1
|
Hörauf JA, Schindler CR, Schaible I, Wang M, Weber B, El Saman A, Pallas C, Widera M, Marzi I, Henrich D, Leppik L. Extracellular vesicles epitopes as potential biomarker candidates in patients with traumatic spinal cord injury. Front Immunol 2024; 15:1478786. [PMID: 39703513 PMCID: PMC11656158 DOI: 10.3389/fimmu.2024.1478786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/06/2024] [Indexed: 12/21/2024] Open
Abstract
Background Extracellular vesicles (EVs), a heterogeneous group of cell-derived, membrane-enclosed vesicles bearing cell-specific epitopes, have been demonstrated to play a crucial role in neuronal-glial communication and the orchestration of neuroinflammatory processes. However, the existing evidence regarding their function as biomarkers and their role in the pathobiology of traumatic spinal cord injuries (tSCI), particularly in humans, is scarce. Objective The primary goal of this study was to investigate whether a distinct pattern of EV surface epitopes detected in the plasma of individuals suffering from spinal cord injury is indicative of tSCI. Methods The study includes patients with isolated tSCI (n=8), polytrauma patients without tSCI (PT; ISS ≥16, n=8), and healthy volunteers (HV; n=8). Plasma samples from tSCI and PT patients were collected right after admission to the emergency room (ER), 24 hours (24h), and 48h after trauma. EVs were isolated via size exclusion chromatography, and EVs' surface epitopes were quantified with MACSPlex EV Kit Neuro (prototype product, Miltenyi Biotec) and compared among the groups. Additionally, results were correlated with clinical parameters. Results In total, 19 epitopes differed significantly between the tSCI and the HV groups. Out of these 19, four (CD47, CD56, CD68, and ADAM17) were found to differ significantly among tSCI and PT groups. The expression of the CD47 epitope was found to correlate positively with the American Spinal Injury Association (ASIA) impairment scale. Conclusion We identified four potential EV-based tSCI biomarkers (CD47+, CD56+, CD68+, and ADAM17+ EVs) that differ in tSCI, with CD47+ EVs showing a strong correlation with the neurological function in tSCI. Thus, future studies might further specify the relevance of potential tSCI-specific biomarkers and investigate underlying mechanisms of tSCI.
Collapse
Affiliation(s)
- Jason-Alexander Hörauf
- Goethe University Frankfurt, University Hospital, Department of Trauma Surgery and Orthopedics, Frankfurt, Germany
| | - Cora Rebecca Schindler
- Goethe University Frankfurt, University Hospital, Department of Trauma Surgery and Orthopedics, Frankfurt, Germany
| | - Inna Schaible
- Goethe University Frankfurt, University Hospital, Department of Trauma Surgery and Orthopedics, Frankfurt, Germany
| | - Minhong Wang
- Goethe University Frankfurt, University Hospital, Department of Trauma Surgery and Orthopedics, Frankfurt, Germany
| | - Birte Weber
- Goethe University Frankfurt, University Hospital, Department of Trauma Surgery and Orthopedics, Frankfurt, Germany
| | - André El Saman
- Goethe University Frankfurt, University Hospital, Department of Trauma Surgery and Orthopedics, Frankfurt, Germany
| | - Christiane Pallas
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| | - Marek Widera
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| | - Ingo Marzi
- Goethe University Frankfurt, University Hospital, Department of Trauma Surgery and Orthopedics, Frankfurt, Germany
| | - Dirk Henrich
- Goethe University Frankfurt, University Hospital, Department of Trauma Surgery and Orthopedics, Frankfurt, Germany
| | - Liudmila Leppik
- Goethe University Frankfurt, University Hospital, Department of Trauma Surgery and Orthopedics, Frankfurt, Germany
| |
Collapse
|
2
|
Bogaciu CA, Rizzoli SO. Membrane trafficking of synaptic adhesion molecules. J Physiol 2024. [PMID: 39322997 DOI: 10.1113/jp286401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
Synapse formation and stabilization are aided by several families of adhesion molecules, which are generally seen as specialized surface receptors. The function of most surface receptors, including adhesion molecules, is modulated in non-neuronal cells by the processes of endocytosis and recycling, which control the number of active receptors found on the cell surface. These processes have not been investigated extensively at the synapse. This review focuses on the current status of this topic, summarizing general findings on the membrane trafficking of the most prominent synaptic adhesion molecules. Remarkably, evidence for endocytosis processes has been obtained for many synaptic adhesion proteins, including dystroglycans, latrophilins, calsyntenins, netrins, teneurins, neurexins, neuroligins and neuronal pentraxins. Less evidence has been obtained on their recycling, possibly because of the lack of specific assays. We conclude that the trafficking of the synaptic adhesion molecules is an important topic, which should receive more attention in the future.
Collapse
Affiliation(s)
- Cristian A Bogaciu
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Cui Y, Rolova T, Fagerholm SC. The role of integrins in brain health and neurodegenerative diseases. Eur J Cell Biol 2024; 103:151441. [PMID: 39002282 DOI: 10.1016/j.ejcb.2024.151441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
Integrins are heterodimeric membrane proteins expressed on the surface of most cells. They mediate adhesion and signaling processes relevant for a wealth of physiological processes, including nervous system development and function. Interestingly, integrins are also recognized therapeutic targets for inflammatory diseases, such as multiple sclerosis. Here, we discuss the role of integrins in brain development and function, as well as in neurodegenerative diseases affecting the brain (Alzheimer's disease, multiple sclerosis, stroke). Furthermore, we discuss therapeutic targeting of these adhesion receptors in inflammatory diseases of the brain.
Collapse
Affiliation(s)
- Yunhao Cui
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
| | - Taisia Rolova
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki 00290, Finland
| | - Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland.
| |
Collapse
|
4
|
Kumar Podder A, Mohamed MA, Seidman RA, Tseropoulos G, Polanco JJ, Lei P, Sim FJ, Andreadis ST. Injectable shear-thinning hydrogels promote oligodendrocyte progenitor cell survival and remyelination in the central nervous system. SCIENCE ADVANCES 2024; 10:eadk9918. [PMID: 38996029 PMCID: PMC11244542 DOI: 10.1126/sciadv.adk9918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 06/10/2024] [Indexed: 07/14/2024]
Abstract
Cell therapy for the treatment of demyelinating diseases such as multiple sclerosis is hampered by poor survival of donor oligodendrocyte cell preparations, resulting in limited therapeutic outcomes. Excessive cell death leads to the release of intracellular alloantigens, which likely exacerbate local inflammation and may predispose the graft to eventual rejection. Here, we engineered innovative cell-instructive shear-thinning hydrogels (STHs) with tunable viscoelasticity and bioactivity for minimally invasive delivery of primary human oligodendrocyte progenitor cells (hOPCs) to the brain of a shiverer/rag2 mouse, a model of congenital hypomyelinating disease. The STHs enabled immobilization of prosurvival signals, including a recombinantly designed bidomain peptide and platelet-derived growth factor. Notably, STHs reduced the death rate of hOPCs significantly, promoted the production of myelinating oligodendrocytes, and enhanced myelination of the mouse brain 12 weeks post-implantation. Our results demonstrate the potential of STHs loaded with biological cues to improve cell therapies for the treatment of devastating myelopathies.
Collapse
Affiliation(s)
- Ashis Kumar Podder
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Mohamed Alaa Mohamed
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Richard A. Seidman
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Georgios Tseropoulos
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Jessie J. Polanco
- Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Pedro Lei
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Fraser J. Sim
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
- Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Stelios T. Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
- Department of Biomedical Engineering, University at Buffalo, SUNY, Buffalo, NY, USA
- Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
- Center of Cell, Gene and Tissue Engineering, University at Buffalo, SUNY, Buffalo, NY, USA
| |
Collapse
|
5
|
Liu G, Deng B, Huo L, Jiang S, Fan X, Mo Y, Ren J, Zhao Y, Xu L, Mu X. Temporal profiling and validation of oxidative stress-related genes in spinal cord injury. Brain Res Bull 2023; 205:110832. [PMID: 38042503 DOI: 10.1016/j.brainresbull.2023.110832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
Oxidative stress (OS) plays a pivotal role in the pathogenesis of spinal cord injury (SCI), yet its underlying mechanisms remain elusive. In this study, we explored the OS phenotype in a rat model of SCI. Subsequently, comprehensive bioinformatic analyses were conducted on microarray data pertaining to SCI (GSE45006). Notably, KEGG enrichment analysis revealed a pronounced enrichment of pivotal pathways, namely MAPK, FoxO, Apoptosis, NF-κB, TNF, HIF-1, and Chemokine across distinct phases of SCI. Furthermore, GO enrichment analysis highlighted the significance of biological processes including response to hypoxia, response to decrease oxygen levels, response to reactive oxygen species, cellular response to oxidative stress, reactive oxygen species metabolic process, and regulation of neuron death in the context of OS following SCI. Notably, our study underscores the prominence of nine genes, namely Itgb1, Itgam, Fn1, Icam1, Cd44, Cxcr4, Ptprc, Tlr4, and Tlr2 as OS key genes in SCI, consistently expressed in both the acute phase (1, 3, 7 days) and sub-acute phase (14 days). Subsequently, the relative mRNA expression of these key genes in different time points (1, 3, 7, 14 days) post-SCI. Finally, leveraging the DsigDB database, we predicted ten potential compounds potentially targeting OS and facilitating the repair of SCI, thus providing novel insights into the mechanisms underlying OS and identifying potential therapeutic targets for SCI.
Collapse
Affiliation(s)
- Gang Liu
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Bowen Deng
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Luyao Huo
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Shengyuan Jiang
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xiao Fan
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yanjun Mo
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jingpei Ren
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yi Zhao
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Lin Xu
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China.
| | - Xiaohong Mu
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
6
|
Ping J, Fu H, Xiong YJ, Soomro S, Huang ZH, Yu PP. Poly-L-ornithine blocks the inhibitory effects of fibronectin on oligodendrocyte differentiation and promotes myelin repair. Neural Regen Res 2023; 18:832-839. [DOI: 10.4103/1673-5374.353493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
Corty MM, Hulegaard AL, Hill JQ, Sheehan AE, Aicher SA, Freeman MR. Discoidin domain receptor regulates ensheathment, survival and caliber of peripheral axons. Development 2022; 149:281293. [PMID: 36355066 PMCID: PMC10112903 DOI: 10.1242/dev.200636] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/27/2022] [Indexed: 11/12/2022]
Abstract
Most invertebrate axons and small-caliber axons in mammalian peripheral nerves are unmyelinated but still ensheathed by glia. Here, we use Drosophila wrapping glia to study the development and function of non-myelinating axon ensheathment, which is poorly understood. Selective ablation of these glia from peripheral nerves severely impaired larval locomotor behavior. In an in vivo RNA interference screen to identify glial genes required for axon ensheathment, we identified the conserved receptor tyrosine kinase Discoidin domain receptor (Ddr). In larval peripheral nerves, loss of Ddr resulted in severely reduced ensheathment of axons and reduced axon caliber, and we found a strong dominant genetic interaction between Ddr and the type XV/XVIII collagen Multiplexin (Mp), suggesting that Ddr functions as a collagen receptor to drive axon wrapping. In adult nerves, loss of Ddr decreased long-term survival of sensory neurons and significantly reduced axon caliber without overtly affecting ensheathment. Our data establish essential roles for non-myelinating glia in nerve development, maintenance and function, and identify Ddr as a key regulator of axon-glia interactions during ensheathment and establishment of axon caliber.
Collapse
Affiliation(s)
- Megan M Corty
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Jo Q Hill
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amy E Sheehan
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sue A Aicher
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Marc R Freeman
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
8
|
Yan L, Fu J, Dong X, Chen B, Hong H, Cui Z. Identification of hub genes in the subacute spinal cord injury in rats. BMC Neurosci 2022; 23:51. [PMID: 36030234 PMCID: PMC9419366 DOI: 10.1186/s12868-022-00737-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
Background Spinal cord injury (SCI) is a common trauma in clinical practices. Subacute SCI is mainly characterized by neuronal apoptosis, axonal demyelination, Wallerian degeneration, axonal remodeling, and glial scar formation. It has been discovered in recent years that inflammatory responses are particularly important in subacute SCI. However, the mechanisms mediating inflammation are not completely clear. Methods The gene expression profiles of GSE20907, GSE45006, and GSE45550 were downloaded from the GEO database. The models of the three gene expression profiles were all for SCI to the thoracic segment of the rat. The differentially expressed genes (DEGs) and weighted correlation network analysis (WGCNA) were performed using R software, and functional enrichment analysis and protein–protein interaction (PPI) network were performed using Metascape. Module analysis was performed using Cytoscape. Finally, the relative mRNA expression level of central genes was verified by RT-PCR. Results A total of 206 candidate genes were identified, including 164 up-regulated genes and 42 down-regulated genes. The PPI network was evaluated, and the candidate genes enrichment results were mainly related to the production of tumor necrosis factors and innate immune regulatory response. Twelve core genes were identified, including 10 up-regulated genes and 2 down-regulated genes. Finally, seven hub genes with statistical significance in both the RT-PCR results and expression matrix were identified, namely Itgb1, Ptprc, Cd63, Lgals3, Vav1, Shc1, and Casp4. They are all related to the activation process of microglia. Conclusion In this study, we identified the hub genes and signaling pathways involved in subacute SCI using bioinformatics methods, which may provide a molecular basis for the future treatment of SCI.
Collapse
Affiliation(s)
- Lei Yan
- The Second Affiliated Hospital of Nantong University, No.6, North Road, 226000, Haierxiang, Nantong, Jiangsu, People's Republic of China
| | - Jiawei Fu
- The Second Affiliated Hospital of Nantong University, No.6, North Road, 226000, Haierxiang, Nantong, Jiangsu, People's Republic of China
| | - Xiong Dong
- The Second Affiliated Hospital of Nantong University, No.6, North Road, 226000, Haierxiang, Nantong, Jiangsu, People's Republic of China
| | - Baishen Chen
- The Second Affiliated Hospital of Nantong University, No.6, North Road, 226000, Haierxiang, Nantong, Jiangsu, People's Republic of China
| | - Hongxiang Hong
- The Second Affiliated Hospital of Nantong University, No.6, North Road, 226000, Haierxiang, Nantong, Jiangsu, People's Republic of China
| | - Zhiming Cui
- The Second Affiliated Hospital of Nantong University, No.6, North Road, 226000, Haierxiang, Nantong, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Whole exome sequencing identified a novel LAMA2 frameshift variant causing merosin-deficient congenital muscular dystrophy in a patient with cardiomyopathy, and autism-like behaviors. Neuromuscul Disord 2022; 32:776-784. [DOI: 10.1016/j.nmd.2022.07.400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/06/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022]
|
10
|
Scalabrino G. Epidermal Growth Factor in the CNS: A Beguiling Journey from Integrated Cell Biology to Multiple Sclerosis. An Extensive Translational Overview. Cell Mol Neurobiol 2022; 42:891-916. [PMID: 33151415 PMCID: PMC8942922 DOI: 10.1007/s10571-020-00989-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
This article reviews the wealth of papers dealing with the different effects of epidermal growth factor (EGF) on oligodendrocytes, astrocytes, neurons, and neural stem cells (NSCs). EGF induces the in vitro and in vivo proliferation of NSCs, their migration, and their differentiation towards the neuroglial cell line. It interacts with extracellular matrix components. NSCs are distributed in different CNS areas, serve as a reservoir of multipotent cells, and may be increased during CNS demyelinating diseases. EGF has pleiotropic differentiative and proliferative effects on the main CNS cell types, particularly oligodendrocytes and their precursors, and astrocytes. EGF mediates the in vivo myelinotrophic effect of cobalamin on the CNS, and modulates the synthesis and levels of CNS normal prions (PrPCs), both of which are indispensable for myelinogenesis and myelin maintenance. EGF levels are significantly lower in the cerebrospinal fluid and spinal cord of patients with multiple sclerosis (MS), which probably explains remyelination failure, also because of the EGF marginal role in immunology. When repeatedly administered, EGF protects mouse spinal cord from demyelination in various experimental models of autoimmune encephalomyelitis. It would be worth further investigating the role of EGF in the pathogenesis of MS because of its multifarious effects.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences, University of Milan, Via Mangiagalli 31, 20133, Milan, Italy.
| |
Collapse
|
11
|
Scalabrino G. Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines 2022; 10:biomedicines10040815. [PMID: 35453565 PMCID: PMC9026986 DOI: 10.3390/biomedicines10040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) remains enigmatic and controversial. Myelin sheaths in the central nervous system (CNS) insulate axons and allow saltatory nerve conduction. MS brings about the destruction of myelin sheaths and the myelin-producing oligodendrocytes (ODCs). The conundrum of remyelination failure is, therefore, crucial in MS. In this review, the roles of epidermal growth factor (EGF), normal prions, and cobalamin in CNS myelinogenesis are briefly summarized. Thereafter, some findings of other authors and ourselves on MS and MS-like models are recapitulated, because they have shown that: (a) EGF is significantly decreased in the CNS of living or deceased MS patients; (b) its repeated administration to mice in various MS-models prevents demyelination and inflammatory reaction; (c) as was the case for EGF, normal prion levels are decreased in the MS CNS, with a strong correspondence between liquid and tissue levels; and (d) MS cobalamin levels are increased in the cerebrospinal fluid, but decreased in the spinal cord. In fact, no remyelination can occur in MS if these molecules (essential for any form of CNS myelination) are lacking. Lastly, other non-immunological MS abnormalities are reviewed. Together, these results have led to a critical reassessment of MS pathogenesis, partly because EGF has little or no role in immunology.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
12
|
Scalabrino G. New Epidermal-Growth-Factor-Related Insights Into the Pathogenesis of Multiple Sclerosis: Is It Also Epistemology? Front Neurol 2021; 12:754270. [PMID: 34899572 PMCID: PMC8664554 DOI: 10.3389/fneur.2021.754270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022] Open
Abstract
Recent findings showing that epidermal growth factor (EGF) is significantly decreased in the cerebrospinal fluid (CSF) and spinal cord (SC) of living or deceased multiple sclerosis (MS) patients, and that its repeated administration to rodents with chemically- or virally-induced demyelination of the central nervous system (CNS) or experimental allergic encephalomyelitis (EAE) prevents demyelination and inflammatory reactions in the CNS, have led to a critical reassessment of the MS pathogenesis, partly because EGF is considered to have little or no role in immunology. EGF is the only myelinotrophic factor that has been tested in the CSF and spinal cord of MS patients, and it has been shown there is a good correspondence between liquid and tissue levels. This review: (a) briefly summarises the positive EGF effects on neural stem cells, oligodendrocyte cell lineage, and astrocytes in order to explain, at least in part, the biological basis of the myelin loss and remyelination failure in MS; and (b) after a short analysis of the evolution of the principle of cause-effect in the history of Western philosophy, highlights the lack of any experimental immune-, toxin-, or virus-mediated model that precisely reproduces the histopathological features and “clinical” symptoms of MS, thus underlining the inapplicability of Claude Bernard's crucial sequence of “observation, hypothesis, and hypothesis testing.” This is followed by a discussion of most of the putative non-immunologically-linked points of MS pathogenesis (abnormalities in myelinotrophic factor CSF levels, oligodendrocytes (ODCs), astrocytes, extracellular matrix, and epigenetics) on the basis of Popper's falsification principle, and the suggestion that autoimmunity and phologosis reactions (surely the most devasting consequences of the disease) are probably the last links in a chain of events that trigger the reactions. As it is likely that there is a lack of other myelinotrophic growth factors because myelinogenesis is controlled by various CNS and extra-CNS growth factors and other molecules within and outside ODCs, further studies are needed to investigate the role of non-immunological molecules at the time of the onset of the disease. In the words of Galilei, the human mind should be prepared to understand what nature has created.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
13
|
Kang M, Yao Y. Laminin regulates oligodendrocyte development and myelination. Glia 2021; 70:414-429. [PMID: 34773273 DOI: 10.1002/glia.24117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/08/2022]
Abstract
Oligodendrocytes are the cells that myelinate axons and provide trophic support to neurons in the CNS. Their dysfunction has been associated with a group of disorders known as demyelinating diseases, such as multiple sclerosis. Oligodendrocytes are derived from oligodendrocyte precursor cells, which differentiate into premyelinating oligodendrocytes and eventually mature oligodendrocytes. The development and function of oligodendrocytes are tightly regulated by a variety of molecules, including laminin, a major protein of the extracellular matrix. Accumulating evidence suggests that laminin actively regulates every aspect of oligodendrocyte biology, including survival, migration, proliferation, differentiation, and myelination. How can laminin exert such diverse functions in oligodendrocytes? It is speculated that the distinct laminin isoforms, laminin receptors, and/or key signaling molecules expressed in oligodendrocytes at different developmental stages are the reasons. Understanding molecular targets and signaling pathways unique to each aspect of oligodendrocyte biology will enable more accurate manipulation of oligodendrocyte development and function, which may have implications in the therapies of demyelinating diseases. Here in this review, we first introduce oligodendrocyte biology, followed by the expression of laminin and laminin receptors in oligodendrocytes and other CNS cells. Next, the functions of laminin in oligodendrocyte biology, including survival, migration, proliferation, differentiation, and myelination, are discussed in detail. Last, key questions and challenges in the field are discussed. By providing a comprehensive review on laminin's roles in OL lineage cells, we hope to stimulate novel hypotheses and encourage new research in the field.
Collapse
Affiliation(s)
- Minkyung Kang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
14
|
Roth JG, Huang MS, Li TL, Feig VR, Jiang Y, Cui B, Greely HT, Bao Z, Paşca SP, Heilshorn SC. Advancing models of neural development with biomaterials. Nat Rev Neurosci 2021; 22:593-615. [PMID: 34376834 PMCID: PMC8612873 DOI: 10.1038/s41583-021-00496-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
Human pluripotent stem cells have emerged as a promising in vitro model system for studying the brain. Two-dimensional and three-dimensional cell culture paradigms have provided valuable insights into the pathogenesis of neuropsychiatric disorders, but they remain limited in their capacity to model certain features of human neural development. Specifically, current models do not efficiently incorporate extracellular matrix-derived biochemical and biophysical cues, facilitate multicellular spatio-temporal patterning, or achieve advanced functional maturation. Engineered biomaterials have the capacity to create increasingly biomimetic neural microenvironments, yet further refinement is needed before these approaches are widely implemented. This Review therefore highlights how continued progression and increased integration of engineered biomaterials may be well poised to address intractable challenges in recapitulating human neural development.
Collapse
Affiliation(s)
- Julien G Roth
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle S Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Thomas L Li
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Vivian R Feig
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Yuanwen Jiang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Henry T Greely
- Stanford Law School, Stanford University, Stanford, CA, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Sergiu P Paşca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
15
|
Delétage N, Le Douce J, Callizot N, Godfrin Y, Lemarchant S. SCO-spondin-derived Peptide Protects Neurons from Glutamate-induced Excitotoxicity. Neuroscience 2021; 463:317-336. [PMID: 33577953 DOI: 10.1016/j.neuroscience.2021.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/22/2022]
Abstract
Subcommissural organ (SCO)-spondin is a brain-specific glycoprotein produced during embryogenesis, that strongly contributes to neuronal development. The SCO becomes atrophic in adults, halting SCO-spondin production and its neuroprotective functions. Using rat and human neuronal cultures, we evaluated the neuroprotective effect of an innovative peptide derived from SCO-spondin against glutamate excitotoxicity. Primary neurons were exposed to glutamate and treated with the linear (NX210) and cyclic (NX210c) forms of the peptide. Neuronal survival and neurite networks were assessed using immunohistochemistry or biochemistry. The mechanism of action of both peptide forms was investigated by exposing neurons to inhibitors targeting receptors and intracellular mediators that trigger apoptosis, neuronal survival, or neurite growth. NX210c promoted neuronal survival and prevented neurite network retraction in rat cortical and hippocampal neurons, whereas NX210 was efficient only in neuronal survival (cortical neurons) or neurite networks (hippocampal neurons). They triggered neuroprotection via integrin receptors and γ-secretase substrate(s), activation of the PI3K/mTOR pathway and disruption of the apoptotic cascade. The neuroprotective effect of NX210c was confirmed in human cortical neurons via the reduction of lactate dehydrogenase release and recovery of normal basal levels of apoptotic cells. Together, these results show that NX210 and NX210c protect against glutamate neurotoxicity through common and distinct mechanisms of action and that, most often, NX210c is more efficient than NX210. Proof of concept in central nervous system animal models are under investigation to evaluate the neuroprotective action of SCO-spondin-derived peptide.
Collapse
Affiliation(s)
| | | | - Noëlle Callizot
- Neuro-Sys, 410 Chemin Départemental 60, 13120 Gardanne, France.
| | - Yann Godfrin
- Axoltis Pharma, 60 Avenue Rockefeller, 69008 Lyon, France; Godfrin Life Sciences, 8 impasse de la source, 69300 Caluire-et-Cuire, France.
| | | |
Collapse
|
16
|
Khatoon F, Prasad K, Kumar V. Neurological manifestations of COVID-19: available evidences and a new paradigm. J Neurovirol 2020; 26:619-630. [PMID: 32839951 PMCID: PMC7444681 DOI: 10.1007/s13365-020-00895-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 01/01/2023]
Abstract
The recent pandemic outbreak of coronavirus is pathogenic and a highly transmittable viral infection caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2). In this time of ongoing pandemic, many emerging reports suggested that the SARS-CoV-2 has inimical effects on neurological functions, and even causes serious neurological damage. The neurological symptoms associated with COVID-19 include headache, dizziness, depression, anosmia, encephalitis, stroke, epileptic seizures, and Guillain-Barre syndrome along with many others. The involvement of the CNS may be related with poor prognosis and disease worsening. Here, we review the evidence of nervous system involvement and currently known neurological manifestations in COVID-19 infections caused by SARS-CoV-2. We prioritize the 332 human targets of SARS-CoV-2 according to their association with brain-related disease and identified 73 candidate genes. We prioritize these 73 genes according to their spatio-temporal expression in the different regions of brain and also through evolutionary intolerance analysis. The prioritized genes could be considered potential indicators of COVID-19-associated neurological symptoms and thus act as a possible therapeutic target for the prevention and treatment of CNS manifestations associated with COVID-19 patients.
Collapse
Affiliation(s)
- Fatima Khatoon
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, Uttar Pradesh, 201303, India
| | - Kartikay Prasad
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, Uttar Pradesh, 201303, India
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, Uttar Pradesh, 201303, India.
| |
Collapse
|
17
|
Arreguin AJ, Colognato H. Brain Dysfunction in LAMA2-Related Congenital Muscular Dystrophy: Lessons From Human Case Reports and Mouse Models. Front Mol Neurosci 2020; 13:118. [PMID: 32792907 PMCID: PMC7390928 DOI: 10.3389/fnmol.2020.00118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/09/2020] [Indexed: 12/26/2022] Open
Abstract
Laminin α2 gene (LAMA2)-related Congenital Muscular Dystrophy (CMD) was distinguished by a defining central nervous system (CNS) abnormality—aberrant white matter signals by MRI—when first described in the 1990s. In the past 25 years, researchers and clinicians have expanded our knowledge of brain involvement in LAMA2-related CMD, also known as Congenital Muscular Dystrophy Type 1A (MDC1A). Neurological changes in MDC1A can be structural, including lissencephaly and agyria, as well as functional, including epilepsy and intellectual disability. Mouse models of MDC1A include both spontaneous and targeted LAMA2 mutations and range from a partial loss of LAMA2 function (e.g., dy2J/dy2J), to a complete loss of LAMA2 expression (dy3K/dy3K). Diverse cellular and molecular changes have been reported in the brains of MDC1A mouse models, including blood-brain barrier dysfunction, altered neuro- and gliogenesis, changes in synaptic plasticity, and decreased myelination, providing mechanistic insight into potential neurological dysfunction in MDC1A. In this review article, we discuss selected studies that illustrate the potential scope and complexity of disturbances in brain development in MDC1A, and as well as highlight mechanistic insights that are emerging from mouse models.
Collapse
Affiliation(s)
- Andrea J Arreguin
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States.,Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY, United States
| | - Holly Colognato
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
18
|
Yuan N, Gong L, Tang K, He L, Hao W, Li X, Ma Q, Chen J. An Integrated Pharmacology-Based Analysis for Antidepressant Mechanism of Chinese Herbal Formula Xiao-Yao-San. Front Pharmacol 2020; 11:284. [PMID: 32256358 PMCID: PMC7094752 DOI: 10.3389/fphar.2020.00284] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/27/2020] [Indexed: 12/18/2022] Open
Abstract
Clinical studies and basic science experiments have widely demonstrated the antidepressant and anxiolytic effects of the herbal formula Xiao-Yao-San (XYS). However, the system mechanism of these effects has not been fully characterized. The present study conducted a comprehensive network pharmacological analysis of XYS and sorted all pharmacologically active components (149) through the TCMSP webserver. Then, all potential molecular targets (449) were predicted, of which there were 99 genes clearly related to depression. To further investigate the mechanism of antidepressant effects of XYS, a compound-depression targets (C-DTs) network was constructed, and Gene Ontology (GO) functional and KEGG pathway enrichment analyses were performed for the 99 targets. Enrichment results revealed that XYS could regulate multiple aspects of depression through these targets, related to metabolism, neuroendocrine function, and neuroimmunity. Prediction and analysis of protein–protein interactions resulted in selection of three hub genes (AKT1, TP53, and VEGFA). In addition, a total of seven ingredients from XYS could act on these hub genes and they were identified through ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS), including paeoniflorin, quercetin, luteolin, acacetin, aloe-emodin, Glyasperin C, kaempferol. Hereafter, we investigated the effects of paeoniflorin and its predicted target, the results suggest that it can reverse the neurotoxicity produced by CORT and could be a neuroprotective effect by promoting the phosphorylation of Akt. Overall, our research revealed the complicated antidepressant mechanism of XYS, and also provided a rational strategy for revealing the complex composition and function of Chinese herbal formula.
Collapse
Affiliation(s)
- Naijun Yuan
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Lian Gong
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Kairui Tang
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Liangliang He
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Wenzhi Hao
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaojuan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qingyu Ma
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jiaxu Chen
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
19
|
The extracellular domain of teneurin-4 promotes cell adhesion for oligodendrocyte differentiation. Biochem Biophys Res Commun 2019; 523:171-176. [PMID: 31839217 DOI: 10.1016/j.bbrc.2019.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/01/2019] [Indexed: 01/06/2023]
Abstract
Cell adhesion between oligodendrocytes and neuronal axons is a critical step for myelination that enables the rapid propagation of action potential in the central nervous system. Here, we show that the transmembrane protein teneurin-4 plays a role in the cell adhesion required for the differentiation of oligodendrocytes. We found that teneurin-4 formed molecular complexes with all of the four teneurin family members and promoted cell-cell adhesion. Oligodendrocyte lineage cells attached to the recombinant extracellular domain of all the teneurins and formed well-branched cell processes. In an axon-mimicking nanofibers assay, nanofibers coated with the recombinant teneurin-4 extracellular domain increased the differentiation of oligodendrocytes. Our results show that teneurin-4 binds to all teneurins through their extracellular domain, which facilitates the oligodendrocyte-axon adhesion, and promotes oligodendrocyte differentiation via its homophilic interaction.
Collapse
|
20
|
Torii T, Miyamoto Y, Yamauchi J. Cellular Signal-Regulated Schwann Cell Myelination and Remyelination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:3-22. [PMID: 31760634 DOI: 10.1007/978-981-32-9636-7_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasing studies have demonstrated multiple signaling molecules responsible for oligodendrocytes and Schwann cells development such as migration, differentiation, myelination, and axo-glial interaction. However, complicated roles in these events are still poorly understood. This chapter focuses on well established intracellular signaling transduction and recent topics that control myelination and are elucidated from accumulating evidences. The underlying molecular mechanisms, which involved in membrane trafficking through small GTPase Arf6 and its activator cytohesins, demonstrate the crosstalk between well established intracellular signaling transduction and a new finding signaling pathway in glial cells links to physiological phenotype and essential role in peripheral nerve system (PNS). Since Arf family proteins affect the expression levels of myelin protein zero (MPZ) and Krox20, which is a transcription factor regulatory factor in early developmental stages of Schwann cells, Arf proteins likely to be key regulator for Schwann cells development. Herein, we discuss how intracellular signaling transductions in Schwann cells associate with myelination in CNS and PNS.
Collapse
Affiliation(s)
- Tomohiro Torii
- Graduate School of Brain Science, Doshisha University, Kyotanabe-shi, Kyoto, Japan
| | - Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan.
| |
Collapse
|
21
|
Rademacher S, Eickholt BJ. PTEN in Autism and Neurodevelopmental Disorders. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036780. [PMID: 31427284 DOI: 10.1101/cshperspect.a036780] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Phosphatase and tensin homolog (PTEN) is a classical tumor suppressor that antagonizes phosphatidylinositol 3-phosphate kinase (PI3K)/AKT signaling. Although there is a strong association of PTEN germline mutations with cancer syndromes, they have also been described in a subset of patients with autism spectrum disorders with macrocephaly characterized by impairments in social interactions and communication, repetitive behavior and, occasionally, epilepsy. To investigate PTEN's role during neurodevelopment and its implication for autism, several conditional Pten knockout mouse models have been generated. These models are valuable tools to understand PTEN's spatiotemporal roles during neurodevelopment. In this review, we will highlight the anatomical and phenotypic results from animal studies and link them to cellular and molecular findings.
Collapse
Affiliation(s)
- Sebastian Rademacher
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Britta J Eickholt
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
22
|
Cui X, Guo YE, Fang JH, Shi CJ, Suo N, Zhang R, Xie X. Donepezil, a drug for Alzheimer's disease, promotes oligodendrocyte generation and remyelination. Acta Pharmacol Sin 2019; 40:1386-1393. [PMID: 30918344 DOI: 10.1038/s41401-018-0206-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/19/2018] [Indexed: 11/09/2022]
Abstract
Myelin sheaths play important roles in neuronal functions. In the central nervous system (CNS), the myelin is formed by oligodendrocytes (OLs), which are differentiated from oligodendrocyte precursor cells (OPCs). In CNS demyelinating disorders such as multiple sclerosis (MS), the myelin sheaths are damaged and the remyelination process is hindered. Small molecule drugs that promote OPC to OL differentiation and remyelination may provide a new way to treat these demyelinating diseases. Here we report that donepezil, an acetylcholinesterase inhibitor (AChEI) developed for the treatment of Alzheimer's disease (AD), significantly promotes OPC to OL differentiation. Interestingly, other AChEIs, including huperzine A, rivastigmine, and tacrine, have no such effect, indicating that donepezil's effect in promoting OPC differentiation is not dependent on the inhibition of AChE. Donepezil also facilitates the formation of myelin sheaths in OPC-DRG neuron co-culture. More interestingly, donepezil also promotes the repair of the myelin sheaths in vivo and provides significant therapeutic effect in a cuprizone-mediated demyelination animal model. Donepezil is a drug that has been used to treat AD safely for many years; our findings suggest that it might be repurposed to treat CNS demyelinating diseases such as MS by promoting OPC to OL differentiation and remyelination.
Collapse
|
23
|
Temporal and partial inhibition of GLI1 in neural stem cells (NSCs) results in the early maturation of NSC derived oligodendrocytes in vitro. Stem Cell Res Ther 2019; 10:272. [PMID: 31455382 PMCID: PMC6712625 DOI: 10.1186/s13287-019-1374-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 11/30/2022] Open
Abstract
Background Oligodendrocytes are a type of glial cells that synthesize the myelin sheath around the axons and are critical for the nerve conduction in the CNS. Oligodendrocyte death and defects are the leading causes of several myelin disorders such as multiple sclerosis, progressive multifocal leukoencephalopathy, periventricular leukomalacia, and several leukodystrophies. Temporal activation of the Sonic Hedgehog (SHH) pathway is critical for the generation of oligodendrocyte progenitors, and their differentiation and maturation in the brain and spinal cord during embryonic development in mammals. Methods Our protocol utilized adherent cultures of human induced pluripotent stem cells (iPSC) and human embryonic stem cells (hESCs) with a green fluorescent protein (GFP) reporter knocked into one allele of the OLIG2 gene locus, dual SMAD inhibition, and transient partial inhibition of glioma-associated oncogene 1 (GLI1) by the small molecule GANT61 during the formation of the SOX2/PAX6-positive neural stem cells (NSCs). The SHH pathway was later restimulated by a Smoothened agonist purmorphamine to induce the generation of OLIG2 glial precursors. One hundred ninety-two individual oligodendrocyte precursor cells (OPCs) from GANT61 and control group were analyzed by single-cell RNA sequencing (RNA-Seq). Results We demonstrate here that transient and partial inhibition of the SHH pathway transcription factor GLI1 in NSCs by a small molecule inhibitor GANT61 was found to generate OPCs that were more migratory and could differentiate earlier toward myelin-producing oligodendrocytes. Single-cell transcriptomic analysis (RNA-Seq) showed that GANT61-NSC-derived oligodendrocyte precursor cells (OPCs) had differential activation of some of the genes in the cytoskeleton rearrangement pathways that are involved in OPC motility and induction of maturation. At the protein level, this was also associated with higher levels of myelin-specific genes in the GANT61 group compared to controls. GANT61-NSC-derived OPCs were functional and could generate compact myelin in vitro and in vivo after transplantation in myelin-deficient shiverer mice. Conclusions This is a small molecule-based in vitro protocol that leads to the faster generation of functional oligodendrocytes. The development of protocols that lead to efficient and faster differentiation of oligodendrocytes from progenitors provides important advances toward the development of autologous neural stem cell-based therapies using human iPSCs. Electronic supplementary material The online version of this article (10.1186/s13287-019-1374-y) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Elazar N, Vainshtein A, Rechav K, Tsoory M, Eshed-Eisenbach Y, Peles E. Coordinated internodal and paranodal adhesion controls accurate myelination by oligodendrocytes. J Cell Biol 2019; 218:2887-2895. [PMID: 31451613 PMCID: PMC6719437 DOI: 10.1083/jcb.201906099] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 01/09/2023] Open
Abstract
Elazar et al. show that reduced axoglial adhesion at both the paranodal junction and the internodes results in the formation of multimyelinated axons. Their findings demonstrate that accurate ensheathment by oligodendrocytes depends on the coordinated action of these different adhesion systems. Oligodendrocyte–axon contact is mediated by several cell adhesion molecules (CAMs) that are positioned at distinct sites along the myelin unit, yet their role during myelination remains unclear. Cadm4 and its axonal receptors, Cadm2 and Cadm3, as well as myelin-associated glycoprotein (MAG), are enriched at the internodes below the compact myelin, whereas NF155, which binds the axonal Caspr/contactin complex, is located at the paranodal junction that is formed between the axon and the terminal loops of the myelin sheath. Here we report that Cadm4-, MAG-, and Caspr-mediated adhesion cooperate during myelin membrane ensheathment. Genetic deletion of either Cadm4 and MAG or Cadm4 and Caspr resulted in the formation of multimyelinated axons due to overgrowth of the myelin away from the axon and the forming paranodal junction. Consequently, these mice displayed paranodal loops either above or underneath compact myelin. Our results demonstrate that accurate placement of the myelin sheath by oligodendrocytes requires the coordinated action of internodal and paranodal CAMs.
Collapse
Affiliation(s)
- Nimrod Elazar
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anya Vainshtein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Katya Rechav
- Electron Microscopy Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Eshed-Eisenbach
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Elior Peles
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
25
|
Kang M, Yao Y. Oligodendrocytes in intracerebral hemorrhage. CNS Neurosci Ther 2019; 25:1075-1084. [PMID: 31410988 PMCID: PMC6776757 DOI: 10.1111/cns.13193] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/23/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a cerebrovascular disorder with high mortality and disability rates. Although a lot of effort has been put in ICH, there is still no effective treatment for this devastating disease. Recent studies suggest that oligodendrocytes play an important role in brain repair after ICH and thus may be targeted for the therapies of ICH. Here in this review, we first introduce the origin, migration, proliferation, differentiation, and myelination of oligodendrocytes under physiological condition. Second, recent findings on how ICH affects oligodendrocyte biology and function are reviewed. Third, potential crosstalk between oligodendrocytes and other cells in the brain is also summarized. Last, we discuss the therapeutic potential of oligodendrocyte‐based treatments in ICH. Our goal is to provide a comprehensive review on the biology and function of oligodendrocytes under both physiological and ICH conditions.
Collapse
Affiliation(s)
- Minkyung Kang
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| |
Collapse
|
26
|
Quintela-López T, Ortiz-Sanz C, Serrano-Regal MP, Gaminde-Blasco A, Valero J, Baleriola J, Sánchez-Gómez MV, Matute C, Alberdi E. Aβ oligomers promote oligodendrocyte differentiation and maturation via integrin β1 and Fyn kinase signaling. Cell Death Dis 2019; 10:445. [PMID: 31171765 PMCID: PMC6554322 DOI: 10.1038/s41419-019-1636-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/17/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022]
Abstract
Alzheimer´s disease (AD) is characterized by a progressive cognitive decline that correlates with the levels of amyloid β-peptide (Aβ) oligomers. Strong evidences connect changes of oligodendrocyte function with the onset of neurodegeneration in AD. However, the mechanisms controlling oligodendrocyte responses to Aβ are still elusive. Here, we tested the role of Aβ in oligodendrocyte differentiation, maturation, and survival in isolated oligodendrocytes and in organotypic cerebellar slices. We found that Aβ peptides specifically induced local translation of 18.5-kDa myelin basic protein (MBP) isoform in distal cell processes concomitant with an increase of process complexity of MBP-expressing oligodendrocytes. Aβ oligomers required integrin β1 receptor, Src-family kinase Fyn and Ca2+/CaMKII as effectors to modulate MBP protein expression. The pharmacological inhibition of Fyn kinase also attenuated oligodendrocyte differentiation and survival induced by Aβ oligomers. Similarly, using ex vivo organotypic cerebellar slices Aβ promoted MBP upregulation through Fyn kinase, and modulated oligodendrocyte population dynamics by inducing cell proliferation and differentiation. Importantly, application of Aβ to cerebellar organotypic slices enhanced remyelination and oligodendrocyte lineage recovery in lysolecithin (LPC)-induced demyelination. These data reveal an important role of Aβ in oligodendrocyte lineage function and maturation, which may be relevant to AD pathogenesis.
Collapse
Affiliation(s)
- Tania Quintela-López
- Department of Neuroscience, University of Basque Country (UPV/EHU), Leioa, 48940, Spain.,Achucarro Basque Center for Neuroscience, Leioa, 48940, Spain.,CIBERNED, Leioa, 48940, Spain
| | - Carolina Ortiz-Sanz
- Department of Neuroscience, University of Basque Country (UPV/EHU), Leioa, 48940, Spain.,Achucarro Basque Center for Neuroscience, Leioa, 48940, Spain.,CIBERNED, Leioa, 48940, Spain
| | - Mari Paz Serrano-Regal
- Department of Neuroscience, University of Basque Country (UPV/EHU), Leioa, 48940, Spain.,Achucarro Basque Center for Neuroscience, Leioa, 48940, Spain.,CIBERNED, Leioa, 48940, Spain
| | - Adhara Gaminde-Blasco
- Department of Neuroscience, University of Basque Country (UPV/EHU), Leioa, 48940, Spain.,Achucarro Basque Center for Neuroscience, Leioa, 48940, Spain.,CIBERNED, Leioa, 48940, Spain
| | - Jorge Valero
- Achucarro Basque Center for Neuroscience, Leioa, 48940, Spain.,IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Jimena Baleriola
- Achucarro Basque Center for Neuroscience, Leioa, 48940, Spain.,IKERBASQUE Basque Foundation for Science, Bilbao, Spain.,Department of Cell Biology and Histology, UPV/EHU, Leioa, 48940, Spain
| | - Maria Victoria Sánchez-Gómez
- Department of Neuroscience, University of Basque Country (UPV/EHU), Leioa, 48940, Spain.,Achucarro Basque Center for Neuroscience, Leioa, 48940, Spain.,CIBERNED, Leioa, 48940, Spain
| | - Carlos Matute
- Department of Neuroscience, University of Basque Country (UPV/EHU), Leioa, 48940, Spain. .,Achucarro Basque Center for Neuroscience, Leioa, 48940, Spain. .,CIBERNED, Leioa, 48940, Spain.
| | - Elena Alberdi
- Department of Neuroscience, University of Basque Country (UPV/EHU), Leioa, 48940, Spain. .,Achucarro Basque Center for Neuroscience, Leioa, 48940, Spain. .,CIBERNED, Leioa, 48940, Spain.
| |
Collapse
|
27
|
Seidlits SK, Liang J, Bierman RD, Sohrabi A, Karam J, Holley SM, Cepeda C, Walthers CM. Peptide-modified, hyaluronic acid-based hydrogels as a 3D culture platform for neural stem/progenitor cell engineering. J Biomed Mater Res A 2019; 107:704-718. [PMID: 30615255 PMCID: PMC8862560 DOI: 10.1002/jbm.a.36603] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/23/2018] [Accepted: 01/03/2019] [Indexed: 07/26/2023]
Abstract
Neural stem/progenitor cell (NS/PC)-based therapies have shown exciting potential for regeneration of the central nervous system (CNS) and NS/PC cultures represent an important resource for disease modeling and drug screening. However, significant challenges limiting clinical translation remain, such as generating large numbers of cells required for model cultures or transplantation, maintaining physiologically representative phenotypes ex vivo and directing NS/PC differentiation into specific fates. Here, we report that culture of human NS/PCs in 3D, hyaluronic acid (HA)-rich biomaterial microenvironments increased differentiation toward oligodendrocytes and neurons over 2D cultures on laminin-coated glass. Moreover, NS/PCs in 3D culture exhibited a significant reduction in differentiation into reactive astrocytes. Many NS/PC-derived neurons in 3D, HA-based hydrogels expressed synaptophysin, indicating synapse formation, and displayed electrophysiological characteristics of immature neurons. While inclusion of integrin-binding, RGD peptides into hydrogels resulted in a modest increase in numbers of viable NS/PCs, no combination of laminin-derived, adhesive peptides affected differentiation outcomes. Notably, 3D cultures of differentiating NS/PCs were maintained for at least 70 days in medium with minimal growth factor supplementation. In sum, results demonstrate the use of 3D, HA-based biomaterials for long-term expansion and differentiation of NS/PCs toward oligodendroglial and neuronal fates, while inhibiting astroglial fates. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 704-718, 2019.
Collapse
Affiliation(s)
- Stephanie K. Seidlits
- Department of Bioengineering, UCLA, Los Angels, California
- Board Stem Cell Research Center, UCLA, Los Angels, California
- Brain Research Institute, UCLA, Los Angels, California
- Jonsson Comprehensive Cancer Center, UCLA, Los Angels, California
- Center for Minimally Invasive Therapeutics, UCLA, Los Angels, California
| | - Jesse Liang
- Department of Bioengineering, UCLA, Los Angels, California
| | | | | | - Joshua Karam
- Department of Bioengineering, UCLA, Los Angels, California
| | - Sandra M. Holley
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, California
| | | |
Collapse
|
28
|
Cates HM, Bagot RC, Heller EA, Purushothaman I, Lardner CK, Walker DM, Peña CJ, Neve RL, Shen L, Nestler EJ. A novel role for E2F3b in regulating cocaine action in the prefrontal cortex. Neuropsychopharmacology 2019; 44:776-784. [PMID: 30552390 PMCID: PMC6372591 DOI: 10.1038/s41386-018-0296-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/28/2018] [Accepted: 12/05/2018] [Indexed: 11/09/2022]
Abstract
Drug abuse is a multifaceted disorder that involves maladaptive decision making. Long-lasting changes in the addicted brain are mediated by a complex circuit of brain reward regions. The prefrontal cortex (PFC) is one region in which chronic drug exposure changes expression and function of upstream transcriptional regulators to alter drug responses and aspects of the addicted phenotype. We reported recently that the transcription factor E2F3a is a critical mediator of cocaine responses in the nucleus accumbens. E2F3a is one of two splice variants of the E2f3 gene; the other is E2F3b. Another recent study predicted E2F3 as an upstream regulator of the transcriptional response to cocaine self-administration (SA) in PFC. Based on previous findings that E2F3a and E2F3b have divergent regulatory roles, we set out to study the putative transcriptional role of these transcripts in PFC in the context of repeated I.P. cocaine exposure. We implemented viral-mediated isoform-specific gene manipulation, RNA-sequencing, advanced bioinformatics analyses, and animal behavior to determine how E2F3a and E2F3b contribute to persistent cocaine-induced transcriptional changes in PFC. We show that E2F3b, but not E2F3a, in PFC is critical for cocaine locomotor and place preference behaviors. Interestingly, RNA-seq of PFC following E2f3b overexpression or I.P. cocaine exposure showed very different effects on expression levels of differentially expressed genes. However, we found that E2F3b drives a similar transcriptomic pattern to that of cocaine SA with overlapping upstream regulators and downstream pathways predicted. These findings reveal a novel transcriptional mechanism in PFC that controls behavioral and molecular responses to cocaine.
Collapse
Affiliation(s)
- Hannah M. Cates
- 0000 0001 0670 2351grid.59734.3cDepartment of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Rosemary C. Bagot
- 0000 0001 0670 2351grid.59734.3cDepartment of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ,0000 0004 1936 8649grid.14709.3bPresent Address: Department of Psychology, Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montréal, Québec, H3A 1B1 Canada
| | - Elizabeth A. Heller
- 0000 0001 0670 2351grid.59734.3cDepartment of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ,0000 0004 1936 8972grid.25879.31Present Address: Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Immanuel Purushothaman
- 0000 0001 0670 2351grid.59734.3cDepartment of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Casey K. Lardner
- 0000 0001 0670 2351grid.59734.3cDepartment of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Deena M. Walker
- 0000 0001 0670 2351grid.59734.3cDepartment of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Catherine J. Peña
- 0000 0001 0670 2351grid.59734.3cDepartment of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Rachael L. Neve
- 0000 0004 0386 9924grid.32224.35Gene Delivery Technology Core, Massachusetts General Hospital, Boston, MA USA
| | - Li Shen
- 0000 0001 0670 2351grid.59734.3cDepartment of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Eric J. Nestler
- 0000 0001 0670 2351grid.59734.3cDepartment of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
29
|
Nicaise AM, Johnson KM, Willis CM, Guzzo RM, Crocker SJ. TIMP-1 Promotes Oligodendrocyte Differentiation Through Receptor-Mediated Signaling. Mol Neurobiol 2018; 56:3380-3392. [PMID: 30121936 DOI: 10.1007/s12035-018-1310-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022]
Abstract
The extracellular protein tissue inhibitor of metalloproteinase (TIMP)-1 is both a matrix metalloproteinase (MMP) inhibitor and a trophic factor. Mice lacking TIMP-1 exhibit delayed central nervous system myelination during postnatal development and impaired remyelination following immune-mediated injury in adulthood. We have previously determined that the trophic action of TIMP-1 on oligodendrocyte progenitor cells (OPCs) to mature into oligodendrocytes is independent of its MMP inhibitory function. However, the mechanism by which TIMP-1 promotes OPC differentiation is not known. To address this gap in our understanding, herein, we report that TIMP-1 signals via a CD63/β1-integrin receptor complex to activate Akt (protein kinase B) to promote β-catenin signaling in OPCs. The regulation of β-catenin by TIMP-1 to promote OPC differentiation was counteracted, but not abrogated, by canonical signaling evoked by Wnt7a. These data provide a previously uncharacterized trophic action of TIMP-1 to regulate oligodendrocyte maturation via a CD63/β1-integrin/Akt pathway mechanism. These findings contribute to our emerging understanding on the role of TIMP-1 as a growth factor expressed to promote CNS myelination during development and induced in the adult to promote myelin repair.
Collapse
Affiliation(s)
- Alexandra M Nicaise
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Kasey M Johnson
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Cory M Willis
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Rosa M Guzzo
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
30
|
Santos AK, Vieira MS, Vasconcellos R, Goulart VAM, Kihara AH, Resende RR. Decoding cell signalling and regulation of oligodendrocyte differentiation. Semin Cell Dev Biol 2018; 95:54-73. [PMID: 29782926 DOI: 10.1016/j.semcdb.2018.05.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022]
Abstract
Oligodendrocytes are fundamental for the functioning of the nervous system; they participate in several cellular processes, including axonal myelination and metabolic maintenance for astrocytes and neurons. In the mammalian nervous system, they are produced through waves of proliferation and differentiation, which occur during embryogenesis. However, oligodendrocytes and their precursors continue to be generated during adulthood from specific niches of stem cells that were not recruited during development. Deficiencies in the formation and maturation of these cells can generate pathologies mainly related to myelination. Understanding the mechanisms involved in oligodendrocyte development, from the precursor to mature cell level, will allow inferring therapies and treatments for associated pathologies and disorders. Such mechanisms include cell signalling pathways that involve many growth factors, small metabolic molecules, non-coding RNAs, and transcription factors, as well as specific elements of the extracellular matrix, which act in a coordinated temporal and spatial manner according to a given stimulus. Deciphering those aspects will allow researchers to replicate them in vitro in a controlled environment and thus mimic oligodendrocyte maturation to understand the role of oligodendrocytes in myelination in pathologies and normal conditions. In this study, we review these aspects, based on the most recent in vivo and in vitro data on oligodendrocyte generation and differentiation.
Collapse
Affiliation(s)
- A K Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - M S Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - R Vasconcellos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - V A M Goulart
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - A H Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - R R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil.
| |
Collapse
|
31
|
Ly PTT, Stewart C, Pallen CJ. PTPα is required for laminin-2-induced Fyn-Akt signaling to drive oligodendrocyte differentiation. J Cell Sci 2018; 131:jcs.212076. [DOI: 10.1242/jcs.212076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 06/08/2018] [Indexed: 12/18/2022] Open
Abstract
Extrinsic signals that regulate oligodendrocyte maturation and subsequent myelination are essential for central nervous system development and regeneration. Deficiency in the extracellular factor laminin-2 (Lm2), as occurs in congenital muscular dystrophy, can lead to impaired oligodendroglial development and aberrant myelination, but many aspects of Lm2-regulated oligodendroglial signaling and differentiation remain undefined. We show that receptor-like protein tyrosine phosphatase alpha (PTPα) is essential for myelin basic protein expression and cell spreading during Lm2-induced oligodendrocyte differentiation. PTPα complexes with the Lm2 receptors α6β1 integrin and dystroglycan to transduce Fyn activation upon Lm2 engagement. In this way, PTPα mediates a subset of Lm2-induced signals required for differentiation that includes mTOR-dependent Akt activation but not Erk activation. We identify N-myc downstream regulated gene-1 (NDRG1) as a PTPα-regulated molecule during oligodendrocyte differentiation and distinguish Lm2 receptor-specific modes of Fyn-Akt-dependent and -independent NDRG1 phosphorylation. Altogether, this reveals a Lm2-regulated PTPα-Fyn-Akt signaling axis that is critical for key aspects of the gene expression and morphological changes that mark oligodendrocyte maturation.
Collapse
Affiliation(s)
- Philip T. T. Ly
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Craig Stewart
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Catherine J. Pallen
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| |
Collapse
|
32
|
Wang HJ, Song G, Liang J, Gao YY, Wang CJ. Involvement of integrin β1/FAK signaling in the analgesic effects induced by glial cell line-derived neurotrophic factor in neuropathic pain. Brain Res Bull 2017; 135:149-156. [DOI: 10.1016/j.brainresbull.2017.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/20/2017] [Accepted: 10/11/2017] [Indexed: 12/23/2022]
|
33
|
Abstract
Integrins are a large family of extracellular matrix (ECM) receptors. In the developing and adult brain, many integrins are present at high levels at synapses. The tetrapartite structure of synapses - which comprises presynaptic and postsynaptic neurons, the ECM and glial processes - places synaptic integrins in an excellent position to sense dynamic changes in the synaptic environment and use this information to coordinate further changes in synapse structure and function that will shape neural circuit properties. Recent developments in our understanding of the cellular and physiological roles of integrins, which range from control of neural process outgrowth and synapse formation to regulation of synaptic plasticity and memory, enable us to attempt a synthesis of synaptic integrin function.
Collapse
|
34
|
Wheeler NA, Fuss B. Extracellular cues influencing oligodendrocyte differentiation and (re)myelination. Exp Neurol 2016; 283:512-30. [PMID: 27016069 PMCID: PMC5010977 DOI: 10.1016/j.expneurol.2016.03.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/03/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023]
Abstract
There is an increasing number of neurologic disorders found to be associated with loss and/or dysfunction of the CNS myelin sheath, ranging from the classic demyelinating disease, multiple sclerosis, through CNS injury, to neuropsychiatric diseases. The disabling burden of these diseases has sparked a growing interest in gaining a better understanding of the molecular mechanisms regulating the differentiation of the myelinating cells of the CNS, oligodendrocytes (OLGs), and the process of (re)myelination. In this context, the importance of the extracellular milieu is becoming increasingly recognized. Under pathological conditions, changes in inhibitory as well as permissive/promotional cues are thought to lead to an overall extracellular environment that is obstructive for the regeneration of the myelin sheath. Given the general view that remyelination is, even though limited in human, a natural response to demyelination, targeting pathologically 'dysregulated' extracellular cues and their downstream pathways is regarded as a promising approach toward the enhancement of remyelination by endogenous (or if necessary transplanted) OLG progenitor cells. In this review, we will introduce the extracellular cues that have been implicated in the modulation of (re)myelination. These cues can be soluble, part of the extracellular matrix (ECM) or mediators of cell-cell interactions. Their inhibitory and permissive/promotional roles with regard to remyelination as well as their potential for therapeutic intervention will be discussed.
Collapse
Affiliation(s)
- Natalie A Wheeler
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States.
| |
Collapse
|
35
|
Saab AS, Tzvetavona ID, Trevisiol A, Baltan S, Dibaj P, Kusch K, Möbius W, Goetze B, Jahn HM, Huang W, Steffens H, Schomburg ED, Pérez-Samartín A, Pérez-Cerdá F, Bakhtiari D, Matute C, Löwel S, Griesinger C, Hirrlinger J, Kirchhoff F, Nave KA. Oligodendroglial NMDA Receptors Regulate Glucose Import and Axonal Energy Metabolism. Neuron 2016; 91:119-32. [PMID: 27292539 DOI: 10.1016/j.neuron.2016.05.016] [Citation(s) in RCA: 382] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/11/2016] [Accepted: 05/05/2016] [Indexed: 11/17/2022]
Abstract
Oligodendrocytes make myelin and support axons metabolically with lactate. However, it is unknown how glucose utilization and glycolysis are adapted to the different axonal energy demands. Spiking axons release glutamate and oligodendrocytes express NMDA receptors of unknown function. Here we show that the stimulation of oligodendroglial NMDA receptors mobilizes glucose transporter GLUT1, leading to its incorporation into the myelin compartment in vivo. When myelinated optic nerves from conditional NMDA receptor mutants are challenged with transient oxygen-glucose deprivation, they show a reduced functional recovery when returned to oxygen-glucose but are indistinguishable from wild-type when provided with oxygen-lactate. Moreover, the functional integrity of isolated optic nerves, which are electrically silent, is extended by preincubation with NMDA, mimicking axonal activity, and shortened by NMDA receptor blockers. This reveals a novel aspect of neuronal energy metabolism in which activity-dependent glutamate release enhances oligodendroglial glucose uptake and glycolytic support of fast spiking axons.
Collapse
Affiliation(s)
- Aiman S Saab
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen 37075, Germany; Center for Integrative Physiology and Molecular Medicine, Molecular Physiology, University of Saarland, Homburg 66421, Germany; University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland
| | - Iva D Tzvetavona
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen 37075, Germany
| | - Andrea Trevisiol
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen 37075, Germany
| | - Selva Baltan
- Lerner Research Institute, Cleveland Clinic, Department of Neurosciences, Cleveland, OH 44195, USA
| | - Payam Dibaj
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen 37075, Germany
| | - Kathrin Kusch
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen 37075, Germany
| | - Wiebke Möbius
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen 37075, Germany; Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073 Göttingen, Germany
| | - Bianka Goetze
- Bernstein Focus for Neurotechnology (BFNT) and School of Biology, Department of Systems Neuroscience, University of Göttingen, 37075 Göttingen, Germany
| | - Hannah M Jahn
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen 37075, Germany; Center for Integrative Physiology and Molecular Medicine, Molecular Physiology, University of Saarland, Homburg 66421, Germany
| | - Wenhui Huang
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen 37075, Germany; Center for Integrative Physiology and Molecular Medicine, Molecular Physiology, University of Saarland, Homburg 66421, Germany
| | - Heinz Steffens
- Institute of Physiology, University of Göttingen, 37073 Göttingen, Germany; Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, 37077 Göttingen, Germany
| | - Eike D Schomburg
- Institute of Physiology, University of Göttingen, 37073 Göttingen, Germany
| | - Alberto Pérez-Samartín
- Universidad del País Vasco, CIBERNED and Departamento de Neurociencias and Achucarro Basque Center for Neuroscience, Leioa 48940, Spain
| | - Fernando Pérez-Cerdá
- Universidad del País Vasco, CIBERNED and Departamento de Neurociencias and Achucarro Basque Center for Neuroscience, Leioa 48940, Spain
| | - Davood Bakhtiari
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073 Göttingen, Germany; Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Carlos Matute
- Universidad del País Vasco, CIBERNED and Departamento de Neurociencias and Achucarro Basque Center for Neuroscience, Leioa 48940, Spain
| | - Siegrid Löwel
- Bernstein Focus for Neurotechnology (BFNT) and School of Biology, Department of Systems Neuroscience, University of Göttingen, 37075 Göttingen, Germany
| | - Christian Griesinger
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073 Göttingen, Germany; Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Johannes Hirrlinger
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen 37075, Germany; Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Frank Kirchhoff
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen 37075, Germany; Center for Integrative Physiology and Molecular Medicine, Molecular Physiology, University of Saarland, Homburg 66421, Germany; Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073 Göttingen, Germany.
| | - Klaus-Armin Nave
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen 37075, Germany; Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073 Göttingen, Germany.
| |
Collapse
|
36
|
Hu X, Fan Q, Hou H, Yan R. Neurological dysfunctions associated with altered BACE1-dependent Neuregulin-1 signaling. J Neurochem 2016; 136:234-49. [PMID: 26465092 PMCID: PMC4833723 DOI: 10.1111/jnc.13395] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 01/09/2023]
Abstract
Inhibition of BACE1 is being pursued as a therapeutic target to treat patients suffering from Alzheimer's disease because BACE1 is the sole β-secretase that generates β-amyloid peptide. Knowledge regarding other cellular functions of BACE1 is therefore critical for the safe use of BACE1 inhibitors in human patients. Neuregulin-1 (Nrg1) is a BACE1 substrate and BACE1 cleavage of Nrg1 is critical for signaling functions in myelination, remyelination, synaptic plasticity, normal psychiatric behaviors, and maintenance of muscle spindles. This review summarizes the most recent discoveries associated with BACE1-dependent Nrg1 signaling in these areas. This body of knowledge will help to provide guidance for preventing unwanted Nrg1-based side effects following BACE1 inhibition in humans. To initiate its signaling cascade, membrane anchored Neuregulin (Nrg), mainly type I and III β1 Nrg1 isoforms and Nrg3, requires ectodomain shedding. BACE1 is one of such indispensable sheddases to release the functional Nrg signaling fragment. The dependence of Nrg on the cleavage by BACE1 is best manifested by disrupting the critical role of Nrg in the control of axonal myelination, schizophrenic behaviors as well as the formation and maintenance of muscle spindles.
Collapse
Affiliation(s)
- Xiangyou Hu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Qingyuan Fan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Hailong Hou
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| |
Collapse
|
37
|
Zhu Q, Tan Z, Zhao S, Huang H, Zhao X, Hu X, Zhang Y, Shields CB, Uetani N, Qiu M. Developmental expression and function analysis of protein tyrosine phosphatase receptor type D in oligodendrocyte myelination. Neuroscience 2015; 308:106-14. [PMID: 26341907 PMCID: PMC4600676 DOI: 10.1016/j.neuroscience.2015.08.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 08/13/2015] [Accepted: 08/24/2015] [Indexed: 11/22/2022]
Abstract
Receptor protein tyrosine phosphatases (RPTPs) are extensively expressed in the central nervous system (CNS), and have distinct spatial and temporal patterns in different cell types during development. Previous studies have demonstrated possible roles for RPTPs in axon outgrowth, guidance, and synaptogenesis. In the present study, our results revealed that protein tyrosine phosphatase, receptor type D (PTPRD) was initially expressed in mature neurons in embryonic CNS, and later in oligodendroglial cells at postnatal stages when oligodendrocytes undergo active axonal myelination process. In PTPRD mutants, oligodendrocyte differentiation was normal and a transient myelination delay occurred at early postnatal stages, indicating the contribution of PTPRD to the initiation of axonal myelination. Our results also showed that the remyelination process was not affected in the absence of PTPRD function after a cuprizone-induced demyelination in adult animals.
Collapse
Affiliation(s)
- Q Zhu
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA
| | - Z Tan
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA; Institute of Developmental and Regenerative Biology, Zhejiang Key Lab of Organ Development and Regeneration, College of Life Sciences, Hangzhou Normal University, China
| | - S Zhao
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA
| | - H Huang
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA; Institute of Developmental and Regenerative Biology, Zhejiang Key Lab of Organ Development and Regeneration, College of Life Sciences, Hangzhou Normal University, China
| | - X Zhao
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA; Institute of Developmental and Regenerative Biology, Zhejiang Key Lab of Organ Development and Regeneration, College of Life Sciences, Hangzhou Normal University, China
| | - X Hu
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA
| | - Y Zhang
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY 40202, USA
| | - C B Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY 40202, USA
| | - N Uetani
- McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - M Qiu
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA; Institute of Developmental and Regenerative Biology, Zhejiang Key Lab of Organ Development and Regeneration, College of Life Sciences, Hangzhou Normal University, China.
| |
Collapse
|
38
|
Berry M, Ahmed Z, Morgan-Warren P, Fulton D, Logan A. Prospects for mTOR-mediated functional repair after central nervous system trauma. Neurobiol Dis 2015; 85:99-110. [PMID: 26459109 DOI: 10.1016/j.nbd.2015.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/09/2015] [Accepted: 10/08/2015] [Indexed: 02/07/2023] Open
Abstract
Recent research has suggested that the growth of central nervous system (CNS) axons during development is mediated through the PI3K/Akt/mammalian target of rapamycin (mTOR) intracellular signalling axis and that suppression of activity in this pathway occurs during maturity as levels of the phosphatase and tensin homologue (PTEN) rise and inhibit PI3K activation of mTOR, accounting for the failure of axon regeneration in the injured adult CNS. This hypothesis is supported by findings confirming that suppression of PTEN in experimental adult animals promotes impressive axon regeneration in the injured visual and corticospinal motor systems. This review focuses on these recent developments, discussing the therapeutic potential of a mTOR-based treatment aimed at promoting functional recovery in CNS trauma patients, recognising that to fulfil this ambition, the new therapy should aim to promote not only axon regeneration but also remyelination of regenerated axons, neuronal survival and re-innervation of denervated targets through accurate axonal guidance and synaptogenesis, all with minimal adverse effects. The translational challenges presented by the implementation of this new axogenic therapy are also discussed.
Collapse
Affiliation(s)
- Martin Berry
- Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Zubair Ahmed
- Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Peter Morgan-Warren
- Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Daniel Fulton
- Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Ann Logan
- Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
39
|
Cassoli JS, Guest PC, Malchow B, Schmitt A, Falkai P, Martins-de-Souza D. Disturbed macro-connectivity in schizophrenia linked to oligodendrocyte dysfunction: from structural findings to molecules. NPJ SCHIZOPHRENIA 2015; 1:15034. [PMID: 27336040 PMCID: PMC4849457 DOI: 10.1038/npjschz.2015.34] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/10/2015] [Accepted: 08/19/2015] [Indexed: 01/20/2023]
Abstract
Schizophrenia is a severe psychiatric disorder with multi-factorial characteristics. A number of findings have shown disrupted synaptic connectivity in schizophrenia patients and emerging evidence suggests that this results from dysfunctional oligodendrocytes, the cells responsible for myelinating axons in white matter to promote neuronal conduction. The exact cause of this is not known, although recent imaging and molecular profiling studies of schizophrenia patients have identified changes in white matter tracts connecting multiple brain regions with effects on protein signaling networks involved in the myelination process. Further understanding of oligodendrocyte dysfunction in schizophrenia could lead to identification of novel drug targets for this devastating disease.
Collapse
Affiliation(s)
- Juliana Silva Cassoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP) , Campinas, Brazil
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP) , Campinas, Brazil
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University (LMU) , Munich, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University (LMU), Munich, Germany; Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, University of São Paulo (USP), São Paulo, Brazil
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University (LMU) , Munich, Germany
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil; Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, University of São Paulo (USP), São Paulo, Brazil; UNICAMP's Neurobiology Center, Campinas, Brazil
| |
Collapse
|
40
|
Xie X, Gilbert M, Petley-Ragan L, Auld VJ. Loss of focal adhesions in glia disrupts both glial and photoreceptor axon migration in the Drosophila visual system. Development 2014; 141:3072-83. [PMID: 25053436 DOI: 10.1242/dev.101972] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many aspects of glial development are regulated by extracellular signals, including those from the extracellular matrix (ECM). Signals from the ECM are received by cell surface receptors, including the integrin family. Previously, we have shown that Drosophila integrins form adhesion complexes with Integrin-linked kinase and talin in the peripheral nerve glia and have conserved roles in glial sheath formation. However, integrin function in other aspects of glial development is unclear. The Drosophila eye imaginal disc (ED) and optic stalk (OS) complex is an excellent model with which to study glial migration, differentiation and glia-neuron interactions. We studied the roles of the integrin complexes in these glial developmental processes during OS/eye development. The common beta subunit βPS and two alpha subunits, αPS2 and αPS3, are located in puncta at both glia-glia and glia-ECM interfaces. Depletion of βPS integrin and talin by RNAi impaired the migration and distribution of glia within the OS resulting in morphological defects. Reduction of integrin or talin in the glia also disrupted photoreceptor axon outgrowth leading to axon stalling in the OS and ED. The neuronal defects were correlated with a disruption of the carpet glia tube paired with invasion of glia into the core of the OS and the formation of a glial cap. Our results suggest that integrin-mediated extracellular signals are important for multiple aspects of glial development and non-autonomously affect axonal migration during Drosophila eye development.
Collapse
Affiliation(s)
- Xiaojun Xie
- Department of Zoology, Cell and Developmental Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | - Mary Gilbert
- Department of Zoology, Cell and Developmental Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | - Lindsay Petley-Ragan
- Department of Zoology, Cell and Developmental Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | - Vanessa J Auld
- Department of Zoology, Cell and Developmental Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| |
Collapse
|
41
|
Mitew S, Hay C, Peckham H, Xiao J, Koenning M, Emery B. Mechanisms regulating the development of oligodendrocytes and central nervous system myelin. Neuroscience 2014; 276:29-47. [DOI: 10.1016/j.neuroscience.2013.11.029] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 12/29/2022]
|
42
|
Shah S, Yin PT, Uehara TM, Chueng STD, Yang L, Lee KB. Guiding stem cell differentiation into oligodendrocytes using graphene-nanofiber hybrid scaffolds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:3673-80. [PMID: 24668911 PMCID: PMC4048813 DOI: 10.1002/adma.201400523] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 02/17/2014] [Indexed: 05/20/2023]
Affiliation(s)
- Shreyas Shah
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (USA)
| | - Perry T. Yin
- Department of Biomedical Engineering, Rutgers, State University of New Jersey, Piscataway, NJ 08854 (USA)
| | - Thiers M. Uehara
- Physics Institute of Sao Carlos, University of Sao Paulo, CP 369 Sao Carlos, Sao Paulo 13566 (Brazil)
| | - Sy-Tsong Dean Chueng
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (USA)
| | - Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (USA)
| | - Ki-Bum Lee
- Fax: (+1) 732-445-5312, http://rutchem.rutgers.edu/~kbleeweb,
| |
Collapse
|
43
|
SCO-spondin derived peptide NX210 induces neuroprotection in vitro and promotes fiber regrowth and functional recovery after spinal cord injury. PLoS One 2014; 9:e93179. [PMID: 24667843 PMCID: PMC3965545 DOI: 10.1371/journal.pone.0093179] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/03/2014] [Indexed: 11/19/2022] Open
Abstract
In mammals, the limited regenerating potential of the central nervous system (CNS) in adults contrasts with the plasticity of the embryonic and perinatal periods. SCO (subcommissural organ)-spondin is a protein secreted early by the developing central nervous system, potentially involved in the development of commissural fibers. SCO-spondin stimulates neuronal differentiation and neurite growth in vitro. NX210 oligopeptide was designed from SCO-spondin's specific thrombospondin type 1 repeat (TSR) sequences that support the main neurogenic properties of the molecule. The objective of this work was to assess the neuroprotective and neuroregenerative properties of NX210 in vitro and in vivo for the treatment of spinal cord injury (SCI). In vitro studies were carried out on the B104 neuroblastoma cell line demonstrating neuroprotection by the resistance to oxidative damage using hydrogen peroxide and the measure of cell viability by metabolic activity. In vivo studies were performed in two rat models of SCI: (1) a model of aspiration of dorsal funiculi followed by the insertion of a collagen tube in situ to limit collateral sprouting; white matter regeneration was assessed using neurofilament immunostaining; (2) a rat spinal cord contusion model to assess functional recovery using BBB scale and reflex testing. We demonstrate for the first time that NX210 (a) provides neuroprotection to oxidative stress in the B104 neuroblastoma cells, (b) stimulates axonal regrowth in longitudinally oriented neofibers in the aspiration model of SCI and (c) significantly improves functional recovery in the contusive model of SCI.
Collapse
|
44
|
PIKE is essential for oligodendroglia development and CNS myelination. Proc Natl Acad Sci U S A 2014; 111:1993-8. [PMID: 24449917 DOI: 10.1073/pnas.1318185111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Oligodendrocyte (OL) differentiation and myelin development are complex events regulated by numerous signal transduction factors. Here, we report that phosphoinositide-3 kinase enhancer L (PIKE-L) is required for OL development and myelination. PIKE-L expression is up-regulated when oligodendrocyte progenitor cells commit to differentiation. Conversely, depleting phosphoinositide-3 kinase enhancer (PIKE) expression by shRNA prevents oligodendrocyte progenitor cell differentiation. In both conventional PIKE knockout (PIKE(-/-)) and OL-specific PIKE knockout mice, the number of OLs is reduced in the corpus callosum. PIKE(-/-) OLs also display defects when forming myelin sheath on neuronal axons during neonatal development, which is partially rescued when PTEN is ablated. In addition, Akt/mTOR signaling is impaired in OL-enriched tissues of the PIKE(-/-) mutant, leading to reduced expression of critical proteins for myelin development and hypomyelination. Moreover, myelin repair of lysolecithin-induced lesions is delayed in PIKE(-/-) brain. Thus, PIKE plays pivotal roles to advance OL development and myelinogenesis through Akt/mTOR activation.
Collapse
|
45
|
Lundgaard I, Luzhynskaya A, Stockley JH, Wang Z, Evans KA, Swire M, Volbracht K, Gautier HOB, Franklin RJM, ffrench-Constant C, Attwell D, Káradóttir RT. Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes. PLoS Biol 2013; 11:e1001743. [PMID: 24391468 PMCID: PMC3876980 DOI: 10.1371/journal.pbio.1001743] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 11/13/2013] [Indexed: 11/20/2022] Open
Abstract
Neuregulin switches oligodendrocytes between two modes of myelination: from a neuronal activity–independent mode to a myelin-increasing, neuronal activity–dependent, mechanism that involves glutamate release and NMDA receptor activation. Myelination is essential for rapid impulse conduction in the CNS, but what determines whether an individual axon becomes myelinated remains unknown. Here we show, using a myelinating coculture system, that there are two distinct modes of myelination, one that is independent of neuronal activity and glutamate release and another that depends on neuronal action potentials releasing glutamate to activate NMDA receptors on oligodendrocyte lineage cells. Neuregulin switches oligodendrocytes from the activity-independent to the activity-dependent mode of myelination by increasing NMDA receptor currents in oligodendrocyte lineage cells 6-fold. With neuregulin present myelination is accelerated and increased, and NMDA receptor block reduces myelination to far below its level without neuregulin. Thus, a neuregulin-controlled switch enhances the myelination of active axons. In vivo, we demonstrate that remyelination after white matter damage is NMDA receptor-dependent. These data resolve controversies over the signalling regulating myelination and suggest novel roles for neuregulin in schizophrenia and in remyelination after white matter damage. Myelination acts as an insulator for neurons and as such is essential for normal brain function, ensuring fast neuronal communication. Oligodendrocytes are the cells that wrap their membrane around nerve cell axons to form the myelin sheath that enables fast action potential propagation. However, what determines whether an individual axon becomes myelinated remains unknown. We show that there are two distinct modes of myelination: one that is independent of neuronal activity and the release of the neurotransmitter glutamate and another that depends on nerve cell action potentials releasing glutamate, which then activates a class of glutamate receptor (NMDA receptors) on oligodendrocyte lineage cells. We find that the protein neuregulin switches oligodendrocytes between these two modes of myelination; neuregulin increases oligodendrocyte lineage cells' sensitivity to glutamate by increasing the current flowing through their glutamate receptors. With neuregulin present, myelination is accelerated and increased. Blocking NMDA receptors reduces the amount of myelination to far below its level without neuregulin. Thus, a neuregulin-controlled switch enhances the myelination of active axons. We also demonstrate that remyelination after white matter damage (as occurs in diseases, such as spinal cord injury and multiple sclerosis) is NMDA receptor-dependent. These data help us understand the signalling that regulates myelination and suggest the possible involvement of neuregulin in schizophrenia and in remyelination after white matter damage.
Collapse
Affiliation(s)
- Iben Lundgaard
- Wellcome Trust–Medical Research Council (MRC) Stem Cell Institute, John van Geest Centre for Brain Repair, and Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Aryna Luzhynskaya
- Wellcome Trust–Medical Research Council (MRC) Stem Cell Institute, John van Geest Centre for Brain Repair, and Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - John H. Stockley
- Wellcome Trust–Medical Research Council (MRC) Stem Cell Institute, John van Geest Centre for Brain Repair, and Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Zhen Wang
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Kimberley A. Evans
- Wellcome Trust–Medical Research Council (MRC) Stem Cell Institute, John van Geest Centre for Brain Repair, and Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Matthew Swire
- MRC Centre for Regenerative Medicine, Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Katrin Volbracht
- Wellcome Trust–Medical Research Council (MRC) Stem Cell Institute, John van Geest Centre for Brain Repair, and Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Hélène O. B. Gautier
- Wellcome Trust–Medical Research Council (MRC) Stem Cell Institute, John van Geest Centre for Brain Repair, and Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Robin J. M. Franklin
- Wellcome Trust–Medical Research Council (MRC) Stem Cell Institute, John van Geest Centre for Brain Repair, and Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Charles ffrench-Constant
- MRC Centre for Regenerative Medicine, Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, United Kingdom
| | - David Attwell
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Ragnhildur T. Káradóttir
- Wellcome Trust–Medical Research Council (MRC) Stem Cell Institute, John van Geest Centre for Brain Repair, and Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
46
|
Abstract
Demyelinating disorders including leukodystrophies are devastating conditions that are still in need of better understanding, and both oligodendrocyte differentiation and myelin synthesis pathways are potential avenues for developing treatment. Overexpression of lamin B1 leads to leukodystrophy characterized by demyelination of the central nervous system, and microRNA-23 (miR-23) was found to suppress lamin B1 and enhance oligodendrocyte differentiation in vitro. Here, we demonstrated that miR-23a-overexpressing mice have increased myelin thickness, providing in vivo evidence that miR-23a enhances both oligodendrocyte differentiation and myelin synthesis. Using this mouse model, we explored possible miR-23a targets and revealed that the phosphatase and tensin homologue/phosphatidylinositol trisphosphate kinase/Akt/mammalian target of rapamycin pathway is modulated by miR-23a. Additionally, a long noncoding RNA, 2700046G09Rik, was identified as a miR-23a target and modulates phosphatase and tensin homologue itself in a miR-23a-dependent manner. The data presented here imply a unique role for miR-23a in the coordination of proteins and noncoding RNAs in generating and maintaining healthy myelin.
Collapse
|
47
|
Integrin-linked kinase regulates process extension in oligodendrocytes via control of actin cytoskeletal dynamics. J Neurosci 2013; 33:9781-93. [PMID: 23739974 DOI: 10.1523/jneurosci.5582-12.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Integrin-linked kinase (ILK) is a major structural adaptor protein governing signaling complex formation and cytoskeletal dynamics. Here, through the use of conditional knock-out mice, we demonstrate a requirement for ILK in oligodendrocyte differentiation and axonal myelination in vivo. In conjunction, ILK-deficient primary oligodendrocytes are defined by a failure in process extension and an inability to form myelin membrane upon axonal contact. Surprisingly, phosphorylation of the canonical downstream targets Akt and GSK3β is unaffected following ILK loss. Rather, the defects are due in part to actin cytoskeleton dysregulation with a correspondent increase in active RhoA levels. Morphological rescue is possible following Rho kinase inhibition in an oligodendrocyte subset. Furthermore, phenotypic severity correlates with environmental complexity; oligodendrocytes are severely malformed in vitro (a relatively simple environment), but undergo phenotypic recovery in the context of the whole animal. Together, our work demonstrates ILK as necessary for normal oligodendrocyte development, reinforces its role as a bridge between the actin cytoskeleton and cell membrane, and highlights the overarching compensatory capacity of oligodendrocytes in response to cellular milieu.
Collapse
|
48
|
CD82 blocks cMet activation and overcomes hepatocyte growth factor effects on oligodendrocyte precursor differentiation. J Neurosci 2013; 33:7952-60. [PMID: 23637186 DOI: 10.1523/jneurosci.5836-12.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mechanisms that regulate oligodendrocyte (OL) precursor migration and differentiation are important in normal development and in demyelinating/remyelinating conditions. We previously found that the tetraspanin CD82 is far more highly expressed in O4(+) OL precursors of the adult rat brain than those of the neonatal brain. CD82 has been physically linked to cMet, the hepatocyte growth factor (HGF) receptor, in tumor cells, and this interaction decreases downstream signaling. We show here that CD82 inhibits the HGF activation of cMet in neonatal and adult rat OL precursors. CD82 expression is sufficient to allow precursor differentiation into mature OLs even in the presence of HGF. In contrast, CD82 downregulation in adult O4(+)/CD82(+) cells inhibits their differentiation, decreases their accumulation of myelin proteins, and causes a reversion to less mature stages. CD82 expression in neonatal O4(+)/CD82(-) cells also blocks Rac1 activation, suggesting a possible regulatory effect on cytoskeletal organization and mobility. Thus, CD82 is a negative regulator of HGF/cMet during OL development and overcomes HGF inhibitory regulation of OL precursor maturation.
Collapse
|
49
|
Ahrendsen JT, Macklin W. Signaling mechanisms regulating myelination in the central nervous system. Neurosci Bull 2013; 29:199-215. [PMID: 23558589 DOI: 10.1007/s12264-013-1322-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/22/2013] [Indexed: 12/19/2022] Open
Abstract
The precise and coordinated production of myelin is essential for proper development and function of the nervous system. Diseases that disrupt myelin, including multiple sclerosis, cause significant functional disability. Current treatment aims to reduce the inflammatory component of the disease, thereby preventing damage resulting from demyelination. However, therapies are not yet available to improve natural repair processes after damage has already occurred. A thorough understanding of the signaling mechanisms that regulate myelin generation will improve our ability to enhance repair. in this review, we summarize the positive and negative regulators of myelination, focusing primarily on central nervous system myelination. Axon-derived signals, extracellular signals from both diffusible factors and the extracellular matrix, and intracellular signaling pathways within myelinating oligodendrocytes are discussed. Much is known about the positive regulators that drive myelination, while less is known about the negative regulators that shift active myelination to myelin maintenance at the appropriate time. Therefore, we also provide new data on potential negative regulators of CNS myelination.
Collapse
Affiliation(s)
- Jared T Ahrendsen
- Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | |
Collapse
|
50
|
Hu X, Schlanger R, He W, Macklin WB, Yan R. Reversing hypomyelination in BACE1-null mice with Akt-DD overexpression. FASEB J 2013; 27:1868-73. [PMID: 23335052 DOI: 10.1096/fj.12-224212] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
β-Site amyloid precursor protein convertase enzyme 1 (BACE1), a type I transmembrane aspartyl protease required to cleave amyloid precursor protein for releasing a toxic amyloid peptide, also cleaves type I and type III neuregulin-1 (Nrg-1). BACE1 deficiency in mice causes hypomyelination during development and impairs remyelination if injured. In BACE1-null mice, the abolished cleavage of neuregulin-1 by BACE1 is speculated to cause reduced myelin sheath thickness in both the central nervous system and peripheral nervous system because reduced cleavage of Nrg-1 correlates with reduced Akt phosphorylation, a downstream signaling molecule of the Nrg-1/ErbB pathway. Here we tested specifically whether increasing Akt activity alone in oligodendrocytes would be sufficient to reverse the hypomyelination phenotype in BACE1-null mice. BACE1-null mice were bred with transgenic mice expressing constitutively active Akt (Akt-DD; mutations with D(308)T and D(473)S) in oligodendrocytes. Relative to littermate BACE1-null controls, BACE1(-/-)/Akt-DD mice exhibited enhanced expression of myelin basic protein and promoter of proteolipid protein. The elevated expression of myelin proteins correlated with a thicker myelin sheath in optic nerves; comparison of quantified g ratios with statistic significance was used to confirm this reversion. However, it appeared that myelin sheath thickness in the sciatic nerves was not increased in BACE1(-/-)/Akt-DD mice, as the g ratio was not significantly different from the control. Hence, increased Akt activity in BACE1-null myelinating cells only compensates for the loss of BACE1 activity in the central nervous system, which is consistent with the observation that overexpression of Akt-DD in Schwann cells did not induce hypermyelination. Our results suggest that signaling activity other than Akt may also contribute to proper myelination in peripheral nerves.
Collapse
Affiliation(s)
- Xiangyou Hu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|