1
|
Draga M, Scaal M. Building a vertebra: Development of the amniote sclerotome. J Morphol 2024; 285:e21665. [PMID: 38100740 DOI: 10.1002/jmor.21665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
In embryonic development, the vertebral column arises from the sclerotomal compartment of the somites. The sclerotome is a mesenchymal cell mass which can be subdivided into several subpopulations specified by different regulatory mechanisms and giving rise to different parts of the vertebrae like vertebral body, vertebral arch, ribs, and vertebral joints. This review gives a short overview on the molecular and cellular basis of the formation of sclerotomal subdomains and the morphogenesis of their vertebral derivatives.
Collapse
Affiliation(s)
- Margarethe Draga
- Faculty of Medicine and University Hospital Cologne, Center of Anatomy, University of Cologne, Cologne, Germany
| | - Martin Scaal
- Faculty of Medicine and University Hospital Cologne, Center of Anatomy, University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Corallo D, Dalla Vecchia M, Lazic D, Taschner-Mandl S, Biffi A, Aveic S. The molecular basis of tumor metastasis and current approaches to decode targeted migration-promoting events in pediatric neuroblastoma. Biochem Pharmacol 2023; 215:115696. [PMID: 37481138 DOI: 10.1016/j.bcp.2023.115696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
Cell motility is a crucial biological process that plays a critical role in the development of multicellular organisms and is essential for tissue formation and regeneration. However, uncontrolled cell motility can lead to the development of various diseases, including neoplasms. In this review, we discuss recent advances in the discovery of regulatory mechanisms underlying the metastatic spread of neuroblastoma, a solid pediatric tumor that originates in the embryonic migratory cells of the neural crest. The highly motile phenotype of metastatic neuroblastoma cells requires targeting of intracellular and extracellular processes, that, if affected, would be helpful for the treatment of high-risk patients with neuroblastoma, for whom current therapies remain inadequate. Development of new potentially migration-inhibiting compounds and standardized preclinical approaches for the selection of anti-metastatic drugs in neuroblastoma will also be discussed.
Collapse
Affiliation(s)
- Diana Corallo
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy
| | - Marco Dalla Vecchia
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy
| | - Daria Lazic
- St. Anna Children's Cancer Research Institute, CCRI, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Sabine Taschner-Mandl
- St. Anna Children's Cancer Research Institute, CCRI, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Alessandra Biffi
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Woman's and Child Health Department, University of Padova, 35121 Padova, Italy
| | - Sanja Aveic
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy.
| |
Collapse
|
3
|
Zhou T, Chen Y, Liao Z, Zhang L, Su D, Li Z, Yang X, Ke X, Liu H, Chen Y, Weng R, Shen H, Xu C, Wan Y, Xu R, Su P. Spatiotemporal Characterization of Human Early Intervertebral Disc Formation at Single-Cell Resolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206296. [PMID: 36965031 DOI: 10.1002/advs.202206296] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/28/2023] [Indexed: 05/18/2023]
Abstract
The intervertebral disc (IVD) acts as a fibrocartilaginous joint to anchor adjacent vertebrae. Although several studies have demonstrated the cellular heterogeneity of adult mature IVDs, a single-cell transcriptomic atlas mapping early IVD formation is still lacking. Here, the authors generate a spatiotemporal and single cell-based transcriptomic atlas of human IVD formation at the embryonic stage and a comparative mouse transcript landscape. They identify two novel human notochord (NC)/nucleus pulposus (NP) clusters, SRY-box transcription factor 10 (SOX10)+ and cathepsin K (CTSK)+ , that are distributed in the early and late stages of IVD formation and they are validated by lineage tracing experiments in mice. Matrisome NC/NP clusters, T-box transcription factor T (TBXT)+ and CTSK+ , are responsible for the extracellular matrix homeostasis. The IVD atlas suggests that a subcluster of the vertebral chondrocyte subcluster might give rise to an inner annulus fibrosus of chondrogenic origin, while the fibroblastic outer annulus fibrosus preferentially expresseds transgelin and fibromodulin . Through analyzing intercellular crosstalk, the authors further find that notochordal secreted phosphoprotein 1 (SPP1) is a novel cue in the IVD microenvironment, and it is associated with IVD development and degeneration. In conclusion, the single-cell transcriptomic atlas will be leveraged to develop preventative and regenerative strategies for IVD degeneration.
Collapse
Affiliation(s)
- Taifeng Zhou
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu Chen
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhiheng Liao
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Long Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Deying Su
- Guangdong Provincial Key Laboratory of Proteomics and State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhuling Li
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoming Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaona Ke
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hengyu Liu
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuyu Chen
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ricong Weng
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Huimin Shen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Caixia Xu
- Research Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yong Wan
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Peiqiang Su
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
4
|
From Bipotent Neuromesodermal Progenitors to Neural-Mesodermal Interactions during Embryonic Development. Int J Mol Sci 2021; 22:ijms22179141. [PMID: 34502050 PMCID: PMC8431582 DOI: 10.3390/ijms22179141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
To ensure the formation of a properly patterned embryo, multiple processes must operate harmoniously at sequential phases of development. This is implemented by mutual interactions between cells and tissues that together regulate the segregation and specification of cells, their growth and morphogenesis. The formation of the spinal cord and paraxial mesoderm derivatives exquisitely illustrate these processes. Following early gastrulation, while the vertebrate body elongates, a population of bipotent neuromesodermal progenitors resident in the posterior region of the embryo generate both neural and mesodermal lineages. At later stages, the somitic mesoderm regulates aspects of neural patterning and differentiation of both central and peripheral neural progenitors. Reciprocally, neural precursors influence the paraxial mesoderm to regulate somite-derived myogenesis and additional processes by distinct mechanisms. Central to this crosstalk is the activity of the axial notochord, which, via sonic hedgehog signaling, plays pivotal roles in neural, skeletal muscle and cartilage ontogeny. Here, we discuss the cellular and molecular basis underlying this complex developmental plan, with a focus on the logic of sonic hedgehog activities in the coordination of the neural-mesodermal axis.
Collapse
|
5
|
Piatkowska AM, Evans SE, Stern CD. Cellular aspects of somite formation in vertebrates. Cells Dev 2021; 168:203732. [PMID: 34391979 DOI: 10.1016/j.cdev.2021.203732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Vertebrate segmentation, the process that generates a regular arrangement of somites and thereby establishes the pattern of the adult body and of the musculoskeletal and peripheral nervous systems, was noticed many centuries ago. In the last few decades, there has been renewed interest in the process and especially in the molecular mechanisms that might account for its regularity and other spatial-temporal properties. Several models have been proposed but surprisingly, most of these do not provide clear links between the molecular mechanisms and the cell behaviours that generate the segmental pattern. Here we present a short survey of our current knowledge about the cellular aspects of vertebrate segmentation and the similarities and differences between different vertebrate groups in how they achieve their metameric pattern. Taking these variations into account should help to assess each of the models more appropriately.
Collapse
Affiliation(s)
- Agnieszka M Piatkowska
- Department of Cell and Developmental Biology, University College London, Gower Street (Anatomy Building), London WC1E 6BT, UK
| | - Susan E Evans
- Department of Cell and Developmental Biology, University College London, Gower Street (Anatomy Building), London WC1E 6BT, UK
| | - Claudio D Stern
- Department of Cell and Developmental Biology, University College London, Gower Street (Anatomy Building), London WC1E 6BT, UK.
| |
Collapse
|
6
|
Lettieri A, Oleari R, Paganoni AJJ, Gervasini C, Massa V, Fantin A, Cariboni A. Semaphorin Regulation by the Chromatin Remodeler CHD7: An Emerging Genetic Interaction Shaping Neural Cells and Neural Crest in Development and Cancer. Front Cell Dev Biol 2021; 9:638674. [PMID: 33869187 PMCID: PMC8047133 DOI: 10.3389/fcell.2021.638674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
CHD7 is a chromatin remodeler protein that controls gene expression via the formation of multi-protein complexes with specific transcription factors. During development, CHD7 controls several differentiation programs, mainly by acting on neural progenitors and neural crest (NC) cells. Thus, its roles range from the central nervous system to the peripheral nervous system and the organs colonized by NC cells, including the heart. Accordingly, mutated CHD7 is linked to CHARGE syndrome, which is characterized by several neuronal dysfunctions and by malformations of NC-derived/populated organs. Altered CHD7 has also been associated with different neoplastic transformations. Interestingly, recent evidence revealed that semaphorins, a class of molecules involved in developmental and pathological processes similar to those controlled by CHD7, are regulated by CHD7 in a context-specific manner. In this article, we will review the recent insights that support the existence of genetic interactions between these pathways, both during developmental processes and cancer progression.
Collapse
Affiliation(s)
- Antonella Lettieri
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alyssa J J Paganoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Cristina Gervasini
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valentina Massa
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alessandro Fantin
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
7
|
Holt E, Stanton-Turcotte D, Iulianella A. Development of the Vertebrate Trunk Sensory System: Origins, Specification, Axon Guidance, and Central Connectivity. Neuroscience 2021; 458:229-243. [PMID: 33460728 DOI: 10.1016/j.neuroscience.2020.12.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/09/2020] [Accepted: 12/31/2020] [Indexed: 12/26/2022]
Abstract
Crucial to an animal's movement through their environment and to the maintenance of their homeostatic physiology is the integration of sensory information. This is achieved by axons communicating from organs, muscle spindles and skin that connect to the sensory ganglia composing the peripheral nervous system (PNS), enabling organisms to collect an ever-constant flow of sensations and relay it to the spinal cord. The sensory system carries a wide spectrum of sensory modalities - from sharp pain to cool refreshing touch - traveling from the periphery to the spinal cord via the dorsal root ganglia (DRG). This review covers the origins and development of the DRG and the cells that populate it, and focuses on how sensory connectivity to the spinal cord is achieved by the diverse developmental and molecular processes that control axon guidance in the trunk sensory system. We also describe convergences and differences in sensory neuron formation among different vertebrate species to gain insight into underlying developmental mechanisms.
Collapse
Affiliation(s)
- Emily Holt
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, and Brain Repair Centre, Life Science Research Institute, 1348 Summer Street, Halifax, Nova Scotia B3H-4R2, Canada
| | - Danielle Stanton-Turcotte
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, and Brain Repair Centre, Life Science Research Institute, 1348 Summer Street, Halifax, Nova Scotia B3H-4R2, Canada
| | - Angelo Iulianella
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, and Brain Repair Centre, Life Science Research Institute, 1348 Summer Street, Halifax, Nova Scotia B3H-4R2, Canada.
| |
Collapse
|
8
|
Cook GM, Sousa C, Schaeffer J, Wiles K, Jareonsettasin P, Kalyanasundaram A, Walder E, Casper C, Patel S, Chua PW, Riboni-Verri G, Raza M, Swaddiwudhipong N, Hui A, Abdullah A, Wajed S, Keynes RJ. Regulation of nerve growth and patterning by cell surface protein disulphide isomerase. eLife 2020; 9:54612. [PMID: 32452761 PMCID: PMC7269675 DOI: 10.7554/elife.54612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/23/2020] [Indexed: 02/06/2023] Open
Abstract
Contact repulsion of growing axons is an essential mechanism for spinal nerve patterning. In birds and mammals the embryonic somites generate a linear series of impenetrable barriers, forcing axon growth cones to traverse one half of each somite as they extend towards their body targets. This study shows that protein disulphide isomerase provides a key component of these barriers, mediating contact repulsion at the cell surface in chick half-somites. Repulsion is reduced both in vivo and in vitro by a range of methods that inhibit enzyme activity. The activity is critical in initiating a nitric oxide/S-nitrosylation-dependent signal transduction pathway that regulates the growth cone cytoskeleton. Rat forebrain grey matter extracts contain a similar activity, and the enzyme is expressed at the surface of cultured human astrocytic cells and rat cortical astrocytes. We suggest this system is co-opted in the brain to counteract and regulate aberrant nerve terminal growth.
Collapse
Affiliation(s)
- Geoffrey Mw Cook
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Catia Sousa
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Grenoble Institute des Neurosciences, La Tronche, France
| | - Julia Schaeffer
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Katherine Wiles
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Independent researcher, London, United Kingdom
| | - Prem Jareonsettasin
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Exeter College, Oxford, United Kingdom
| | - Asanish Kalyanasundaram
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,School of Clinical Medicine, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Eleanor Walder
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,School of Clinical Medicine, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Catharina Casper
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Winter, Brandl, Fürniss, Hübner, Röss, Kaiser & Polte, Partnerschaft mbB, Patent und Rechtsanwaltskanzlei, München, Germany
| | - Serena Patel
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,School of Clinical Medicine, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Pei Wei Chua
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,School of Medicine and Health Sciences, Monash University, Bandar Sunway, Malaysia
| | - Gioia Riboni-Verri
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Mansoor Raza
- Cambridge Innovation Capital, Cambridge, United Kingdom
| | - Nol Swaddiwudhipong
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Andrew Hui
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Ameer Abdullah
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Saj Wajed
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,University of Exeter Medical School, Exeter, United Kingdom
| | - Roger J Keynes
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Goldberg S, Venkatesh A, Martinez J, Dombroski C, Abesamis J, Campbell C, Mccalipp M, de Bellard ME. The development of the trunk neural crest in the turtle Trachemys scripta. Dev Dyn 2020; 249:125-140. [PMID: 31587387 PMCID: PMC7293771 DOI: 10.1002/dvdy.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The neural crest is a group of multipotent cells that give rise to a wide variety of cells, especially portion of the peripheral nervous system. Neural crest cells (NCCs) show evolutionary conserved fate restrictions based on their axial level of origin: cranial, vagal, trunk, and sacral. While much is known about these cells in mammals, birds, amphibians, and fish, relatively little is known in other types of amniotes such as snakes, lizards, and turtles. We attempt here to provide a more detailed description of the early phase of trunk neural crest cell (tNCC) development in turtle embryos. RESULTS In this study, we show, for the first time, migrating tNCC in the pharyngula embryo of Trachemys scripta by vital-labeling the NCC with DiI and through immunofluorescence. We found that (a) tNCC form a line along the sides of the trunk NT; (b) The presence of late migrating tNCC on the medial portion of the somite; (c) The presence of lateral mesodermal migrating tNCC in pharyngula embryos; (d) That turtle embryos have large/thick peripheral nerves. CONCLUSIONS The similarities and differences in tNCC migration and early PNS development that we observe across sauropsids (birds, snake, gecko, and turtle) suggests that these species evolved some distinct NCC pathways.
Collapse
Affiliation(s)
| | | | | | - Catherine Dombroski
- California State University Northridge, Biology Dept., MC 8303. 18111 Nordhoff Street. Northridge, CA 91330
| | - Jessica Abesamis
- California State University Northridge, Biology Dept., MC 8303. 18111 Nordhoff Street. Northridge, CA 91330
| | - Catherine Campbell
- California State University Northridge, Biology Dept., MC 8303. 18111 Nordhoff Street. Northridge, CA 91330
| | - Mialishia Mccalipp
- California State University Northridge, Biology Dept., MC 8303. 18111 Nordhoff Street. Northridge, CA 91330
| | - Maria Elena de Bellard
- California State University Northridge, Biology Dept., MC 8303. 18111 Nordhoff Street. Northridge, CA 91330
| |
Collapse
|
10
|
Diaz RE, Shylo NA, Roellig D, Bronner M, Trainor PA. Filling in the phylogenetic gaps: Induction, migration, and differentiation of neural crest cells in a squamate reptile, the veiled chameleon (Chamaeleo calyptratus). Dev Dyn 2019; 248:709-727. [DOI: 10.1002/dvdy.38] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Raul E. Diaz
- Department of Biological Sciences, Southeastern Louisiana University Hammond Louisiana
- Natural History Museum of Los Angeles CountyDivision of Herpetology Los Angeles California
| | | | - Daniela Roellig
- Division of Biology and Biological Engineering, California Institute of Technology Pasadena California
| | - Marianne Bronner
- Division of Biology and Biological Engineering, California Institute of Technology Pasadena California
| | - Paul A. Trainor
- Stowers Institute for Medical Research Kansas City Missouri
- Department of Anatomy and Cell Biology, University of Kansas Medical Center Kansas City Kansas
| |
Collapse
|
11
|
Delloye-Bourgeois C, Castellani V. Hijacking of Embryonic Programs by Neural Crest-Derived Neuroblastoma: From Physiological Migration to Metastatic Dissemination. Front Mol Neurosci 2019; 12:52. [PMID: 30881286 PMCID: PMC6405627 DOI: 10.3389/fnmol.2019.00052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
In the developing organism, complex molecular programs orchestrate the generation of cells in adequate numbers, drive them to migrate along the correct pathways towards appropriate territories, eliminate superfluous cells, and induce terminal differentiation of survivors into the appropriate cell-types. Despite strict controls constraining developmental processes, malignancies can emerge in still immature organisms. This is the case of neuroblastoma (NB), a highly heterogeneous disease, predominantly affecting children before the age of 5 years. Highly metastatic forms represent half of the cases and are diagnosed when disseminated foci are detectable. NB arise from a transient population of embryonic cells, the neural crest (NC), and especially NC committed to the establishment of the sympatho-adrenal tissues. The NC is generated at the dorsal edge of the neural tube (NT) of the vertebrate embryo, under the action of NC specifier gene programs. NC cells (NCCs) undergo an epithelial to mesenchymal transition, and engage on a remarkable journey in the developing embryo, contributing to a plethora of cell-types and tissues. Various NCC sub-populations and derived lineages adopt specific migratory behaviors, moving individually as well as collectively, exploiting the different embryonic substrates they encounter along their path. Here we discuss how the specific features of NCC in development are re-iterated during NB metastatic behaviors.
Collapse
Affiliation(s)
- Céline Delloye-Bourgeois
- University of Lyon, University of Lyon 1 Claude Bernard Lyon 1, NeuroMyoGene Institute, CNRS UMR5310, INSERM U1217, Lyon, France
| | - Valérie Castellani
- University of Lyon, University of Lyon 1 Claude Bernard Lyon 1, NeuroMyoGene Institute, CNRS UMR5310, INSERM U1217, Lyon, France
| |
Collapse
|
12
|
Lumb R, Tata M, Xu X, Joyce A, Marchant C, Harvey N, Ruhrberg C, Schwarz Q. Neuropilins guide preganglionic sympathetic axons and chromaffin cell precursors to establish the adrenal medulla. Development 2018; 145:dev.162552. [PMID: 30237243 PMCID: PMC6240312 DOI: 10.1242/dev.162552] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 09/13/2018] [Indexed: 01/22/2023]
Abstract
The adrenal medulla is composed of neuroendocrine chromaffin cells that secrete adrenaline into the systemic circulation to maintain physiological homeostasis and enable the autonomic stress response. How chromaffin cell precursors colonise the adrenal medulla and how they become connected to central nervous system-derived preganglionic sympathetic neurons remain largely unknown. By combining lineage tracing, gene expression studies, genetic ablation and the analysis of mouse mutants, we demonstrate that preganglionic axons direct chromaffin cell precursors into the adrenal primordia. We further show that preganglionic axons and chromaffin cell precursors require class 3 semaphorin (SEMA3) signalling through neuropilins (NRP) to target the adrenal medulla. Thus, SEMA3 proteins serve as guidance cues to control formation of the adrenal neuroendocrine system by establishing appropriate connections between preganglionic neurons and adrenal chromaffin cells that regulate the autonomic stress response. Summary: A new role is revealed for semaphorin/neuropilin signalling in guiding preganglionic sympathetic axons and chromaffin cell precursors into the adrenal primordia, ensuring correct regulation of the autonomic stress response.
Collapse
Affiliation(s)
- Rachael Lumb
- Centre for Cancer Biology, SA Pathology and University of South Australia, North Terrace, Adelaide 5001, Australia.,Medical School, University of Adelaide, Frome Road, Adelaide 5000, Australia
| | - Mathew Tata
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Xiangjun Xu
- Centre for Cancer Biology, SA Pathology and University of South Australia, North Terrace, Adelaide 5001, Australia
| | - Andrew Joyce
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Ceilidh Marchant
- Centre for Cancer Biology, SA Pathology and University of South Australia, North Terrace, Adelaide 5001, Australia
| | - Natasha Harvey
- Centre for Cancer Biology, SA Pathology and University of South Australia, North Terrace, Adelaide 5001, Australia
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Quenten Schwarz
- Centre for Cancer Biology, SA Pathology and University of South Australia, North Terrace, Adelaide 5001, Australia
| |
Collapse
|
13
|
The neural crest and evolution of the head/trunk interface in vertebrates. Dev Biol 2018; 444 Suppl 1:S60-S66. [PMID: 29408469 DOI: 10.1016/j.ydbio.2018.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 12/31/2022]
Abstract
The migration and distribution patterns of neural crest (NC) cells reflect the distinct embryonic environments of the head and trunk: cephalic NC cells migrate predominantly along the dorsolateral pathway to populate the craniofacial and pharyngeal regions, whereas trunk crest cells migrate along the ventrolateral pathways to form the dorsal root ganglia. These two patterns thus reflect the branchiomeric and somitomeric architecture, respectively, of the vertebrate body plan. The so-called vagal NC occupies a postotic, intermediate level between the head and trunk NC. This level of NC gives rise to both trunk- and cephalic-type (circumpharyngeal) NC cells. The anatomical pattern of the amphioxus, a basal chordate, suggests that somites and pharyngeal gills coexist along an extensive length of the body axis, indicating that the embryonic environment is similar to that of vertebrate vagal NC cells and may have been ancestral for vertebrates. The amniote-like condition in which the cephalic and trunk domains are distinctly separated would have been brought about, in part, by anteroposterior reduction of the pharyngeal domain.
Collapse
|
14
|
Gallik KL, Treffy RW, Nacke LM, Ahsan K, Rocha M, Green-Saxena A, Saxena A. Neural crest and cancer: Divergent travelers on similar paths. Mech Dev 2017; 148:89-99. [PMID: 28888421 PMCID: PMC5811199 DOI: 10.1016/j.mod.2017.08.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 08/20/2017] [Accepted: 08/24/2017] [Indexed: 12/29/2022]
Abstract
Neural crest cells are multipotent progenitors that dynamically interpret diverse microenvironments to migrate significant distances as a loosely associated collective and contribute to many tissues in the developing vertebrate embryo. Uncovering details of neural crest migration has helped to inform a general understanding of collective cell migration, including that which occurs during cancer metastasis. Here, we discuss several commonalities and differences of neural crest and cancer cell migration and behavior. First, we focus on some of the molecular pathways required for the initial specification and potency of neural crest cells and the roles of many of these pathways in cancer progression. We also describe epithelial-to-mesenchymal transition, which plays a critical role in initiating both neural crest migration and cancer metastasis. Finally, we evaluate studies that demonstrate myriad forms of cell-cell and cell-environment communication during neural crest and cancer collective migration to highlight the remarkable similarities in their molecular and cell biological regulation.
Collapse
Affiliation(s)
- Kristin L Gallik
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Randall W Treffy
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Lynne M Nacke
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Kamil Ahsan
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Manuel Rocha
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Abigail Green-Saxena
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Ankur Saxena
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
15
|
Delloye-Bourgeois C, Bertin L, Thoinet K, Jarrosson L, Kindbeiter K, Buffet T, Tauszig-Delamasure S, Bozon M, Marabelle A, Combaret V, Bergeron C, Derrington E, Castellani V. Microenvironment-Driven Shift of Cohesion/Detachment Balance within Tumors Induces a Switch toward Metastasis in Neuroblastoma. Cancer Cell 2017; 32:427-443.e8. [PMID: 29017055 DOI: 10.1016/j.ccell.2017.09.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/22/2017] [Accepted: 09/12/2017] [Indexed: 12/13/2022]
Abstract
Neuroblastoma (NB) is a childhood cancer arising from sympatho-adrenal neural crest cells. Disseminated forms have high frequency of multiple tumoral foci whose etiology remains unknown; NB embryonic origin limits investigations in patients and current models. We developed an avian embryonic model driving human NB tumorigenesis in tissues homologous to patients. We found that aggressive NBs display a metastatic mode, secondary dissemination via peripheral nerves and aorta. Through tumor transcriptional profiling, we found that NB dissemination is induced by the shutdown of a pro-cohesion autocrine signal, SEMA3C, which constrains the tumoral mass. Lowering SEMA3C levels shifts the balance toward detachment, triggering NB cells to collectively evade the tumor. Together with patient cohort analysis, this identifies a microenvironment-driven pro-metastatic switch for NB.
Collapse
Affiliation(s)
- Céline Delloye-Bourgeois
- University of Lyon, University of Lyon 1 Claude Bernard Lyon1, NeuroMyoGene Institute, CNRS UMR5310, INSERM U1217, 16 rue Raphael Dubois, F-69000 Lyon, France
| | - Lorette Bertin
- University of Lyon, University of Lyon 1 Claude Bernard Lyon1, NeuroMyoGene Institute, CNRS UMR5310, INSERM U1217, 16 rue Raphael Dubois, F-69000 Lyon, France
| | - Karine Thoinet
- University of Lyon, University of Lyon 1 Claude Bernard Lyon1, NeuroMyoGene Institute, CNRS UMR5310, INSERM U1217, 16 rue Raphael Dubois, F-69000 Lyon, France
| | - Loraine Jarrosson
- OncoFactory SAS, L'Atrium, 43 boulevard du 11 Novembre 1918, 69100 Villeurbanne, France
| | - Karine Kindbeiter
- University of Lyon, University of Lyon 1 Claude Bernard Lyon1, NeuroMyoGene Institute, CNRS UMR5310, INSERM U1217, 16 rue Raphael Dubois, F-69000 Lyon, France
| | - Thomas Buffet
- University of Lyon, University of Lyon 1 Claude Bernard Lyon1, NeuroMyoGene Institute, CNRS UMR5310, INSERM U1217, 16 rue Raphael Dubois, F-69000 Lyon, France
| | - Servane Tauszig-Delamasure
- University of Lyon, University of Lyon 1 Claude Bernard Lyon1, NeuroMyoGene Institute, CNRS UMR5310, INSERM U1217, 16 rue Raphael Dubois, F-69000 Lyon, France
| | - Muriel Bozon
- University of Lyon, University of Lyon 1 Claude Bernard Lyon1, NeuroMyoGene Institute, CNRS UMR5310, INSERM U1217, 16 rue Raphael Dubois, F-69000 Lyon, France
| | - Aurélien Marabelle
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus (GRCC), INSERM U1015, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Valérie Combaret
- Laboratory of Translational Research, Léon Bérard Centre, 28 rue Laennec, 69008 Lyon, France
| | - Christophe Bergeron
- Departments of Oncology and Clinical Research, Centre Léon Berard and Institut d'Hématologie et d'Oncologie Pédiatrique, 1 Place Professeur Joseph Renaut, 69008 Lyon, France
| | - Edmund Derrington
- University of Lyon, University of Lyon 1 Claude Bernard Lyon1, NeuroMyoGene Institute, CNRS UMR5310, INSERM U1217, 16 rue Raphael Dubois, F-69000 Lyon, France
| | - Valérie Castellani
- University of Lyon, University of Lyon 1 Claude Bernard Lyon1, NeuroMyoGene Institute, CNRS UMR5310, INSERM U1217, 16 rue Raphael Dubois, F-69000 Lyon, France.
| |
Collapse
|
16
|
Chan WH, Anderson CR, Gonsalvez DG. From proliferation to target innervation: signaling molecules that direct sympathetic nervous system development. Cell Tissue Res 2017; 372:171-193. [PMID: 28971249 DOI: 10.1007/s00441-017-2693-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023]
Abstract
The sympathetic division of the autonomic nervous system includes a variety of cells including neurons, endocrine cells and glial cells. A recent study (Furlan et al. 2017) has revised thinking about the developmental origin of these cells. It now appears that sympathetic neurons and chromaffin cells of the adrenal medulla do not have an immediate common ancestor in the form a "sympathoadrenal cell", as has been long believed. Instead, chromaffin cells arise from Schwann cell precursors. This review integrates the new findings with the expanding body of knowledge on the signalling pathways and transcription factors that regulate the origin of cells of the sympathetic division of the autonomic nervous system.
Collapse
Affiliation(s)
- W H Chan
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia
| | - C R Anderson
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia
| | - David G Gonsalvez
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
17
|
Lumb R, Buckberry S, Secker G, Lawrence D, Schwarz Q. Transcriptome profiling reveals expression signatures of cranial neural crest cells arising from different axial levels. BMC DEVELOPMENTAL BIOLOGY 2017; 17:5. [PMID: 28407732 PMCID: PMC5390458 DOI: 10.1186/s12861-017-0147-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/03/2017] [Indexed: 01/13/2023]
Abstract
Background Cranial neural crest cells (NCCs) are a unique embryonic cell type which give rise to a diverse array of derivatives extending from neurons and glia through to bone and cartilage. Depending on their point of origin along the antero-posterior axis cranial NCCs are rapidly sorted into distinct migratory streams that give rise to axial specific structures. These migratory streams mirror the underlying segmentation of the brain with NCCs exiting the diencephalon and midbrain following distinct paths compared to those exiting the hindbrain rhombomeres (r). The genetic landscape of cranial NCCs arising at different axial levels remains unknown. Results Here we have used RNA sequencing to uncover the transcriptional profiles of mouse cranial NCCs arising at different axial levels. Whole transcriptome analysis identified over 120 transcripts differentially expressed between NCCs arising anterior to r3 (referred to as r1-r2 migratory stream for simplicity) and the r4 migratory stream. Eight of the genes differentially expressed between these populations were validated by RT-PCR with 2 being further validated by in situ hybridisation. We also explored the expression of the Neuropilins (Nrp1 and Nrp2) and their co-receptors and show that the A-type Plexins are differentially expressed in different cranial NCC streams. Conclusions Our analyses identify a large number of genes differentially regulated between cranial NCCs arising at different axial levels. This data provides a comprehensive description of the genetic landscape driving diversity of distinct cranial NCC streams and provides novel insight into the regulatory networks controlling the formation of specific skeletal elements and the mechanisms promoting migration along different paths. Electronic supplementary material The online version of this article (doi:10.1186/s12861-017-0147-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rachael Lumb
- Centre for Cancer Biology, University of South Australia and SA Pathology, Frome Road, Adelaide, SA, 5000, Australia.,University of Adelaide, Frome Road, Adelaide, SA, 5000, Australia
| | - Sam Buckberry
- Harry Perkins Institute of Medical Research, Perth, WA, 6008, Australia.,Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, 6009, WA, Australia
| | - Genevieve Secker
- Centre for Cancer Biology, University of South Australia and SA Pathology, Frome Road, Adelaide, SA, 5000, Australia
| | - David Lawrence
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, Australia.,School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology, University of South Australia and SA Pathology, Frome Road, Adelaide, SA, 5000, Australia.
| |
Collapse
|
18
|
Masuda T, Taniguchi M. Contribution of semaphorins to the formation of the peripheral nervous system in higher vertebrates. Cell Adh Migr 2016; 10:593-603. [PMID: 27715392 PMCID: PMC5160040 DOI: 10.1080/19336918.2016.1243644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Semaphorins are a large family of proteins characterized by sema domains and play a key role not only in the formation of neural circuits, but in the immune system, angiogenesis, tumor progression, and bone metabolism. To date, 15 semaphorins have been reported to be involved in the formation of the peripheral nervous system (PNS) in higher vertebrates. A number of experiments have revealed their functions in the PNS, where they act mainly as axonal guidance cues (as repellents or attractants). Semaphorins also play an important role in the migration of neurons and formation of sensory-motor connections in the PNS. This review summarizes recent knowledge regarding the functions of higher vertebrate semaphorins in the formation of the PNS.
Collapse
Affiliation(s)
- Tomoyuki Masuda
- a Department of Neurobiology , Faculty of Medicine, University of Tsukuba , Ibaraki , Japan.,b Doctoral and Master's Programs in Kansei , Behavioral and Brain Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba , Ibaraki , Japan
| | - Masahiko Taniguchi
- c Department of Cell Science , Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine , Hokkaido , Japan
| |
Collapse
|
19
|
Wiszniak S, Scherer M, Ramshaw H, Schwarz Q. Neuropilin-2 genomic elements drive cre recombinase expression in primitive blood, vascular and neuronal lineages. Genesis 2015; 53:709-17. [PMID: 26454009 DOI: 10.1002/dvg.22905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/28/2015] [Accepted: 10/07/2015] [Indexed: 12/23/2022]
Abstract
We have established a novel Cre mouse line, using genomic elements encompassing the Nrp2 locus, present within a bacterial artificial chromosome clone. By crossing this Cre driver line to R26R LacZ reporter mice, we have documented the temporal expression and lineage traced tissues in which Cre is expressed. Nrp2-Cre drives expression in primitive blood cells arising from the yolk sac, venous and lymphatic endothelial cells, peripheral sensory ganglia, and the lung bud. This mouse line will provide a new tool to researchers wishing to study the development of various tissues and organs in which this Cre driver is expressed, as well as allow tissue-specific knockout of genes of interest to study protein function. This work also presents the first evidence for expression of Nrp2 protein in a mesodermal progenitor with restricted hematopoietic potential, which will significantly advance the study of primitive erythropoiesis. genesis 53:709-717, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sophie Wiszniak
- Centre for Cancer Biology and University of South Australia, Frome Road, Adelaide, South Australia, 5000, Australia
| | - Michaela Scherer
- Centre for Cancer Biology and University of South Australia, Frome Road, Adelaide, South Australia, 5000, Australia
| | - Hayley Ramshaw
- Centre for Cancer Biology and University of South Australia, Frome Road, Adelaide, South Australia, 5000, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology and University of South Australia, Frome Road, Adelaide, South Australia, 5000, Australia
| |
Collapse
|
20
|
Powell DR, Williams JS, Hernandez-Lagunas L, Salcedo E, O'Brien JH, Artinger KB. Cdon promotes neural crest migration by regulating N-cadherin localization. Dev Biol 2015; 407:289-99. [PMID: 26256768 DOI: 10.1016/j.ydbio.2015.07.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 11/28/2022]
Abstract
Neural crest cells (NCCs) are essential embryonic progenitor cells that are unique to vertebrates and form a remarkably complex and coordinated system of highly motile cells. Migration of NCCs occurs along specific pathways within the embryo in response to both environmental cues and cell-cell interactions within the neural crest population. Here, we demonstrate a novel role for the putative Sonic hedgehog (Shh) receptor and cell adhesion regulator, cdon, in zebrafish neural crest migration. cdon is expressed in developing premigratory NCCs but is downregulated once the cells become migratory. Knockdown of cdon results in aberrant migration of trunk NCCs: crestin positive cells can emigrate out of the neural tube but stall shortly after the initiation of migration. Live cell imaging analysis demonstrates reduced directedness of migration, increased velocity and mispositioned cell protrusions. In addition, transplantation analysis suggests that cdon is required cell-autonomously for directed NCC migration in the trunk. Interestingly, N-cadherin is mislocalized following cdon knockdown suggesting that the role of cdon in NCCs is to regulate N-cadherin localization. Our results reveal a novel role for cdon in zebrafish neural crest migration, and suggest a mechanism by which Cdon is required to localize N-cadherin to the cell membrane in migratory NCCs for directed migration.
Collapse
Affiliation(s)
- Davalyn R Powell
- Department of Craniofacial Biology, School of Dental Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; Cell Biology, Stem Cells, and Development Graduate Program, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Jason S Williams
- Department of Craniofacial Biology, School of Dental Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; Cell Biology, Stem Cells, and Development Graduate Program, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Laura Hernandez-Lagunas
- Department of Craniofacial Biology, School of Dental Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Ernesto Salcedo
- Department of Cell and Developmental biology, School of Medicine and USA Rocky Mountain Taste and Smell Center, Anschutz Medical Campus , University of Colorado, Aurora, CO 80045, USA
| | - Jenean H O'Brien
- Department of Pharmacology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Kristin Bruk Artinger
- Department of Craniofacial Biology, School of Dental Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
21
|
Newbern JM. Molecular control of the neural crest and peripheral nervous system development. Curr Top Dev Biol 2015; 111:201-31. [PMID: 25662262 DOI: 10.1016/bs.ctdb.2014.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A transient and unique population of multipotent stem cells, known as neural crest cells (NCCs), generate a bewildering array of cell types during vertebrate development. An attractive model among developmental biologists, the study of NCC biology has provided a wealth of knowledge regarding the cellular and molecular mechanisms important for embryogenesis. Studies in numerous species have defined how distinct phases of NCC specification, proliferation, migration, and survival contribute to the formation of multiple functionally distinct organ systems. NCC contributions to the peripheral nervous system (PNS) are well known. Critical developmental processes have been defined that provide outstanding models for understanding how extracellular stimuli, cell-cell interactions, and transcriptional networks cooperate to direct cellular diversification and PNS morphogenesis. Dissecting the complex extracellular and intracellular mechanisms that mediate the formation of the PNS from NCCs may have important therapeutic implications for neurocristopathies, neuropathies, and certain forms of cancer.
Collapse
Affiliation(s)
- Jason M Newbern
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA.
| |
Collapse
|
22
|
Lumb R, Schwarz Q. Sympathoadrenal neural crest cells: the known, unknown and forgotten? Dev Growth Differ 2015; 57:146-57. [PMID: 25581786 DOI: 10.1111/dgd.12189] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/30/2014] [Accepted: 11/02/2014] [Indexed: 12/30/2022]
Abstract
Neural crest cells (NCCs) are highly migratory progenitor cells that give rise to a vast array of differentiated cell types. One of their key derivatives is the autonomic nervous system (ANS) that is comprised in part from chromaffin cells of the adrenal medulla and organ of Zuckerkandl, the sympathetic chain and additional prevertebral ganglia such as the celiac ganglia, suprarenal ganglia and mesenteric ganglia. In this review we discuss recent advances toward our understanding of how the NCC precursors of the ANS migrate to their target regions, how they are instructed to differentiate into the correct cell types, and the morphogenetic signals controlling their development. Many of these processes remain enigmatic to developmental biologists worldwide. Taking advantage of lineage tracing mouse models one of our own aims is to address the morphogenetic events underpinning the formation of the ANS and to identify the molecular mechanisms that help to segregate a mixed population of NCCs into pathways specific for the sympathetic ganglia, sensory ganglia or adrenal medulla.
Collapse
Affiliation(s)
- Rachael Lumb
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia; Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | | |
Collapse
|
23
|
Lumb R, Wiszniak S, Kabbara S, Scherer M, Harvey N, Schwarz Q. Neuropilins define distinct populations of neural crest cells. Neural Dev 2014; 9:24. [PMID: 25363691 PMCID: PMC4233049 DOI: 10.1186/1749-8104-9-24] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/14/2014] [Indexed: 01/13/2023] Open
Abstract
Background Neural crest cells (NCCs) are a transient embryonic cell type that give rise to a wide spectrum of derivatives, including neurons and glia of the sensory and autonomic nervous system, melanocytes and connective tissues in the head. Lineage-tracing and functional studies have shown that trunk NCCs migrate along two distinct paths that correlate with different developmental fates. Thus, NCCs migrating ventrally through the anterior somite form sympathetic and sensory ganglia, whereas NCCs migrating dorsolaterally form melanocytes. Although the mechanisms promoting migration along the dorsolateral path are well defined, the molecules providing positional identity to sympathetic and sensory-fated NCCs that migrate along the same ventral path are ill defined. Neuropilins (Nrp1 and Nrp2) are transmembrane glycoproteins that are essential for NCC migration. Nrp1 and Nrp2 knockout mice have disparate phenotypes, suggesting that these receptors may play a role in sorting NCCs biased towards sensory and sympathetic fates to appropriate locations. Results Here we have combined in situ hybridisation, immunohistochemistry and lineage-tracing analyses to demonstrate that neuropilins are expressed in a non-overlapping pattern within NCCs. Whereas Nrp1 is expressed in NCCs emigrating from hindbrain rhombomere 4 (r4) and within trunk NCCs giving rise to sympathetic and sensory ganglia, Nrp2 is preferentially expressed in NCCs emigrating from r2 and in trunk NCCs giving rise to sensory ganglia. By generating a tamoxifen-inducible lineage-tracing system, we further demonstrate that Nrp2-expressing NCCs specifically populate sensory ganglia including the trigeminal ganglia (V) in the head and the dorsal root ganglia in the trunk. Conclusions Taken together, our results demonstrate that Nrp1 and Nrp2 are expressed in different populations of NCCs, and that Nrp2-expressing NCCs are strongly biased towards a sensory fate. In the trunk, Nrp2-expressing NCCs specifically give rise to sensory ganglia, whereas Nrp1-expressing NCCs likely give rise to both sensory and sympathetic ganglia. Our findings therefore suggest that neuropilins play an essential role in coordinating NCC migration with fate specification.
Collapse
Affiliation(s)
| | | | | | | | | | - Quenten Schwarz
- Centre for Cancer Biology, University of South Australia and SA Pathology, Frome Road, Adelaide 5000, Australia.
| |
Collapse
|
24
|
A role for neuropilins in the interaction between Schwann cells and meningeal cells. PLoS One 2014; 9:e109401. [PMID: 25314276 PMCID: PMC4196904 DOI: 10.1371/journal.pone.0109401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 09/10/2014] [Indexed: 11/28/2022] Open
Abstract
In their natural habitat, the peripheral nerve, Schwann cells (SCs) form nicely aligned pathways (also known as the bands of Büngner) that guide regenerating axons to their targets. Schwann cells that are implanted in the lesioned spinal cord fail to align in pathways that could support axon growth but form cellular clusters that exhibit only limited intermingling with the astrocytes and meningeal cells (MCs) that are present in the neural scar. The formation of cell clusters can be studied in co-cultures of SCs and MCs. In these co-cultures SCs form cluster-like non-overlapping cell aggregates with well-defined boundaries. There are several indications that neuropilins (NRPs) play an important role in MC-induced SC aggregation. Both SCs and MCs express NRP1 and NRP2 and SCs express the NRP ligands Sema3B, C and E while MCs express Sema3A, C, E and F. We now demonstrate that in SC-MC co-cultures, siRNA mediated knockdown of NRP2 in SCs decreased the formation of SC clusters while these SCs maintained their capacity to align in bands of Büngner-like columnar arrays. Unexpectedly, knockdown of NRP1 expression resulted in a significant increase in SC aggregation. These results suggest that a reduction in NRP2 expression may enhance the capacity of implanted SCs to interact with MCs that invade a neural scar formed after a lesion of the spinal cord.
Collapse
|
25
|
The role of the non-canonical Wnt-planar cell polarity pathway in neural crest migration. Biochem J 2014; 457:19-26. [PMID: 24325550 DOI: 10.1042/bj20131182] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The neural crest is an embryonic stem cell population whose migratory behaviour has been likened to malignant invasion. The neural crest, as does cancer, undergoes an epithelial-to-mesenchymal transition and migrates to colonize almost all the tissues of the embryo. Neural crest cells exhibit collective cell migration, moving in streams of high directionality. The migratory neural crest streams are kept in shape by the presence of negative signals in their vicinity. The directionality of the migrating neural crest is achieved by contact-dependent cell polarization, in a phenomenon called contact inhibition of locomotion. Two cells experiencing contact inhibition of locomotion move away from each other after collision. However, if the cell density is high only cells exposed to a free edge can migrate away from the cluster leading to the directional migration of the whole group. Recent work performed in chicks, zebrafish and frogs has shown that the non-canonical Wnt-PCP (planar cell polarity) pathway plays a major role in neural crest migration. PCP signalling controls contact inhibition of locomotion between neural crest cells by localizing different PCP proteins at the site of cell contact during collision and locally regulating the activity of Rho GTPases. Upon collision RhoA (ras homologue family member A) is activated, whereas Rac1 is inhibited at the contact between two migrating neural crest cells, leading to the collapse of protrusions and the migration of cells away from one another. The present review summarizes the mechanisms that control neural crest migration and focuses on the role of non-canonical Wnt or PCP signalling in this process.
Collapse
|
26
|
Noisa P, Lund C, Kanduri K, Lund R, Lähdesmäki H, Lahesmaa R, Lundin K, Chokechuwattanalert H, Otonkoski T, Tuuri T, Raivio T. Notch signaling regulates neural crest differentiation from human pluripotent stem cells. J Cell Sci 2014; 127:2083-94. [DOI: 10.1242/jcs.145755] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Neural crest (NC) cells are specified at the border of neural plate and epiderm. They are capable of differentiating into various somatic cell types, including craniofacial and peripheral nerve tissues. Notch signaling plays significant roles during neurogenesis; however, its function during human NC development is poorly understood. Here, we generated self-renewing premigratory NC-like cells (pNCCs) from human pluripotent stem cells and investigated the roles of Notch signaling during the NC differentiation. pNCCs expressed various NC specifier genes, including SLUG, SOX10 and TWIST1, and were able to differentiate into most NC derivatives. Blocking Notch signaling during the pNCC differentiation suppressed the expression of NC specifier genes. In contrast, ectopic expression of activated Notch1 intracellular domain (NICD1) augmented the expression of NC specifier genes, and NICD1 was found to bind at their promoter regions. Notch activity was also required for the maintenance of premigratory NC state, and suppression of Notch led to generation of NC-derived neurons. Taken together, we provide a protocol for the generation of pNCCs, and show that Notch signaling regulates the formation, migration and differentiation of NC from hPSCs.
Collapse
|
27
|
Chen Y, Fan JX, Zhang ZL, Wang G, Cheng X, Chuai M, Lee KKH, Yang X. The negative influence of high-glucose ambience on neurogenesis in developing quail embryos. PLoS One 2013; 8:e66646. [PMID: 23818954 PMCID: PMC3688607 DOI: 10.1371/journal.pone.0066646] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 05/08/2013] [Indexed: 12/19/2022] Open
Abstract
Gestational diabetes is defined as glucose intolerance during pregnancy and it is presented as high blood glucose levels during the onset pregnancy. This condition has an adverse impact on fetal development but the mechanism involved is still not fully understood. In this study, we investigated the effects of high glucose on the developing quail embryo, especially its impact on the development of the nervous system. We established that high glucose altered the central nervous system mophologically, such that neural tube defects (NTDs) developed. In addition, we found that high glucose impaired nerve differentiation at dorsal root ganglia and in the developing limb buds, as revealed by neurofilament (NF) immunofluorescent staining. The dorsal root ganglia are normally derived from neural crest cells (NCCs), so we examine the delamination of NCCs from dorsal side of the neural tube. We established that high glucose was detrimental to the NCCs, in vivo and in vitro. High glucose also negatively affected neural differentiation by reducing the number and length of neurites emanating from neurons in culture. We established that high glucose exposure caused an increase in reactive oxidative species (ROS) generation by primary cultured neurons. We hypothesized that excess ROS was the factor responsible for impairing neuron development and differentiation. We provided evidence for our hypothesis by showing that the addition of vitamin C (a powerful antioxidant) could rescue the damaging effects of high glucose on cultured neurons.
Collapse
Affiliation(s)
- Yao Chen
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Jian-xia Fan
- Department of Gynecology and Obstetrics, International Peace Maternity and Child Health Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhao-long Zhang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Guang Wang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Xin Cheng
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Manli Chuai
- Division of Cell and Developmental Biology, University of Dundee, Dundee, United Kingdom
| | - Kenneth Ka Ho Lee
- Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
- * E-mail: (XY); (KKHL)
| | - Xuesong Yang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
- Institute of Fetal-Preterm Labor Medicine, Jinan University, Guangzhou, China
- * E-mail: (XY); (KKHL)
| |
Collapse
|
28
|
Powell DR, Blasky AJ, Britt SG, Artinger KB. Riding the crest of the wave: parallels between the neural crest and cancer in epithelial-to-mesenchymal transition and migration. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 5:511-22. [PMID: 23576382 PMCID: PMC3739939 DOI: 10.1002/wsbm.1224] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The neural crest (NC) is first induced as an epithelial population of cells at the neural plate border requiring complex signaling between bone morphogenetic protein, Wnt, and fibroblast growth factors to differentiate the neural and NC fate from the epidermis. Remarkably, following induction, these cells undergo an epithelial-to-mesenchymal transition (EMT), delaminate from the neural tube, and migrate through various tissue types and microenvironments before reaching their final destination where they undergo terminal differentiation. This process is mirrored in cancer metastasis, where a primary tumor will undergo an EMT before migrating and invading other cell populations to create a secondary tumor site. In recent years, as our understanding of NC EMT and migration has deepened, important new insights into tumorigenesis and metastasis have also been achieved. These discoveries have been driven by the observation that many cancers misregulate developmental genes to reacquire proliferative and migratory states. In this review, we examine how the NC provides an excellent model for studying EMT and migration. These data are discussed from the perspective of the gene regulatory networks that control both NC and cancer cell EMT and migration. Deciphering these processes in a comparative manner will expand our knowledge of the underlying etiology and pathogenesis of cancer and promote the development of novel targeted therapeutic strategies for cancer patients. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Davalyn R Powell
- Graduate Program in Cell Biology, Stem Cells and Development, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | | |
Collapse
|
29
|
Serini G, Bussolino F, Maione F, Giraudo E. Class 3 semaphorins: physiological vascular normalizing agents for anti-cancer therapy. J Intern Med 2013. [PMID: 23198760 DOI: 10.1111/joim.12017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Findings from preclinical and clinical studies show that vascular normalization represents a novel strategy to enhance the efficacy of and overcome the acquired resistance to anti-angiogenic therapies in cancer. Several mechanisms of tumour vessel normalization have been revealed. Amongst them, secreted class 3 semaphorins (Sema3), which regulate axon guidance and angiogenesis, have been recently identified as novel vascular normalizing agents that inhibit metastatic dissemination by restoring vascular function. Here, we discuss the different biological functions and mechanisms of action of Sema3 in the context of tumour vascular normalization, and their impact on the different cellular components of the tumour microenvironment.
Collapse
Affiliation(s)
- G Serini
- Institute for Cancer Research at Candiolo (IRCC), University of Torino, Turin, Italy
| | | | | | | |
Collapse
|
30
|
Banerjee S, Isaacman-Beck J, Schneider VA, Granato M. A novel role for Lh3 dependent ECM modifications during neural crest cell migration in zebrafish. PLoS One 2013; 8:e54609. [PMID: 23349938 PMCID: PMC3548841 DOI: 10.1371/journal.pone.0054609] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/14/2012] [Indexed: 12/11/2022] Open
Abstract
During vertebrate development, trunk neural crest cells delaminate along the entire length of the dorsal neural tube and initially migrate as a non-segmented sheet. As they enter the somites, neural crest cells rearrange into spatially restricted segmental streams. Extracellular matrix components are likely to play critical roles in this transition from a sheet-like to a stream-like mode of migration, yet the extracellular matrix components and their modifying enzymes critical for this transition are largely unknown. Here, we identified the glycosyltransferase Lh3, known to modify extracellular matrix components, and its presumptive substrate Collagen18A1, to provide extrinsic signals critical for neural crest cells to transition from a sheet-like migration behavior to migrating as a segmental stream. Using live cell imaging we show that in lh3 null mutants, neural crest cells fail to transition from a sheet to a stream, and that they consequently enter the somites as multiple streams, or stall shortly after entering the somites. Moreover, we demonstrate that transgenic expression of lh3 in a small subset of somitic cells adjacent to where neural crest cells switch from sheet to stream migration restores segmental neural crest cell migration. Finally, we show that knockdown of the presumptive Lh3 substrate Collagen18A1 recapitulates the neural crest cell migration defects observed in lh3 mutants, consistent with the notion that Lh3 exerts its effect on neural crest cell migration by regulating post-translational modifications of Collagen18A1. Together these data suggest that Lh3–Collagen18A1 dependent ECM modifications regulate the transition of trunk neural crest cells from a non-segmental sheet like migration mode to a segmental stream migration mode.
Collapse
Affiliation(s)
- Santanu Banerjee
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jesse Isaacman-Beck
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Valerie A. Schneider
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
31
|
Raimondi C, Ruhrberg C. Neuropilin signalling in vessels, neurons and tumours. Semin Cell Dev Biol 2013; 24:172-8. [PMID: 23319134 DOI: 10.1016/j.semcdb.2013.01.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/28/2012] [Accepted: 01/07/2013] [Indexed: 02/08/2023]
Abstract
The neuropilins NRP1 and NRP2 are transmembrane proteins that regulate many different aspects of vascular and neural development. Even though they were originally identified as adhesion molecules, they are most commonly studied as co-receptors for secreted signalling molecules of the class 3 semaphorin (SEMA) and vascular endothelial growth factor (VEGF) families. During nervous system development, both classes of ligands control soma migration, axon patterning and synaptogenesis in the central nervous system, and they additionally help to guide the neural crest cell precursors of neurons and glia in the peripheral nervous system. Both classes of neuropilin ligands also control endothelial cell behaviour, with NRP1 acting as a VEGF-A isoform receptor in blood vascular endothelium and as a semaphorin receptor in lymphatic valve endothelium, and NRP2 promoting lymphatic vessel growth induced by VEGF-C. Here we provide an overview of neuropilin function in neurons and neural crest cells, discuss current knowledge of neuropilin signalling in the vasculature and conclude with a summary of neuropilin roles in cancer.
Collapse
Affiliation(s)
- Claudio Raimondi
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | | |
Collapse
|
32
|
NRP1 acts cell autonomously in endothelium to promote tip cell function during sprouting angiogenesis. Blood 2013; 121:2352-62. [PMID: 23315162 DOI: 10.1182/blood-2012-05-424713] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neuropilin (NRP) 1 is a receptor for the vascular endothelial growth factor (VEGF)-A and is essential for normal angiogenesis. Previous in vitro experiments identified NRP1 interactions with VEGF-A's main signaling receptor VEGFR2 within endothelial cells, but also between nonendothelial NRP1 and endothelial VEGFR2. Consistent with an endothelial role for NRP1 in angiogenesis, we found that VEGFR2 and NRP1 were coexpressed in endothelial tip and stalk cells in the developing brain. In addition, NRP1 was expressed on two cell types that interact with growing brain vessels-the neural progenitors that secrete VEGF-A to stimulate tip cell activity and the pro-angiogenic macrophages that promote tip cell anastomosis. Selective targeting of Nrp1 in each of these cell types demonstrated that neural progenitor- and macrophage-derived NRP1 were dispensable, whereas endothelial NRP1 was essential for normal brain vessel growth. NRP1 therefore promotes brain angiogenesis cell autonomously in endothelium, independently of heterotypic interactions with nonendothelial cells. Genetic mosaic analyses demonstrated a key role for NRP1 in endothelial tip rather than stalk cells during vessel sprouting. Thus, NRP1-expressing endothelial cells attained the tip cell position when competing with NRP1-negative endothelial cells in chimeric vessel sprouts. Taken together, these findings demonstrate that NRP1 promotes endothelial tip cell function during angiogenesis.
Collapse
|
33
|
Maden CH, Gomes J, Schwarz Q, Davidson K, Tinker A, Ruhrberg C. NRP1 and NRP2 cooperate to regulate gangliogenesis, axon guidance and target innervation in the sympathetic nervous system. Dev Biol 2012; 369:277-85. [PMID: 22790009 PMCID: PMC3430865 DOI: 10.1016/j.ydbio.2012.06.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 06/01/2012] [Accepted: 06/29/2012] [Indexed: 11/23/2022]
Abstract
The sympathetic nervous system (SNS) arises from neural crest (NC) cells during embryonic development and innervates the internal organs of vertebrates to modulate their stress response. NRP1 and NRP2 are receptors for guidance cues of the class 3 semaphorin (SEMA) family and are expressed in partially overlapping patterns in sympathetic NC cells and their progeny. By comparing the phenotypes of mice lacking NRP1 or its ligand SEMA3A with mice lacking NRP1 in the sympathetic versus vascular endothelial cell lineages, we demonstrate that SEMA3A signalling through NRP1 has multiple cell-autonomous roles in SNS development. These roles include neuronal cell body positioning, neuronal aggregation and axon guidance, first during sympathetic chain assembly and then to regulate the innervation of the heart and aorta. Loss of NRP2 or its ligand SEMA3F impaired sympathetic gangliogenesis more mildly than loss of SEMA3A/NRP1 signalling, but caused ectopic neurite extension along the embryonic aorta. The analysis of compound mutants lacking SEMA3A and SEMA3F or NRP1 and NRP2 in the SNS demonstrated that both signalling pathways cooperate to organise the SNS. We further show that abnormal sympathetic development in mice lacking NRP1 in the sympathetic lineage has functional consequences, as it causes sinus bradycardia, similar to mice lacking SEMA3A.
Collapse
|
34
|
Theveneau E, Mayor R. Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration. Dev Biol 2012; 366:34-54. [PMID: 22261150 DOI: 10.1016/j.ydbio.2011.12.041] [Citation(s) in RCA: 374] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 12/26/2011] [Indexed: 10/25/2022]
Abstract
After induction and specification in the ectoderm, at the border of the neural plate, the neural crest (NC) population leaves its original territory through a delamination process. Soon afterwards, the NC cells migrate throughout the embryo and colonize a myriad of tissues and organs where they settle and differentiate. The delamination involves a partial or complete epithelium-to-mesenchyme transition (EMT) regulated by a complex network of transcription factors including several proto-oncogenes. Studying the relationship between these genes at the time of emigration, and their individual or collective impact on cell behavior, provides valuable information about their role in EMT in other contexts such as cancer metastasis. During migration, NC cells are exposed to large number of positive and negative regulators that control where they go by generating permissive and restricted areas and by modulating their motility and directionality. In addition, as most NC cells migrate collectively, cell-cell interactions play a crucial role in polarizing the cells and interpreting external cues. Cell cooperation eventually generates an overall polarity to the population, leading to directional collective cell migration. This review will summarize our current knowledge on delamination, EMT and migration of NC cells using key examples from chicken, Xenopus, zebrafish and mouse embryos. Given the similarities between neural crest migration and cancer invasion, these cells may represent a useful model for understanding the mechanisms of metastasis.
Collapse
Affiliation(s)
- Eric Theveneau
- Department of Cell and Developmental Biology, University College London, UK
| | | |
Collapse
|
35
|
Kawakami M, Umeda M, Nakagata N, Takeo T, Yamamura KI. Novel migrating mouse neural crest cell assay system utilizing P0-Cre/EGFP fluorescent time-lapse imaging. BMC DEVELOPMENTAL BIOLOGY 2011; 11:68. [PMID: 22070366 PMCID: PMC3224755 DOI: 10.1186/1471-213x-11-68] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 11/09/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Neural crest cells (NCCs) are embryonic, multipotent stem cells. Their long-range and precision-guided migration is one of their most striking characteristics. We previously reported that P0-Cre/CAG-CAT-lacZ double-transgenic mice showed significant lacZ expression in tissues derived from NCCs. RESULTS In this study, by embedding a P0-Cre/CAG-CAT-EGFP embryo at E9.5 in collagen gel inside a culture glass slide, we were able to keep the embryo developing ex vivo for more than 24 hours; this development was with enough NCC fluorescent signal intensity to enable single-cell resolution analysis, with the accompanying NCC migration potential intact and with the appropriate NCC response to the extracellular signal maintained. By implantation of beads with absorbed platelet-derived growth factor-AA (PDGF-AA), we demonstrated that PDGF-AA acts as an NCC-attractant in embryos.We also performed assays with NCCs isolated from P0-Cre/CAG-CAT-EGFP embryos on culture plates. The neuromediator 5-hydroxytryptamine (5-HT) has been known to regulate NCC migration. We newly demonstrated that dopamine, in addition to 5-HT, stimulated NCC migration in vitro. Two NCC populations, with different axial levels of origins, showed unique distribution patterns regarding migration velocity and different dose-response patterns to both 5-HT and dopamine. CONCLUSIONS Although avian species predominated over the other species in the NCC study, our novel system should enable us to use mice to assay many different aspects of NCCs in embryos or on culture plates, such as migration, division, differentiation, and apoptosis.
Collapse
Affiliation(s)
- Minoru Kawakami
- Division of Developmental Genetics, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto-City, Kumamoto, 860-0811, Japan
| | - Masafumi Umeda
- Division of Developmental Genetics, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto-City, Kumamoto, 860-0811, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources & Development, Kumamoto University, Kumamoto-City, Kumamoto, 860-0811, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources & Development, Kumamoto University, Kumamoto-City, Kumamoto, 860-0811, Japan
| | - Ken-ichi Yamamura
- Division of Developmental Genetics, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto-City, Kumamoto, 860-0811, Japan
| |
Collapse
|
36
|
Banerjee S, Gordon L, Donn TM, Berti C, Moens CB, Burden SJ, Granato M. A novel role for MuSK and non-canonical Wnt signaling during segmental neural crest cell migration. Development 2011; 138:3287-96. [PMID: 21750038 DOI: 10.1242/dev.067306] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Trunk neural crest cells delaminate from the dorsal neural tube as an uninterrupted sheet; however, they convert into segmentally organized streams before migrating through the somitic territory. These neural crest cell streams join the segmental trajectories of pathfinding spinal motor axons, suggesting that interactions between these two cell types might be important for neural crest cell migration. Here, we show that in the zebrafish embryo migration of both neural crest cells and motor axons is temporally synchronized and spatially restricted to the center of the somite, but that motor axons are dispensable for segmental neural crest cell migration. Instead, we find that muscle-specific receptor kinase (MuSK) and its putative ligand Wnt11r are crucial for restricting neural crest cell migration to the center of each somite. Moreover, we find that blocking planar cell polarity (PCP) signaling in somitic muscle cells also results in non-segmental neural crest cell migration. Using an F-actin biosensor we show that in the absence of MuSK neural crest cells fail to retract non-productive leading edges, resulting in non-segmental migration. Finally, we show that MuSK knockout mice display similar neural crest cell migration defects, suggesting a novel, evolutionarily conserved role for MuSK in neural crest migration. We propose that a Wnt11r-MuSK dependent, PCP-like pathway restricts neural crest cells to their segmental path.
Collapse
Affiliation(s)
- Santanu Banerjee
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Dykes IM, Tempest L, Lee SI, Turner EE. Brn3a and Islet1 act epistatically to regulate the gene expression program of sensory differentiation. J Neurosci 2011; 31:9789-99. [PMID: 21734270 PMCID: PMC3143040 DOI: 10.1523/jneurosci.0901-11.2011] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/05/2011] [Accepted: 04/22/2011] [Indexed: 11/21/2022] Open
Abstract
The combinatorial expression of transcription factors frequently marks cellular identity in the nervous system, yet how these factors interact to determine specific neuronal phenotypes is not well understood. Sensory neurons of the trigeminal ganglion (TG) and dorsal root ganglia (DRG) coexpress the homeodomain transcription factors Brn3a and Islet1, and past work has revealed partially overlapping programs of gene expression downstream of these factors. Here we examine sensory development in Brn3a/Islet1 double knock-out (DKO) mice. Sensory neurogenesis and the formation of the TG and DRG occur in DKO embryos, but the DRG are dorsally displaced, and the peripheral projections of the ganglia are markedly disturbed. Sensory neurons in DKO embryos show a profound loss of all early markers of sensory subtypes, including the Ntrk neurotrophin receptors, and the runt-family transcription factors Runx1 and Runx3. Examination of global gene expression in the E12.5 DRG of single and double mutant embryos shows that Brn3a and Islet1 are together required for nearly all aspects of sensory-specific gene expression, including several newly identified sensory markers. On a majority of targets, Brn3a and Islet1 exhibit negative epistasis, in which the effects of the individual knock-out alleles are less than additive in the DKO. Smaller subsets of targets exhibit positive epistasis, or are regulated exclusively by one factor. Brn3a/Islet1 double mutants also fail to developmentally repress neurogenic bHLH genes, and in vivo chromatin immunoprecipitation shows that Islet1 binds to a known Brn3a-regulated enhancer in the neurod4 gene, suggesting a mechanism of interaction between these genes.
Collapse
Affiliation(s)
- Iain M. Dykes
- Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Lynne Tempest
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101, and
| | - Su-In Lee
- Departments of Genome Sciences
- Computer Science and Engineering, and
| | - Eric E. Turner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101, and
- Psychiatry and Behavioral Sciences, and
- Center on Human Development and Disability, University of Washington, Seattle, Washington 98195
| |
Collapse
|
38
|
Miller LC, Freter S, Liu F, Taylor JSH, Patient R, Begbie J. Separating early sensory neuron and blood vessel patterning. Dev Dyn 2011; 239:3297-302. [PMID: 21061240 DOI: 10.1002/dvdy.22464] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The anatomical association between sensory nerves and blood vessels is well recognised in the adult, and interactions between the two are important during development. Here we have examined the relationship between developing blood vessels and sensory neuronal cell bodies, which is less well understood. We show in the chick that the nascent dorsal root ganglia (DRG) lie dorsal to the longitudinal anastomosis, adjacent to the developing neural tube at the level of the sulcus limitans. Furthermore, the blood vessel is present prior to the neurons suggesting that it may play a role in positioning the DRG. We use the zebrafish cloche mutation to analyse DRG formation in the absence of blood vessels and show that the DRG are positioned normally. Thus, despite their close anatomical relationship, the patterning of the blood vessel and DRG alongside the neural tube is separable rather than interdependent.
Collapse
Affiliation(s)
- Laura C Miller
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
39
|
Klymkowsky MW, Rossi CC, Artinger KB. Mechanisms driving neural crest induction and migration in the zebrafish and Xenopus laevis. Cell Adh Migr 2010; 4:595-608. [PMID: 20962584 PMCID: PMC3011258 DOI: 10.4161/cam.4.4.12962] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 07/09/2010] [Indexed: 01/09/2023] Open
Abstract
The neural crest is an evolutionary adaptation, with roots in the formation of mesoderm. Modification of neural crest behavior has been is critical for the evolutionary diversification of the vertebrates and defects in neural crest underlie a range of human birth defects. There has been a tremendous increase in our knowledge of the molecular, cellular, and inductive interactions that converge on defining the neural crest and determining its behavior. While there is a temptation to look for simple models to explain neural crest behavior, the reality is that the system is complex in its circuitry. In this review, our goal is to identify the broad features of neural crest origins (developmentally) and migration (cellularly) using data from the zebrafish (teleost) and Xenopus laevis (tetrapod amphibian) in order to illuminate where general mechanisms appear to be in play, and equally importantly, where disparities in experimental results suggest areas of profitable study.
Collapse
Affiliation(s)
- Michael W Klymkowsky
- Department of Molecular, Cellular and Developmental Biology; University of Colorado Boulder; Boulder, CO USA
| | - Christy Cortez Rossi
- Department of Craniofacial Biology; University of Colorado Denver; School of Dental Medicine; Aurora, CO USA
| | - Kristin Bruk Artinger
- Department of Craniofacial Biology; University of Colorado Denver; School of Dental Medicine; Aurora, CO USA
| |
Collapse
|
40
|
Ruhrberg C, Schwarz Q. In the beginning: Generating neural crest cell diversity. Cell Adh Migr 2010; 4:622-30. [PMID: 20930541 PMCID: PMC3011256 DOI: 10.4161/cam.4.4.13502] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 09/02/2010] [Indexed: 11/19/2022] Open
Abstract
Neural crest cells (NCCs) are migratory cells that delaminate from the neural tube early in development and then disseminate throughout the embryo to give rise to a wide variety of cell types that are key to the vertebrate body plan. During their journey from the neural tube to their peripheral targets, NCCs progressively differentiate, raising the question when the fate of an individual NCC is sealed. One hypothesis suggests that the fate of a NCC is specified by target-derived signals emanating from the environment they migrate through, while another hypothesis proposes that NCCs are already specified to differentiate along select lineages at the time they are born in the neural tube, with environmental signals helping them to realize their prespecified fate potential. Alternatively, both mechanisms may cooperate to drive NCC diversity. This review highlights recent advances in our understanding of prespecification during trunk NCC development.
Collapse
Affiliation(s)
| | - Quenten Schwarz
- Centre for Cancer Biology; Department of Human Immunology; SA Pathology; Adelaide, Australia
| |
Collapse
|
41
|
Gammill LS, Roffers-Agarwal J. Division of labor during trunk neural crest development. Dev Biol 2010; 344:555-65. [PMID: 20399766 PMCID: PMC2914176 DOI: 10.1016/j.ydbio.2010.04.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/09/2010] [Accepted: 04/09/2010] [Indexed: 01/13/2023]
Abstract
Neural crest cells, the migratory precursors of numerous cell types including the vertebrate peripheral nervous system, arise in the dorsal neural tube and follow prescribed routes into the embryonic periphery. While the timing and location of neural crest migratory pathways has been well documented in the trunk, a comprehensive collection of signals that guides neural crest migration along these paths has only recently been established. In this review, we outline the molecular cascade of events during trunk neural crest development. After describing the sequential routes taken by trunk neural crest cells, we consider the guidance cues that pattern these neural crest trajectories. We pay particular attention to segmental neural crest development and the steps and signals that generate a metameric peripheral nervous system, attempting to reconcile conflicting observations in chick and mouse. Finally, we compare cranial and trunk neural crest development in order to highlight common themes.
Collapse
Affiliation(s)
- Laura S Gammill
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
42
|
Reyes M, Zandberg K, Desmawati I, de Bellard ME. Emergence and migration of trunk neural crest cells in a snake, the California Kingsnake (Lampropeltis getula californiae). BMC DEVELOPMENTAL BIOLOGY 2010; 10:52. [PMID: 20482793 PMCID: PMC2886003 DOI: 10.1186/1471-213x-10-52] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 05/18/2010] [Indexed: 11/10/2022]
Abstract
Background The neural crest is a group of multipotent cells that emerges after an epithelial-to-mesenchymal transition from the dorsal neural tube early during development. These cells then migrate throughout the embryo, giving rise to a wide variety derivatives including the peripheral nervous system, craniofacial skeleton, pigment cells, and endocrine organs. While much is known about neural crest cells in mammals, birds, amphibians and fish, relatively little is known about their development in non-avian reptiles like snakes and lizards. Results In this study, we show for the first time ever trunk neural crest migration in a snake by labeling it with DiI and immunofluorescence. As in birds and mammals, we find that early migrating trunk neural crest cells use both a ventromedial pathway and an inter-somitic pathway in the snake. However, unlike birds and mammals, we also observed large numbers of late migrating neural crest cells utilizing the inter-somitic pathway in snake. Conclusions We found that while trunk neural crest migration in snakes is very similar to that of other amniotes, the inter-somitic pathway is used more extensively by late-migrating trunk neural crest cells in snake.
Collapse
Affiliation(s)
- Michelle Reyes
- Biology Dept, California State University Northridge, Northridge, CA 91330, USA
| | | | | | | |
Collapse
|
43
|
Schwarz Q, Ruhrberg C. Neuropilin, you gotta let me know: should I stay or should I go? Cell Adh Migr 2010; 4:61-6. [PMID: 20026901 DOI: 10.4161/cam.4.1.10207] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neuropilins are highly conserved single pass transmembrane proteins specific to vertebrates. They were originally identified as adhesion molecules in the nervous system, but were subsequently rediscovered as the ligand binding subunit of the class 3 semaphorin receptor in neurons and then as blood vessel receptors for the vascular endothelial growth factor VEGF. More recently they have also been implicated as mediators of the T-cell immune response and as key prognostic markers in several types of cancer. Because neuropilins bind multiple ligands and associate with several different types of co-receptors, they variably promote cell adhesion, repulsion or attraction. Which response they ultimately invoke is decided by the cellular and even subcellular context the neuropilins find themselves in. Here, we review how the developmental functions of the neuropilins are influenced by such different contexts.
Collapse
|
44
|
McLennan R, Teddy JM, Kasemeier-Kulesa JC, Romine MH, Kulesa PM. Vascular endothelial growth factor (VEGF) regulates cranial neural crest migration in vivo. Dev Biol 2009; 339:114-25. [PMID: 20036652 DOI: 10.1016/j.ydbio.2009.12.022] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/21/2009] [Accepted: 12/16/2009] [Indexed: 01/13/2023]
Abstract
The neural crest is an excellent model to study embryonic cell migration, since cell behaviors can be studied in vivo with advanced optical imaging and molecular intervention. What is unclear is how molecular signals direct neural crest cell (NCC) migration through multiple microenvironments and into specific targets. Here, we tested the hypothesis that the invasion of cranial NCCs, specifically the rhombomere 4 (r4) migratory stream into branchial arch 2 (ba2), is due to chemoattraction through neuropilin-1-vascular endothelial growth factor (VEGF) interactions. We found that the spatio-temporal expression pattern of VEGF in the ectoderm correlated with the NCC migratory front. RT-PCR analysis of the r4 migratory stream showed that ba2 tissue expressed VEGF and r4 NCCs expressed VEGF receptor 2. When soluble VEGF receptor 1 (sVEGFR1) was injected distal to the r4 migratory front, to bind up endogenous VEGF, NCCs failed to completely invade ba2. Time-lapse imaging revealed that cranial NCCs were attracted to ba2 tissue or VEGF sources in vitro. VEGF-soaked beads or VEGF-expressing cells placed adjacent to the r4 migratory stream caused NCCs to divert from stereotypical pathways and move towards an ectopic VEGF source. Our results suggest a model in which NCC entry and invasion of ba2 is dependent on chemoattractive signaling through neuropilin-1-VEGF interactions.
Collapse
Affiliation(s)
- Rebecca McLennan
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | | | | | | | | |
Collapse
|