1
|
Looking at Developmental Neurotoxicity Testing from the Perspective of an Invertebrate Embryo. Int J Mol Sci 2022; 23:ijms23031871. [PMID: 35163796 PMCID: PMC8836978 DOI: 10.3390/ijms23031871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/01/2023] Open
Abstract
Developmental neurotoxicity (DNT) of chemical compounds disrupts the formation of a normal brain. There is impressive progress in the development of alternative testing methods for DNT potential in chemicals, some of which also incorporate invertebrate animals. This review briefly touches upon studies on the genetically tractable model organisms of Caenorhabditis elegans and Drosophila melanogaster about the action of specific developmental neurotoxicants. The formation of a functional nervous system requires precisely timed axonal pathfinding to the correct cellular targets. To address this complex key event, our lab developed an alternative assay using a serum-free culture of intact locust embryos. The first neural pathways in the leg of embryonic locusts are established by a pair of afferent pioneer neurons which use guidance cues from membrane-bound and diffusible semaphorin proteins. In a systematic approach according to recommendations for alternative testing, the embryo assay quantifies defects in pioneer navigation after exposure to a panel of recognized test compounds for DNT. The outcome indicates a high predictability for test-compound classification. Since the pyramidal neurons of the mammalian cortex also use a semaphorin gradient for neurite guidance, the assay is based on evolutionary conserved cellular mechanisms, supporting its relevance for cortical development.
Collapse
|
2
|
Wright NJD. A review of the actions of Nitric Oxide in development and neuronal function in major invertebrate model systems. AIMS Neurosci 2019; 6:146-174. [PMID: 32341974 PMCID: PMC7179362 DOI: 10.3934/neuroscience.2019.3.146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022] Open
Abstract
Ever since the late-eighties when endothelium-derived relaxing factor was found to be the gas nitric oxide, endogenous nitric oxide production has been observed in virtually all animal groups tested and additionally in plants, diatoms, slime molds and bacteria. The fact that this new messenger was actually a gas and therefore didn't obey the established rules of neurotransmission made it even more intriguing. In just 30 years there is now too much information for useful comprehensive reviews even if limited to animals alone. Therefore this review attempts to survey the actions of nitric oxide on development and neuronal function in selected major invertebrate models only so allowing some detailed discussion but still covering most of the primary references. Invertebrate model systems have some very useful advantages over more expensive and demanding animal models such as large, easily identifiable neurons and simple circuits in tissues that are typically far easier to keep viable. A table summarizing this information along with the major relevant references has been included for convenience.
Collapse
Affiliation(s)
- Nicholas J D Wright
- Associate professor of pharmacy, Wingate University School of Pharmacy, Wingate, NC28174, USA
| |
Collapse
|
3
|
Estes S, Artinian L, Rehder V. Modulation of growth cone filopodial length by carbon monoxide. Dev Neurobiol 2016; 77:677-690. [PMID: 27513310 DOI: 10.1002/dneu.22430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 12/22/2022]
Abstract
Carbon monoxide (CO) is physiologically produced via heme degradation by heme oxygenase enzymes. Whereas CO has been identified as an important physiological signaling molecule, the roles it plays in neuronal development and regeneration are poorly understood. During these events, growth cones guide axons through a rich cellular environment to locate target cells and establish synaptic connections. Previously, we have shown that another gaseous signaling molecule, nitric oxide (NO), has potent effects on growth cone motility. With NO and CO sharing similar cellular targets, we wanted to determine whether CO affected growth cone motility as well. We assessed how CO affected growth cone filopodial length and determined the signaling pathway by which this effect was mediated. Using two well-characterized neurons from the freshwater snail, Helisoma trivolvis, it was found that the CO donor, carbon monoxide releasing molecule-2 (CORM-2), increased filopodial length. CO utilized a signaling pathway that involved the activation of soluble guanylyl cyclase, protein kinase G, and ryanodine receptors. While increases in filopodial length often occur from robust increases in intracellular calcium levels, the timing in which CO increased filopodial length corresponded with low basal calcium levels in growth cones. Taken together with findings of a heme oxygenase-like protein in the Helisoma nervous system, these results provide evidence for CO as a modulator of growth cone motility and implicate CO as a neuromodulatory signal during neuronal development and/or regeneration. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 677-690, 2017.
Collapse
Affiliation(s)
- Stephen Estes
- Biology Department, Georgia State University, Atlanta, Georgia, 30302
| | - Liana Artinian
- Biology Department, Georgia State University, Atlanta, Georgia, 30302
| | - Vincent Rehder
- Biology Department, Georgia State University, Atlanta, Georgia, 30302
| |
Collapse
|
4
|
Nitric oxide promotes epidermal stem cell migration via cGMP-Rho GTPase signalling. Sci Rep 2016; 6:30687. [PMID: 27469024 PMCID: PMC4965828 DOI: 10.1038/srep30687] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 06/27/2016] [Indexed: 01/05/2023] Open
Abstract
The migration and reepithelization of epidermal stem cells (ESCs) are the most critical processes in wound healing. The gaseous messenger nitric oxide (NO) has multiple biological effects, but its actions on ESCs are poorly understood. In this study, an NO donor, S-nitroso-N-acetylpenicillamine (SNAP), was found to facilitate the in vitro migration of human ESCs (huESCs) in both live-imaging and scratch models. In addition, pull-down assays demonstrated that SNAP could activate the small GTPases RhoA and Rac1 of the Rho family, but not Cdc42. Moreover, the effects of SNAP on the migration and F-actin polymerization of ESCs could be blocked by inhibitors of cGMP, PKG, RhoA or Rac1, and by a specific siRNA of RhoA or Rac1, but not by a Cdc42 inhibitor or siRNA. Furthermore, the roles of NO in ESC migration via cGMP-Rho GTPase signalling in vivo were confirmed by tracing 5-bromo-2-deoxyuridine (BrdU)-labelled cells in a superficial, partial-thickness scald mouse model. Thus, the present study demonstrated that the NO donor SNAP could promote huESC migration in vitro. Furthermore, NO was found to induce ESC migration via cGMP-Rho GTPase RhoA and Rac1 signalling, but not Cdc42 signalling, both in vivo and in vitro.
Collapse
|
5
|
Estes S, Zhong L, Artinian L, Rehder V. Regulation of electrical activity and neuronal excitability in Helisoma trivolvis by carbon monoxide. Neuroscience 2015; 311:453-63. [DOI: 10.1016/j.neuroscience.2015.10.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 10/23/2015] [Accepted: 10/28/2015] [Indexed: 11/30/2022]
|
6
|
Scheiblich H, Bicker G. Regulation of microglial migration, phagocytosis, and neurite outgrowth by HO-1/CO signaling. Dev Neurobiol 2014; 75:854-76. [DOI: 10.1002/dneu.22253] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/26/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Hannah Scheiblich
- Division of Cell Biology; University of Veterinary Medicine Hannover; Hannover Germany
| | - Gerd Bicker
- Division of Cell Biology; University of Veterinary Medicine Hannover; Hannover Germany
- Center for Systems Neuroscience Hannover; Hannover Germany
| |
Collapse
|
7
|
Christie AE, Fontanilla TM, Roncalli V, Cieslak MC, Lenz PH. Diffusible gas transmitter signaling in the copepod crustacean Calanus finmarchicus: identification of the biosynthetic enzymes of nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) using a de novo assembled transcriptome. Gen Comp Endocrinol 2014; 202:76-86. [PMID: 24747481 PMCID: PMC4041660 DOI: 10.1016/j.ygcen.2014.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/26/2014] [Accepted: 04/01/2014] [Indexed: 11/18/2022]
Abstract
Neurochemical signaling is a major component of physiological/behavioral control throughout the animal kingdom. Gas transmitters are perhaps the most ancient class of molecules used by nervous systems for chemical communication. Three gases are generally recognized as being produced by neurons: nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S). As part of an ongoing effort to identify and characterize the neurochemical signaling systems of the copepod Calanus finmarchicus, the biomass dominant zooplankton in much of the North Atlantic Ocean, we have mined a de novo assembled transcriptome for sequences encoding the neuronal biosynthetic enzymes of these gases, i.e. nitric oxide synthase (NOS), heme oxygenase (HO) and cystathionine β-synthase (CBS), respectively. Using Drosophila proteins as queries, two NOS-, one HO-, and one CBS-encoding transcripts were identified. Reverse BLAST and structural analyses of the deduced proteins suggest that each is a true member of its respective enzyme family. RNA-Seq data collected from embryos, early nauplii, late nauplii, early copepodites, late copepodites and adults revealed the expression of each transcript to be stage specific: one NOS restricted primarily to the embryo and the other was absent in the embryo but expressed in all other stages, no CBS expression in the embryo, but present in all other stages, and HO expressed across all developmental stages. Given the importance of gas transmitters in the regulatory control of a number of physiological processes, these data open opportunities for investigating the roles these proteins play under different life-stage and environmental conditions in this ecologically important species.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| | - Tiana M Fontanilla
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Vittoria Roncalli
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Matthew C Cieslak
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Petra H Lenz
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
8
|
Gibbons SJ, Verhulst PJ, Bharucha A, Farrugia G. Review article: carbon monoxide in gastrointestinal physiology and its potential in therapeutics. Aliment Pharmacol Ther 2013; 38:689-702. [PMID: 23992228 PMCID: PMC3788684 DOI: 10.1111/apt.12467] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/03/2013] [Accepted: 08/07/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND While carbon monoxide (CO) is a known toxin, it is now recognised that CO is also an important signalling molecule involved in physiology and pathophysiology. AIMS To summarise our current understanding of the role of endogenous CO in the regulation of gastrointestinal physiology and pathophysiology, and to potential therapeutic applications of modulating CO. METHODS This review is based on a comprehensive search of the Ovid Medline comprehensive database and supplemented by our ongoing studies evaluating the role of CO in gastrointestinal physiology and pathophysiology. RESULTS Carbon monoxide derived from haem oxygenase (HO)-2 is predominantly involved in neuromodulation and in setting the smooth muscle membrane potential, while CO derived from HO-1 has anti-inflammatory and antioxidative properties, which protect gastrointestinal smooth muscle from damage caused by injury or inflammation. Exogenous CO is being explored as a therapeutic agent in a variety of gastrointestinal disorders, including diabetic gastroparesis, post-operative ileus, organ transplantation, inflammatory bowel disease and sepsis. However, identifying the appropriate mechanism for safely delivering CO in humans is a major challenge. CONCLUSIONS Carbon monoxide is an important regulator of gastrointestinal function and protects the gastrointestinal tract against noxious injury. CO is a promising therapeutic target in conditions associated with gastrointestinal injury and inflammation. Elucidating the mechanisms by which CO works and developing safe CO delivery mechanisms are necessary to refine therapeutic strategies.
Collapse
Affiliation(s)
- S J Gibbons
- Enteric NeuroScience Program, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
9
|
Hao MM, Bornstein JC, Vanden Berghe P, Lomax AE, Young HM, Foong JPP. The emergence of neural activity and its role in the development of the enteric nervous system. Dev Biol 2012; 382:365-74. [PMID: 23261929 DOI: 10.1016/j.ydbio.2012.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/03/2012] [Accepted: 12/10/2012] [Indexed: 12/31/2022]
Abstract
The enteric nervous system (ENS) is a vital part of the autonomic nervous system that regulates many gastrointestinal functions, including motility and secretion. All neurons and glia of the ENS arise from neural crest-derived cells that migrate into the gastrointestinal tract during embryonic development. It has been known for many years that a subpopulation of the enteric neural crest-derived cells expresses pan-neuronal markers at early stages of ENS development. Recent studies have demonstrated that some enteric neurons exhibit electrical activity from as early as E11.5 in the mouse, with further maturation of activity during embryonic and postnatal development. This article discusses the maturation of electrophysiological and morphological properties of enteric neurons, the formation of synapses and synaptic activity, and the influence of neural activity on ENS development.
Collapse
Affiliation(s)
- Marlene M Hao
- Department of Anatomy and Neuroscience, the University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
10
|
Dix-Cooper L, Eskenazi B, Romero C, Balmes J, Smith KR. Neurodevelopmental performance among school age children in rural Guatemala is associated with prenatal and postnatal exposure to carbon monoxide, a marker for exposure to woodsmoke. Neurotoxicology 2011; 33:246-54. [PMID: 21963523 DOI: 10.1016/j.neuro.2011.09.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 09/15/2011] [Accepted: 09/15/2011] [Indexed: 11/30/2022]
Abstract
We investigated whether early life chronic exposure to woodsmoke, using personal passive 48-h carbon monoxide (CO) as an indicator, is associated with children's neurodevelopmental and behavioral performance. CO measures were collected every 3 months from 2002 to 2005 among mother-child dyads during the Randomized Exposure Study of Pollution Indoors and Respiratory Effects (RESPIRE) stove intervention trial in San Marcos, Guatemala. From March to June, 2010, study children of age 6-7 years, performed a follow-up non-verbal, culturally adapted neurodevelopmental assessment. We found inverse associations between CO exposure of pregnant mothers during their 3rd trimesters (m=3.8ppm ± 3.0ppm; range: 0.6-12.5 ppm) and child neuropsychological performance. Scores on 4 out of 11 neuropsychological tests were significantly associated with mothers' 3rd trimester CO exposures, including visuo-spatial integration (p<0.05), short-term memory recall (p<0.05), long-term memory recall (p<0.05), and fine motor performance (p<0.01) measured using the Bender Gestalt-II's Copy, Immediate Recall, and an adapted version of a Delayed Recall Figures drawing, and the Reitan-Indiana's Finger Tapping Tests, respectively. These 4 significant finding persisted with adjustment for child sex, age, visual acuity, and household assets (socio-economic status). Summary performance scores were also significantly associated with maternal 3rd trimester CO when adjusted for these covariates. Other variables accounting for variance but were excluded in our final multiple regression models included the following: HOME environment stimulation score, child examiner, WHO height-for-age percentile, and age that the infant stopped breastfeeding. This seems to be the first study on woodsmoke exposure and neurodevelopment, and the first longitudinal birth cohort study on chronic early life CO exposures, determined by high quality measures of mothers' and infants' personal CO exposures, and using well-established, reliable child neuropsychological tests. Further research is needed to replicate our results and inform future interventions and air quality standards for woodsmoke and CO.
Collapse
Affiliation(s)
- Linda Dix-Cooper
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
| | | | | | | | | |
Collapse
|
11
|
Tegenge MA, Rockel TD, Fritsche E, Bicker G. Nitric oxide stimulates human neural progenitor cell migration via cGMP-mediated signal transduction. Cell Mol Life Sci 2011; 68:2089-99. [PMID: 20957508 PMCID: PMC11114808 DOI: 10.1007/s00018-010-0554-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 09/30/2010] [Accepted: 10/01/2010] [Indexed: 10/18/2022]
Abstract
Neuronal migration is one of the most critical processes during early brain development. The gaseous messenger nitric oxide (NO) has been shown to modulate neuronal and glial migration in various experimental models. Here, we analyze a potential role for NO signaling in the migration of fetal human neural progenitor cells. Cells migrate out of cultured neurospheres and differentiate into both neuronal and glial cells. The neurosphere cultures express neuronal nitric oxide synthase and soluble guanylyl cyclase that produces cGMP upon activation with NO. By employing small bioactive enzyme activators and inhibitors in both gain and loss of function experiments, we show NO/cGMP signaling as a positive regulator of migration in neurosphere cultures of early developing human brain cells. Since NO signaling regulates cell movements from developing insects to mammalian nervous systems, this transduction pathway may have evolutionary conserved functions.
Collapse
Affiliation(s)
- Million Adane Tegenge
- Division of Cell Biology, Institute of Physiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Thomas Dino Rockel
- Group of Molecular Toxicology, Institut für Umweltmedizinische Forschung at the Heinrich Heine-University gGmbH, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Ellen Fritsche
- Group of Molecular Toxicology, Institut für Umweltmedizinische Forschung at the Heinrich Heine-University gGmbH, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
- Department of Dermatology, University Hospital, RWTH Aachen, Pauwelsstraûe 30, 52074 Aachen, Germany
| | - Gerd Bicker
- Division of Cell Biology, Institute of Physiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
12
|
Stern M, Bicker G. Nitric oxide as a regulator of neuronal motility and regeneration in the locust embryo. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:958-965. [PMID: 20361970 DOI: 10.1016/j.jinsphys.2010.03.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 03/18/2010] [Accepted: 03/19/2010] [Indexed: 05/29/2023]
Abstract
Nitric oxide (NO) is known as a gaseous messenger in the nervous system. It plays a role in synaptic plasticity, but also in development and regeneration of nervous systems. We have studied the function of NO and its signaling cascade via cyclic GMP in the locust embryo. Its developing nervous system is well suited for pharmacological manipulations in tissue culture. The components of this signaling pathway are localized by histochemical and immunofluorescence techniques. We have analyzed cellular mechanisms of NO action in three examples: 1. in the peripheral nervous system during antennal pioneer axon outgrowth, 2. in the enteric nervous system during migration of neurons forming the midgut nerve plexus, and 3. in the central nervous system during axonal regeneration of serotonergic neurons after axotomy. In each case, internally released NO or NO-induced cGMP synthesis act as permissive signals for the developmental process. Carbon monoxide (CO), as a second gaseous messenger, modulates enteric neuron migration antagonistic to NO.
Collapse
Affiliation(s)
- Michael Stern
- Division of Cell Biology, Institute of Physiology, University of Veterinary Medicine Hannover, D-30173 Hannover, Germany.
| | | |
Collapse
|
13
|
|
14
|
Hao MM, Moore RE, Roberts RR, Nguyen T, Furness JB, Anderson RB, Young HM. The role of neural activity in the migration and differentiation of enteric neuron precursors. Neurogastroenterol Motil 2010; 22:e127-37. [PMID: 20082666 DOI: 10.1111/j.1365-2982.2009.01462.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND As they migrate through the developing gut, a sub-population of enteric neural crest-derived cells (ENCCs) begins to differentiate into neurons. The early appearance of neurons raises the possibility that electrical activity and neurotransmitter release could influence the migration or differentiation of ENNCs. METHODS The appearance of neuronal sub-types in the gut of embryonic mice was examined using immunohistochemistry. The effects of blocking various forms of neural activity on ENCC migration and neuronal differentiation were examined using explants of cultured embryonic gut. KEY RESULTS Nerve fibers were present in close apposition to many ENCCs. Commencing at E11.5, neuronal nitric oxide synthase (nNOS), calbindin and IK(Ca) channel immunoreactivities were shown by sub-populations of enteric neurons. In cultured explants of embryonic gut, tetrodotoxin (TTX, an inhibitor of action potential generation), nitro-L-arginine (NOLA, an inhibitor of nitric oxide synthesis) and clotrimazole (an IK(Ca) channel blocker) did not affect the rate of ENCC migration, but tetanus toxin (an inhibitor of SNARE-mediated vesicle fusion) significantly impaired ENCC migration as previously reported. In explants of E11.5 and E12.5 hindgut grown in the presence of TTX or tetanus toxin there was a decrease in the number nNOS+ neurons close to the migratory wavefront, but no significant difference in the proportion of all ENCC that expressed the pan-neuronal marker, Hu. CONCLUSIONS & INFERENCES (i) Some enteric neuron sub-types are present very early during the development of the enteric nervous system. (ii) The rate of differentiation of some sub-types of enteric neurons appears to be influenced by TTX- and tetanus toxin-sensitive mechanisms.
Collapse
Affiliation(s)
- M M Hao
- Department of Anatomy & Cell Biology, University of Melbourne, Vic., Australia
| | | | | | | | | | | | | |
Collapse
|
15
|
Knipp S, Bicker G. A developmental study of enteric neuron migration in the grasshopper using immunological probes. Dev Dyn 2010; 238:2837-49. [PMID: 19842181 DOI: 10.1002/dvdy.22115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Motility of enteric plexus neurons in the grasshopper Locusta migratoria depends critically on the NO/cGMP signaling cascade. This is reflected in a strong NO-dependent cGMP staining in migrating enteric midgut neurons. In contrast, first cGMP immunoreactivity (cGMP-IR) in the foregut enteric ganglia was detected clearly after the main migratory processes have taken place. Thus, expression of cGMP-IR in migrating neurons is a distinct phenomenon restricted to neurons forming midgut and foregut plexus, that does not occur during convergence of neurons forming the enteric ganglia. Analysis of time lapse video microscopy of migrating midgut neurons together with an immunofluorescence study of midgut cellular structures suggests a contribution of the midgut musculature to enteric neuron guidance. Additionally, during midgut plexus formation a fasciculating signal for enteric neuron neurites appears to be provided by the cell adhesion molecule Fasciclin I.
Collapse
Affiliation(s)
- Sabine Knipp
- University of Veterinary Medicine Hannover, Division of Cell Biology, Institute of Physiology, Hannover, Germany
| | | |
Collapse
|
16
|
Netrin-1 signaling mediates NO-induced glial precursor migration and accumulation. Cell Res 2010; 20:238-41. [PMID: 20084084 DOI: 10.1038/cr.2010.7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
17
|
Laranjeira C, Pachnis V. Enteric nervous system development: Recent progress and future challenges. Auton Neurosci 2009; 151:61-9. [PMID: 19783483 DOI: 10.1016/j.autneu.2009.09.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The enteric nervous system is the largest subdivision of the peripheral nervous system that plays a critical role in digestive functions. Despite considerable progress over the last 15 years in understanding the molecular and cellular mechanisms that control the development of the enteric nervous system, several questions remain unanswered. The present review will focus on recent progress on understanding the development of the mammalian enteric nervous system and highlight interesting directions of future research.
Collapse
Affiliation(s)
- Cátia Laranjeira
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom.
| | | |
Collapse
|
18
|
Tegenge MA, Bicker G. Nitric oxide and cGMP signal transduction positively regulates the motility of human neuronal precursor (NT2) cells. J Neurochem 2009; 110:1828-41. [PMID: 19627439 DOI: 10.1111/j.1471-4159.2009.06279.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Developmental studies in both vertebrates and invertebrates implicate an involvement of nitric oxide (NO) signaling in cell proliferation, neuronal motility, and synaptic maturation. However, it is unknown whether NO plays a role in the development of the human nervous system. We used a model of human neuronal precursor cells from a well-characterized teratocarcinoma cell line (NT2). The precursor cells proliferate during retinoic acid treatment as spherical aggregate culture that stains for nestin and betaIII-tubulin. Cells migrate out of the aggregates to acquire fully differentiated neuronal phenotypes. The cells express neuronal nitric oxide synthase and soluble guanylyl cyclase (sGC), an enzyme that synthesizes cGMP upon activation by NO. The migration of the neuronal precursor cell is blocked by the use of nNOS, sGC, and protein kinase G (PKG) inhibitors. Inhibition of sGC can be rescued by a membrane permeable analog of cGMP. In gain of function experiments the application of a NO donor and cGMP analog facilitate cell migration. Our results from the differentiating NT2 model neurons point towards a vital role of the NO/cGMP/PKG signaling cascade as positive regulator of cell migration in the developing human brain.
Collapse
Affiliation(s)
- Million Adane Tegenge
- Division of Cell Biology, Institute of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | |
Collapse
|