1
|
Isomura A, Kageyama R. Progress in understanding the vertebrate segmentation clock. Nat Rev Genet 2025:10.1038/s41576-025-00813-6. [PMID: 40038453 DOI: 10.1038/s41576-025-00813-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 03/06/2025]
Abstract
The segmentation clock is a molecular oscillator that regulates the periodic formation of somites from the presomitic mesoderm during vertebrate embryogenesis. Synchronous oscillatory expression of a Hairy homologue or Hairy-related basic helix-loop-helix (bHLH) transcriptional repressor in presomitic mesoderm cells regulates periodic expression of downstream factors that control somite segmentation with a periodicity that varies across species. Although many of the key components of the clock have been identified and characterized, less is known about how the clock is synchronized across cells and how species-specific periodicity is achieved. Advances in live imaging, stem cell and organoid technologies, and synthetic approaches have started to uncover the detailed mechanisms underlying these aspects of somitogenesis, providing insight into how morphogenesis is coordinated in space and time during embryonic development.
Collapse
Affiliation(s)
- Akihiro Isomura
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto, Japan.
- Japan Science and Technology Agency, PRESTO, Saitama, Japan.
- RIKEN Center for Brain Science, Wako, Japan.
| | - Ryoichiro Kageyama
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto, Japan.
- RIKEN Center for Brain Science, Wako, Japan.
| |
Collapse
|
2
|
Uriu K, Morelli LG. Statistical description of mobile oscillators in embryonic pattern formation. Phys Rev E 2025; 111:024407. [PMID: 40103159 DOI: 10.1103/physreve.111.024407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 01/27/2025] [Indexed: 03/20/2025]
Abstract
Synchronization of mobile oscillators occurs in numerous contexts, including physical, chemical, biological, and engineered systems. In vertebrate embryonic development, a segmental body structure is generated by a population of mobile oscillators. Cells in this population produce autonomous gene expression rhythms and interact with their neighbors through local signaling. These cells form an extended tissue where frequency and cell mobility gradients coexist. Gene expression kinematic waves travel through this tissue and pattern the segment boundaries. It has been shown that oscillator mobility promotes global synchronization. However, in vertebrate segment formation, mobility may also introduce local fluctuations in kinematic waves and impair segment boundaries. Here, we derive a general framework for mobile oscillators that relates local mobility fluctuations to synchronization dynamics and pattern robustness. We formulate a statistical description of mobile phase oscillators in terms of probability density. We obtain and solve diffusion equations for the average phase and variance, revealing the relationship between local fluctuations and global synchronization in a homogeneous population of oscillators. Analysis of the probability density for large mobility identifies a mean-field onset, where locally coupled oscillators start behaving as if each oscillator was coupled with all the others. We extend the statistical description to inhomogeneous systems to address the gradients present in the vertebrate segmenting tissue. The theory relates pattern stability to mobility, coupling, and pattern wavelength. The general approach of the statistical description may be applied to mobile oscillators in other contexts, as well as to other patterning systems where mobility is present.
Collapse
Affiliation(s)
- Koichiro Uriu
- School of Life Science and Technology, Institute of Science Tokyo, 2-12-1, Ookayama, Meguro-ku Tokyo 152-8550, Japan
- Kanazawa University, Graduate School of Natural Science and Technology, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Luis G Morelli
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET/Partner Institute of the Max Planck Society, Polo Científico Tecnológico, Godoy Cruz 2390, Buenos Aires C1425FQD, Argentina
| |
Collapse
|
3
|
El Azhar Y, Schulthess P, van Oostrom MJ, Weterings SDC, Meijer WHM, Tsuchida-Straeten N, Thomas WM, Bauer M, Sonnen KF. Unravelling differential Hes1 dynamics during axis elongation of mouse embryos through single-cell tracking. Development 2024; 151:dev202936. [PMID: 39315665 DOI: 10.1242/dev.202936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024]
Abstract
The intricate dynamics of Hes expression across diverse cell types in the developing vertebrate embryonic tail have remained elusive. To address this, we have developed an endogenously tagged Hes1-Achilles mouse line, enabling precise quantification of dynamics at the single-cell resolution across various tissues. Our findings reveal striking disparities in Hes1 dynamics between presomitic mesoderm (PSM) and preneural tube (pre-NT) cells. While pre-NT cells display variable, low-amplitude oscillations, PSM cells exhibit synchronized, high-amplitude oscillations. Upon the induction of differentiation, the oscillation amplitude increases in pre-NT cells. Additionally, our study of Notch inhibition on Hes1 oscillations unveils distinct responses in PSM and pre-NT cells, corresponding to differential Notch ligand expression dynamics. These findings suggest the involvement of separate mechanisms driving Hes1 oscillations. Thus, Hes1 demonstrates dynamic behaviour across adjacent tissues of the embryonic tail, yet the varying oscillation parameters imply differences in the information that can be transmitted by these dynamics.
Collapse
Affiliation(s)
- Yasmine El Azhar
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), University Medical Center Utrecht, Utrecht 3584, The Netherlands
| | - Pascal Schulthess
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), University Medical Center Utrecht, Utrecht 3584, The Netherlands
| | - Marek J van Oostrom
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), University Medical Center Utrecht, Utrecht 3584, The Netherlands
| | - Sonja D C Weterings
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), University Medical Center Utrecht, Utrecht 3584, The Netherlands
| | - Wilke H M Meijer
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), University Medical Center Utrecht, Utrecht 3584, The Netherlands
| | | | - Wouter M Thomas
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), University Medical Center Utrecht, Utrecht 3584, The Netherlands
| | - Marianne Bauer
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), University Medical Center Utrecht, Utrecht 3584, The Netherlands
| | - Katharina F Sonnen
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), University Medical Center Utrecht, Utrecht 3584, The Netherlands
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Technical University of Delft, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
4
|
Wengryn P, Fenrich F, Silveira KDC, Oborn C, Mizumoto S, Beke A, Soltys CL, Yamada S, Kannu P. Integrative analysis of Lunatic Fringe variants associated with spondylocostal dysostosis type-III. FASEB J 2024; 38:e23753. [PMID: 38924591 DOI: 10.1096/fj.202302651rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Lunatic Fringe (LFNG) is required for spinal development. Biallelic pathogenic variants cause spondylocostal dysostosis type-III (SCD3), a rare disease generally characterized by malformed, asymmetrical, and attenuated development of the vertebral column and ribs. However, a variety of SCD3 cases reported have presented with additional features such as auditory alterations and digit abnormalities. There has yet to be a single, comprehensive, functional evaluation of causative LFNG variants and such analyses could unveil molecular mechanisms for phenotypic variability in SCD3. Therefore, nine LFNG missense variants associated with SCD3, c.564C>A, c.583T>C, c.842C>A, c.467T>G, c.856C>T, c.601G>A, c.446C>T, c.521G>A, and c.766G>A, were assessed in vitro for subcellular localization and protein processing. Glycosyltransferase activity was quantified for the first time in the c.583T>C, c.842C>A, and c.446C>T variants. Primarily, our results are the first to satisfy American College of Medical Genetics and Genomics PS3 criteria (functional evidence via well-established assay) for the pathogenicity of c.583T>C, c.842C>A, and c.446C>T, and replicate this evidence for the remaining six variants. Secondly, this work indicates that all variants that prevent Golgi localization also lead to impaired protein processing. It appears that the FRINGE domain is responsible for this phenomenon. Thirdly, our data suggests that variant proximity to the catalytic residue may influence whether LFNG is improperly trafficked and/or enzymatically dysfunctional. Finally, the phenotype of the axial skeleton, but not elsewhere, may be modulated in a variant-specific fashion. More reports are needed to continue testing this hypothesis. We anticipate our data will be used as a basis for discussion of genotype-phenotype correlations in SCD3.
Collapse
Affiliation(s)
- Parker Wengryn
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Felicity Fenrich
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
- Department of Molecular and Cellular Biology, University of Guelf, Guelf, Ontario, Canada
| | | | - Connor Oborn
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Meijo University, Nagoya, Aichi, Japan
| | - Alexander Beke
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Carrie-Lynn Soltys
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Shuhei Yamada
- Department of Pathobiochemistry, Meijo University, Nagoya, Aichi, Japan
| | - Peter Kannu
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Miao Y, Pourquié O. Cellular and molecular control of vertebrate somitogenesis. Nat Rev Mol Cell Biol 2024; 25:517-533. [PMID: 38418851 PMCID: PMC11694818 DOI: 10.1038/s41580-024-00709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Segmentation is a fundamental feature of the vertebrate body plan. This metameric organization is first implemented by somitogenesis in the early embryo, when paired epithelial blocks called somites are rhythmically formed to flank the neural tube. Recent advances in in vitro models have offered new opportunities to elucidate the mechanisms that underlie somitogenesis. Notably, models derived from human pluripotent stem cells introduced an efficient proxy for studying this process during human development. In this Review, we summarize the current understanding of somitogenesis gained from both in vivo studies and in vitro studies. We deconstruct the spatiotemporal dynamics of somitogenesis into four distinct modules: dynamic events in the presomitic mesoderm, segmental determination, somite anteroposterior polarity patterning, and epithelial morphogenesis. We first focus on the segmentation clock, as well as signalling and metabolic gradients along the tissue, before discussing the clock and wavefront and other models that account for segmental determination. We then detail the molecular and cellular mechanisms of anteroposterior polarity patterning and somite epithelialization.
Collapse
Affiliation(s)
- Yuchuan Miao
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
6
|
Yaman YI, Ramanathan S. Controlling human organoid symmetry breaking reveals signaling gradients drive segmentation clock waves. Cell 2023; 186:513-527.e19. [PMID: 36657441 PMCID: PMC10025047 DOI: 10.1016/j.cell.2022.12.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/29/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023]
Abstract
Axial development of mammals involves coordinated morphogenetic events, including axial elongation, somitogenesis, and neural tube formation. To gain insight into the signals controlling the dynamics of human axial morphogenesis, we generated axially elongating organoids by inducing anteroposterior symmetry breaking of spatially coupled epithelial cysts derived from human pluripotent stem cells. Each organoid was composed of a neural tube flanked by presomitic mesoderm sequentially segmented into somites. Periodic activation of the somite differentiation gene MESP2 coincided in space and time with anteriorly traveling segmentation clock waves in the presomitic mesoderm of the organoids, recapitulating critical aspects of somitogenesis. Timed perturbations demonstrated that FGF and WNT signaling play distinct roles in axial elongation and somitogenesis, and that FGF signaling gradients drive segmentation clock waves. By generating and perturbing organoids that robustly recapitulate the architecture of multiple axial tissues in human embryos, this work offers a means to dissect mechanisms underlying human embryogenesis.
Collapse
Affiliation(s)
- Yusuf Ilker Yaman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Sharad Ramanathan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
7
|
Bochter MS, Servello D, Kakuda S, D'Amico R, Ebetino MF, Haltiwanger RS, Cole SE. Lfng and Dll3 cooperate to modulate protein interactions in cis and coordinate oscillatory Notch pathway activation in the segmentation clock. Dev Biol 2022; 487:42-56. [PMID: 35429490 PMCID: PMC9923780 DOI: 10.1016/j.ydbio.2022.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/14/2022] [Accepted: 04/08/2022] [Indexed: 01/11/2023]
Abstract
In mammalian development, oscillatory activation of Notch signaling is required for segmentation clock function during somitogenesis. Notch activity oscillations are synchronized between neighboring cells in the presomitic mesoderm (PSM) and have a period that matches the rate of somite formation. Normal clock function requires cyclic expression of the Lunatic fringe (LFNG) glycosyltransferase, as well as expression of the inhibitory Notch ligand Delta-like 3 (DLL3). How these factors coordinate Notch activation in the clock is not well understood. Recent evidence suggests that LFNG can act in a signal-sending cell to influence Notch activity in the clock, raising the possibility that in this context, glycosylation of Notch pathway proteins by LFNG may affect ligand activity. Here we dissect the genetic interactions of Lfng and Dll3 specifically in the segmentation clock and observe distinctions in the skeletal and clock phenotypes of mutant embryos showing that paradoxically, loss of Dll3 is associated with strong reductions in Notch activity in the caudal PSM. The patterns of Notch activity in the PSM suggest that the loss of Dll3 is epistatic to the loss of Lfng in the segmentation clock, and we present direct evidence for the modification of several DLL1 and DLL3 EGF-repeats by LFNG. We further demonstrate that DLL3 expression in cells co-expressing DLL1 and NOTCH1 can potentiate a cell's signal-sending activity and that this effect is modulated by LFNG, suggesting a mechanism for coordinated regulation of oscillatory Notch activation in the clock by glycosylation and cis-inhibition.
Collapse
Affiliation(s)
- Matthew S Bochter
- The Department of Molecular Genetics, The Ohio State University. Columbus, OH, 43210, USA
| | - Dustin Servello
- The Department of Molecular Genetics, The Ohio State University. Columbus, OH, 43210, USA
| | - Shinako Kakuda
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Rachel D'Amico
- The Department of Molecular Genetics, The Ohio State University. Columbus, OH, 43210, USA
| | - Meaghan F Ebetino
- The Department of Molecular Genetics, The Ohio State University. Columbus, OH, 43210, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA; Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Susan E Cole
- The Department of Molecular Genetics, The Ohio State University. Columbus, OH, 43210, USA.
| |
Collapse
|
8
|
Linde-Medina M, Smit TH. Molecular and Mechanical Cues for Somite Periodicity. Front Cell Dev Biol 2021; 9:753446. [PMID: 34901002 PMCID: PMC8663771 DOI: 10.3389/fcell.2021.753446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Somitogenesis refers to the segmentation of the paraxial mesoderm, a tissue located on the back of the embryo, into regularly spaced and sized pieces, i.e., the somites. This periodicity is important to assure, for example, the formation of a functional vertebral column. Prevailing models of somitogenesis are based on the existence of a gene regulatory network capable of generating a striped pattern of gene expression, which is subsequently translated into periodic tissue boundaries. An alternative view is that the pre-pattern that guides somitogenesis is not chemical, but of a mechanical origin. A striped pattern of mechanical strain can be formed in physically connected tissues expanding at different rates, as it occurs in the embryo. Here we argue that both molecular and mechanical cues could drive somite periodicity and suggest how they could be integrated.
Collapse
Affiliation(s)
| | - Theodoor H. Smit
- Department of Orthopaedic Surgery, Amsterdam Movement Sciences, Amsterdam University Medical Centres, Amsterdam, Netherlands
- Department of Medical Biology, Amsterdam University Medical Centres, Amsterdam, Netherlands
| |
Collapse
|
9
|
Kuyyamudi C, Menon SN, Sinha S. Morphogen-regulated contact-mediated signaling between cells can drive the transitions underlying body segmentation in vertebrates. Phys Biol 2021; 19. [PMID: 34670199 DOI: 10.1088/1478-3975/ac31a3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/20/2021] [Indexed: 11/12/2022]
Abstract
We propose a unified mechanism that reproduces the sequence of dynamical transitions observed during somitogenesis, the process of body segmentation during embryonic development, that is invariant across all vertebrate species. This is achieved by combining inter-cellular interactions mediated via receptor-ligand coupling with global spatial heterogeneity introduced through a morphogen gradient known to occur along the anteroposterior axis. Our model reproduces synchronized oscillations in the gene expression in cells at the anterior of the presomitic mesoderm as it grows by adding new cells at its posterior, followed by travelling waves and subsequent arrest of activity, with the eventual appearance of somite-like patterns. This framework integrates a boundary-organized pattern formation mechanism, which uses positional information provided by a morphogen gradient, with the coupling-mediated self-organized emergence of collective dynamics, to explain the processes that lead to segmentation.
Collapse
Affiliation(s)
- Chandrashekar Kuyyamudi
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Shakti N Menon
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
| | - Sitabhra Sinha
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
10
|
Diaz-Cuadros M, Pourquié O, El-Sherif E. Patterning with clocks and genetic cascades: Segmentation and regionalization of vertebrate versus insect body plans. PLoS Genet 2021; 17:e1009812. [PMID: 34648490 PMCID: PMC8516289 DOI: 10.1371/journal.pgen.1009812] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Oscillatory and sequential processes have been implicated in the spatial patterning of many embryonic tissues. For example, molecular clocks delimit segmental boundaries in vertebrates and insects and mediate lateral root formation in plants, whereas sequential gene activities are involved in the specification of regional identities of insect neuroblasts, vertebrate neural tube, vertebrate limb, and insect and vertebrate body axes. These processes take place in various tissues and organisms, and, hence, raise the question of what common themes and strategies they share. In this article, we review 2 processes that rely on the spatial regulation of periodic and sequential gene activities: segmentation and regionalization of the anterior-posterior (AP) axis of animal body plans. We study these processes in species that belong to 2 different phyla: vertebrates and insects. By contrasting 2 different processes (segmentation and regionalization) in species that belong to 2 distantly related phyla (arthropods and vertebrates), we elucidate the deep logic of patterning by oscillatory and sequential gene activities. Furthermore, in some of these organisms (e.g., the fruit fly Drosophila), a mode of AP patterning has evolved that seems not to overtly rely on oscillations or sequential gene activities, providing an opportunity to study the evolution of pattern formation mechanisms.
Collapse
Affiliation(s)
- Margarete Diaz-Cuadros
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
| | - Ezzat El-Sherif
- Division of Developmental Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
11
|
Boareto M, Tomka T, Iber D. Positional information encoded in the dynamic differences between neighboring oscillators during vertebrate segmentation. Cells Dev 2021; 168:203737. [PMID: 34481980 DOI: 10.1016/j.cdev.2021.203737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/28/2021] [Accepted: 08/20/2021] [Indexed: 01/24/2023]
Abstract
A central problem in developmental biology is to understand how cells interpret their positional information to give rise to spatial patterns, such as the process of periodic segmentation of the vertebrate embryo into somites. For decades, somite formation has been interpreted according to the clock-and-wavefront model. In this conceptual framework, molecular oscillators set the frequency of somite formation while the positional information is encoded in signaling gradients. Recent experiments using ex vivo explants have challenged this interpretation, suggesting that positional information is encoded in the properties of the oscillators, independent of long-range modulations such as signaling gradients. Here, we propose that positional information is encoded in the difference in the levels of neighboring oscillators. The differences gradually increase because both the amplitude and the period of the oscillators increase with time. When this difference exceeds a certain threshold, the segmentation program starts. Using this framework, we quantitatively fit experimental data from in vivo and ex vivo mouse segmentation, and propose mechanisms of somite scaling. Our results suggest a novel mechanism of spatial pattern formation based on the local interactions between dynamic molecular oscillators.
Collapse
Affiliation(s)
- Marcelo Boareto
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Tomas Tomka
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland.
| |
Collapse
|
12
|
Understanding paraxial mesoderm development and sclerotome specification for skeletal repair. Exp Mol Med 2020; 52:1166-1177. [PMID: 32788657 PMCID: PMC8080658 DOI: 10.1038/s12276-020-0482-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/26/2022] Open
Abstract
Pluripotent stem cells (PSCs) are attractive regenerative therapy tools for skeletal tissues. However, a deep understanding of skeletal development is required in order to model this development with PSCs, and for the application of PSCs in clinical settings. Skeletal tissues originate from three types of cell populations: the paraxial mesoderm, lateral plate mesoderm, and neural crest. The paraxial mesoderm gives rise to the sclerotome mainly through somitogenesis. In this process, key developmental processes, including initiation of the segmentation clock, formation of the determination front, and the mesenchymal–epithelial transition, are sequentially coordinated. The sclerotome further forms vertebral columns and contributes to various other tissues, such as tendons, vessels (including the dorsal aorta), and even meninges. To understand the molecular mechanisms underlying these developmental processes, extensive studies have been conducted. These studies have demonstrated that a gradient of activities involving multiple signaling pathways specify the embryonic axis and induce cell-type-specific master transcription factors in a spatiotemporal manner. Moreover, applying the knowledge of mesoderm development, researchers have attempted to recapitulate the in vivo development processes in in vitro settings, using mouse and human PSCs. In this review, we summarize the state-of-the-art understanding of mesoderm development and in vitro modeling of mesoderm development using PSCs. We also discuss future perspectives on the use of PSCs to generate skeletal tissues for basic research and clinical applications. A deeper understanding of skeletal tissue development and improvements in tissue engineering will help pluripotent stem cell (PSC) therapies to reach their full potential for skeletal repair. The paraxial mesoderm, an embryonic germ layer, is crucial to the formation of healthy axial skeleton. Shoichiro Tani at the University of Tokyo, Japan, and co-workers reviewed current understanding of paraxial mesoderm development and studies involving in vitro PSC skeletal modeling. The formation of the paraxial mesoderm and associated connective tissues comprises multiple stages, and studies in vertebrate embryos have uncovered critical signaling pathways and cellular components important to PSC modeling. Although many individual cellular components can now be modeled, it remains challenging to recreate three-dimensional skeletal tissues. Such an achievement would facilitate a functioning model of bone metabolism, the next step in achieving skeletal regeneration.
Collapse
|
13
|
Jutras-Dubé L, El-Sherif E, François P. Geometric models for robust encoding of dynamical information into embryonic patterns. eLife 2020; 9:55778. [PMID: 32773041 PMCID: PMC7470844 DOI: 10.7554/elife.55778] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/07/2020] [Indexed: 12/30/2022] Open
Abstract
During development, cells gradually assume specialized fates via changes of transcriptional dynamics, sometimes even within the same developmental stage. For anterior-posterior (AP) patterning in metazoans, it has been suggested that the gradual transition from a dynamic genetic regime to a static one is encoded by different transcriptional modules. In that case, the static regime has an essential role in pattern formation in addition to its maintenance function. In this work, we introduce a geometric approach to study such transition. We exhibit two types of genetic regime transitions arising through local or global bifurcations, respectively. We find that the global bifurcation type is more generic, more robust, and better preserves dynamical information. This could parsimoniously explain common features of metazoan segmentation, such as changes of periods leading to waves of gene expressions, ‘speed/frequency-gradient’ dynamics, and changes of wave patterns. Geometric approaches appear as possible alternatives to gene regulatory networks to understand development.
Collapse
Affiliation(s)
| | - Ezzat El-Sherif
- Division of Developmental Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Paul François
- Department of Physics, McGill University, Montreal, Canada
| |
Collapse
|
14
|
Bhavna R. Segmentation clock dynamics is strongly synchronized in the forming somite. Dev Biol 2020; 460:55-69. [PMID: 30926261 DOI: 10.1016/j.ydbio.2019.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 10/27/2022]
Abstract
During vertebrate somitogenesis an inherent segmentation clock coordinates the spatiotemporal signaling to generate segmented structures that pattern the body axis. Using our experimental and quantitative approach, we study the cell movements and the genetic oscillations of her1 expression level at single-cell resolution simultaneously and scale up to the entire pre-somitic mesoderm (PSM) tissue. From the experimentally determined phases of PSM cellular oscillators, we deduced an in vivo frequency profile gradient along the anterior-posterior PSM axis and inferred precise mathematical relations between spatial cell-level period and tissue-level somitogenesis period. We also confirmed a gradient in the relative velocities of cellular oscillators along the axis. The phase order parameter within an ensemble of oscillators revealed the degree of synchronization in the tailbud and the posterior PSM being only partial, whereas synchronization can be almost complete in the presumptive somite region but with temporal oscillations. Collectively, the degree of synchronization itself, possibly regulated by cell movement and the synchronized temporal phase of the transiently expressed clock protein Her1, can be an additional control mechanism for making precise somite boundaries.
Collapse
Affiliation(s)
- Rajasekaran Bhavna
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, 01187, Dresden, Germany; Tata Institute of Fundamental Research, 400005, Mumbai, India.
| |
Collapse
|
15
|
Keskin S, Simsek MF, Vu HT, Yang C, Devoto SH, Ay A, Özbudak EM. Regulatory Network of the Scoliosis-Associated Genes Establishes Rostrocaudal Patterning of Somites in Zebrafish. iScience 2019; 12:247-259. [PMID: 30711748 PMCID: PMC6360518 DOI: 10.1016/j.isci.2019.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/31/2018] [Accepted: 01/16/2019] [Indexed: 12/22/2022] Open
Abstract
Gene regulatory networks govern pattern formation and differentiation during embryonic development. Segmentation of somites, precursors of the vertebral column among other tissues, is jointly controlled by temporal signals from the segmentation clock and spatial signals from morphogen gradients. To explore how these temporal and spatial signals are integrated, we combined time-controlled genetic perturbation experiments with computational modeling to reconstruct the core segmentation network in zebrafish. We found that Mesp family transcription factors link the temporal information of the segmentation clock with the spatial action of the fibroblast growth factor signaling gradient to establish rostrocaudal (head to tail) polarity of segmented somites. We further showed that cells gradually commit to patterning by the action of different genes at different spatiotemporal positions. Our study provides a blueprint of the zebrafish segmentation network, which includes evolutionarily conserved genes that are associated with the birth defect congenital scoliosis in humans. A core network establishes rostrocaudal polarity of segmented somites in zebrafish mesp genes link the segmentation clock with the FGF signaling gradient Gradual patterning is done by the action of different genes at different positions
Collapse
Affiliation(s)
- Sevdenur Keskin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - M Fethullah Simsek
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ha T Vu
- Departments of Biology and Mathematics, Colgate University, Hamilton, NY 13346, USA
| | - Carlton Yang
- Departments of Biology and Mathematics, Colgate University, Hamilton, NY 13346, USA
| | - Stephen H Devoto
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA
| | - Ahmet Ay
- Departments of Biology and Mathematics, Colgate University, Hamilton, NY 13346, USA.
| | - Ertuğrul M Özbudak
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
16
|
Liao BK, Oates AC. Delta-Notch signalling in segmentation. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:429-447. [PMID: 27888167 PMCID: PMC5446262 DOI: 10.1016/j.asd.2016.11.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/20/2016] [Accepted: 11/21/2016] [Indexed: 06/06/2023]
Abstract
Modular body organization is found widely across multicellular organisms, and some of them form repetitive modular structures via the process of segmentation. It's vastly interesting to understand how these regularly repeated structures are robustly generated from the underlying noise in biomolecular interactions. Recent studies from arthropods reveal similarities in segmentation mechanisms with vertebrates, and raise the possibility that the three phylogenetic clades, annelids, arthropods and chordates, might share homology in this process from a bilaterian ancestor. Here, we discuss vertebrate segmentation with particular emphasis on the role of the Notch intercellular signalling pathway. We introduce vertebrate segmentation and Notch signalling, pointing out historical milestones, then describe existing models for the Notch pathway in the synchronization of noisy neighbouring oscillators, and a new role in the modulation of gene expression wave patterns. We ask what functions Notch signalling may have in arthropod segmentation and explore the relationship between Notch-mediated lateral inhibition and synchronization. Finally, we propose open questions and technical challenges to guide future investigations into Notch signalling in segmentation.
Collapse
Affiliation(s)
- Bo-Kai Liao
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| | - Andrew C Oates
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK; Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
17
|
Warrier S, Nuwayhid S, Sabatino JA, Sugrue KF, Zohn IE. Supt20 is required for development of the axial skeleton. Dev Biol 2016; 421:245-257. [PMID: 27894818 DOI: 10.1016/j.ydbio.2016.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 09/08/2016] [Accepted: 11/11/2016] [Indexed: 10/20/2022]
Abstract
Somitogenesis and subsequent axial skeletal development is regulated by the interaction of pathways that determine the periodicity of somite formation, rostrocaudal somite polarity and segment identity. Here we use a hypomorphic mutant mouse line to demonstrate that Supt20 (Suppressor of Ty20) is required for development of the axial skeleton. Supt20 hypomorphs display fusions of the ribs and vertebrae at lower thoracic levels along with anterior homeotic transformation of L1 to T14. These defects are preceded by reduction of the rostral somite and posterior shifts in Hox gene expression. While cycling of Notch target genes in the posterior presomitic mesoderm (PSM) appeared normal, expression of Lfng was reduced. In the anterior PSM, Mesp2 expression levels and cycling were unaffected; yet, expression of downstream targets such as Lfng, Ripply2, Mesp1 and Dll3 in the prospective rostral somite was reduced accompanied by expansion of caudal somite markers such as EphrinB2 and Hes7. Supt20 interacts with the Gcn5-containing SAGA histone acetylation complex. Gcn5 hypomorphic mutant embryos show similar defects in axial skeletal development preceded by posterior shift of Hoxc8 and Hoxc9 gene expression. We demonstrate that Gcn5 and Supt20 hypomorphs show similar defects in rostral-caudal somite patterning potentially suggesting shared mechanisms.
Collapse
Affiliation(s)
- Sunita Warrier
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Samer Nuwayhid
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Julia A Sabatino
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Kelsey F Sugrue
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA; Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052, USA
| | - Irene E Zohn
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
| |
Collapse
|
18
|
Tsiairis CD, Aulehla A. Self-Organization of Embryonic Genetic Oscillators into Spatiotemporal Wave Patterns. Cell 2016; 164:656-67. [PMID: 26871631 PMCID: PMC4752819 DOI: 10.1016/j.cell.2016.01.028] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 11/20/2015] [Accepted: 01/20/2016] [Indexed: 12/28/2022]
Abstract
In vertebrate embryos, somites, the precursor of vertebrae, form from the presomitic mesoderm (PSM), which is composed of cells displaying signaling oscillations. Cellular oscillatory activity leads to periodic wave patterns in the PSM. Here, we address the origin of such complex wave patterns. We employed an in vitro randomization and real-time imaging strategy to probe for the ability of cells to generate order from disorder. We found that, after randomization, PSM cells self-organized into several miniature emergent PSM structures (ePSM). Our results show an ordered macroscopic spatial arrangement of ePSM with evidence of an intrinsic length scale. Furthermore, cells actively synchronize oscillations in a Notch-signaling-dependent manner, re-establishing wave-like patterns of gene activity. We demonstrate that PSM cells self-organize by tuning oscillation dynamics in response to surrounding cells, leading to collective synchronization with an average frequency. These findings reveal emergent properties within an ensemble of coupled genetic oscillators.
Collapse
Affiliation(s)
- Charisios D Tsiairis
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Alexander Aulehla
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.
| |
Collapse
|
19
|
Williams DR, Shifley ET, Braunreiter KM, Cole SE. Disruption of somitogenesis by a novel dominant allele of Lfng suggests important roles for protein processing and secretion. Development 2016; 143:822-30. [PMID: 26811377 DOI: 10.1242/dev.128538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/14/2016] [Indexed: 12/29/2022]
Abstract
Vertebrate somitogenesis is regulated by a segmentation clock. Clock-linked genes exhibit cyclic expression, with a periodicity matching the rate of somite production. In mice, lunatic fringe (Lfng) expression oscillates, and LFNG protein contributes to periodic repression of Notch signaling. We hypothesized that rapid LFNG turnover could be regulated by protein processing and secretion. Here, we describe a novel Lfng allele (Lfng(RLFNG)), replacing the N-terminal sequences of LFNG, which allow for protein processing and secretion, with the N-terminus of radical fringe (a Golgi-resident protein). This allele is predicted to prevent protein secretion without altering the activity of LFNG, thus increasing the intracellular half-life of the protein. This allele causes dominant skeletal and somite abnormalities that are distinct from those seen in Lfng loss-of-function embryos. Expression of clock-linked genes is perturbed and mature Hes7 transcripts are stabilized in the presomitic mesoderm of mutant mice, suggesting that both transcriptional and post-transcriptional regulation of clock components are perturbed by RLFNG expression. Contrasting phenotypes in the segmentation clock and somite patterning of mutant mice suggest that LFNG protein may have context-dependent effects on Notch activity.
Collapse
Affiliation(s)
- Dustin R Williams
- The Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Emily T Shifley
- The Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Kara M Braunreiter
- The Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Susan E Cole
- The Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
20
|
Shimojo H, Kageyama R. Oscillatory control of Delta-like1 in somitogenesis and neurogenesis: A unified model for different oscillatory dynamics. Semin Cell Dev Biol 2016; 49:76-82. [PMID: 26818178 DOI: 10.1016/j.semcdb.2016.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 12/22/2022]
Abstract
During somite segmentation, mRNA expression of the mouse Notch ligand Delta-like1 (Dll1) oscillates synchronously in the presomitic mesoderm (PSM). However, the dynamics of Dll1 protein expression were rather controversial, and their functional significance was not known. Recent live-imaging analysis showed that Dll1 protein expression also oscillates synchronously in the PSM. Interestingly, accelerated or delayed Dll1 expression by shortening or elongating the Dll1 gene, respectively, dampens or quenches Dll1 oscillation at intermediate levels, a phenomenon known as "amplitude/oscillation death" of coupled oscillators in mathematical modeling. Under this condition, oscillation of the Notch effector Hes7 is also dampened, leading to severe fusion of somites and their derivatives, such as vertebrae and ribs. Thus, the appropriate timing of Dll1 expression is critical for its oscillatory expression, pointing to the functional significance of Dll1-mediated oscillatory cell-cell interactions in the segmentation clock. In neural stem cells, Dll1 expression is also oscillatory, but non-synchronous, and when Dll1 oscillation is dampened, oscillation of another Notch effector, Hes1, is also dampened, leading to defects of neural development. In this review, we discuss the underlying mechanism for the different oscillatory dynamics (synchronous versus non-synchronous) in the PSM and neural stem cells in a unified manner.
Collapse
Affiliation(s)
- Hiromi Shimojo
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan; World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan.
| | - Ryoichiro Kageyama
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan; World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan.
| |
Collapse
|
21
|
Analysis of the Fam181 gene family during mouse development reveals distinct strain-specific expression patterns, suggesting a role in nervous system development and function. Gene 2016; 575:438-451. [DOI: 10.1016/j.gene.2015.09.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/05/2015] [Accepted: 09/09/2015] [Indexed: 12/18/2022]
|
22
|
The many roles of Notch signaling during vertebrate somitogenesis. Semin Cell Dev Biol 2016; 49:68-75. [DOI: 10.1016/j.semcdb.2014.11.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/23/2014] [Accepted: 11/26/2014] [Indexed: 02/06/2023]
|
23
|
Yabe T, Takada S. Molecular mechanism for cyclic generation of somites: Lessons from mice and zebrafish. Dev Growth Differ 2015; 58:31-42. [PMID: 26676827 DOI: 10.1111/dgd.12249] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/23/2022]
Abstract
The somite is the most prominent metameric structure observed during vertebrate embryogenesis, and its metamerism preserves the characteristic structures of the vertebrae and muscles in the adult body. During vertebrate somitogenesis, sequential formation of epithelialized cell boundaries generates the somites. According to the "clock and wavefront model," the periodical and sequential generation of somites is achieved by the integration of spatiotemporal information provided by the segmentation clock and wavefront. In the anterior region of the presomitic mesoderm, which is the somite precursor, the orchestration between the segmentation clock and the wavefront achieves morphogenesis of somites through multiple processes such as determination of somite boundary position, generation of morophological boundary, and establishment of the rostrocaudal polarity within a somite. Recently, numerous studies using various model animals including mouse, zebrafish, and chick have gradually revealed the molecular aspect of the "clock and wavefront" model and the molecular mechanism connecting the segmentation clock and the wavefront to the multiple processes of somite morphogenesis. In this review, we first summarize the current knowledge about the molecular mechanisms underlying the clock and the wavefront and then describe those of the three processes of somite morphogenesis. Especially, we will discuss the conservation and diversification in the molecular network of the somitigenesis among vertebrates, focusing on two typical model animals used for genetic analyses, i.e., the mouse and zebrafish. In this review, we described molecular mechanism for the generation of somites based on the spatiotemporal information provided by "segmentation clock" and "wavefront" focusing on the evidences obtained from mouse and zebrafish.
Collapse
Affiliation(s)
- Taijiro Yabe
- Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.,The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan
| | - Shinji Takada
- Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.,The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan
| |
Collapse
|
24
|
Casaca A, Nóvoa A, Mallo M. Hoxb6 can interfere with somitogenesis in the posterior embryo through a mechanism independent of its rib-promoting activity. Development 2015; 143:437-48. [DOI: 10.1242/dev.133074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/18/2015] [Indexed: 01/19/2023]
Abstract
Formation of the vertebrate axial skeleton requires coordinated Hox gene activity. Hox group 6 genes are involved in the formation of the thoracic area due to their unique rib-promoting properties. We show here that the linker region (LR) connecting the homeodomain and the hexapeptide is essential for Hoxb6 rib-promoting activity. The LR-defective Hoxb6 protein was still able to bind a target enhancer together with Pax3 producing a dominant negative effect, indicating that the LR brings additional regulatory factors to target DNA elements. We also found an unexpected association between Hoxb6 and segmentation in the paraxial mesoderm. In particular, Hoxb6 can disturb somitogenesis and anterior-posterior somite patterning by deregulating Lfng expression. Interestingly, this interaction occurred differently in thoracic and more caudal embryonic areas, indicating functional differences in somitogenesis before and after the trunk to tail transition. Our results suggest the requirement of precisely regulated Hoxb6 expression for proper segmentation at tailbud stages.
Collapse
Affiliation(s)
- Ana Casaca
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Ana Nóvoa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Moisés Mallo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
25
|
|
26
|
Harima Y, Imayoshi I, Shimojo H, Kobayashi T, Kageyama R. The roles and mechanism of ultradian oscillatory expression of the mouse Hes genes. Semin Cell Dev Biol 2014; 34:85-90. [PMID: 24865153 DOI: 10.1016/j.semcdb.2014.04.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/10/2014] [Accepted: 04/30/2014] [Indexed: 12/22/2022]
Abstract
Somites, metameric structures, give rise to the vertebral column, ribs, skeletal muscles and subcutaneous tissues. In mouse embryos, a pair of somites is formed every 2h by segmentation of the anterior parts of the presomitic mesoderm. This periodic event is regulated by a biological clock called the segmentation clock, which involves cyclic expression of the basic helix-loop-helix gene Hes7. Hes7 oscillation is regulated by negative feedback with a delayed timing. This process has been mathematically simulated by differential-delay equations, which predict that negative feedback with shorter delays would abolish oscillations or produce dampened but more rapid oscillations. We found that reducing the number of introns within the Hes7 gene shortens the delay and abolishes Hes7 oscillation or results in a more rapid tempo of Hes7 oscillation, increasing the number of somites and vertebrae in the cervical and upper thoracic region. We also found that Hes1, a Hes7-related gene, is expressed in an oscillatory manner by many cell types, including fibroblasts and neural stem cells. In these cells, Hes1 expression oscillates with a period of about 2-3h, and this oscillation is important for cell cycle progression. Furthermore, in neural stem cells, Hes1 oscillation drives cyclic expression of the proneural genes Ascl1 and Neurogenin2 and regulates multipotency. Hes1 expression oscillates more slowly in embryonic stem cells, and Hes1 oscillation regulates their fate preferences. Taken together, these results suggest that oscillatory expression with short periods (ultradian oscillation) is important for many biological events.
Collapse
Affiliation(s)
- Yukiko Harima
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Itaru Imayoshi
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan; World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; The Hakubi Center, Kyoto University, Kyoto 606-8501, Japan
| | - Hiromi Shimojo
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Taeko Kobayashi
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Ryoichiro Kageyama
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
27
|
Williams DR, Shifley ET, Lather JD, Cole SE. Posterior skeletal development and the segmentation clock period are sensitive to Lfng dosage during somitogenesis. Dev Biol 2014; 388:159-69. [PMID: 24560643 DOI: 10.1016/j.ydbio.2014.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 01/08/2014] [Accepted: 02/10/2014] [Indexed: 01/25/2023]
Abstract
The segmental structure of the axial skeleton is formed during somitogenesis. During this process, paired somites bud from the presomitic mesoderm (PSM), in a process regulated by a genetic clock called the segmentation clock. The Notch pathway and the Notch modulator Lunatic fringe (Lfng) play multiple roles during segmentation. Lfng oscillates in the posterior PSM as part of the segmentation clock, but is stably expressed in the anterior PSM during presomite patterning. We previously found that mice lacking overt oscillatory Lfng expression in the posterior PSM (Lfng(∆FCE)) exhibit abnormal anterior development but relatively normal posterior development. This suggests distinct requirements for segmentation clock activity during the formation of the anterior skeleton (primary body formation), compared to the posterior skeleton and tail (secondary body formation). To build on these findings, we created an allelic series that progressively lowers Lfng levels in the PSM. Interestingly, we find that further reduction of Lfng expression levels in the PSM does not increase disruption of anterior development. However tail development is increasingly compromised as Lfng levels are reduced, suggesting that primary body formation is more sensitive to Lfng dosage than is secondary body formation. Further, we find that while low levels of oscillatory Lfng in the posterior PSM are sufficient to support relatively normal posterior development, the period of the segmentation clock is increased when the amplitude of Lfng oscillations is low. These data support the hypothesis that there are differential requirements for oscillatory Lfng during primary and secondary body formation and that posterior development is less sensitive to overall Lfng levels. Further, they suggest that modulation of the Notch signaling by Lfng affects the clock period during development.
Collapse
Affiliation(s)
- Dustin R Williams
- The Department of Molecular Genetics, The Ohio State University, 105 Biological Sciences Building, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Emily T Shifley
- The Department of Molecular Genetics, The Ohio State University, 105 Biological Sciences Building, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Jason D Lather
- The Department of Molecular Genetics, The Ohio State University, 105 Biological Sciences Building, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Susan E Cole
- The Department of Molecular Genetics, The Ohio State University, 105 Biological Sciences Building, 484 West 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
28
|
Makino Y, Kaneko K, Yamaguchi A, Iimura T. Developmental biology and etiology of axial skeleton: Lessons from a mouse model of spondylocostal dysostosis and spondylothoracic dysostosis. J Oral Biosci 2013. [DOI: 10.1016/j.job.2013.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Dziekan P, Signon L, Nowakowski B, Lemarchand A. Reaction-diffusion approach to prevertebrae formation: Effect of a local source of morphogen. J Chem Phys 2013; 139:114107. [DOI: 10.1063/1.4820952] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Abstract
Body axis elongation and segmentation are major morphogenetic events that take place concomitantly during vertebrate embryonic development. Establishment of the final body plan requires tight coordination between these two key processes. In this review, we detail the cellular and molecular as well as the physical processes underlying body axis formation and patterning. We discuss how formation of the anterior region of the body axis differs from that of the posterior region. We describe the developmental mechanism of segmentation and the regulation of body length and segment numbers. We focus mainly on the chicken embryo as a model system. Its accessibility and relatively flat structure allow high-quality time-lapse imaging experiments, which makes it one of the reference models used to study morphogenesis. Additionally, we illustrate conservation and divergence of specific developmental mechanisms by discussing findings in other major embryonic model systems, such as mice, frogs, and zebrafish.
Collapse
Affiliation(s)
- Bertrand Bénazéraf
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Université de Strasbourg, Illkirch F-67400, France;
| | | |
Collapse
|
31
|
Lopez TP, Fan CM. Dynamic CREB family activity drives segmentation and posterior polarity specification in mammalian somitogenesis. Proc Natl Acad Sci U S A 2013; 110:E2019-27. [PMID: 23671110 PMCID: PMC3670316 DOI: 10.1073/pnas.1222115110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The segmented body plan of vertebrates is prefigured by reiterated embryonic mesodermal structures called somites. In the mouse embryo, timely somite formation from the presomitic mesoderm (PSM) is controlled by the "segmentation clock," a molecular oscillator that triggers progressive waves of Notch activity throughout the PSM. Notch clock activity is suppressed in the posterior PSM by FGF signaling until it crosses a determination front at which its net activity is sufficiently high to effect segmentation. Here, Notch and Wnt signaling directs somite anterior/posterior (A/P) polarity specification and boundary formation via regulation of the segmentation effector gene Mesoderm posterior 2. How Notch and Wnt signaling becomes coordinated at this front is incompletely defined. Here we show that the activity of the cAMP responsive element binding protein (CREB) family of transcription factors exhibits Wnt3a-dependent oscillatory behavior near the determination front and is in unison with Notch activity. Inhibition of CREB family in the mesoderm causes defects in somite segmentation and a loss in somite posterior polarity leading to fusions of vertebrae and ribs. Among the CREB family downstream genes, several are known to be regulated by Wnt3a. Of those, we show that the CREB family occupies a conserved binding site in the promoter region of Delta-like 1, encoding a Notch ligand, in the anterior PSM as a mechanism to specify posterior identity of somites. Together, these data support that the CREB family acts at the determination front to modulate Wnt signaling and strengthen Notch signaling as a means to orchestrate cells for somite segmentation and anterior/posterior patterning.
Collapse
Affiliation(s)
- T. Peter Lopez
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218; and
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21218
| | - Chen-Ming Fan
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218; and
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21218
| |
Collapse
|
32
|
Lfng regulates the synchronized oscillation of the mouse segmentation clock via trans-repression of Notch signalling. Nat Commun 2013; 3:1141. [PMID: 23072809 DOI: 10.1038/ncomms2133] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 09/13/2012] [Indexed: 12/21/2022] Open
Abstract
The synchronized oscillation of segmentation clock is required to generate a sharp somite boundary during somitogenesis. However, the molecular mechanism underlying this synchronization in the mouse embryos is not clarified yet. We used both experimental and theoretical approaches to address this key question. Here we show, using chimeric embryos composed of wild-type cells and Delta like 1 (Dll1)-null cells, that Dll1-mediated Notch signalling is responsible for the synchronization mechanism. By analysing Lunatic fringe (Lfng) chimeric embryos and Notch signal reporter assays using a co-culture system, we further find that Lfng represses Notch activity in neighbouring cells by modulating Dll1 function. Finally, numerical simulations confirm that the repressive effect of Lfng against Notch activities in neighbouring cells can sufficiently explain the synchronization in vivo. Collectively, we provide a new model in which Lfng has a crucial role in intercellular coupling of the segmentation clock through a trans-repression mechanism.
Collapse
|
33
|
Makino Y, Takahashi Y, Tanabe R, Tamamura Y, Watanabe T, Haraikawa M, Hamagaki M, Hata K, Kanno J, Yoneda T, Saga Y, Goseki-Sone M, Kaneko K, Yamaguchi A, Iimura T. Spatiotemporal disorder in the axial skeleton development of the Mesp2-null mouse: a model of spondylocostal dysostosis and spondylothoracic dysostosis. Bone 2013; 53:248-58. [PMID: 23238123 DOI: 10.1016/j.bone.2012.11.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 11/01/2012] [Accepted: 11/19/2012] [Indexed: 12/18/2022]
Abstract
Spondylocostal dysostosis (SCDO) is a genetic disorder characterized by severe malformation of the axial skeleton. Mesp2 encodes a basic helix-loop-helix type transcription factor that is required for somite formation. Its human homologue, Mesp2, is a gene affected in patients with SCDO and a related vertebral disorder, spondylothoracic dysostosis (STDO). This work investigated how the loss of Mesp2 affects axial skeleton development and causes the clinical features of SCDO and STDO. We first confirmed, by three-dimensional computed tomography scanning, that Mesp2-null mice exhibited mineralized tissue patterning resembling the radiological features of SCDO and STDO. Histological observations and in situ hybridization probing for extracellular matrix molecules demonstrated that the developing vertebral bodies in Mesp2-null mice were extensively fused with rare insertions of intervertebral tissue. Unexpectedly, the intervertebral tissues were mostly fused longitudinally in the vertebral column, instead of exhibiting extended formation, as was expected based on the caudalized properties of Mesp2-null somite derivatives. Furthermore, the differentiation of vertebral body chondrocytes in Mesp2-null mice was spatially disordered and largely delayed, with an increased cell proliferation rate. The quantitative three-dimensional immunofluorescence image analyses of phospho-Smad2 and -Smad1/5/8 revealed that these chondrogenic phenotypes were associated with spatially disordered inputs of TGF-β and BMP signaling in the Mesp2-null chondrocytes, and also demonstrated an amorphous arrangement of cells with distinct properties. Furthermore, a significant delay in ossification in Mesp2-null vertebrae was observed by peripheral quantitative computed tomography. The current observations of the spatiotemporal disorder of vertebral organogenesis in the Mesp2-null mice provide further insight into the pathogenesis of SCDO and STDO, and the physiological development of the axial skeleton.
Collapse
Affiliation(s)
- Yuji Makino
- Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
González A, Manosalva I, Liu T, Kageyama R. Control of Hes7 expression by Tbx6, the Wnt pathway and the chemical Gsk3 inhibitor LiCl in the mouse segmentation clock. PLoS One 2013; 8:e53323. [PMID: 23326414 PMCID: PMC3541138 DOI: 10.1371/journal.pone.0053323] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 11/30/2012] [Indexed: 01/31/2023] Open
Abstract
The mouse segmentation is established from somites, which are iteratively induced every two hours from the presomitic mesoderm (PSM) by a system known as the segmentation clock. A crucial component of the segmentation clock is the gene Hes7, which is regulated by the Notch and Fgf/Mapk pathways, but its relation to other pathways is unknown. In addition, chemical alteration of the Wnt pathway changes the segmentation clock period but the mechanism is unclear.To clarify these questions, we have carried out Hes7 promoter analysis in transgenic mouse embryos and have identified an essential 400 bp region, which contains binding sites of Tbx6 and the Wnt signaling effector Lef1. We have found that the Hes7 promoter is activated by Tbx6, and normal activity of the Hes7 promoter in the mouse PSM requires Tbx6 binding sites. Our results demonstrate that Wnt pathway molecules activate the Hes7 promoter cooperatively with Tbx6 in cell culture and are necessary for its proper expression in the mouse PSM. Furthermore, it is shown that the chemical Gsk3 inhibitor LiCl lengthens the oscillatory period of Hes7 promoter activity.Our data suggest that Tbx6 and the Wnt pathway cooperatively regulate proper Hes7 expression. Furthermore, proper Hes7 promoter activity and expression is important for the normal pace of oscillation.
Collapse
Affiliation(s)
- Aitor González
- Institute for Virus Research, Kyoto University, Kyoto, Japan.
| | | | | | | |
Collapse
|
35
|
François P, Siggia ED. Phenotypic models of evolution and development: geometry as destiny. Curr Opin Genet Dev 2012; 22:627-33. [PMID: 23026724 DOI: 10.1016/j.gde.2012.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 08/10/2012] [Accepted: 09/09/2012] [Indexed: 11/24/2022]
Abstract
Quantitative models of development that consider all relevant genes typically are difficult to fit to embryonic data alone and have many redundant parameters. Computational evolution supplies models of phenotype with relatively few variables and parameters that allows the patterning dynamics to be reduced to a geometrical picture for how the state of a cell moves. The clock and wavefront model, that defines the phenotype of somitogenesis, can be represented as a sequence of two discrete dynamical transitions (bifurcations). The expression-time to space map for Hox genes and the posterior dominance rule are phenotypes that naturally follow from computational evolution without considering the genetics of Hox regulation.
Collapse
Affiliation(s)
- Paul François
- McGill University, 3600 rue University, H3A2T8, Montreal, QC, Canada.
| | | |
Collapse
|
36
|
Tiedemann HB, Schneltzer E, Zeiser S, Hoesel B, Beckers J, Przemeck GKH, de Angelis MH. From dynamic expression patterns to boundary formation in the presomitic mesoderm. PLoS Comput Biol 2012; 8:e1002586. [PMID: 22761566 PMCID: PMC3386180 DOI: 10.1371/journal.pcbi.1002586] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 04/24/2012] [Indexed: 11/19/2022] Open
Abstract
The segmentation of the vertebrate body is laid down during early embryogenesis. The formation of signaling gradients, the periodic expression of genes of the Notch-, Fgf- and Wnt-pathways and their interplay in the unsegmented presomitic mesoderm (PSM) precedes the rhythmic budding of nascent somites at its anterior end, which later develops into epithelialized structures, the somites. Although many in silico models describing partial aspects of somitogenesis already exist, simulations of a complete causal chain from gene expression in the growth zone via the interaction of multiple cells to segmentation are rare. Here, we present an enhanced gene regulatory network (GRN) for mice in a simulation program that models the growing PSM by many virtual cells and integrates WNT3A and FGF8 gradient formation, periodic gene expression and Delta/Notch signaling. Assuming Hes7 as core of the somitogenesis clock and LFNG as modulator, we postulate a negative feedback of HES7 on Dll1 leading to an oscillating Dll1 expression as seen in vivo. Furthermore, we are able to simulate the experimentally observed wave of activated NOTCH (NICD) as a result of the interactions in the GRN. We esteem our model as robust for a wide range of parameter values with the Hes7 mRNA and protein decays exerting a strong influence on the core oscillator. Moreover, our model predicts interference between Hes1 and HES7 oscillators when their intrinsic frequencies differ. In conclusion, we have built a comprehensive model of somitogenesis with HES7 as core oscillator that is able to reproduce many experimentally observed data in mice.
Collapse
Affiliation(s)
- Hendrik B. Tiedemann
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Elida Schneltzer
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Bastian Hoesel
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Technische Universitaet Muenchen, Center of Life and Food Sciences Weihenstephan, Chair of Experimental Genetics, Freising, Germany
| | - Gerhard K. H. Przemeck
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Technische Universitaet Muenchen, Center of Life and Food Sciences Weihenstephan, Chair of Experimental Genetics, Freising, Germany
- * E-mail:
| |
Collapse
|
37
|
Saga Y. The mechanism of somite formation in mice. Curr Opin Genet Dev 2012; 22:331-8. [PMID: 22742849 DOI: 10.1016/j.gde.2012.05.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 03/30/2012] [Accepted: 05/15/2012] [Indexed: 12/11/2022]
Abstract
Somitogenesis is a series of dynamic morphogenetic events that involve cyclical signaling. The periodicity of somitogenesis is controlled by segmentation clock operating in the presomitic mesoderm (PSM), the precursor of somites. Notch signaling plays important roles not only in the segmentation clock mechanism but also as an output signal of the clock to induce Mesp2 transcription that controls somite formation. In the present review, recent advances in the understanding of the molecular mechanisms underlying the translation of clock information into the spatial patterning of segmental somites in mice are discussed. Particular attention is paid to the interplay between two the distinct signaling pathways of Notch and FGF and the Mesp2 transcription factor acting as an effector molecule during mouse somitogenesis.
Collapse
Affiliation(s)
- Yumiko Saga
- Division of Mammalian Development, National institute of Genetics and Department of Genetics, SOKENDAI, 1111 Yata, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
38
|
Iimura T, Nakane A, Sugiyama M, Sato H, Makino Y, Watanabe T, Takagi Y, Numano R, Yamaguchi A. A fluorescence spotlight on the clockwork development and metabolism of bone. J Bone Miner Metab 2012; 30:254-69. [PMID: 21766187 DOI: 10.1007/s00774-011-0295-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/10/2011] [Indexed: 01/26/2023]
Abstract
Biological phenomena that exhibit periodic activity are often referred as biorhythms or biological clocks. Among these, circadian rhythms, cyclic patterns reflecting a 24-h cycle, are the most obvious in many physiological activities including bone growth and metabolism. In the late 1990s, several clock genes were isolated and their primary structures and functions were identified. The feedback loop model of transcriptional factors was proposed to work as a circadian core oscillator not only in the suprachiasmatic nuclei of the anterior hypothalamus, which is recognized as the mammalian central clock, but also in various peripheral tissues including cartilage and bone. Looking back to embryonic development, the fundamental architecture of skeletal patterning is regulated by ultradian clocks that are defined as biorhythms that cycle more than once every 24 h. As post-genomic approaches, transcriptome analysis by micro-array and bioimaging assays to detect luminescent and fluorescent signals have been exploited to uncover a more comprehensive set of genes and spatio-temporal regulation of the clockwork machinery in animal models. In this review paper, we provide an overview of topics related to these molecular clocks in skeletal biology and medicine, and discuss how fluorescence imaging approaches can contribute to widening our views of this realm of biomedical science.
Collapse
Affiliation(s)
- Tadahiro Iimura
- Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Many of the morphogenetic processes that occur during development in the mouse are based on cyclic events with defined time intervals, as exemplified by somitogenesis (every 2 h), hair cycles (every 25 d), and spermatogenesis (every 35 d). Among these events, somitogenesis is the most dynamic morphogenetic mechanism showing clear cyclicity during embryogenesis and is therefore a good system with which to review the synchronous and cyclic characteristics of developmental pathways. The metameric properties of the somites underpin the segmental properties along the anterior-posterior (AP) axis of the body. The periodicity of somites is controlled by the so-called segmentation clock operating in the presomitic mesoderm (PSM). This tissue contains the somite precursor cells that exist only during embryonic development. Both theoretical and experimental approaches have contributed to the understanding of the mechanism of somite segmentation. This article focuses on how the segmentation clock functions to organize the collective behavior of cells and how this information is translated into the spatial patterning of segmental somites. The interplay between signaling molecules that provides positional information and the transcription factors that respond to such positional cues are critical to the role of the segmentation clock and are discussed.
Collapse
|
40
|
Kageyama R, Niwa Y, Isomura A, González A, Harima Y. Oscillatory gene expression and somitogenesis. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:629-41. [PMID: 23799565 DOI: 10.1002/wdev.46] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A bilateral pair of somites forms periodically by segmentation of the anterior ends of the presomitic mesoderm (PSM). This periodic event is regulated by a biological clock called the segmentation clock, which involves cyclic gene expression. Expression of her1 and her7 in zebrafish and Hes7 in mice oscillates by negative feedback, and mathematical models have been used to generate and test hypotheses to aide elucidation of the role of negative feedback in regulating oscillatory expression. her/Hes genes induce oscillatory expression of the Notch ligand deltaC in zebrafish and the Notch modulator Lunatic fringe in mice, which lead to synchronization of oscillatory gene expression between neighboring PSM cells. In the mouse PSM, Hes7 induces coupled oscillations of Notch and Fgf signaling, while Notch and Fgf signaling cooperatively regulate Hes7 oscillation, indicating that Hes7 and Notch and Fgf signaling form the oscillator networks. Notch signaling activates, but Fgf signaling represses, expression of the master regulator for somitogenesis Mesp2, and coupled oscillations in Notch and Fgf signaling dissociate in the anterior PSM, which allows Notch signaling-induced synchronized cells to express Mesp2 after these cells are freed from Fgf signaling. These results together suggest that Notch signaling defines the prospective somite region, while Fgf signaling regulates the pace of segmentation. It is likely that these oscillator networks constitute the core of the segmentation clock, but it remains to be determined whether as yet unknown oscillators function behind the scenes.
Collapse
|
41
|
Oates AC, Morelli LG, Ares S. Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock. Development 2012; 139:625-39. [PMID: 22274695 DOI: 10.1242/dev.063735] [Citation(s) in RCA: 275] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The segmentation clock is an oscillating genetic network thought to govern the rhythmic and sequential subdivision of the elongating body axis of the vertebrate embryo into somites: the precursors of the segmented vertebral column. Understanding how the rhythmic signal arises, how it achieves precision and how it patterns the embryo remain challenging issues. Recent work has provided evidence of how the period of the segmentation clock is regulated and how this affects the anatomy of the embryo. The ongoing development of real-time clock reporters and mathematical models promise novel insight into the dynamic behavior of the clock.
Collapse
Affiliation(s)
- Andrew C Oates
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden, Germany.
| | | | | |
Collapse
|
42
|
François P. Evolution In Silico: From Network Structure to Bifurcation Theory. EVOLUTIONARY SYSTEMS BIOLOGY 2012; 751:157-82. [DOI: 10.1007/978-1-4614-3567-9_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
43
|
Abstract
The Golgi is essential for processing proteins and sorting them, as well as plasma membrane components, to their final destinations. Not surprisingly, this organelle, a major compartment of the secretory pathway, is an important venue for regulating many aspects of development in both invertebrates and vertebrates. Through its role as a site for protein cleavage and glycosylation as well as through changes in its spatial organization and secretory trafficking, the Golgi exerts highly specific effects on cellular differentiation and morphogenesis by spatially and temporally constraining developmental pathways.
Collapse
|
44
|
Niwa Y, Shimojo H, Isomura A, González A, Miyachi H, Kageyama R. Different types of oscillations in Notch and Fgf signaling regulate the spatiotemporal periodicity of somitogenesis. Genes Dev 2011; 25:1115-20. [PMID: 21632822 DOI: 10.1101/gad.2035311] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Somitogenesis is controlled by cyclic genes such as Notch effectors and by the wave front established by morphogens such as Fgf8, but the precise mechanism of how these factors are coordinated remains to be determined. Here, we show that effectors of Notch and Fgf pathways oscillate in different dynamics and that oscillations in Notch signaling generate alternating phase shift, thereby periodically segregating a group of synchronized cells, whereas oscillations in Fgf signaling released these synchronized cells for somitogenesis at the same time. These results suggest that Notch oscillators define the prospective somite region, while Fgf oscillators regulate the pace of segmentation.
Collapse
Affiliation(s)
- Yasutaka Niwa
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
One of the most striking features of the human vertebral column is its periodic organization along the anterior-posterior axis. This pattern is established when segments of vertebrates, called somites, bud off at a defined pace from the anterior tip of the embryo's presomitic mesoderm (PSM). To trigger this rhythmic production of somites, three major signaling pathways--Notch, Wnt/β-catenin, and fibroblast growth factor (FGF)--integrate into a molecular network that generates a traveling wave of gene expression along the embryonic axis, called the "segmentation clock." Recent systems approaches have begun identifying specific signaling circuits within the network that set the pace of the oscillations, synchronize gene expression cycles in neighboring cells, and contribute to the robustness and bilateral symmetry of somite formation. These findings establish a new model for vertebrate segmentation and provide a conceptual framework to explain human diseases of the spine, such as congenital scoliosis.
Collapse
Affiliation(s)
- Olivier Pourquié
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch F-67400, France
| |
Collapse
|
46
|
|
47
|
Sasaki N, Kiso M, Kitagawa M, Saga Y. The repression of Notch signaling occurs via the destabilization of mastermind-like 1 by Mesp2 and is essential for somitogenesis. Development 2010; 138:55-64. [PMID: 21098559 DOI: 10.1242/dev.055533] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The rostro-caudal polarity within a somite is primarily determined by the on/off state of Notch signaling, but the mechanism by which Notch is repressed has remained elusive. Here, we present genetic and biochemical evidence that the suppression of Notch signaling is essential for the establishment of rostro-caudal polarity within a somite and that Mesp2 acts as a novel negative regulator of the Notch signaling pathway. We generated a knock-in mouse in which a dominant-negative form of Rbpj is introduced into the Mesp2 locus. Intriguingly, this resulted in an almost complete rescue of the segmental defects in the Mesp2-null mouse. Furthermore, we demonstrate that Mesp2 potently represses Notch signaling by inducing the destabilization of mastermind-like 1, a core regulator of this pathway. Surprisingly, this function of Mesp2 is found to be independent of its function as a transcription factor. Together, these data demonstrate that Mesp2 is a novel component involved in the suppression of Notch target genes.
Collapse
Affiliation(s)
- Nobuo Sasaki
- Division of Mammalian Development, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | | | | | | |
Collapse
|
48
|
Gibb S, Maroto M, Dale JK. The segmentation clock mechanism moves up a notch. Trends Cell Biol 2010; 20:593-600. [PMID: 20724159 PMCID: PMC2954312 DOI: 10.1016/j.tcb.2010.07.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/08/2010] [Accepted: 07/15/2010] [Indexed: 12/19/2022]
Abstract
The vertebrate segmentation clock is a molecular oscillator that regulates the periodicity of somite formation. Three signalling pathways have been proposed to underlie the molecular mechanism of the oscillator, namely the Notch, Wnt and Fgf pathways. Characterizing the roles and hierarchy of these three pathways in the oscillator mechanism is currently the focus of intense research. Recent publications report the first identification of a molecular mechanism involved in the regulation of the pace of this oscillator. We review these and other recent findings regarding the interaction between the three pathways in the oscillator mechanism that have significantly expanded our understanding of the segmentation clock.
Collapse
|