1
|
Binelli A, Nigro L, Sbarberi R, Della Torre C, Magni S. To be or not to be plastics? Protein modulation and biochemical effects in zebrafish embryos exposed to three water-soluble polymers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167699. [PMID: 37832656 DOI: 10.1016/j.scitotenv.2023.167699] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
Water-soluble polymers (WSPs) are a particular category of polymers that, due to their capability to be soluble in water, come out of the classic definition of plastic and therefore also from its regulation and control, representing a possible new environmental problem considering the number of consumer products in which they are contained. For this reason, the aim of this study was to evaluate the possible adverse effects of three of the most used WSPs (polyacrylic acid - PAA, polyethylene glycol - PEG, polyvinylpyrrolidone - PVP), administered at relevant environmental concentrations (0.001, 0.5 and 1 mg/L) to Danio rerio (zebrafish) embryos up to 120 h post fertilization. To assess the WSP toxicity at the molecular, cellular and organism level we used an integrated ecotoxicological approach of both biomarkers and high-throughput technology based on gel-free proteomics. The main results showed how all the three WSPs up-regulated many proteins (up to 74 in specimens exposed to 1 mg/L PVP) with a wide range of molecular functions and involved in numerous cellular pathways of exposed specimens. On the other hand, the measurement of biomarkers showed how PAA and PVP were able to activate the antioxidant machinery following an over-production of reactive oxygen species, while PEG produced no significant changes in the biomarkers measured. Based on the obtained results, the use and application of WSPs should be revised and regulated.
Collapse
Affiliation(s)
- Andrea Binelli
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| | - Lara Nigro
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy.
| | - Riccardo Sbarberi
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| | - Camilla Della Torre
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| | - Stefano Magni
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
2
|
Neely SA, Lyons DA. Insights Into Central Nervous System Glial Cell Formation and Function From Zebrafish. Front Cell Dev Biol 2021; 9:754606. [PMID: 34912801 PMCID: PMC8666443 DOI: 10.3389/fcell.2021.754606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/05/2021] [Indexed: 12/23/2022] Open
Abstract
The term glia describes a heterogenous collection of distinct cell types that make up a large proportion of our nervous system. Although once considered the glue of the nervous system, the study of glial cells has evolved significantly in recent years, with a large body of literature now highlighting their complex and diverse roles in development and throughout life. This progress is due, in part, to advances in animal models in which the molecular and cellular mechanisms of glial cell development and function as well as neuron-glial cell interactions can be directly studied in vivo in real time, in intact neural circuits. In this review we highlight the instrumental role that zebrafish have played as a vertebrate model system for the study of glial cells, and discuss how the experimental advantages of the zebrafish lend themselves to investigate glial cell interactions and diversity. We focus in particular on recent studies that have provided insight into the formation and function of the major glial cell types in the central nervous system in zebrafish.
Collapse
Affiliation(s)
- Sarah A. Neely
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - David A. Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Rossin F, Costa R, Bordi M, D'Eletto M, Occhigrossi L, Farrace MG, Barlev N, Ciccosanti F, Muccioli S, Chieregato L, Szabo I, Fimia GM, Piacentini M, Leanza L. Transglutaminase Type 2 regulates the Wnt/β-catenin pathway in vertebrates. Cell Death Dis 2021; 12:249. [PMID: 33674551 PMCID: PMC7935911 DOI: 10.1038/s41419-021-03485-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
TG2 is a multifunctional enzyme involved in several cellular processes and has emerging as a potential regulator of gene expression. In this regard, we have recently shown that TG2 is able to activate HSF1, the master transcriptional regulator of the stress-responsive genes; however, its effect on the overall gene expression remains unclear. To address this point, we analyzed, by RNA-seq, the effect of TG2 on the overall transcriptome as well as we characterized the TG2 interactome in the nucleus. The data obtained from these omics approaches reveal that TG2 markedly influences the overall cellular transcriptome profile and specifically the Wnt and HSF1 pathways. In particular, its ablation leads to a drastic downregulation of many key members of these pathways. Interestingly, we found that key components of the Wnt/β-catenin pathway are also downregulated in cells lacking HSF1, thus confirming that TG2 regulates the HSF1 and this axis controls the Wnt signaling. Mechanistic studies revealed that TG2 can regulate the Wnt pathway by physically interacts with β-catenin and its nuclear interactome includes several proteins known to be involved in the regulation of the Wnt signaling. In order to verify whether this effect is playing a role in vivo, we ablated TG2 in Danio rerio. Our data show that the zebrafish lacking TG2 cannot complete the development and their death is associated with an evident downregulation of the Wnt pathway and a defective heat-shock response. Our findings show for the first time that TG2 is essential for the correct embryonal development of lower vertebrates, and its action is mediated by the Wnt/HSF1 axis.
Collapse
Affiliation(s)
- Federica Rossin
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Roberto Costa
- Department of Biology, University of Padova, Padova, Italy
| | - Matteo Bordi
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
- Department of Oncohaematology and Cellular and Gene Therapy, IRCSS Bambino Gesù Children's Hospital, Rome, Italy
| | - Manuela D'Eletto
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Luca Occhigrossi
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | | | - Nickolai Barlev
- Institute of Cytology, Saint-Petersburg, Russia
- MIPT, Dolgoprudny, Moscow region, Russia
| | - Fabiola Ciccosanti
- National Institute for Infectious Diseases IRCCS 'Lazzaro Spallanzani', Rome, Italy
| | | | | | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy
| | - Gian Maria Fimia
- National Institute for Infectious Diseases IRCCS 'Lazzaro Spallanzani', Rome, Italy
- Department of Molecular Medicine, University of Rome "La Sapienza", Rome, Italy
| | - Mauro Piacentini
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy.
- Institute of Cytology, Saint-Petersburg, Russia.
| | - Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Dynein/dynactin is necessary for anterograde transport of Mbp mRNA in oligodendrocytes and for myelination in vivo. Proc Natl Acad Sci U S A 2017; 114:E9153-E9162. [PMID: 29073112 PMCID: PMC5664533 DOI: 10.1073/pnas.1711088114] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oligodendrocytes in the brain insulate neuronal axons in layers of fatty myelin to facilitate fast electrical signaling. Myelin basic protein (MBP), an important myelin component, is transported as mRNA away from the cell body before being translated into protein. In zebrafish, the anterograde motor kinesin transports mbp mRNA away from the cell body. We now identify myelination defects in zebrafish caused by a mutation in the retrograde motor complex dynein/dynactin, which normally transports cargos back toward the cell body. However, this mutant displays defects in anterograde mbp mRNA transport. We confirm in mammalian oligodendrocyte cultures that drug inhibition of dynein arrests transport in both directions and decreases MBP protein levels. Thus, dynein/dynactin is paradoxically required for anterograde mbp mRNA transport. Oligodendrocytes in the central nervous system produce myelin, a lipid-rich, multilamellar sheath that surrounds axons and promotes the rapid propagation of action potentials. A critical component of myelin is myelin basic protein (MBP), expression of which requires anterograde mRNA transport followed by local translation at the developing myelin sheath. Although the anterograde motor kinesin KIF1B is involved in mbp mRNA transport in zebrafish, it is not entirely clear how mbp transport is regulated. From a forward genetic screen for myelination defects in zebrafish, we identified a mutation in actr10, which encodes the Arp11 subunit of dynactin, a critical activator of the retrograde motor dynein. Both the actr10 mutation and pharmacological dynein inhibition in zebrafish result in failure to properly distribute mbp mRNA in oligodendrocytes, indicating a paradoxical role for the retrograde dynein/dynactin complex in anterograde mbp mRNA transport. To address the molecular mechanism underlying this observation, we biochemically isolated reporter-tagged Mbp mRNA granules from primary cultured mammalian oligodendrocytes to show that they indeed associate with the retrograde motor complex. Next, we used live-cell imaging to show that acute pharmacological dynein inhibition quickly arrests Mbp mRNA transport in both directions. Chronic pharmacological dynein inhibition also abrogates Mbp mRNA distribution and dramatically decreases MBP protein levels. Thus, these cell culture and whole animal studies demonstrate a role for the retrograde dynein/dynactin motor complex in anterograde mbp mRNA transport and myelination in vivo.
Collapse
|
5
|
MacDonald RB, Charlton-Perkins M, Harris WA. Mechanisms of Müller glial cell morphogenesis. Curr Opin Neurobiol 2017; 47:31-37. [PMID: 28850820 DOI: 10.1016/j.conb.2017.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/11/2017] [Indexed: 02/07/2023]
Abstract
Müller Glia (MG), the radial glia cells of the retina, have spectacular morphologies subserving their enormous functional complexity. As early as 1892, the great neuroanatomist Santiago Ramon y Cajal studied the morphological development of MG, defining several steps in their morphogenesis [1,2]. However, the molecular cues controlling these developmental steps remain poorly understood. As MG have roles to play in every cellular and plexiform layer, this review discusses our current understanding on how MG morphology may be linked to their function, including the developmental mechanisms involved in MG patterning and morphogenesis. Uncovering the mechanisms governing glial morphogenesis, using transcriptomics and imaging, may provide shed new light on the pathophysiology and treatment of human neurological disorders.
Collapse
Affiliation(s)
- Ryan B MacDonald
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Mark Charlton-Perkins
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - William A Harris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
6
|
Leventea E, Hazime K, Zhao C, Malicki J. Analysis of cilia structure and function in zebrafish. Methods Cell Biol 2016; 133:179-227. [PMID: 27263414 DOI: 10.1016/bs.mcb.2016.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cilia are microtubule-based protrusions on the surface of most eukaryotic cells. They are found in most, if not all, vertebrate organs. Prominent cilia form in sensory structures, the eye, the ear, and the nose, where they are crucial for the detection of environmental stimuli, such as light and odors. Cilia are also involved in developmental processes, including left-right asymmetry formation, limb morphogenesis, and the patterning of neurons in the neural tube. Some cilia, such as those found in nephric ducts, are thought to have mechanosensory roles. Zebrafish proved very useful in genetic analysis and imaging of cilia-related processes, and in the modeling of mechanisms behind human cilia abnormalities, known as ciliopathies. A number of zebrafish defects resemble those seen in human ciliopathies. Forward and reverse genetic strategies generated a wide range of cilia mutants in zebrafish, which can be studied using sophisticated genetic and imaging approaches. In this chapter, we provide a set of protocols to examine cilia morphology, motility, and cilia-related defects in a variety of organs, focusing on the embryo and early postembryonic development.
Collapse
Affiliation(s)
- E Leventea
- The University of Sheffield, Sheffield, United Kingdom
| | - K Hazime
- The University of Sheffield, Sheffield, United Kingdom
| | - C Zhao
- The University of Sheffield, Sheffield, United Kingdom; Ocean University of China, Qingdao, China
| | - J Malicki
- The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
7
|
Unexpected Roles for Ciliary Kinesins and Intraflagellar Transport Proteins. Genetics 2016; 203:771-85. [PMID: 27038111 DOI: 10.1534/genetics.115.180943] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 03/22/2016] [Indexed: 11/18/2022] Open
Abstract
Transport of proteins in the ciliary shaft is driven by microtubule-dependent motors, kinesins. Prior studies suggested that the heterotrimeric ciliary kinesin may be dispensable for certain aspects of transport in specialized cilia of vertebrate photoreceptor cells. To test this possibility further, we analyzed the mutant phenotype of the zebrafish kif3a gene, which encodes the common motor subunit of heterotrimeric ciliary kinesins. Cilia are absent in all organs examined, leading to the conclusion that kif3a is indispensable for ciliogenesis in all cells, including photoreceptors. Unexpectedly, kif3a function precedes ciliogenesis as ciliary basal bodies are mispositioned in mutant photoreceptors. This phenotype is much less pronounced in intraflagellar transport (IFT) mutants and reveals that kif3a has a much broader role than previously assumed. Despite the severity of their basal body phenotype, kif3a mutant photoreceptors survive longer compared to those in IFT mutants, which display much weaker basal body mispositioning. This effect is absent in kif3a;IFT double mutants, indicating that IFT proteins have ciliary transport-independent roles, which add to the severity of their photoreceptor phenotype. kif3a is dispensable for basal body docking in otic vesicle sensory epithelia and, surprisingly, short cilia form in mechanosensory cristae even in the absence of kif3a In contrast to Kif3a, the functions of the Kif3c-related protein, encoded by the kif3c-like (kif3cl) gene, and the homodimeric ciliary kinesin, kif17, are dispensable for photoreceptor morphogenesis. These studies demonstrate unexpected new roles for both ciliary heterotrimeric kinesins and IFT particle genes and clarify the function of kif17, the homodimeric ciliary kinesin gene.
Collapse
|
8
|
|
9
|
Abstract
The major cardiac voltage-gated sodium channel Nav1.5 associates with proteins that regulate its biosynthesis, localization, activity and degradation. Identification of partner proteins is crucial for a better understanding of the channel regulation. Using a yeast two-hybrid screen, we identified dynamitin as a Nav1.5-interacting protein. Dynamitin is part of the microtubule-binding multiprotein complex dynactin. When overexpressed it is a potent inhibitor of dynein/kinesin-mediated transport along the microtubules by disrupting the dynactin complex and dissociating cargoes from microtubules. The use of deletion constructs showed that the C-terminal domain of dynamitin is essential for binding to the first intracellular interdomain of Nav1.5. Co-immunoprecipitation assays confirmed the association between Nav1.5 and dynamitin in mouse heart extracts. Immunostaining experiments showed that dynamitin and Nav1.5 co-localize at intercalated discs of mouse cardiomyocytes. The whole-cell patch-clamp technique was applied to test the functional link between Nav1.5 and dynamitin. Dynamitin overexpression in HEK-293 (human embryonic kidney 293) cells expressing Nav1.5 resulted in a decrease in sodium current density in the membrane with no modification of the channel-gating properties. Biotinylation experiments produced similar information with a reduction in Nav1.5 at the cell surface when dynactin-dependent transport was inhibited. The present study strongly suggests that dynamitin is involved in the regulation of Nav1.5 cell-surface density.
Collapse
|
10
|
Vacaru AM, Unlu G, Spitzner M, Mione M, Knapik EW, Sadler KC. In vivo cell biology in zebrafish - providing insights into vertebrate development and disease. J Cell Sci 2014; 127:485-95. [PMID: 24481493 PMCID: PMC4007761 DOI: 10.1242/jcs.140194] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Over the past decades, studies using zebrafish have significantly advanced our understanding of the cellular basis for development and human diseases. Zebrafish have rapidly developing transparent embryos that allow comprehensive imaging of embryogenesis combined with powerful genetic approaches. However, forward genetic screens in zebrafish have generated unanticipated findings that are mirrored by human genetic studies: disruption of genes implicated in basic cellular processes, such as protein secretion or cytoskeletal dynamics, causes discrete developmental or disease phenotypes. This is surprising because many processes that were assumed to be fundamental to the function and survival of all cell types appear instead to be regulated by cell-specific mechanisms. Such discoveries are facilitated by experiments in whole animals, where zebrafish provides an ideal model for visualization and manipulation of organelles and cellular processes in a live vertebrate. Here, we review well-characterized mutants and newly developed tools that underscore this notion. We focus on the secretory pathway and microtubule-based trafficking as illustrative examples of how studying cell biology in vivo using zebrafish has broadened our understanding of the role fundamental cellular processes play in embryogenesis and disease.
Collapse
Affiliation(s)
- Ana M. Vacaru
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| | - Gokhan Unlu
- Division of Genetic Medicine, Department of Medicine, and Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Marie Spitzner
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Marina Mione
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Ela W. Knapik
- Division of Genetic Medicine, Department of Medicine, and Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kirsten C. Sadler
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| |
Collapse
|
11
|
Sept6 is required for ciliogenesis in Kupffer's vesicle, the pronephros, and the neural tube during early embryonic development. Mol Cell Biol 2014; 34:1310-21. [PMID: 24469395 DOI: 10.1128/mcb.01409-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Septins are conserved filament-forming GTP-binding proteins that act as cellular scaffolds or diffusion barriers in a number of cellular processes. However, the role of septins in vertebrate development remains relatively obscure. Here, we show that zebrafish septin 6 (sept6) is first expressed in the notochord and then in nearly all of the ciliary organs, including Kupffer's vesicle (KV), the pronephros, eye, olfactory bulb, and neural tube. Knockdown of sept6 in zebrafish embryos results in reduced numbers and length of cilia in KV. Consequently, cilium-related functions, such as the left-right patterning of internal organs and nodal/spaw signaling, are compromised. Knockdown of sept6 also results in aberrant cilium formation in the pronephros and neural tube, leading to cilium-related defects in pronephros development and Sonic hedgehog (Shh) signaling. We further demonstrate that SEPT6 associates with acetylated α-tubulin in vivo and localizes along the axoneme in the cilia of zebrafish pronephric duct cells as well as cultured ZF4 cells. Our study reveals a novel role of sept6 in ciliogenesis during early embryonic development in zebrafish.
Collapse
|
12
|
Yoon B, Jung H, Dwivedy A, O'Hare C, Zivraj K, Holt C. Local translation of extranuclear lamin B promotes axon maintenance. Cell 2012; 148:752-64. [PMID: 22341447 PMCID: PMC3314965 DOI: 10.1016/j.cell.2011.11.064] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/26/2011] [Accepted: 11/18/2011] [Indexed: 12/27/2022]
Abstract
Local protein synthesis plays a key role in regulating stimulus-induced responses in dendrites and axons. Recent genome-wide studies have revealed that thousands of different transcripts reside in these distal neuronal compartments, but identifying those with functionally significant roles presents a challenge. We performed an unbiased screen to look for stimulus-induced, protein synthesis-dependent changes in the proteome of Xenopus retinal ganglion cell (RGC) axons. The intermediate filament protein lamin B2 (LB2), normally associated with the nuclear membrane, was identified as an unexpected major target. Axonal ribosome immunoprecipitation confirmed translation of lb2 mRNA in vivo. Inhibition of lb2 mRNA translation in axons in vivo does not affect guidance but causes axonal degeneration. Axonal LB2 associates with mitochondria, and LB2-deficient axons exhibit mitochondrial dysfunction and defects in axonal transport. Our results thus suggest that axonally synthesized lamin B plays a crucial role in axon maintenance by promoting mitochondrial function.
Collapse
Affiliation(s)
- Byung C. Yoon
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Hosung Jung
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Asha Dwivedy
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Catherine M. O'Hare
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Krishna H. Zivraj
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Christine E. Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
13
|
Reynolds AL, Blacque OE, Kennedy BN. The genetics of outer segment morphogenesis in zebrafish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:431-41. [PMID: 22183362 DOI: 10.1007/978-1-4614-0631-0_55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Alison L Reynolds
- UCD School of Biomedical and Biomolecular Sciences, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | |
Collapse
|
14
|
Abstract
The cilium, a previously little studied cell surface protrusion, has emerged as an important organelle in vertebrate cells. This tiny structure is essential for normal embryonic development, including the formation of left-right asymmetry, limb morphogenesis, and the differentiation of sensory cells. In the adult, cilia also function in a variety of processes, such as the survival of photoreceptor cells, and the homeostasis in several tissues, including the epithelia of nephric ducts. Human ciliary malfunction is associated with situs inversus, kidney cysts, polydactyly, blindness, mental retardation, obesity, and many other abnormalities. The genetic accessibility and optical transparency of the zebrafish make it an excellent vertebrate model system to study cilia biology. In this chapter, we describe the morphology and distribution of cilia in zebrafish embryonic and larval organs. We also provide essential protocols to analyze cilia formation and function.
Collapse
Affiliation(s)
- Jarema Malicki
- Division of Craniofacial and Molecular Genetics, Tufts University, Massachusetts, USA
| | | | | | | | | |
Collapse
|
15
|
Bibliowicz J, Tittle RK, Gross JM. Toward a better understanding of human eye disease insights from the zebrafish, Danio rerio. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:287-330. [PMID: 21377629 DOI: 10.1016/b978-0-12-384878-9.00007-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Visual impairment and blindness is widespread across the human population, and the development of therapies for ocular pathologies is of high priority. The zebrafish represents a valuable model organism for studying human ocular disease; it is utilized in eye research to understand underlying developmental processes, to identify potential causative genes for human disorders, and to develop therapies. Zebrafish eyes are similar in morphology, physiology, gene expression, and function to human eyes. Furthermore, zebrafish are highly amenable to laboratory research. This review outlines the use of zebrafish as a model for human ocular diseases such as colobomas, glaucoma, cataracts, photoreceptor degeneration, as well as dystrophies of the cornea and retinal pigmented epithelium.
Collapse
Affiliation(s)
- Jonathan Bibliowicz
- University of Texas at Austin, Section of Molecular Cell and Developmental Biology, Austin, Texas, USA
| | | | | |
Collapse
|
16
|
Genetics of photoreceptor degeneration and regeneration in zebrafish. Cell Mol Life Sci 2010; 68:651-9. [PMID: 20972813 PMCID: PMC3029675 DOI: 10.1007/s00018-010-0563-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/09/2010] [Accepted: 10/05/2010] [Indexed: 11/26/2022]
Abstract
Zebrafish are unique in that they provide a useful model system for studying two critically important problems in retinal neurobiology, the mechanisms responsible for triggering photoreceptor cell death and the innate stem cell–mediated regenerative response elicited by this death. In this review we highlight recent seminal findings in these two fields. We first focus on zebrafish as a model for studying photoreceptor degeneration. We summarize the genes currently known to cause photoreceptor degeneration, and we describe the phenotype of a few zebrafish mutants in detail, highlighting the usefulness of this model for studying this process. In the second section, we discuss the several different experimental paradigms that are available to study regeneration in the teleost retina. A model outlining the sequence of gene expression starting from the dedifferentiation of Müller glia to the formation of rod and cone precursors is presented.
Collapse
|
17
|
Insinna C, Baye LM, Amsterdam A, Besharse JC, Link BA. Analysis of a zebrafish dync1h1 mutant reveals multiple functions for cytoplasmic dynein 1 during retinal photoreceptor development. Neural Dev 2010; 5:12. [PMID: 20412557 PMCID: PMC2880287 DOI: 10.1186/1749-8104-5-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 04/22/2010] [Indexed: 11/28/2022] Open
Abstract
Background Photoreceptors of the retina are highly compartmentalized cells that function as the primary sensory neurons for receiving and initiating transmission of visual information. Proper morphogenesis of photoreceptor neurons is essential for their normal function and survival. We have characterized a zebrafish mutation, cannonball, that completely disrupts photoreceptor morphogenesis. Results Analysis revealed a non-sense mutation in cytoplasmic dynein heavy chain 1 (dync1h1), a critical subunit in Dynein1, to underlie the cannonball phenotypes. Dynein1 is a large minus-end directed, microtubule motor protein complex that has been implicated in multiple, essential cellular processes. In photoreceptors, Dynein1 is thought to mediate post-Golgi vesicle trafficking, while Dynein2 is thought to be responsible for outer segment maintenance. Surprisingly, cannonball embryos survive until larval stages, owing to wild-type maternal protein stores. Retinal photoreceptor neurons, however, are significantly affected by loss of Dync1h1, as transmission electron microscopy and marker analyses demonstrated defects in organelle positioning and outer segment morphogenesis and suggested defects in post-Golgi vesicle trafficking. Furthermore, dosage-dependent antisense oligonucleotide knock-down of dync1h1 revealed outer segment abnormalities in the absence of overt inner segment polarity and trafficking defects. Consistent with a specific function of Dync1h1 within the outer segment, immunolocalization showed that this protein and other subunits of Dynein1 and Dynactin localized to the ciliary axoneme of the outer segment, in addition to their predicted inner segment localization. However, knock-down of Dynactin subunits suggested that this protein complex, which is known to augment many Dynein1 activities, is only essential for inner segment processes as outer segment morphogenesis was normal. Conclusions Our results indicate that Dynein1 is required for multiple cellular processes in photoreceptor neurons, including organelle positioning, proper outer segment morphogenesis, and potentially post-Golgi vesicle trafficking. Titrated knock-down of dync1h1 indicated that outer segment morphogenesis was affected in photoreceptors that showed normal inner segments. These observations, combined with protein localization studies, suggest that Dynein1 may have direct and essential functions in photoreceptor outer segments, in addition to inner segment functions.
Collapse
Affiliation(s)
- Christine Insinna
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226-0509, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
For more than a decade, the zebrafish has proven to be an excellent model organism to investigate the mechanisms of neurogenesis during development. The often cited advantages, namely external development, genetic, and optical accessibility, have permitted direct examination and experimental manipulations of neurogenesis during development. Recent studies have begun to investigate adult neurogenesis, taking advantage of its widespread occurrence in the mature zebrafish brain to investigate the mechanisms underlying neural stem cell maintenance and recruitment. Here we provide a comprehensive overview of the tools and techniques available to study neurogenesis in zebrafish both during development and in adulthood. As useful resources, we provide tables of available molecular markers, transgenic, and mutant lines. We further provide optimized protocols for studying neurogenesis in the adult zebrafish brain, including in situ hybridization, immunohistochemistry, in vivo lipofection and electroporation methods to deliver expression constructs, administration of bromodeoxyuridine (BrdU), and finally slice cultures. These currently available tools have put zebrafish on par with other model organisms used to investigate neurogenesis.
Collapse
Affiliation(s)
- Prisca Chapouton
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | | |
Collapse
|
19
|
Abbas L, Whitfield TT. The zebrafish inner ear. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1546-5098(10)02904-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
20
|
Abstract
The zebrafish is one of the leading models for the analysis of the vertebrate visual system. A wide assortment of molecular, genetic, and cell biological approaches is available to study zebrafish visual system development and function. As new techniques become available, genetic analysis and imaging continue to be the strengths of the zebrafish model. In particular, recent developments in the use of transposons and zinc finger nucleases to produce new generations of mutant strains enhance both forward and reverse genetic analysis. Similarly, the imaging of developmental and physiological processes benefits from a wide assortment of fluorescent proteins and the ways to express them in the embryo. The zebrafish is also highly attractive for high-throughput screening of small molecules, a promising strategy to search for compounds with therapeutic potential. Here we discuss experimental approaches used in the zebrafish model to study morphogenetic transformations, cell fate decisions, and the differentiation of fine morphological features that ultimately lead to the formation of the functional vertebrate visual system.
Collapse
Affiliation(s)
- Andrei Avanesov
- Division of Craniofacial and Molecular Genetics, Tufts University, Boston, Massachusetts, USA
| | | |
Collapse
|