and how their resolution might serve to strengthen the promise of pluripotent stem cells in regenerative medicine.
Collapse
|
47
|
Generating Diverse Spinal Motor Neuron Subtypes from Human Pluripotent Stem Cells. Stem Cells Int 2015; 2016:1036974. [PMID: 26823667 PMCID: PMC4707335 DOI: 10.1155/2016/1036974] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 09/14/2015] [Indexed: 12/18/2022] Open
Abstract
Resolving the mechanisms underlying human neuronal diversification remains a major challenge in developmental and applied neurobiology. Motor neurons (MNs) represent a diverse pool of neuronal subtypes exhibiting differential vulnerability in different human neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). The ability to predictably manipulate MN subtype lineage restriction from human pluripotent stem cells (PSCs) will form the essential basis to establishing accurate, clinically relevant in vitro disease models. I first overview motor neuron developmental biology to provide some context for reviewing recent studies interrogating pathways that influence the generation of MN diversity. I conclude that motor neurogenesis from PSCs provides a powerful reductionist model system to gain insight into the developmental logic of MN subtype diversification and serves more broadly as a leading exemplar of potential strategies to resolve the molecular basis of neuronal subclass differentiation within the nervous system. These studies will in turn permit greater mechanistic understanding of differential MN subtype vulnerability using in vitro human disease models.
Collapse
|
48
|
Fang L, Chang HM, Cheng JC, Yu Y, Leung PCK, Sun YP. Growth Differentiation Factor-8 Decreases StAR Expression Through ALK5-Mediated Smad3 and ERK1/2 Signaling Pathways in Luteinized Human Granulosa Cells. Endocrinology 2015; 156:4684-94. [PMID: 26393302 DOI: 10.1210/en.2015-1461] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Growth differentiation factor-8 (GDF-8) has been recently shown to be expressed in human granulosa cells, and the mature form of GDF-8 protein can be detected in the follicular fluid. However, the biological function and significance of this growth factor in the human ovary remains to be determined. Here, we investigated the effects of GDF-8 on steroidogenic enzyme expression and the potential mechanisms of action in luteinized human granulosa cells. We demonstrated that treatment with GDF-8 did not affect the mRNA levels of P450 side-chain cleavage enzyme and 3β-hydroxysteroid dehydrogenase, whereas it significantly down-regulated steroidogenic acute regulatory protein (StAR) expression and decreased progesterone production. The suppressive effect of GDF-8 on StAR expression was abolished by the inhibition of the TGF-β type I receptor. In addition, treatment with GDF-8 activated both Smad2/3 and ERK1/2 signaling pathways. Furthermore, knockdown of activin receptor-like kinase 5 reversed the effects of GDF-8 on Smad2/3 phosphorylation and StAR expression. The inhibition of Smad3 or ERK1/2 signaling pathways attenuated the GDF-8-induced down-regulation of StAR and production of progesterone. Interestingly, the concentrations of GDF-8 were negatively correlated with those of progesterone in human follicular fluid. These results indicate a novel autocrine function of GDF-8 to down-regulate StAR expression and decrease progesterone production in luteinized human granulosa cells, most likely through activin receptor-like kinase 5-mediated Smad3 and ERK1/2 signaling pathways. Our findings suggest that granulosa cells might play a critical role in the regulation of progesterone production to prevent premature luteinization during the final stage of folliculogenesis.
Collapse
Affiliation(s)
- Lanlan Fang
- Reproductive Medical Center (L.F., Y.Y., Y.-P.S.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China 450052; and Department of Obstetrics and Gynaecology (H.-M.C., J.-C.C., P.C.K.L.), Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Hsun-Ming Chang
- Reproductive Medical Center (L.F., Y.Y., Y.-P.S.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China 450052; and Department of Obstetrics and Gynaecology (H.-M.C., J.-C.C., P.C.K.L.), Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Jung-Chien Cheng
- Reproductive Medical Center (L.F., Y.Y., Y.-P.S.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China 450052; and Department of Obstetrics and Gynaecology (H.-M.C., J.-C.C., P.C.K.L.), Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Yiping Yu
- Reproductive Medical Center (L.F., Y.Y., Y.-P.S.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China 450052; and Department of Obstetrics and Gynaecology (H.-M.C., J.-C.C., P.C.K.L.), Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Peter C K Leung
- Reproductive Medical Center (L.F., Y.Y., Y.-P.S.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China 450052; and Department of Obstetrics and Gynaecology (H.-M.C., J.-C.C., P.C.K.L.), Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Ying-Pu Sun
- Reproductive Medical Center (L.F., Y.Y., Y.-P.S.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China 450052; and Department of Obstetrics and Gynaecology (H.-M.C., J.-C.C., P.C.K.L.), Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| |
Collapse
|
49
|
Deterministic HOX patterning in human pluripotent stem cell-derived neuroectoderm. Stem Cell Reports 2015; 4:632-44. [PMID: 25843047 PMCID: PMC4400649 DOI: 10.1016/j.stemcr.2015.02.018] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 11/25/2022] Open
Abstract
Colinear HOX expression during hindbrain and spinal cord development diversifies and assigns regional neural phenotypes to discrete rhombomeric and vertebral domains. Despite the precision of HOX patterning in vivo, in vitro approaches for differentiating human pluripotent stem cells (hPSCs) to posterior neural fates coarsely pattern HOX expression thereby generating cultures broadly specified to hindbrain or spinal cord regions. Here, we demonstrate that successive activation of fibroblast growth factor, Wnt/β-catenin, and growth differentiation factor signaling during hPSC differentiation generates stable, homogenous SOX2+/Brachyury+ neuromesoderm that exhibits progressive, full colinear HOX activation over 7 days. Switching to retinoic acid treatment at any point during this process halts colinear HOX activation and transitions the neuromesoderm into SOX2+/PAX6+ neuroectoderm with predictable, discrete HOX gene/protein profiles that can be further differentiated into region-specific cells, e.g., motor neurons. This fully defined approach significantly expands capabilities to derive regional neural phenotypes from diverse hindbrain and spinal cord domains. Deterministic HOX expression in hPSC-derived neuromesoderm progenitors (NMPs) Wnt/β-catenin, FGF, and GDF signaling regulate HOX activation in NMPs Retinoic acid (RA) transitions NMPs to neuroectoderm and halts HOX activation Neural cells can be patterned to any rostrocaudal hindbrain or spinal cord domain
Collapse
|
50
|
Chang HM, Fang L, Cheng JC, Klausen C, Sun YP, Leung PCK. Growth differentiation factor 8 down-regulates pentraxin 3 in human granulosa cells. Mol Cell Endocrinol 2015; 404:82-90. [PMID: 25641196 DOI: 10.1016/j.mce.2015.01.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 12/16/2022]
Abstract
Growth differentiation factor 8 (GDF8), also known as myostatin, is highly expressed in the mammalian musculoskeletal system and plays critical roles in the regulation of skeletal muscle growth. Though not exclusively expressed in the musculoskeletal system, the expression and biological function of GDF8 has never been examined in the human ovary. Pentraxin 3 (PTX3) plays a key role in the assembly of extracellular matrix, which is essential for cumulus expansion, ovulation and in vivo fertilization. The aim of this study was to investigate GDF8 expression and function in human granulosa cells and to examine its underlying molecular determinants. An established immortalized human granulosa cell line (SVOG), granulosa cell tumor cell line (KGN) and primary granulosa-lutein cells were used as study models. We now demonstrate for the first time that GDF8 is expressed in human granulosa cells and follicular fluid. All 16 follicular fluid samples tested contained GDF8 protein at an average concentration of 3 ng/ml. In addition, GDF8 treatment significantly decreased PTX3 mRNA and protein levels. These suppressive effects, along with the induction of SMAD2/3 phosphorylation, were abolished by co-treatment with the ALK4/5/7 inhibitor SB431542. Knockdown of ALK5, ACVR2A/ACVR2B or SMAD4 reversed the effects of GDF8-induced PTX3 suppression. These results indicate that GDF8 down-regulates PTX3 expression via ACVR2A/ACVR2B-ALK5-mediated SMAD-dependent signaling in human granulosa cells. These novel findings support a potential role for GDF8 in the regulation of follicular function, likely via autocrine effects on human granulosa cells.
Collapse
Affiliation(s)
- Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Lanlan Fang
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada; Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Ying-Pu Sun
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada.
| |
Collapse
|