1
|
Gattoni G, Keitley D, Sawle A, Benito-Gutiérrez E. An ancient apical patterning system sets the position of the forebrain in chordates. SCIENCE ADVANCES 2025; 11:eadq4731. [PMID: 39854450 PMCID: PMC11758999 DOI: 10.1126/sciadv.adq4731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025]
Abstract
The evolutionary origin of the vertebrate brain remains a major subject of debate, as its development from a dorsal tubular neuroepithelium is unique to chordates. To shed light on the evolutionary emergence of the vertebrate brain, we compared anterior neuroectoderm development across deuterostome species, using available single-cell datasets from sea urchin, amphioxus, and zebrafish embryos. We identified a conserved gene co-expression module, comparable to the anterior gene regulatory network (aGRN) controlling apical organ development in ambulacrarians, and spatially mapped it by multiplexed in situ hybridization to the developing retina and hypothalamus of chordates. Using functional approaches, we show Wnt signaling regulating this co-expression module in amphioxus, like the aGRN in echinoderms, and that its overactivation suppresses forebrain identity. This suggests a previously undescribed role for Wnt signaling in amphioxus in determining the position of the forebrain. We propose this Wnt-regulated gene co-expression module as a possible mechanism by which the brain set antero-dorsally early in chordate evolution.
Collapse
Affiliation(s)
- Giacomo Gattoni
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Daniel Keitley
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Ashley Sawle
- Cancer Research UK, Cambridge Institute, Cambridge, UK
| | | |
Collapse
|
2
|
Fenner JL, Newberry C, Todd C, Range RC. Anterior-Posterior Wnt Signaling Network Conservation between Indirect Developing Sea Urchin and Hemichordate Embryos. Integr Comp Biol 2024; 64:1214-1225. [PMID: 38769605 PMCID: PMC11579615 DOI: 10.1093/icb/icae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/28/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024] Open
Abstract
How animal body plans evolved and diversified is a major question in evolutionary developmental biology. To address this question, it is important to characterize the exact molecular mechanisms that establish the major embryonic axes that give rise to the adult animal body plan. The anterior-posterior (AP) axis is the first axis to be established in most animal embryos, and in echinoderm sea urchin embryos its formation is governed by an integrated network of three different Wnt signaling pathways: Wnt/β-catenin, Wnt/JNK, and Wnt/PKC pathways. The extent to which this embryonic patterning mechanism is conserved among deuterostomes, or more broadly in metazoans, is an important open question whose answers could lead to a deeper appreciation of the evolution of the AP axis. Because Ambulacrarians (echinoderms and hemichordates) reside in a key phylogenetic position as the sister group to chordates, studies in these animals can help inform on how chordate body plans may have evolved. Here, we assayed the spatiotemporal gene expression of a subset of sea urchin AP Wnt patterning gene orthologs in the hemichordate, Schizocardium californicum. Our results show that positioning of the anterior neuroectoderm (ANE) to a territory around the anterior pole during early AP formation is spatially and temporally similar between indirect developing hemichordates and sea urchins. Furthermore, we show that the expression of wnt8 and frizzled5/8, two known drivers of ANE patterning in sea urchins, is similar in hemichordate embryos. Lastly, our results highlight divergence in embryonic expression of several early expressed Wnt genes (wnt1, wnt2, and wnt4). These results suggest that expression of the sea urchin AP Wnt signaling network is largely conserved in indirect developing hemichordates setting the foundation for future functional studies in S. californicum.
Collapse
Affiliation(s)
- Jennifer L Fenner
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Callum Newberry
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Callie Todd
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ryan C Range
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
3
|
Yaguchi J, Sakai K, Horiuchi A, Yamamoto T, Yamashita T, Yaguchi S. Light-modulated neural control of sphincter regulation in the evolution of through-gut. Nat Commun 2024; 15:8881. [PMID: 39424783 PMCID: PMC11489725 DOI: 10.1038/s41467-024-53203-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024] Open
Abstract
The development of a continuous digestive tract, or through-gut, represents a key milestone in bilaterian evolution. However, the regulatory mechanisms in ancient bilaterians (urbilaterians) are not well understood. Our study, using larval sea urchins as a model, reveals a sophisticated system that prevents the simultaneous opening of the pylorus and anus, entry and exit points of the gut. This regulation is influenced by external light, with blue light affecting the pylorus via serotonergic neurons and both blue and longer wavelengths controlling the anus through cholinergic and dopaminergic neurons. These findings provide new insights into the neural orchestration of sphincter control in a simplified through-gut, which includes the esophagus, stomach, and intestine. Here, we propose that the emergence of the earliest urbilaterian through-gut was accompanied by the evolution of neural systems regulating sphincters in response to light, shedding light on the functional regulation of primordial digestive systems.
Collapse
Affiliation(s)
- Junko Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Kazumi Sakai
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, Kyoto, 606-8502, Japan
| | - Atsushi Horiuchi
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, Kyoto, 606-8502, Japan
| | - Takashi Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, Kyoto, 606-8502, Japan
| | - Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan.
- Japan Science and Technology Agency, PRESTO, 7 Gobancho, Chiyoda-ku, 102-0076, Tokyo, Japan.
| |
Collapse
|
4
|
Vellutini BC, Martín-Durán JM, Børve A, Hejnol A. Combinatorial Wnt signaling landscape during brachiopod anteroposterior patterning. BMC Biol 2024; 22:212. [PMID: 39300453 PMCID: PMC11414264 DOI: 10.1186/s12915-024-01988-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Wnt signaling pathways play crucial roles in animal development. They establish embryonic axes, specify cell fates, and regulate tissue morphogenesis from the early embryo to organogenesis. It is becoming increasingly recognized that these distinct developmental outcomes depend upon dynamic interactions between multiple ligands, receptors, antagonists, and other pathway modulators, consolidating the view that a combinatorial "code" controls the output of Wnt signaling. However, due to the lack of comprehensive analyses of Wnt components in several animal groups, it remains unclear if specific combinations always give rise to specific outcomes, and if these combinatorial patterns are conserved throughout evolution. RESULTS In this work, we investigate the combinatorial expression of Wnt signaling components during the axial patterning of the brachiopod Terebratalia transversa. We find that T. transversa has a conserved repertoire of ligands, receptors, and antagonists. These genes are expressed throughout embryogenesis but undergo significant upregulation during axial elongation. At this stage, Frizzled domains occupy broad regions across the body while Wnt domains are narrower and distributed in partially overlapping patches; antagonists are mostly restricted to the anterior end. Based on their combinatorial expression, we identify a series of unique transcriptional subregions along the anteroposterior axis that coincide with the different morphological subdivisions of the brachiopod larval body. When comparing these data across the animal phylogeny, we find that the expression of Frizzled genes is relatively conserved, whereas the expression of Wnt genes is more variable. CONCLUSIONS Our results suggest that the differential activation of Wnt signaling pathways may play a role in regionalizing the anteroposterior axis of brachiopod larvae. More generally, our analyses suggest that changes in the receptor context of Wnt ligands may act as a mechanism for the evolution and diversification of the metazoan body axis.
Collapse
Affiliation(s)
- Bruno C Vellutini
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway.
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany.
| | - José M Martín-Durán
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, Fogg Building, London, E1 4NS, UK
| | - Aina Børve
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway
- Department of Biological Sciences, Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway
| | - Andreas Hejnol
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway.
- Department of Biological Sciences, Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway.
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstraße 1, 07743, Jena, Germany.
| |
Collapse
|
5
|
Mercurio S, Gattoni G, Scarì G, Ascagni M, Barzaghi B, Elphick MR, Croce JC, Schubert M, Benito-Gutiérrez E, Pennati R. A feather star is born: embryonic development and nervous system organization in the crinoid Antedon mediterranea. Open Biol 2024; 14:240115. [PMID: 39165121 PMCID: PMC11336682 DOI: 10.1098/rsob.240115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 08/22/2024] Open
Abstract
Crinoids belong to the Echinodermata, marine invertebrates with a highly derived adult pentaradial body plan. As the sister group to all other extant echinoderms, crinoids occupy a key phylogenetic position to explore the evolutionary history of the whole phylum. However, their development remains understudied compared with that of other echinoderms. Therefore, the aim here was to establish the Mediterranean feather star (Antedon mediterranea) as an experimental system for developmental biology. We first set up a method for culturing embryos in vitro and defined a standardized staging system for this species. We then optimized protocols to characterize the morphological and molecular development of the main structures of the feather star body plan. Focusing on the nervous system, we showed that the larval apical organ includes serotonergic, GABAergic and glutamatergic neurons, which develop within a conserved anterior molecular signature. We described the composition of the early post-metamorphic nervous system and revealed that it has an anterior signature. These results further our knowledge on crinoid development and provide new techniques to investigate feather star embryogenesis. This will pave the way for the inclusion of crinoids in comparative studies addressing the origin of the echinoderm body plan and the evolutionary diversification of deuterostomes.
Collapse
Affiliation(s)
- Silvia Mercurio
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Giacomo Gattoni
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Giorgio Scarì
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Miriam Ascagni
- Unitech NOLIMITS, Università degli Studi di Milano, Milan, Italy
| | - Benedetta Barzaghi
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Maurice R. Elphick
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Jenifer C. Croce
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Elia Benito-Gutiérrez
- Department of Zoology, University of Cambridge, Cambridge, UK
- Department of Neuroscience, Genentech, South San Francisco, CA, USA
| | - Roberta Pennati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
Sampilo NF, Song JL. microRNA-1 regulates sea urchin skeletogenesis by directly targeting skeletogenic genes and modulating components of signaling pathways. Dev Biol 2024; 508:123-137. [PMID: 38290645 PMCID: PMC10985635 DOI: 10.1016/j.ydbio.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
microRNAs are evolutionarily conserved non-coding RNAs that direct post-transcriptional regulation of target transcripts. In vertebrates, microRNA-1 (miR-1) is expressed in muscle and has been found to play critical regulatory roles in vertebrate angiogenesis, a process that has been proposed to be analogous to sea urchin skeletogenesis. Results indicate that both miR-1 inhibitor and miR-1 mimic-injected larvae have significantly less F-actin enriched circumpharyngeal muscle fibers and fewer gut contractions. In addition, miR-1 regulates the positioning of skeletogenic primary mesenchyme cells (PMCs) and skeletogenesis of the sea urchin embryo. Interestingly, the gain-of-function of miR-1 leads to more severe PMC patterning and skeletal branching defects than its loss-of-function. The results suggest that miR-1 directly suppresses Ets1/2, Tbr, and VegfR7 of the skeletogenic gene regulatory network, and Nodal, and Wnt1 signaling components. This study identifies potential targets of miR-1 that impacts skeletogenesis and muscle formation and contributes to a deeper understanding of miR-1's function during development.
Collapse
Affiliation(s)
- Nina Faye Sampilo
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
7
|
Gautam S, Fenner JL, Wang B, Range RC. Evolutionarily conserved Wnt/Sp5 signaling is critical for anterior-posterior axis patterning in sea urchin embryos. iScience 2024; 27:108616. [PMID: 38179064 PMCID: PMC10765061 DOI: 10.1016/j.isci.2023.108616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/30/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Studies across a diverse group of metazoan embryos indicate that Wnt signaling often activates the transcription factor Sp5, forming a signaling 'cassette' that plays critical roles in many developmental processes. This study explores the role of Wnt/Sp5 signaling during the specification and patterning of the primary germ layers during early anterior-posterior axis formation in the deuterostome sea urchin embryo. Our functional analyses show that Sp5 is critical for endomesoderm specification downstream of Wnt/β-catenin in posterior cells as well as anterior neuroectoderm patterning downstream of non-canonical Wnt/JNK signaling in anterior cells. Interestingly, expression and functional data comparisons show that Wnt/Sp5 signaling often plays similar roles in posterior endomesoderm as well as neuroectoderm patterning along the AP axis of several deuterostome embryos, including vertebrates. Thus, our findings provide strong support for the idea that Wnt-Sp5 signaling cassettes were critical for the establishment of early germ layers in the common deuterostome ancestor.
Collapse
Affiliation(s)
- Sujan Gautam
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jennifer L. Fenner
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Boyuan Wang
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ryan C. Range
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
8
|
Gilbert E, Craggs J, Modepalli V. Gene Regulatory Network that Shaped the Evolution of Larval Apical Organ in Cnidaria. Mol Biol Evol 2024; 41:msad285. [PMID: 38152864 PMCID: PMC10781443 DOI: 10.1093/molbev/msad285] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/24/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023] Open
Abstract
Among non-bilaterian animals, a larval apical sensory organ with integrated neurons is only found in cnidarians. Within cnidarians, an apical organ with a ciliary tuft is mainly found in Actiniaria. Whether this apical tuft has evolved independently in Actiniaria or alternatively originated in the common ancestor of Cnidaria and Bilateria and was lost in specific groups is uncertain. To test this hypothesis, we generated transcriptomes of the apical domain during the planula stage of four species representing three key groups of cnidarians: Aurelia aurita (Scyphozoa), Nematostella vectensis (Actiniaria), and Acropora millepora and Acropora tenuis (Scleractinia). We showed that the canonical genes implicated in patterning the apical domain of N. vectensis are largely absent in A. aurita. In contrast, the apical domain of the scleractinian planula shares gene expression pattern with N. vectensis. By comparing the larval single-cell transcriptomes, we revealed the apical organ cell type of Scleractinia and confirmed its homology to Actiniaria. However, Fgfa2, a vital regulator of the regionalization of the N. vectensis apical organ, is absent in the scleractinian genome. Likewise, we found that FoxJ1 and 245 genes associated with cilia are exclusively expressed in the N. vectensis apical domain, which is in line with the presence of ciliary apical tuft in Actiniaria and its absence in Scleractinia and Scyphozoa. Our findings suggest that the common ancestor of cnidarians lacked a ciliary apical tuft, and it could have evolved independently in the Actiniaria.
Collapse
Affiliation(s)
- Eleanor Gilbert
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Jamie Craggs
- Horniman Museum and Gardens, London SE23 3PQ, UK
| | - Vengamanaidu Modepalli
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| |
Collapse
|
9
|
Posnien N, Hunnekuhl VS, Bucher G. Gene expression mapping of the neuroectoderm across phyla - conservation and divergence of early brain anlagen between insects and vertebrates. eLife 2023; 12:e92242. [PMID: 37750868 PMCID: PMC10522337 DOI: 10.7554/elife.92242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
Gene expression has been employed for homologizing body regions across bilateria. The molecular comparison of vertebrate and fly brains has led to a number of disputed homology hypotheses. Data from the fly Drosophila melanogaster have recently been complemented by extensive data from the red flour beetle Tribolium castaneum with its more insect-typical development. In this review, we revisit the molecular mapping of the neuroectoderm of insects and vertebrates to reconsider homology hypotheses. We claim that the protocerebrum is non-segmental and homologous to the vertebrate fore- and midbrain. The boundary between antennal and ocular regions correspond to the vertebrate mid-hindbrain boundary while the deutocerebrum represents the anterior-most ganglion with serial homology to the trunk. The insect head placode is shares common embryonic origin with the vertebrate adenohypophyseal placode. Intriguingly, vertebrate eyes develop from a different region compared to the insect compound eyes calling organ homology into question. Finally, we suggest a molecular re-definition of the classic concepts of archi- and prosocerebrum.
Collapse
Affiliation(s)
- Nico Posnien
- Department of Developmental Biology, Johann-Friedrich-Blumenbach Institute, University GoettingenGöttingenGermany
| | - Vera S Hunnekuhl
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, University of GöttingenGöttingenGermany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, University of GöttingenGöttingenGermany
| |
Collapse
|
10
|
Yaguchi J, Yaguchi S. Rx and its downstream factor, Musashi1, is required for establishment of the apical organ in sea urchin larvae. Front Cell Dev Biol 2023; 11:1240767. [PMID: 37655161 PMCID: PMC10465340 DOI: 10.3389/fcell.2023.1240767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
Acetylcholine, a vital neurotransmitter, plays a multifarious role in the brain and peripheral nervous system of various organisms. Previous research has demonstrated the proximity of cholinergic neurons to serotonergic neurons in the apical organ of sea urchin embryos. While several transcription factors have been identified as playing a role in the development of serotonergic neurons in this region of a sea urchin, Hemicentrotus pulcherrimus, comparatively little is known about the specific transcription factors and their spatiotemporal expression patterns that regulate the development of cholinergic neurons. In this study, we establish the requirement of the transcription factor Rx for the development of cholinergic neurons in the apical organ of the species. Furthermore, we investigate the role of the RNA-binding protein Musashi1, known to be involved in neurogenesis, including cholinergic neurons in other organisms, and demonstrate that it is a downstream factor of Rx, and that choline acetyltransferase expression is suppressed in Musashi1 downregulated embryos. Our research also highlights the intricate network formed by neurons and other cells in and around the apical organ of sea urchin larvae through axons and dendrites, providing possibility for a systematic and complexed neural pattern like those of the brain in other organisms.
Collapse
Affiliation(s)
- Junko Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| | - Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
11
|
Lemaître QIB, Bartsch N, Kouzel IU, Busengdal H, Richards GS, Steinmetz PRH, Rentzsch F. NvPrdm14d-expressing neural progenitor cells contribute to non-ectodermal neurogenesis in Nematostella vectensis. Nat Commun 2023; 14:4854. [PMID: 37563174 PMCID: PMC10415408 DOI: 10.1038/s41467-023-39789-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/29/2023] [Indexed: 08/12/2023] Open
Abstract
Neurogenesis has been studied extensively in the ectoderm, from which most animals generate the majority of their neurons. Neurogenesis from non-ectodermal tissue is, in contrast, poorly understood. Here we use the cnidarian Nematostella vectensis as a model to provide new insights into the molecular regulation of non-ectodermal neurogenesis. We show that the transcription factor NvPrdm14d is expressed in a subpopulation of NvSoxB(2)-expressing endodermal progenitor cells and their NvPOU4-expressing progeny. Using a new transgenic reporter line, we show that NvPrdm14d-expressing cells give rise to neurons in the body wall and in close vicinity of the longitudinal retractor muscles. RNA-sequencing of NvPrdm14d::GFP-expressing cells and gene knockdown experiments provide candidate genes for the development and function of these neurons. Together, the identification of a population of endoderm-specific neural progenitor cells and of previously undescribed putative motoneurons in Nematostella provide new insights into the regulation of non-ectodermal neurogenesis.
Collapse
Affiliation(s)
- Quentin I B Lemaître
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Natascha Bartsch
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
- Department for Biological Sciences, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Ian U Kouzel
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Henriette Busengdal
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Gemma Sian Richards
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | | | - Fabian Rentzsch
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.
- Department for Biological Sciences, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.
| |
Collapse
|
12
|
Spurrell M, Oulhen N, Foster S, Perillo M, Wessel G. Gene regulatory divergence amongst echinoderms underlies appearance of pigment cells in sea urchin development. Dev Biol 2023; 494:13-25. [PMID: 36519720 PMCID: PMC9870932 DOI: 10.1016/j.ydbio.2022.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/14/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Larvae of the sea urchin, Strongylocentrotus purpuratus, have pigmented migratory cells implicated in immune defense and gut patterning. The transcription factor SpGcm activates the expression of many pigment cell-specific genes, including those involved in pigment biosynthesis (SpPks1 and SpFmo3) and immune related genes (e.g. SpMif5). Despite the importance of this cell type in sea urchins, pigmented cells are absent in larvae of the sea star, Patiria miniata. In this study, we tested the premises that sea stars lack genes to synthesize echinochrome pigment, that the genes are present but are not expressed in the larvae, or rather that the homologous gene expression does not contribute to echinochrome synthesis. Our results show that orthologs of sea urchin pigment cell-specific genes (PmPks1, PmFmo3-1 and PmMifL1-2) are present in the sea star genome and expressed in the larvae. Although no cell lineage homologous to migratory sea urchin pigment cells is present, dynamic gene activation accomplishes a similar spatial and temporal expression profile. The mechanisms regulating the expression of these genes, though, is highly divergent. In sea stars, PmGcm lacks the central role in pigment gene expression since it is not expressed in PmPks1 and PmFmo3-1-positive cells, and knockdown of Gcm does not abrogate pigment gene expression. Pigment genes are instead expressed in the coelomic mesoderm early in development before later being expressed in the ectoderm. These findings were supported by in situ RNA hybridization and comparative scRNA-seq analyses. We conclude that simply the coexpression of Pks1 and Fmo3 orthologs in cells of the sea star is not sufficient to underlie the emergence of the larval pigment cell in the sea urchin.
Collapse
Affiliation(s)
- Maxwell Spurrell
- Brown University, Department of Molecular Biology, Cell Biology & Biochemistry, Providence, RI, USA
| | - Nathalie Oulhen
- Brown University, Department of Molecular Biology, Cell Biology & Biochemistry, Providence, RI, USA
| | - Stephany Foster
- Brown University, Department of Molecular Biology, Cell Biology & Biochemistry, Providence, RI, USA
| | - Margherita Perillo
- Brown University, Department of Molecular Biology, Cell Biology & Biochemistry, Providence, RI, USA
| | - Gary Wessel
- Brown University, Department of Molecular Biology, Cell Biology & Biochemistry, Providence, RI, USA.
| |
Collapse
|
13
|
Schwaiger M, Andrikou C, Dnyansagar R, Murguia PF, Paganos P, Voronov D, Zimmermann B, Lebedeva T, Schmidt HA, Genikhovich G, Benvenuto G, Arnone MI, Technau U. An ancestral Wnt-Brachyury feedback loop in axial patterning and recruitment of mesoderm-determining target genes. Nat Ecol Evol 2022; 6:1921-1939. [PMID: 36396969 DOI: 10.1038/s41559-022-01905-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/12/2022] [Indexed: 11/18/2022]
Abstract
Transcription factors are crucial drivers of cellular differentiation during animal development and often share ancient evolutionary origins. The T-box transcription factor Brachyury plays a pivotal role as an early mesoderm determinant and neural repressor in vertebrates; yet, the ancestral function and key evolutionary transitions of the role of this transcription factor remain obscure. Here, we present a genome-wide target-gene screen using chromatin immunoprecipitation sequencing in the sea anemone Nematostella vectensis, an early branching non-bilaterian, and the sea urchin Strongylocentrotus purpuratus, a representative of the sister lineage of chordates. Our analysis reveals an ancestral gene regulatory feedback loop connecting Brachyury, FoxA and canonical Wnt signalling involved in axial patterning that predates the cnidarian-bilaterian split about 700 million years ago. Surprisingly, we also found that part of the gene regulatory network controlling the fate of neuromesodermal progenitors in vertebrates was already present in the common ancestor of cnidarians and bilaterians. However, while several endodermal and neuronal Brachyury target genes are ancestrally shared, hardly any of the key mesodermal downstream targets in vertebrates are found in the sea anemone or the sea urchin. Our study suggests that a limited number of target genes involved in mesoderm formation were newly acquired in the vertebrate lineage, leading to a dramatic shift in the function of this ancestral developmental regulator.
Collapse
Affiliation(s)
- Michaela Schwaiger
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences,University of Vienna, Vienna, Austria
- Friedrich Miescher Institute for Biomedical Research, Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Carmen Andrikou
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Rohit Dnyansagar
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences,University of Vienna, Vienna, Austria
| | - Patricio Ferrer Murguia
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences,University of Vienna, Vienna, Austria
| | | | - Danila Voronov
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Bob Zimmermann
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences,University of Vienna, Vienna, Austria
| | - Tatiana Lebedeva
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences,University of Vienna, Vienna, Austria
| | - Heiko A Schmidt
- Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences,University of Vienna, Vienna, Austria
| | | | | | - Ulrich Technau
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences,University of Vienna, Vienna, Austria.
- Max Perutz Labs, University of Vienna, Vienna, Austria.
- Research Platform 'Single Cell Regulation of Stem Cells', University of Vienna, Vienna, Austria.
| |
Collapse
|
14
|
Feuda R, Peter IS. Homologous gene regulatory networks control development of apical organs and brains in Bilateria. SCIENCE ADVANCES 2022; 8:eabo2416. [PMID: 36322649 PMCID: PMC9629743 DOI: 10.1126/sciadv.abo2416] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Apical organs are relatively simple larval nervous systems. The extent to which apical organs are evolutionarily related to the more complex nervous systems of other animals remains unclear. To identify common developmental mechanisms, we analyzed the gene regulatory network (GRN) controlling the development of the apical organ in sea urchins. We characterized the developmental expression of 30 transcription factors and identified key regulatory functions for FoxQ2, Hbn, Delta/Notch signaling, and SoxC in the patterning of the apical organ and the specification of neurons. Almost the entire set of apical transcription factors is expressed in the nervous system of worms, flies, zebrafish, frogs, and mice. Furthermore, a regulatory module controlling the axial patterning of the vertebrate brain is expressed in the ectoderm of sea urchin embryos. We conclude that GRNs controlling the formation of bilaterian nervous systems share a common origin and that the apical GRN likely resembles an ancestral regulatory program.
Collapse
|
15
|
Czarkwiani A, Taylor J, Oliveri P. Neurogenesis during Brittle Star Arm Regeneration Is Characterised by a Conserved Set of Key Developmental Genes. BIOLOGY 2022; 11:biology11091360. [PMID: 36138839 PMCID: PMC9495562 DOI: 10.3390/biology11091360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Injuries to the central nervous system most often lead to irreversible damage in humans. Brittle stars are marine animals related to sea stars and sea urchins, and are one of our closest evolutionary relatives among invertebrates. Extraordinarily, they can perfectly regenerate their nerves even after completely severing the nerve cord after arm amputation. Understanding what genes and cellular mechanisms are used for this natural repair process in the brittle star might lead to new insights to guide strategies for therapeutics to improve outcomes for central nervous system injuries in humans. Abstract Neural regeneration is very limited in humans but extremely efficient in echinoderms. The brittle star Amphiura filiformis can regenerate both components of its central nervous system as well as the peripheral system, and understanding the molecular mechanisms underlying this ability is key for evolutionary comparisons not only within the echinoderm group, but also wider within deuterostomes. Here we characterise the neural regeneration of this brittle star using a combination of immunohistochemistry, in situ hybridization and Nanostring nCounter to determine the spatial and temporal expression of evolutionary conserved neural genes. We find that key genes crucial for the embryonic development of the nervous system in sea urchins and other animals are also expressed in the regenerating nervous system of the adult brittle star in a hierarchic and spatio-temporally restricted manner.
Collapse
Affiliation(s)
- Anna Czarkwiani
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, 01307 Dresden, Germany
- Correspondence: (A.C.); (P.O.)
| | - Jack Taylor
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
- Center for Life’s Origins and Evolution, University College London, London WC1E 6BT, UK
- Correspondence: (A.C.); (P.O.)
| |
Collapse
|
16
|
Abstract
This review reports recent findings on the specification and patterning of neurons that establish the larval nervous system of the sea urchin embryo. Neurons originate in three regions of the embryo. Perturbation analyses enabled construction of gene regulatory networks controlling the several neural cell types. Many of the mechanisms described reflect shared features of all metazoans and others are conserved among deuterostomes. This nervous system with a very small number of neurons supports the feeding and swimming behaviors of the larva until metamorphosis when an adult nervous system replaces that system.
Collapse
Affiliation(s)
- David R McClay
- Department of Biology, Duke University, Durham, NC, United States.
| |
Collapse
|
17
|
Paganos P, Voronov D, Musser JM, Arendt D, Arnone MI. Single-cell RNA sequencing of the Strongylocentrotus purpuratus larva reveals the blueprint of major cell types and nervous system of a non-chordate deuterostome. eLife 2021; 10:70416. [PMID: 34821556 PMCID: PMC8683087 DOI: 10.7554/elife.70416] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Identifying the molecular fingerprint of organismal cell types is key for understanding their function and evolution. Here, we use single-cell RNA sequencing (scRNA-seq) to survey the cell types of the sea urchin early pluteus larva, representing an important developmental transition from non-feeding to feeding larva. We identify 21 distinct cell clusters, representing cells of the digestive, skeletal, immune, and nervous systems. Further subclustering of these reveal a highly detailed portrait of cell diversity across the larva, including the identification of neuronal cell types. We then validate important gene regulatory networks driving sea urchin development and reveal new domains of activity within the larval body. Focusing on neurons that co-express Pdx-1 and Brn1/2/4, we identify an unprecedented number of genes shared by this population of neurons in sea urchin and vertebrate endocrine pancreatic cells. Using differential expression results from Pdx-1 knockdown experiments, we show that Pdx1 is necessary for the acquisition of the neuronal identity of these cells. We hypothesize that a network similar to the one orchestrated by Pdx1 in the sea urchin neurons was active in an ancestral cell type and then inherited by neuronal and pancreatic developmental lineages in sea urchins and vertebrates.
Collapse
Affiliation(s)
- Periklis Paganos
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Danila Voronov
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Jacob M Musser
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg, Germany
| | - Detlev Arendt
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg, Germany
| | - Maria Ina Arnone
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| |
Collapse
|
18
|
Ka C, Gautam S, Marshall SR, Tice LP, Martinez-Bartolome M, Fenner JL, Range RC. Receptor Tyrosine Kinases ror1/2 and ryk Are Co-expressed with Multiple Wnt Signaling Components During Early Development of Sea Urchin Embryos. THE BIOLOGICAL BULLETIN 2021; 241:140-157. [PMID: 34706206 PMCID: PMC11257382 DOI: 10.1086/715237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AbstractA combination of receptors, co-receptors, and secreted Wnt modulators form protein complexes at the cell surface that activate one or more of the three different Wnt signaling pathways (Wnt/β-catenin, Wnt/JNK, and Wnt/Ca2+). Two or more of these pathways are often active in the same cellular territories, forming Wnt signaling networks; however, the molecular mechanisms necessary to integrate information from these pathways in these situations are unclear in any in vivo model system. Recent studies have implicated two Wnt binding receptor tyrosine kinases, receptor tyrosine kinase-like orphan receptor (Ror) and related-to-receptor tyrosine kinase (Ryk), in the regulation of canonical and non-canonical Wnt signaling pathways, depending on the context; however, the spatiotemporal expression of these genes in relation to Wnt signaling components has not been well characterized in most deuterostome model systems. Here we use a combination of phylogenetic and spatiotemporal gene expression analyses to characterize Ror and Ryk orthologs in sea urchin embryos. Our phylogenetic analysis indicates that both ror1/2 and ryk originated as single genes from the metazoan ancestor. Expression analyses indicate that ror1/2 and ryk are expressed in the same domains of many Wnt ligands and Frizzled receptors essential for the specification and patterning of germ layers along the early anterior-posterior axis. In addition, both genes are co-expressed with Wnt signaling components in the gut, ventral ectoderm, and anterior neuroectoderm territories later in development. Together, our results indicate that Ror and Ryk have a complex evolutionary history and that their spatiotemporal expression suggests that they could contribute to the complexity of Wnt signaling in early sea urchin embryogenesis.
Collapse
Affiliation(s)
- C Ka
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849
| | - S Gautam
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849
| | - SR Marshall
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762
| | - LP Tice
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762
| | | | - JL Fenner
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849
| | - RC Range
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849
| |
Collapse
|
19
|
Yaguchi J, Yaguchi S. Sea urchin larvae utilize light for regulating the pyloric opening. BMC Biol 2021; 19:64. [PMID: 33820528 PMCID: PMC8022552 DOI: 10.1186/s12915-021-00999-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Light is essential for various biological activities. In particular, visual information through eyes or eyespots is very important for most of animals, and thus, the functions and developmental mechanisms of visual systems have been well studied to date. In addition, light-dependent non-visual systems expressing photoreceptor Opsins have been used to study the effects of light on diverse animal behaviors. However, it remains unclear how light-dependent systems were acquired and diversified during deuterostome evolution due to an almost complete lack of knowledge on the light-response signaling pathway in Ambulacraria, one of the major groups of deuterostomes and a sister group of chordates. RESULTS Here, we show that sea urchin larvae utilize light for digestive tract activity. We found that photoirradiation of larvae induces pyloric opening even without addition of food stimuli. Micro-surgical and knockdown experiments revealed that this stimulating light is received and mediated by Go(/RGR)-Opsin (Opsin3.2 in sea urchin genomes) cells around the anterior neuroectoderm. Furthermore, we found that the anterior neuroectodermal serotoninergic neurons near Go-Opsin-expressing cells are essential for mediating light stimuli-induced nitric oxide (NO) release at the pylorus. Our results demonstrate that the light>Go-Opsin>serotonin>NO pathway functions in pyloric opening during larval stages. CONCLUSIONS The results shown here will lead us to understand how light-dependent systems of pyloric opening functioning via neurotransmitters were acquired and established during animal evolution. Based on the similarity of nervous system patterns and the gut proportions among Ambulacraria, we suggest the light>pyloric opening pathway may be conserved in the clade, although the light signaling pathway has so far not been reported in other members of the group. In light of brain-gut interactions previously found in vertebrates, we speculate that one primitive function of anterior neuroectodermal neurons (brain neurons) may have been to regulate the function of the digestive tract in the common ancestor of deuterostomes. Given that food consumption and nutrient absorption are essential for animals, the acquirement and development of brain-based sophisticated gut regulatory system might have been important for deuterostome evolution.
Collapse
Affiliation(s)
- Junko Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan.
- PRESTO, JST, 4-1-8 Honcho, Kawaguchi, 332-0012, Japan.
| |
Collapse
|
20
|
Tsironis I, Paganos P, Gouvi G, Tsimpos P, Stamopoulou A, Arnone MI, Flytzanis CN. Coup-TF: A maternal factor essential for differentiation along the embryonic axes in the sea urchin Paracentrotus lividus. Dev Biol 2021; 475:131-144. [PMID: 33484706 DOI: 10.1016/j.ydbio.2020.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/27/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
Coup-TF, a member of the nuclear receptor super-family, is present in the pool of maternal mRNAs and proteins in the sea urchin egg. The presence of this protein seems to be essential for the execution of the early developmental program, leading to all three embryonic layers. Our results demonstrate that Pl-Coup-TF morphants, i.e. Pl-Coup-TF morpholino knockdown embryos, resemble blastulae that lack archenteron at 24 hpf (hours post fertilization), a stage at which normal embryos reach the end of gastrulation in Paracentrotus lividus. At 48 hpf, when normal embryos reach the pluteus larva stage, the morphants are seemingly underdeveloped and lack the characteristic skeletal rods. Nevertheless, the morphant embryos express vegetal endomesodermal marker genes, such as Pl-Blimp1, Pl-Endo16, Pl-Alx1 and Pl-Tbr as judged by in situ hybridization experiments. The anterior neuroectoderm genes, Pl-FoxQ2, Pl-Six3 and Pl-Pax6, are also expressed in the morphant embryos, but Pl-Hbn and Pl-Fez mRNAs, which encode proteins significant for the differentiation of serotonergic neurons, are not detected. Consequently, Pl-Coup-TF morphants at 48 hpf lack serotonergic neurons, whereas normal 48 hpf plutei exhibit the formation of two bilateral pairs of such neurons in the apical organ. Furthermore, genes indicative of the ciliary band formation, Pl-Hnf6, Pl-Dri, Pl-FoxG and Pl-Otx, are not expressed in Pl-Coup-TF morphants, suggesting the disruption of this neurogenic territory as well. In addition, the Pl-SynB gene, a marker of differentiated neurons, is silent leading to the hypothesis that Pl-Coup-TF morphants might lack all types of neurons. On the contrary, the genes expressing signaling molecules, which establish the ventral/dorsal axis, Pl-Nodal and Pl-Lefty show the characteristic ventral lateral expression pattern, Pl-Bmp2/4, which activates the dorsal ectoderm GRN is down-regulated and Pl-Chordin is aberrantly over-expressed in the entire ectoderm. The identity of ectodermal cells in Pl-Coup-TF morphant embryos, was probed for expression of the ventral marker Pl-Gsc which was over-expressed and dorsal markers, Pl-IrxA and Pl-Hox7, which were silent. Therefore, we propose that maternal Pl-Coup-TF is essential for correct dissemination of the early embryonic signaling along both animal/vegetal and ventral/dorsal axes. Limiting Pl-Coup-TF's quantity, results in an embryo without digestive and nervous systems, skeleton and ciliary band that cannot survive past the initial 48 h of development.
Collapse
Affiliation(s)
- Ioannis Tsironis
- Department of Biology, University of Patras, Patras, 26500, Greece
| | - Periklis Paganos
- Department of Biology, University of Patras, Patras, 26500, Greece; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Georgia Gouvi
- Department of Biology, University of Patras, Patras, 26500, Greece
| | | | | | - Maria Ina Arnone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | | |
Collapse
|
21
|
Foster S, Oulhen N, Wessel G. A single cell RNA sequencing resource for early sea urchin development. Development 2020; 147:dev.191528. [PMID: 32816969 DOI: 10.1242/dev.191528] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022]
Abstract
Identifying cell states during development from their mRNA profiles provides insight into their gene regulatory network. Here, we leverage the sea urchin embryo for its well-established gene regulatory network to interrogate the embryo using single cell RNA sequencing. We tested eight developmental stages in Strongylocentrotus purpuratus, from the eight-cell stage to late in gastrulation. We used these datasets to parse out 22 major cell states of the embryo, focusing on key transition stages for cell type specification of each germ layer. Subclustering of these major embryonic domains revealed over 50 cell states with distinct transcript profiles. Furthermore, we identified the transcript profile of two cell states expressing germ cell factors, one we conclude represents the primordial germ cells and the other state is transiently present during gastrulation. We hypothesize that these cells of the Veg2 tier of the early embryo represent a lineage that converts to the germ line when the primordial germ cells are deleted. This broad resource will hopefully enable the community to identify other cell states and genes of interest to expose the underpinning of developmental mechanisms.
Collapse
Affiliation(s)
- Stephany Foster
- Department of Molecular and Cellular Biology, Division of BioMedicine, Brown University, Providence, RI 02912, USA
| | - Nathalie Oulhen
- Department of Molecular and Cellular Biology, Division of BioMedicine, Brown University, Providence, RI 02912, USA
| | - Gary Wessel
- Department of Molecular and Cellular Biology, Division of BioMedicine, Brown University, Providence, RI 02912, USA
| |
Collapse
|
22
|
Slota LA, Miranda E, Peskin B, McClay DR. Developmental origin of peripheral ciliary band neurons in the sea urchin embryo. Dev Biol 2020; 459:72-78. [PMID: 31881199 PMCID: PMC7080585 DOI: 10.1016/j.ydbio.2019.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 10/25/2022]
Abstract
In the sea urchin larva, most neurons lie within an ectodermal region called the ciliary band. Our understanding of the mechanisms of specification and patterning of these peripheral ciliary band neurons is incomplete. Here, we first examine the gene regulatory landscape from which this population of neural progenitors arise in the neuroectoderm. We show that ciliary band neural progenitors first appear in a bilaterally symmetric pattern on the lateral edges of chordin expression in the neuroectoderm. Later in development, these progenitors appear in a salt-and-pepper pattern in the ciliary band where they express soxC, and prox, which are markers of neural specification, and begin to express synaptotagminB, a marker of differentiated neurons. We show that the ciliary band expresses the acid sensing ion channel gene asicl, which suggests that ciliary band neurons control the larva's ability to discern touch sensitivity. Using a chemical inhibitor of MAPK signaling, we show that this signaling pathway is required for proper specification and patterning of ciliary band neurons. Using live imaging, we show that these neural progenitors undergo small distance migrations in the embryo. We then show that the normal swimming behavior of the larvae is compromised if the neurogenesis pathway is perturbed. The developmental sequence of ciliary band neurons is very similar to that of neural crest-derived sensory neurons in vertebrates and may provide insights into the evolution of sensory neurons in deuterostomes.
Collapse
Affiliation(s)
- Leslie A Slota
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Esther Miranda
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Brianna Peskin
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - David R McClay
- Department of Biology, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
23
|
Schacht MI, Schomburg C, Bucher G. six3 acts upstream of foxQ2 in labrum and neural development in the spider Parasteatoda tepidariorum. Dev Genes Evol 2020; 230:95-104. [PMID: 32040712 PMCID: PMC7128001 DOI: 10.1007/s00427-020-00654-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Anterior patterning in animals is based on a gene regulatory network, which comprises highly conserved transcription factors like six3, pax6 and otx. More recently, foxQ2 was found to be an ancestral component of this network but its regulatory interactions showed evolutionary differences. In most animals, foxQ2 is a downstream target of six3 and knockdown leads to mild or no epidermal phenotypes. In contrast, in the red flour beetle Tribolium castaneum, foxQ2 gained a more prominent role in patterning leading to strong epidermal and brain phenotypes and being required for six3 expression. However, it has remained unclear which of these novel aspects were insect or arthropod specific. Here, we study expression and RNAi phenotype of the single foxQ2 ortholog of the spider Parasteatoda tepidariorum. We find early anterior expression similar to the one of insects. Further, we show an epidermal phenotype in the labrum similar to the insect phenotype. However, our data indicate that foxQ2 is positioned downstream of six3 like in other animals but unlike insects. Hence, the epidermal and neural pattering function of foxQ2 is ancestral for arthropods while the upstream role of foxQ2 may have evolved in the lineage leading to the insects.
Collapse
Affiliation(s)
- Magdalena Ines Schacht
- Department of Evolutionary Developmental Genetics, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Christoph Schomburg
- Department of Evolutionary Developmental Genetics, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
- Institut für Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 38, 35392, Giessen, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
24
|
Martínez-Bartolomé M, Range RC. A biphasic role of non-canonical Wnt16 signaling during early anterior-posterior patterning and morphogenesis of the sea urchin embryo. Development 2019; 146:dev168799. [PMID: 31822478 PMCID: PMC6955209 DOI: 10.1242/dev.168799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 11/26/2019] [Indexed: 12/28/2022]
Abstract
A Wnt signaling network governs early anterior-posterior (AP) specification and patterning of the deuterostome sea urchin embryo. We have previously shown that non-canonical Fzl1/2/7 signaling antagonizes the progressive posterior-to-anterior downregulation of the anterior neuroectoderm (ANE) gene regulatory network (GRN) by canonical Wnt/β-catenin and non-canonical Wnt1/Wnt8-Fzl5/8-JNK signaling. This study focuses on the non-canonical function of the Wnt16 ligand during early AP specification and patterning. Maternally supplied wnt16 is expressed ubiquitously during cleavage and zygotic wnt16 expression is concentrated in the endoderm/mesoderm beginning at mid-blastula stage. Wnt16 antagonizes the ANE restriction mechanism and this activity depends on a functional Fzl1/2/7 receptor. Our results also show that zygotic wnt16 expression depends on both Fzl5/8 and Wnt/β-catenin signaling. Furthermore, Wnt16 is necessary for the activation and/or maintenance of key regulatory endoderm/mesoderm genes and is essential for gastrulation. Together, our data show that Wnt16 has two functions during early AP specification and patterning: (1) an initial role activating the Fzl1/2/7 pathway that antagonizes the ANE restriction mechanism; and (2) a subsequent function in activating key endoderm GRN factors and the morphogenetic movements of gastrulation.
Collapse
Affiliation(s)
| | - Ryan C Range
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
25
|
Andrikou C, Passamaneck YJ, Lowe CJ, Martindale MQ, Hejnol A. Molecular patterning during the development of Phoronopsis harmeri reveals similarities to rhynchonelliform brachiopods. EvoDevo 2019; 10:33. [PMID: 31867094 PMCID: PMC6907167 DOI: 10.1186/s13227-019-0146-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/22/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Phoronids, rhynchonelliform and linguliform brachiopods show striking similarities in their embryonic fate maps, in particular in their axis specification and regionalization. However, although brachiopod development has been studied in detail and demonstrated embryonic patterning as a causal factor of the gastrulation mode (protostomy vs deuterostomy), molecular descriptions are still missing in phoronids. To understand whether phoronids display underlying embryonic molecular mechanisms similar to those of brachiopods, here we report the expression patterns of anterior (otx, gsc, six3/6, nk2.1), posterior (cdx, bra) and endomesodermal (foxA, gata4/5/6, twist) markers during the development of the protostomic phoronid Phoronopsis harmeri. RESULTS The transcription factors foxA, gata4/5/6 and cdx show conserved expression in patterning the development and regionalization of the phoronid embryonic gut, with foxA expressed in the presumptive foregut, gata4/5/6 demarcating the midgut and cdx confined to the hindgut. Furthermore, six3/6, usually a well-conserved anterior marker, shows a remarkably dynamic expression, demarcating not only the apical organ and the oral ectoderm, but also clusters of cells of the developing midgut and the anterior mesoderm, similar to what has been reported for brachiopods, bryozoans and some deuterostome Bilateria. Surprisingly, brachyury, a transcription factor often associated with gastrulation movements and mouth and hindgut development, seems not to be involved with these patterning events in phoronids. CONCLUSIONS Our description and comparison of gene expression patterns with other studied Bilateria reveals that the timing of axis determination and cell fate distribution of the phoronid shows highest similarity to that of rhynchonelliform brachiopods, which is likely related to their shared protostomic mode of development. Despite these similarities, the phoronid Ph. harmeri also shows particularities in its development, which hint to divergences in the arrangement of gene regulatory networks responsible for germ layer formation and axis specification.
Collapse
Affiliation(s)
- Carmen Andrikou
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway
| | - Yale J. Passamaneck
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N Ocean Shore Blvd, St. Augustine, FL, 32080 USA
| | - Chris J. Lowe
- Hopkins Marine Station, Department of Biology, Stanford University, 120 Oceanview Blvd., Pacific Grove, CA 93950 USA
| | - Mark Q. Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N Ocean Shore Blvd, St. Augustine, FL, 32080 USA
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway
| |
Collapse
|
26
|
Hogan JD, Keenan JL, Luo L, Ibn-Salem J, Lamba A, Schatzberg D, Piacentino ML, Zuch DT, Core AB, Blumberg C, Timmermann B, Grau JH, Speranza E, Andrade-Navarro MA, Irie N, Poustka AJ, Bradham CA. The developmental transcriptome for Lytechinus variegatus exhibits temporally punctuated gene expression changes. Dev Biol 2019; 460:139-154. [PMID: 31816285 DOI: 10.1016/j.ydbio.2019.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Abstract
Embryonic development is arguably the most complex process an organism undergoes during its lifetime, and understanding this complexity is best approached with a systems-level perspective. The sea urchin has become a highly valuable model organism for understanding developmental specification, morphogenesis, and evolution. As a non-chordate deuterostome, the sea urchin occupies an important evolutionary niche between protostomes and vertebrates. Lytechinus variegatus (Lv) is an Atlantic species that has been well studied, and which has provided important insights into signal transduction, patterning, and morphogenetic changes during embryonic and larval development. The Pacific species, Strongylocentrotus purpuratus (Sp), is another well-studied sea urchin, particularly for gene regulatory networks (GRNs) and cis-regulatory analyses. A well-annotated genome and transcriptome for Sp are available, but similar resources have not been developed for Lv. Here, we provide an analysis of the Lv transcriptome at 11 timepoints during embryonic and larval development. Temporal analysis suggests that the gene regulatory networks that underlie specification are well-conserved among sea urchin species. We show that the major transitions in variation of embryonic transcription divide the developmental time series into four distinct, temporally sequential phases. Our work shows that sea urchin development occurs via sequential intervals of relatively stable gene expression states that are punctuated by abrupt transitions.
Collapse
Affiliation(s)
- John D Hogan
- Program in Bioinformatics, Boston University, Boston, MA, USA
| | | | - Lingqi Luo
- Program in Bioinformatics, Boston University, Boston, MA, USA
| | - Jonas Ibn-Salem
- Evolution and Development Group, Max-Planck Institute for Molecular Genetics, Berlin, Germany; Faculty of Biology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Arjun Lamba
- Biology Department, Boston University, Boston, MA, USA
| | | | - Michael L Piacentino
- Program in Molecular and Cellular Biology and Biochemistry, Boston University, Boston, MA, USA
| | - Daniel T Zuch
- Program in Molecular and Cellular Biology and Biochemistry, Boston University, Boston, MA, USA
| | - Amanda B Core
- Biology Department, Boston University, Boston, MA, USA
| | | | - Bernd Timmermann
- Sequencing Core Facility, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - José Horacio Grau
- Dahlem Centre for Genome Research and Medical Systems Biology, Environmental and Phylogenomics Group, Berlin, Germany; Museum für Naturkunde Berlin, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Emily Speranza
- Program in Bioinformatics, Boston University, Boston, MA, USA
| | | | - Naoki Irie
- Department of Biological Sciences, University of Tokyo, Tokyo, Japan
| | - Albert J Poustka
- Evolution and Development Group, Max-Planck Institute for Molecular Genetics, Berlin, Germany; Dahlem Centre for Genome Research and Medical Systems Biology, Environmental and Phylogenomics Group, Berlin, Germany
| | - Cynthia A Bradham
- Program in Bioinformatics, Boston University, Boston, MA, USA; Biology Department, Boston University, Boston, MA, USA; Program in Molecular and Cellular Biology and Biochemistry, Boston University, Boston, MA, USA.
| |
Collapse
|
27
|
He B, Buescher M, Farnworth MS, Strobl F, Stelzer EHK, Koniszewski NDB, Muehlen D, Bucher G. An ancestral apical brain region contributes to the central complex under the control of foxQ2 in the beetle Tribolium. eLife 2019; 8:e49065. [PMID: 31625505 PMCID: PMC6837843 DOI: 10.7554/elife.49065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022] Open
Abstract
The genetic control of anterior brain development is highly conserved throughout animals. For instance, a conserved anterior gene regulatory network specifies the ancestral neuroendocrine center of animals and the apical organ of marine organisms. However, its contribution to the brain in non-marine animals has remained elusive. Here, we study the function of the Tc-foxQ2 forkhead transcription factor, a key regulator of the anterior gene regulatory network of insects. We characterized four distinct types of Tc-foxQ2 positive neural progenitor cells based on differential co-expression with Tc-six3/optix, Tc-six4, Tc-chx/vsx, Tc-nkx2.1/scro, Tc-ey, Tc-rx and Tc-fez1. An enhancer trap line built by genome editing marked Tc-foxQ2 positive neurons, which projected through the primary brain commissure and later through a subset of commissural fascicles. Eventually, they contributed to the central complex. Strikingly, in Tc-foxQ2 RNAi knock-down embryos the primary brain commissure did not split and subsequent development of midline brain structures stalled. Our work establishes foxQ2 as a key regulator of brain midline structures, which distinguish the protocerebrum from segmental ganglia. Unexpectedly, our data suggest that the central complex evolved by integrating neural cells from an ancestral anterior neuroendocrine center.
Collapse
Affiliation(s)
- Bicheng He
- Johann Friedrich Blumenbach Institute of Zoology, GZMBUniversity of GöttingenGöttingenGermany
| | - Marita Buescher
- Johann Friedrich Blumenbach Institute of Zoology, GZMBUniversity of GöttingenGöttingenGermany
| | - Max Stephen Farnworth
- Johann Friedrich Blumenbach Institute of Zoology, GZMBUniversity of GöttingenGöttingenGermany
- Göttingen Graduate Center for Molecular BiosciencesNeurosciences and BiophysicsGöttingenGermany
| | - Frederic Strobl
- Buchmann Institute for Molecular Life Sciences (BMLS)Goethe UniversityFrankfurtGermany
| | - Ernst HK Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS)Goethe UniversityFrankfurtGermany
| | - Nikolaus DB Koniszewski
- Johann Friedrich Blumenbach Institute of Zoology, GZMBUniversity of GöttingenGöttingenGermany
| | - Dominik Muehlen
- Johann Friedrich Blumenbach Institute of Zoology, GZMBUniversity of GöttingenGöttingenGermany
| | - Gregor Bucher
- Johann Friedrich Blumenbach Institute of Zoology, GZMBUniversity of GöttingenGöttingenGermany
| |
Collapse
|
28
|
Molina MD, Gache C, Lepage T. Expression of exogenous mRNAs to study gene function in echinoderm embryos. Methods Cell Biol 2019; 151:239-282. [PMID: 30948011 DOI: 10.1016/bs.mcb.2018.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
With the completion of the genome sequencing projects, a new challenge for developmental biologists is to assign a function to the thousands of genes identified. Expression of exogenous mRNAs is a powerful, versatile and rapid technique that can be used to study gene function during development of the sea urchin. This chapter describes how this technique can be used to analyze gene function in echinoderm embryos, how it can be combined with cell transplantation to perform mosaic analysis and how it can be applied to identify downstream targets genes of transcription factors and signaling pathways. We describe specific examples of the use of overexpression of mRNA to analyze gene function, mention the benefits and current limitations of the technique and emphasize the importance of using different controls to assess the specificity of the effects observed. Finally, this chapter details the different steps, vectors and protocols for in vitro production of mRNA and phenotypic analysis.
Collapse
Affiliation(s)
| | - Christian Gache
- Université Pierre et Marie Curie, Observatoire Océanologique de Villefranche sur Mer, UMR7009 CNRS, Paris, France
| | - Thierry Lepage
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France.
| |
Collapse
|
29
|
Formery L, Schubert M, Croce JC. Ambulacrarians and the Ancestry of Deuterostome Nervous Systems. Results Probl Cell Differ 2019; 68:31-59. [PMID: 31598852 DOI: 10.1007/978-3-030-23459-1_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The evolutionary origin and history of metazoan nervous systems has been at the heart of numerous scientific debates for well over a century. This has been a particularly difficult issue to resolve within the deuterostomes, chiefly due to the distinct neural architectures observed within this group of animals. Indeed, deuterosomes feature central nervous systems, apical organs, nerve cords, and basiepidermal nerve nets. Comparative analyses investigating the anatomy and molecular composition of deuterostome nervous systems have nonetheless succeeded in identifying a number of shared and derived features. These analyses have led to the elaboration of diverse theories about the origin and evolutionary history of deuterostome nervous systems. Here, we provide an overview of these distinct theories. Further, we argue that deciphering the adult nervous systems of representatives of all deuterostome phyla, including echinoderms, which have long been neglected in this type of surveys, will ultimately provide answers to the questions concerning the ancestry and evolution of deuterostome nervous systems.
Collapse
Affiliation(s)
- Laurent Formery
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe) Team, Villefranche-sur-Mer, France
| | - Michael Schubert
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe) Team, Villefranche-sur-Mer, France
| | - Jenifer C Croce
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe) Team, Villefranche-sur-Mer, France.
| |
Collapse
|
30
|
Yaguchi J, Yamazaki A, Yaguchi S. Meis transcription factor maintains the neurogenic ectoderm and regulates the anterior-posterior patterning in embryos of a sea urchin, Hemicentrotus pulcherrimus. Dev Biol 2018; 444:1-8. [PMID: 30266259 DOI: 10.1016/j.ydbio.2018.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/07/2018] [Accepted: 09/24/2018] [Indexed: 01/18/2023]
Abstract
Precise body axis formation is an essential step in the development of multicellular organisms, for most of which the molecular gradient and/or specifically biased localization of cell-fate determinants in eggs play important roles. In sea urchins, however, any biased proteins and mRNAs have not yet been identified in the egg except for vegetal cortex molecules, suggesting that sea urchin development is mostly regulated by uniformly distributed maternal molecules with contributions to axis formation that are not well characterized. Here, we describe that the maternal Meis transcription factor regulates anterior-posterior axis formation through maintenance of the most anterior territory in embryos of a sea urchin, Hemicentrotus pulcherrimus. Loss-of-function experiments revealed that Meis is intrinsically required for maintenance of the anterior neuroectoderm specifier foxQ2 after hatching and, consequently, the morphant lost anterior neuroectoderm characteristics. In addition, the expression patterns of univin and VEGF, the lateral ectoderm markers, and the mesenchyme-cell pattern shifted toward the anterior side in Meis morphants more than they did in control embryos, indicating that Meis contributes to the precise anteroposterior patterning by regulating the anterior neuroectodermal fate.
Collapse
Affiliation(s)
- Junko Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka 415-0025, Japan
| | - Atsuko Yamazaki
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka 415-0025, Japan
| | - Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka 415-0025, Japan.
| |
Collapse
|
31
|
McClay DR, Miranda E, Feinberg SL. Neurogenesis in the sea urchin embryo is initiated uniquely in three domains. Development 2018; 145:dev167742. [PMID: 30413529 PMCID: PMC6240313 DOI: 10.1242/dev.167742] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/25/2018] [Indexed: 12/23/2022]
Abstract
Many marine larvae begin feeding within a day of fertilization, thus requiring rapid development of a nervous system to coordinate feeding activities. Here, we examine the patterning and specification of early neurogenesis in sea urchin embryos. Lineage analysis indicates that neurons arise locally in three regions of the embryo. Perturbation analyses showed that when patterning is disrupted, neurogenesis in the three regions is differentially affected, indicating distinct patterning requirements for each neural domain. Six transcription factors that function during proneural specification were identified and studied in detail. Perturbations of these proneural transcription factors showed that specification occurs differently in each neural domain prior to the Delta-Notch restriction signal. Though gene regulatory network state changes beyond the proneural restriction are largely unresolved, the data here show that the three neural regions already differ from each other significantly early in specification. Future studies that define the larval nervous system in the sea urchin must therefore separately characterize the three populations of neurons that enable the larva to feed, to navigate, and to move food particles through the gut.
Collapse
Affiliation(s)
- David R McClay
- Department of Biology, 124 Science Drive, Duke University, Durham, NC 27708, USA
| | - Esther Miranda
- Department of Biology, 124 Science Drive, Duke University, Durham, NC 27708, USA
| | - Stacy L Feinberg
- Department of Biology, 124 Science Drive, Duke University, Durham, NC 27708, USA
| |
Collapse
|
32
|
Olson PD, Zarowiecki M, James K, Baillie A, Bartl G, Burchell P, Chellappoo A, Jarero F, Tan LY, Holroyd N, Berriman M. Genome-wide transcriptome profiling and spatial expression analyses identify signals and switches of development in tapeworms. EvoDevo 2018; 9:21. [PMID: 30455861 PMCID: PMC6225667 DOI: 10.1186/s13227-018-0110-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tapeworms are agents of neglected tropical diseases responsible for significant health problems and economic loss. They also exhibit adaptations to a parasitic lifestyle that confound comparisons of their development with other animals. Identifying the genetic factors regulating their complex ontogeny is essential to understanding unique aspects of their biology and for advancing novel therapeutics. Here we use RNA sequencing to identify up-regulated signalling components, transcription factors and post-transcriptional/translational regulators (genes of interest, GOI) in the transcriptomes of Larvae and different regions of segmented worms in the tapeworm Hymenolepis microstoma and combine this with spatial gene expression analyses of a selection of genes. RESULTS RNA-seq reads collectively mapped to 90% of the > 12,000 gene models in the H. microstoma v.2 genome assembly, demonstrating that the transcriptome profiles captured a high percentage of predicted genes. Contrasts made between the transcriptomes of Larvae and whole, adult worms, and between the Scolex-Neck, mature strobila and gravid strobila, resulted in 4.5-30% of the genes determined to be differentially expressed. Among these, we identified 190 unique GOI up-regulated in one or more contrasts, including a large range of zinc finger, homeobox and other transcription factors, components of Wnt, Notch, Hedgehog and TGF-β/BMP signalling, and post-transcriptional regulators (e.g. Boule, Pumilio). Heatmap clusterings based on overall expression and on select groups of genes representing 'signals' and 'switches' showed that expression in the Scolex-Neck region is more similar to that of Larvae than to the mature or gravid regions of the adult worm, which was further reflected in large overlap of up-regulated GOI. CONCLUSIONS Spatial expression analyses in Larvae and adult worms corroborated inferences made from quantitative RNA-seq data and in most cases indicated consistency with canonical roles of the genes in other animals, including free-living flatworms. Recapitulation of developmental factors up-regulated during larval metamorphosis suggests that strobilar growth involves many of the same underlying gene regulatory networks despite the significant disparity in developmental outcomes. The majority of genes identified were investigated in tapeworms for the first time, setting the stage for advancing our understanding of developmental genetics in an important group of flatworm parasites.
Collapse
Affiliation(s)
- Peter D. Olson
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Magdalena Zarowiecki
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Katherine James
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Andrew Baillie
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Georgie Bartl
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Phil Burchell
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Azita Chellappoo
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Francesca Jarero
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Li Ying Tan
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Nancy Holroyd
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Matt Berriman
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| |
Collapse
|
33
|
Canonical and non-canonical Wnt signaling pathways define the expression domains of Frizzled 5/8 and Frizzled 1/2/7 along the early anterior-posterior axis in sea urchin embryos. Dev Biol 2018; 444:83-92. [PMID: 30332609 DOI: 10.1016/j.ydbio.2018.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/18/2018] [Accepted: 10/06/2018] [Indexed: 01/02/2023]
Abstract
The spatiotemporal expression of Frizzled receptors is critical for patterning along the early anterior-posterior axis during embryonic development in many animal species. However, the molecular mechanisms that regulate the expression of Frizzled receptors are incompletely understood in any species. In this study, I examine how the expression of two Frizzled receptors, Fzl1/2/7 and Fzl5/8, is controlled by the Wnt signaling network which directs specification and positioning of early regulatory states along the anterior-posterior (AP) axis of sea urchin embryos. I used a combination of morpholino- and dominant negative-mediated interference to knock down each Wnt signaling pathway involved in the AP Wnt signaling network. I found that the expression of zygotic fzl5/8 as well as that of the anterior neuroectoderm gene regulatory network (ANE GRN) is activated by an unknown broadly expressed regulatory state and that posterior Wnt/β-catenin signaling is necessary to down regulate fzl5/8's expression in posterior blastomeres. I show that zygotic expression of fzl1/2/7 in the equatorial ectodermal belt is dependent on an uncharacterized regulatory mechanism that works in the same cells receiving the TGF-β signals patterning this territory along the dorsal-ventral axis. In addition, my data indicate that Fzl1/2/7 signaling represses its own expression in a negative feedback mechanism. Finally, we discovered that a balance between the activities of posterior Wnt8 and anterior Dkk1 is necessary to establish the correct spatial expression of zygotic fzl12/7 expression in the equatorial ectodermal domain during blastula and gastrula stages. Together, these studies lead to a better understanding of the complex interactions among the three Wnt signaling pathway governing AP axis specification and patterning in sea urchin embryos.
Collapse
|
34
|
Slota LA, McClay DR. Identification of neural transcription factors required for the differentiation of three neuronal subtypes in the sea urchin embryo. Dev Biol 2018; 435:138-149. [PMID: 29331498 PMCID: PMC5837949 DOI: 10.1016/j.ydbio.2017.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 12/30/2022]
Abstract
Correct patterning of the nervous system is essential for an organism's survival and complex behavior. Embryologists have used the sea urchin as a model for decades, but our understanding of sea urchin nervous system patterning is incomplete. Previous histochemical studies identified multiple neurotransmitters in the pluteus larvae of several sea urchin species. However, little is known about how, where and when neural subtypes are differentially specified during development. Here, we examine the molecular mechanisms of neuronal subtype specification in 3 distinct neural subtypes in the Lytechinus variegatus larva. We show that these subtypes are specified through Delta/Notch signaling and identify a different transcription factor required for the development of each neural subtype. Our results show achaete-scute and neurogenin are proneural for the serotonergic neurons of the apical organ and cholinergic neurons of the ciliary band, respectively. We also show that orthopedia is not proneural but is necessary for the differentiation of the cholinergic/catecholaminergic postoral neurons. Interestingly, these transcription factors are used similarly during vertebrate neurogenesis. We believe this study is a starting point for building a neural gene regulatory network in the sea urchin and for finding conserved deuterostome neurogenic mechanisms.
Collapse
Affiliation(s)
- Leslie A Slota
- Department of Biology, Duke University, Durham, NC 27708, United States
| | - David R McClay
- Department of Biology, Duke University, Durham, NC 27708, United States.
| |
Collapse
|
35
|
Hinman VF, Burke RD. Embryonic neurogenesis in echinoderms. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e316. [PMID: 29470839 DOI: 10.1002/wdev.316] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 01/09/2023]
Abstract
The phylogenetic position of echinoderms is well suited to revealing shared features of deuterostomes that distinguish them from other bilaterians. Although echinoderm neurobiology remains understudied, genomic resources, molecular methods, and systems approaches have enabled progress in understanding mechanisms of embryonic neurogenesis. Even though the morphology of echinoderm larvae is diverse, larval nervous systems, which arise during gastrulation, have numerous similarities in their organization. Diverse neural subtypes and specialized sensory neurons have been identified and details of neuroanatomy using neuron-specific labels provide hypotheses for neural function. The early patterning of ectoderm and specification of axes has been well studied in several species and underlying gene regulatory networks have been established. The cells giving rise to central and peripheral neural components have been identified in urchins and sea stars. Neurogenesis includes typical metazoan features of asymmetric division of neural progenitors and in some cases limited proliferation of neural precursors. Delta/Notch signaling has been identified as having critical roles in regulating neural patterning and differentiation. Several transcription factors functioning in pro-neural phases of specification, neural differentiation, and sub-type specification have been identified and structural or functional components of neurons are used as differentiation markers. Several methods for altering expression in embryos have revealed aspects of a regulatory hierarchy of transcription factors in neurogenesis. Interfacing neurogenic gene regulatory networks to the networks regulating ectodermal domains and identifying the spatial and temporal inputs that pattern the larval nervous system is a major challenge that will contribute substantially to our understanding of the evolution of metazoan nervous systems. This article is categorized under: Comparative Development and Evolution > Model Systems Comparative Development and Evolution > Body Plan Evolution Early Embryonic Development > Gastrulation and Neurulation.
Collapse
Affiliation(s)
- Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Robert D Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| |
Collapse
|
36
|
Khadka A, Martínez-Bartolomé M, Burr SD, Range RC. A novel gene's role in an ancient mechanism: secreted Frizzled-related protein 1 is a critical component in the anterior-posterior Wnt signaling network that governs the establishment of the anterior neuroectoderm in sea urchin embryos. EvoDevo 2018; 9:1. [PMID: 29387332 PMCID: PMC5778778 DOI: 10.1186/s13227-017-0089-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/18/2017] [Indexed: 01/20/2023] Open
Abstract
The anterior neuroectoderm (ANE) in many deuterostome embryos (echinoderms, hemichordates, urochordates, cephalochordates, and vertebrates) is progressively restricted along the anterior-posterior axis to a domain around the anterior pole. In the sea urchin embryo, three integrated Wnt signaling branches (Wnt/β-catenin, Wnt/JNK, and Wnt/PKC) govern this progressive restriction process, which begins around the 32- to 60-cell stage and terminates by the early gastrula stage. We previously have established that several secreted Wnt modulators of the Dickkopf and secreted Frizzled-related protein families (Dkk1, Dkk3, and sFRP-1/5) are expressed within the ANE and play important roles in modulating the Wnt signaling network during this process. In this study, we use morpholino and dominant-negative interference approaches to characterize the function of a novel Frizzled-related protein, secreted Frizzled-related protein 1 (sFRP-1), during ANE restriction. sFRP-1 appears to be related to a secreted Wnt modulator, sFRP3/4, that is essential to block Wnt signaling and establish the ANE in vertebrates. Here, we show that the sea urchin sFRP3/4 orthologue is not expressed during ANE restriction in the sea urchin embryo. Instead, our results indicate that ubiquitously expressed maternal sFRP-1 and Fzl1/2/7 signaling act together as early as the 32- to 60-cell stage to antagonize the ANE restriction mechanism mediated by Wnt/β-catenin and Wnt/JNK signaling. Then, starting from the blastula stage, Fzl5/8 signaling activates zygotic sFRP-1 within the ANE territory, where it works with the secreted Wnt antagonist Dkk1 (also activated by Fzl5/8 signaling) to antagonize Wnt1/Wnt8-Fzl5/8-JNK signaling in a negative feedback mechanism that defines the outer ANE territory boundary. Together, these data indicate that maternal and zygotic sFRP-1 protects the ANE territory by antagonizing the Wnt1/Wnt8-Fzl5/8-JNK signaling pathway throughout ANE restriction, providing precise spatiotemporal control of the mechanism responsible for the establishment of the ANE territory around the anterior pole of the sea urchin embryo.
Collapse
Affiliation(s)
- Anita Khadka
- 1Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762 USA
| | | | - Stephanie D Burr
- 1Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762 USA.,2School of Pharmacy, University of Mississippi, Oxford, MS USA
| | - Ryan C Range
- 1Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762 USA
| |
Collapse
|
37
|
Redl E, Scherholz M, Wollesen T, Todt C, Wanninger A. Expression of six3 and otx in Solenogastres (Mollusca) supports an ancestral role in bilaterian anterior-posterior axis patterning. Evol Dev 2018; 20:17-28. [PMID: 29243871 PMCID: PMC5814893 DOI: 10.1111/ede.12245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The homeodomain transcription factors six3 and otx are involved in patterning the anterior body and parts of the central nervous system (CNS) in bilaterians. Their similar expression patterns have been used as an argument for homology of heads, brains, segmentation, and ciliated larvae. We investigated the developmental expression of six3 and otx in the aplacophoran mollusk Wirenia argentea. Six3 is expressed in subepithelial cells delimiting the apical organ of the solenogaster pericalymma larva. Otx is expressed in cells of the prototroch and adjacent regions as well as in posterior extensions of the prototrochal expression domain. Advanced larvae also show pretrochal otx expression in the developing CNS. Comparative analysis of six3 and otx expression in bilaterians argues for an ancestral function in anterior-posterior body axis patterning but, due to its presence in animals lacking a head and/or a brain, not necessarily for the presence of these morphological structures in the last common ancestor (LCA) of bilaterians. Likewise, the hypothesis that the posterior border of otx expression corresponds to the border between the unsegmented head and the segmented trunk of the LCA of protostomes is not supported, since otx is extensively expressed in the trunk in W. argentea and numerous other protostomes.
Collapse
Affiliation(s)
- Emanuel Redl
- Faculty of Life Sciences, Department of Integrative ZoologyUniversity of ViennaViennaAustria
| | - Maik Scherholz
- Faculty of Life Sciences, Department of Integrative ZoologyUniversity of ViennaViennaAustria
| | - Tim Wollesen
- Faculty of Life Sciences, Department of Integrative ZoologyUniversity of ViennaViennaAustria
| | - Christiane Todt
- The Natural History CollectionsUniversity of BergenUniversity MuseumBergenNorway
| | - Andreas Wanninger
- Faculty of Life Sciences, Department of Integrative ZoologyUniversity of ViennaViennaAustria
| |
Collapse
|
38
|
Expansion of TALE homeobox genes and the evolution of spiralian development. Nat Ecol Evol 2017; 1:1942-1949. [PMID: 29085062 DOI: 10.1038/s41559-017-0351-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 09/20/2017] [Indexed: 11/08/2022]
Abstract
Spiralians, including molluscs, annelids and platyhelminths, share a unique development process that includes the typical geometry of early cleavage and early segregation of cell fate in blastomeres along the animal-vegetal axis. However, the molecular mechanisms underlying this early cell fate segregation are largely unknown. Here, we report spiralian-specific expansion of the three-amino-acid loop extension (TALE) class of homeobox genes. During early development, some of these TALE genes are expressed in staggered domains along the animal-vegetal axis in the limpet Nipponacmea fuscoviridis and the polychaete Spirobranchus kraussii. Inhibition or overexpression of these genes alters the developmental fate of blastomeres, as predicted by the gene expression patterns. These results suggest that the expansion of novel TALE genes plays a critical role in the establishment of a novel cell fate segregation mechanism in spiralians.
Collapse
|
39
|
Mellott DO, Thisdelle J, Burke RD. Notch signaling patterns neurogenic ectoderm and regulates the asymmetric division of neural progenitors in sea urchin embryos. Development 2017; 144:3602-3611. [PMID: 28851710 DOI: 10.1242/dev.151720] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023]
Abstract
We have examined regulation of neurogenesis by Delta/Notch signaling in sea urchin embryos. At gastrulation, neural progenitors enter S phase coincident with expression of Sp-SoxC. We used a BAC containing GFP knocked into the Sp-SoxC locus to label neural progenitors. Live imaging and immunolocalizations indicate that Sp-SoxC-expressing cells divide to produce pairs of adjacent cells expressing GFP. Over an interval of about 6 h, one cell fragments, undergoes apoptosis and expresses high levels of activated Caspase3. A Notch reporter indicates that Notch signaling is activated in cells adjacent to cells expressing Sp-SoxC. Inhibition of γ-secretase, injection of Sp-Delta morpholinos or CRISPR/Cas9-induced mutation of Sp-Delta results in supernumerary neural progenitors and neurons. Interfering with Notch signaling increases neural progenitor recruitment and pairs of neural progenitors. Thus, Notch signaling restricts the number of neural progenitors recruited and regulates the fate of progeny of the asymmetric division. We propose a model in which localized signaling converts ectodermal and ciliary band cells to neural progenitors that divide asymmetrically to produce a neural precursor and an apoptotic cell.
Collapse
Affiliation(s)
- Dan O Mellott
- Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W 2Y2
| | - Jordan Thisdelle
- Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W 2Y2
| | - Robert D Burke
- Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W 2Y2
| |
Collapse
|
40
|
Kitzmann P, Weißkopf M, Schacht MI, Bucher G. A key role for foxQ2 in anterior head and central brain patterning in insects. Development 2017; 144:2969-2981. [PMID: 28811313 PMCID: PMC5592812 DOI: 10.1242/dev.147637] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 07/05/2017] [Indexed: 01/14/2023]
Abstract
Anterior patterning of animals is based on a set of highly conserved transcription factors but the interactions within the protostome anterior gene regulatory network (aGRN) remain enigmatic. Here, we identify the red flour beetle Tribolium castaneum ortholog of foxQ2 (Tc-foxQ2) as a novel upstream component of the aGRN. It is required for the development of the labrum and higher order brain structures, namely the central complex and the mushroom bodies. We reveal Tc-foxQ2 interactions by RNAi and heat shock-mediated misexpression. Surprisingly, Tc-foxQ2 and Tc-six3 mutually activate each other, forming a novel regulatory module at the top of the aGRN. Comparisons of our results with those of sea urchins and cnidarians suggest that foxQ2 has acquired more upstream functions in the aGRN during protostome evolution. Our findings expand the knowledge on foxQ2 gene function to include essential roles in epidermal development and central brain patterning.
Collapse
Affiliation(s)
- Peter Kitzmann
- Department of Evolutionary Developmental Genetics, GZMB, Universität Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Matthias Weißkopf
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Staudtstraße 5, 91058 Erlangen, Germany
| | - Magdalena Ines Schacht
- Department of Evolutionary Developmental Genetics, GZMB, Universität Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, GZMB, Universität Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
41
|
Famiglietti AL, Wei Z, Beres TM, Milac AL, Tran DT, Patel D, Angerer RC, Angerer LM, Tabak LA. Characterization and expression analysis of Galnts in developing Strongylocentrotus purpuratus embryos. PLoS One 2017; 12:e0176479. [PMID: 28448610 PMCID: PMC5407767 DOI: 10.1371/journal.pone.0176479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/11/2017] [Indexed: 11/19/2022] Open
Abstract
Mucin-type O-glycosylation is a ubiquitous posttranslational modification in which N-Acetylgalactosamine (GalNAc) is added to the hydroxyl group of select serine or threonine residues of a protein by the family of UDP-GalNAc:Polypeptide N-Acetylgalactosaminyltransferases (GalNAc-Ts; EC 2.4.1.41). Previous studies demonstrate that O-glycosylation plays essential roles in protein function, cell-cell interactions, cell polarity and differentiation in developing mouse and Drosophila embryos. Although this type of protein modification is highly conserved among higher eukaryotes, little is known about this family of enzymes in echinoderms, basal deuterostome relatives of the chordates. To investigate the potential role of GalNAc-Ts in echinoderms, we have begun the characterization of this enzyme family in the purple sea urchin, S. purpuratus. We have fully or partially cloned a total of 13 genes (SpGalnts) encoding putative sea urchin SpGalNAc-Ts, and have confirmed enzymatic activity of five recombinant proteins. Amino acid alignments revealed high sequence similarity among sea urchin and mammalian glycosyltransferases, suggesting the presence of putative orthologues. Structural models underscored these similarities and helped reconcile some of the substrate preferences observed. Temporal and spatial expression of SpGalnt transcripts, was studied by whole-mount in situ hybridization. We found that many of these genes are transcribed early in developing embryos, often with restricted expression to the endomesodermal region. Multicolor fluorescent in situ hybridization (FISH) demonstrated that transcripts encoding SpGalnt7-2 co-localized with both Endo16 (a gene expressed in the endoderm), and Gcm (a gene expressed in secondary mesenchyme cells) at the early blastula stage, 20 hours post fertilization (hpf). At late blastula stage (28 hpf), SpGalnt7-2 message co-expresses with Gcm, suggesting that it may play a role in secondary mesenchyme development. We also discovered that morpholino-mediated knockdown of SpGalnt13 transcripts, results in a deficiency of embryonic skeleton and neurons, suggesting that mucin-type O-glycans play essential roles during embryonic development in S. purpuratus.
Collapse
Affiliation(s)
- Amber L. Famiglietti
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States of America
| | - Zheng Wei
- Developmental Mechanisms Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States of America
| | - Thomas M. Beres
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States of America
| | - Adina L. Milac
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, Bucharest, Romania
| | - Duy T. Tran
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States of America
| | - Divya Patel
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States of America
| | - Robert C. Angerer
- Developmental Mechanisms Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States of America
| | - Lynne M. Angerer
- Developmental Mechanisms Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States of America
| | - Lawrence A. Tabak
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
42
|
Cheatle Jarvela AM, Yankura KA, Hinman VF. A gene regulatory network for apical organ neurogenesis and its spatial control in sea star embryos. Development 2016; 143:4214-4223. [PMID: 27707794 DOI: 10.1242/dev.134999] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 09/23/2016] [Indexed: 01/18/2023]
Abstract
How neural stem cells generate the correct number and type of differentiated neurons in appropriate places remains an important question. Although nervous systems are diverse across phyla, in many taxa the larva forms an anterior concentration of serotonergic neurons, or apical organ. The sea star embryo initially has a pan-neurogenic ectoderm, but the genetic mechanism that directs a subset of these cells to generate serotonergic neurons in a particular location is unresolved. We show that neurogenesis in sea star larvae begins with soxc-expressing multipotent progenitors. These give rise to restricted progenitors that express lhx2/9 soxc- and lhx2/9-expressing cells can undergo both asymmetric divisions, allowing for progression towards a particular neural fate, and symmetric proliferative divisions. We show that nested concentric domains of gene expression along the anterior-posterior (AP) axis, which are observed in a great diversity of metazoans, control neurogenesis in the sea star larva by promoting particular division modes and progression towards becoming a neuron. This work explains how spatial patterning in the ectoderm controls progression of neurogenesis in addition to providing spatial cues for neuron location. Modification to the sizes of these AP territories provides a simple mechanism to explain the diversity of neuron number among apical organs.
Collapse
Affiliation(s)
- Alys M Cheatle Jarvela
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Ave, Pittsburgh, PA 15213, USA
| | - Kristen A Yankura
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Ave, Pittsburgh, PA 15213, USA
| | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Ave, Pittsburgh, PA 15213, USA
| |
Collapse
|
43
|
Kelava I, Rentzsch F, Technau U. Evolution of eumetazoan nervous systems: insights from cnidarians. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0065. [PMID: 26554048 PMCID: PMC4650132 DOI: 10.1098/rstb.2015.0065] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cnidarians, the sister group to bilaterians, have a simple diffuse nervous system. This morphological simplicity and their phylogenetic position make them a crucial group in the study of the evolution of the nervous system. The development of their nervous systems is of particular interest, as by uncovering the genetic programme that underlies it, and comparing it with the bilaterian developmental programme, it is possible to make assumptions about the genes and processes involved in the development of ancestral nervous systems. Recent advances in sequencing methods, genetic interference techniques and transgenic technology have enabled us to get a first glimpse into the molecular network underlying the development of a cnidarian nervous system—in particular the nervous system of the anthozoan Nematostella vectensis. It appears that much of the genetic network of the nervous system development is partly conserved between cnidarians and bilaterians, with Wnt and bone morphogenetic protein (BMP) signalling, and Sox genes playing a crucial part in the differentiation of neurons. However, cnidarians possess some specific characteristics, and further studies are necessary to elucidate the full regulatory network. The work on cnidarian neurogenesis further accentuates the need to study non-model organisms in order to gain insights into processes that shaped present-day lineages during the course of evolution.
Collapse
Affiliation(s)
- Iva Kelava
- Department of Molecular Evolution and Development, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Fabian Rentzsch
- Sars Centre, Sars International Centre for Marine Molecular Biology, Thormøhlensgt. 55, 5008 Bergen, Norway
| | - Ulrich Technau
- Department of Molecular Evolution and Development, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
44
|
Perry KJ, Lyons DC, Truchado-Garcia M, Fischer AHL, Helfrich LW, Johansson KB, Diamond JC, Grande C, Henry JQ. Deployment of regulatory genes during gastrulation and germ layer specification in a model spiralian mollusc Crepidula. Dev Dyn 2016. [PMID: 26197970 DOI: 10.1002/dvdy.24308] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND During gastrulation, endoderm and mesoderm are specified from a bipotential precursor (endomesoderm) that is argued to be homologous across bilaterians. Spiralians also generate mesoderm from ectodermal precursors (ectomesoderm), which arises near the blastopore. While a conserved gene regulatory network controls specification of endomesoderm in deuterostomes and ecdysozoans, little is known about genes controlling specification or behavior of either source of spiralian mesoderm or the digestive tract. RESULTS Using the mollusc Crepidula, we examined conserved regulatory factors and compared their expression to fate maps to score expression in the germ layers, blastopore lip, and digestive tract. Many genes were expressed in both ecto- and endomesoderm, but only five were expressed in ectomesoderm exclusively. The latter may contribute to epithelial-to-mesenchymal transition seen in ectomesoderm. CONCLUSIONS We present the first comparison of genes expressed during spiralian gastrulation in the context of high-resolution fate maps. We found variation of genes expressed in the blastopore lip, mouth, and cells that will form the anus. Shared expression of many genes in both mesodermal sources suggests that components of the conserved endomesoderm program were either co-opted for ectomesoderm formation or that ecto- and endomesoderm are derived from a common mesodermal precursor that became subdivided into distinct domains during evolution.
Collapse
Affiliation(s)
- Kimberly J Perry
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| | | | - Marta Truchado-Garcia
- Departamento de Biología Molecular and Centro de Biología Molecular, "Severo Ochoa" (CSIC, Universidad Autónoma de Madrid), Madrid, Spain
| | - Antje H L Fischer
- Department of Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany.,Marine Biological Laboratory, Woods Hole, Massachusetts
| | | | - Kimberly B Johansson
- Marine Biological Laboratory, Woods Hole, Massachusetts.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts
| | | | - Cristina Grande
- Departamento de Biología Molecular and Centro de Biología Molecular, "Severo Ochoa" (CSIC, Universidad Autónoma de Madrid), Madrid, Spain
| | - Jonathan Q Henry
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| |
Collapse
|
45
|
Leclère L, Bause M, Sinigaglia C, Steger J, Rentzsch F. Development of the aboral domain in Nematostella requires β-catenin and the opposing activities of Six3/6 and Frizzled5/8. Development 2016; 143:1766-77. [PMID: 26989171 PMCID: PMC4874479 DOI: 10.1242/dev.120931] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/08/2016] [Indexed: 01/25/2023]
Abstract
The development of the oral pole in cnidarians and the posterior pole in bilaterians is regulated by canonical Wnt signaling, whereas a set of transcription factors, including Six3/6 and FoxQ2, controls aboral development in cnidarians and anterior identity in bilaterians. However, it is poorly understood how these two patterning systems are initially set up in order to generate correct patterning along the primary body axis. Investigating the early steps of aboral pole formation in the sea anemone Nematostella vectensis, we found that, at blastula stage, oral genes are expressed before aboral genes and that Nvβ-catenin regulates both oral and aboral development. In the oral hemisphere, Nvβ-catenin specifies all subdomains except the oral-most, NvSnailA-expressing domain, which is expanded upon Nvβ-catenin knockdown. In addition, Nvβ-catenin establishes the aboral patterning system by promoting the expression of NvSix3/6 at the aboral pole and suppressing the Wnt receptor NvFrizzled5/8 at the oral pole. NvFrizzled5/8 expression thereby gets restricted to the aboral domain. At gastrula stage, NvSix3/6 and NvFrizzled5/8 are both expressed in the aboral domain, but they have opposing activities, with NvSix3/6 maintaining and NvFrizzled5/8 restricting the size of the aboral domain. At planula stage, NvFrizzled5/8 is required for patterning within the aboral domain and for regulating the size of the apical organ by modulation of a previously characterized FGF feedback loop. Our findings suggest conserved roles for Six3/6 and Frizzled5/8 in aboral/anterior development and reveal key functions for Nvβ-catenin in the patterning of the entire oral-aboral axis of Nematostella.
Collapse
Affiliation(s)
- Lucas Leclère
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, Bergen 5008, Norway Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), 181 chemin du Lazaret, Villefranche-sur-mer 06230, France
| | - Markus Bause
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, Bergen 5008, Norway
| | - Chiara Sinigaglia
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, Bergen 5008, Norway
| | - Julia Steger
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, Bergen 5008, Norway
| | - Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, Bergen 5008, Norway
| |
Collapse
|
46
|
Range RC, Wei Z. An anterior signaling center patterns and sizes the anterior neuroectoderm of the sea urchin embryo. Development 2016; 143:1523-33. [PMID: 26952978 PMCID: PMC4909856 DOI: 10.1242/dev.128165] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 02/23/2016] [Indexed: 01/17/2023]
Abstract
Anterior signaling centers help specify and pattern the early anterior neuroectoderm (ANE) in many deuterostomes. In sea urchin the ANE is restricted to the anterior of the late blastula stage embryo, where it forms a simple neural territory comprising several types of neurons as well as the apical tuft. Here, we show that during early development, the sea urchin ANE territory separates into inner and outer regulatory domains that express the cardinal ANE transcriptional regulators FoxQ2 and Six3, respectively. FoxQ2 drives this patterning process, which is required to eliminate six3 expression from the inner domain and activate the expression of Dkk3 and sFRP1/5, two secreted Wnt modulators. Dkk3 and low expression levels of sFRP1/5 act additively to potentiate the Wnt/JNK signaling pathway governing the positioning of the ANE territory around the anterior pole, whereas high expression levels of sFRP1/5 antagonize Wnt/JNK signaling. sFRP1/5 and Dkk3 levels are rigidly maintained via autorepressive and cross-repressive interactions with Wnt signaling components and additional ANE transcription factors. Together, these data support a model in which FoxQ2 initiates an anterior patterning center that implements correct size and positions of ANE structures. Comparisons of functional and expression studies in sea urchin, hemichordate and chordate embryos reveal striking similarities among deuterostome ANE regulatory networks and the molecular mechanism that positions and defines ANE borders. These data strongly support the idea that the sea urchin embryo uses an ancient anterior patterning system that was present in the common ambulacrarian/chordate ancestor.
Collapse
Affiliation(s)
- Ryan C Range
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zheng Wei
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
47
|
Yaguchi J, Takeda N, Inaba K, Yaguchi S. Cooperative Wnt-Nodal Signals Regulate the Patterning of Anterior Neuroectoderm. PLoS Genet 2016; 12:e1006001. [PMID: 27101101 PMCID: PMC4839626 DOI: 10.1371/journal.pgen.1006001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/30/2016] [Indexed: 11/18/2022] Open
Abstract
When early canonical Wnt is experimentally inhibited, sea urchin embryos embody the concept of a Default Model in vivo because most of the ectodermal cell fates are specified as anterior neuroectoderm. Using this model, we describe here how the combination of orthogonally functioning anteroposterior Wnt and dorsoventral Nodal signals and their targeting transcription factors, FoxQ2 and Homeobrain, regulates the precise patterning of normal neuroectoderm, of which serotonergic neurons are differentiated only at the dorsal/lateral edge. Loss-of-function experiments revealed that ventral Nodal is required for suppressing the serotonergic neural fate in the ventral side of the neuroectoderm through the maintenance of foxQ2 and the repression of homeobrain expression. In addition, non-canonical Wnt suppressed homeobrain in the anterior end of the neuroectoderm, where serotonergic neurons are not differentiated. Canonical Wnt, however, suppresses foxQ2 to promote neural differentiation. Therefore, the three-dimensionally complex patterning of the neuroectoderm is created by cooperative signals, which are essential for the formation of primary and secondary body axes during embryogenesis.
Collapse
Affiliation(s)
- Junko Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Noriyo Takeda
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
- * E-mail:
| |
Collapse
|
48
|
Glypican1/2/4/6 and sulfated glycosaminoglycans regulate the patterning of the primary body axis in the cnidarian Nematostella vectensis. Dev Biol 2016; 414:108-20. [PMID: 27090806 DOI: 10.1016/j.ydbio.2016.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 03/22/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022]
Abstract
Glypicans are members of the heparan sulfate (HS) subfamily of proteoglycans that can function in cell adhesion, cell crosstalk and as modulators of the major developmental signalling pathways in bilaterians. The evolutionary origin of these multiple functions is not well understood. In this study we investigate the role of glypicans in the embryonic and larval development of the sea anemone Nematostella vectensis, a member of the non-bilaterian clade Cnidaria. Nematostella has two glypican (gpc) genes that are expressed in mutually exclusive ectodermal domains, NvGpc1/2/4/6 in a broad aboral domain, and NvGpc3/5 in narrow oral territory. The endosulfatase NvSulf (an extracellular modifier of HS chains) is expressed in a broad oral domain, partially overlapping with both glypicans. Morpholino-mediated knockdown of NvGpc1/2/4/6 leads to an expansion of the expression domains of aboral marker genes and a reduction of oral markers at gastrula stage, strikingly similar to knockdown of the Wnt receptor NvFrizzled5/8. We further show that treatment with sodium chlorate, an inhibitor of glycosaminoglycan (GAG) sulfation, phenocopies knockdown of NvGpc1/2/4/6 at gastrula stage. At planula stage, knockdown of NvGpc1/2/4/6 and sodium chlorate treatment result in alterations in aboral marker gene expression that suggest additional roles in the fine-tuning of patterning within the aboral domain. These results reveal a role for NvGpc1/2/4/6 and sulfated GAGs in the patterning of the primary body axis in Nematostella and suggest an ancient function in regulating Frizzled-mediated Wnt signalling.
Collapse
|
49
|
Koziol U, Jarero F, Olson PD, Brehm K. Comparative analysis of Wnt expression identifies a highly conserved developmental transition in flatworms. BMC Biol 2016; 14:10. [PMID: 26941070 PMCID: PMC4778295 DOI: 10.1186/s12915-016-0233-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/25/2016] [Indexed: 11/16/2022] Open
Abstract
Background Early developmental patterns of flatworms are extremely diverse and difficult to compare between distant groups. In parasitic flatworms, such as tapeworms, this is confounded by highly derived life cycles involving indirect development, and even the true orientation of the tapeworm antero-posterior (AP) axis has been a matter of controversy. In planarians, and metazoans generally, the AP axis is specified by the canonical Wnt pathway, and we hypothesized that it could also underpin axial formation during larval metamorphosis in tapeworms. Results By comparative gene expression analysis of Wnt components and conserved AP markers in the tapeworms Echinococcus multilocularis and Hymenolepis microstoma, we found remarkable similarities between the early stages of larval metamorphosis in tapeworms and late embryonic and adult development in planarians. We demonstrate posterior expression of specific Wnt factors during larval metamorphosis and show that scolex formation is preceded by localized expression of Wnt inhibitors. In the highly derived larval form of E. multilocularis, which proliferates asexually within the mammalian host, we found ubiquitous expression of posterior Wnt factors combined with localized expression of Wnt inhibitors that correlates with the asexual budding of scoleces. As in planarians, muscle cells are shown to be a source of secreted Wnt ligands, providing an explanation for the retention of a muscle layer in the immotile E. multilocularis larva. Conclusions The strong conservation of gene expression between larval metamorphosis in tapeworms and late embryonic development in planarians suggests, for the first time, a homologous developmental period across this diverse phylum. We postulate these to represent the phylotypic stages of these flatworm groups. Our results support the classical notion that the scolex is the true anterior end of tapeworms. Furthermore, the up-regulation of Wnt inhibitors during the specification of multiple anterior poles suggests a mechanism for the unique asexual reproduction of E. multilocularis larvae. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0233-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Uriel Koziol
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay. .,University of Würzburg, Institute for Hygiene and Microbiology, Würzburg, Germany.
| | - Francesca Jarero
- Department of Life Sciences, The Natural History Museum, London, UK.
| | - Peter D Olson
- Department of Life Sciences, The Natural History Museum, London, UK.
| | - Klaus Brehm
- University of Würzburg, Institute for Hygiene and Microbiology, Würzburg, Germany.
| |
Collapse
|
50
|
Israel JW, Martik ML, Byrne M, Raff EC, Raff RA, McClay DR, Wray GA. Comparative Developmental Transcriptomics Reveals Rewiring of a Highly Conserved Gene Regulatory Network during a Major Life History Switch in the Sea Urchin Genus Heliocidaris. PLoS Biol 2016; 14:e1002391. [PMID: 26943850 PMCID: PMC4778923 DOI: 10.1371/journal.pbio.1002391] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/26/2016] [Indexed: 01/08/2023] Open
Abstract
The ecologically significant shift in developmental strategy from planktotrophic (feeding) to lecithotrophic (nonfeeding) development in the sea urchin genus Heliocidaris is one of the most comprehensively studied life history transitions in any animal. Although the evolution of lecithotrophy involved substantial changes to larval development and morphology, it is not known to what extent changes in gene expression underlie the developmental differences between species, nor do we understand how these changes evolved within the context of the well-defined gene regulatory network (GRN) underlying sea urchin development. To address these questions, we used RNA-seq to measure expression dynamics across development in three species: the lecithotroph Heliocidaris erythrogramma, the closely related planktotroph H. tuberculata, and an outgroup planktotroph Lytechinus variegatus. Using well-established statistical methods, we developed a novel framework for identifying, quantifying, and polarizing evolutionary changes in gene expression profiles across the transcriptome and within the GRN. We found that major changes in gene expression profiles were more numerous during the evolution of lecithotrophy than during the persistence of planktotrophy, and that genes with derived expression profiles in the lecithotroph displayed specific characteristics as a group that are consistent with the dramatically altered developmental program in this species. Compared to the transcriptome, changes in gene expression profiles within the GRN were even more pronounced in the lecithotroph. We found evidence for conservation and likely divergence of particular GRN regulatory interactions in the lecithotroph, as well as significant changes in the expression of genes with known roles in larval skeletogenesis. We further use coexpression analysis to identify genes of unknown function that may contribute to both conserved and derived developmental traits between species. Collectively, our results indicate that distinct evolutionary processes operate on gene expression during periods of life history conservation and periods of life history divergence, and that this contrast is even more pronounced within the GRN than across the transcriptome as a whole.
Collapse
Affiliation(s)
- Jennifer W. Israel
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Megan L. Martik
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Maria Byrne
- Schools of Medical and Biological Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Elizabeth C. Raff
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Rudolf A. Raff
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - David R. McClay
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Gregory A. Wray
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|