1
|
Moore JA, Moreno-Campos R, Noah AS, Singleton EW, Uribe RA. BMP signaling pathway member expression is enriched in enteric neural progenitors and required for zebrafish enteric nervous system development. Dev Dyn 2025; 254:272-287. [PMID: 39297504 PMCID: PMC11879768 DOI: 10.1002/dvdy.737] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND The vertebrate enteric nervous system (ENS) consists of a series of interconnected ganglia within the gastrointestinal (GI) tract, formed during development following migration of enteric neural crest cells (ENCCs) into the primitive gut tube. Much work has been done to unravel the complex nature of extrinsic and intrinsic factors that regulate processes that direct migration, proliferation, and differentiation of ENCCs. However, ENS development is a complex process, and we still have much to learn regarding the signaling factors that regulate ENCC development. RESULTS Here in zebrafish, through transcriptomic, in situ transcript expression, immunohistochemical analysis, and chemical attenuation, we identified a time-dependent role for bone morphogenetic protein (BMP) in the maintenance of Phox2bb+ enteric progenitor numbers and/or time of differentiation of the progenitor pool. In support of our in silico transcriptomic analysis, we identified expression of a novel ENS ligand-encoding transcript, bmp5, within developmental regions of ENCCs. Through generation of a novel mutant bmp5wmr2 and bmp5 crispants, we identified a functional role for BMP5 in proper GI tract colonization, whereby phox2bb+ enteric progenitor numbers were reduced. CONCLUSION Altogether, this work identified time-dependent roles for BMP signaling and a novel extrinsic factor, BMP5, that is necessary for vertebrate ENS formation.
Collapse
Affiliation(s)
- Joshua A. Moore
- Department of Biosciences, Rice University, Houston, Texas, United States
- Biochemistry and Cell Biology Graduate Program, Rice University, Houston, Texas, United States
- Laboratory of Neural Crest and Enteric Nervous System Development, Rice University, Houston, Texas, United States
| | - Rodrigo Moreno-Campos
- Department of Biosciences, Rice University, Houston, Texas, United States
- Laboratory of Neural Crest and Enteric Nervous System Development, Rice University, Houston, Texas, United States
| | - Arielle S. Noah
- Department of Biosciences, Rice University, Houston, Texas, United States
- Laboratory of Neural Crest and Enteric Nervous System Development, Rice University, Houston, Texas, United States
| | - Eileen W. Singleton
- Department of Biosciences, Rice University, Houston, Texas, United States
- Laboratory of Neural Crest and Enteric Nervous System Development, Rice University, Houston, Texas, United States
| | - Rosa A. Uribe
- Department of Biosciences, Rice University, Houston, Texas, United States
- Biochemistry and Cell Biology Graduate Program, Rice University, Houston, Texas, United States
- Laboratory of Neural Crest and Enteric Nervous System Development, Rice University, Houston, Texas, United States
| |
Collapse
|
2
|
Taylor OB, El‐Hodiri HM, Palazzo I, Todd L, Fischer AJ. Regulating the formation of Müller glia-derived progenitor cells in the retina. Glia 2025; 73:4-24. [PMID: 39448874 PMCID: PMC11660542 DOI: 10.1002/glia.24635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
We summarize recent findings in different animal models regarding the different cell-signaling pathways and gene networks that influence the reprogramming of Müller glia into proliferating, neurogenic progenitor cells in the retina. Not surprisingly, most of the cell-signaling pathways that guide the proliferation and differentiation of embryonic retinal progenitors also influence the ability of Müller glia to become proliferating Müller glia-derived progenitor cells (MGPCs). Further, the neuronal differentiation of MGPC progeny is potently inhibited by networks of neurogenesis-suppressing genes in chick and mouse models but occurs freely in zebrafish. There are important differences between the model systems, particularly pro-inflammatory signals that are active in mature Müller glia in damaged rodent and chick retinas, but less so in fish retinas. These pro-inflammatory signals are required to initiate the process of reprogramming, but if sustained suppress the potential of Müller glia to become neurogenic MGPCs. Further, there are important differences in how activated Müller glia up- or downregulate pro-glial transcription factors in the different model systems. We review recent findings regarding regulatory cell signaling and gene networks that influence the activation of Müller glia and the transition of these glia into proliferating progenitor cells with neurogenic potential in fish, chick, and mouse model systems.
Collapse
Affiliation(s)
- Olivia B. Taylor
- Department of NeuroscienceCollege of Medicine, The Ohio State UniversityColumbusOhioUSA
- Neuroscience Graduate ProgramThe Ohio State UniversityColumbusOhioUSA
| | - Heithem M. El‐Hodiri
- Department of NeuroscienceCollege of Medicine, The Ohio State UniversityColumbusOhioUSA
| | - Isabella Palazzo
- The Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMassachusettsUSA
| | - Levi Todd
- Department of Ophthalmology and Visual SciencesSUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Andy J. Fischer
- Department of NeuroscienceCollege of Medicine, The Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
3
|
Taylor OB, Patel SP, Hawthorn EC, El-Hodiri HM, Fischer AJ. ID factors regulate the ability of Müller glia to become proliferating neurogenic progenitor-like cells. Glia 2024; 72:1236-1258. [PMID: 38515287 PMCID: PMC11334223 DOI: 10.1002/glia.24523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
The purpose of this study was to investigate how ID factors regulate the ability of Müller glia (MG) to reprogram into proliferating MG-derived progenitor cells (MGPCs) in the chick retina. We found that ID1 is transiently expressed by maturing MG (mMG), whereas ID4 is maintained in mMG in embryonic retinas. In mature retinas, ID4 was prominently expressed by resting MG, but following retinal damage ID4 was rapidly upregulated and then downregulated in MGPCs. By contrast, ID1, ID2, and ID3 were low in resting MG and then upregulated in MGPCs. Inhibition of ID factors following retinal damage decreased numbers of proliferating MGPCs. Inhibition of IDs, after MGPC proliferation, significantly increased numbers of progeny that differentiated as neurons. In damaged or undamaged retinas inhibition of IDs increased levels of p21Cip1 in MG. In response to damage or insulin+FGF2 levels of CDKN1A message and p21Cip1 protein were decreased, absent in proliferating MGPCs, and elevated in MG returning to a resting phenotype. Inhibition of notch- or gp130/Jak/Stat-signaling in damaged retinas increased levels of ID4 but not p21Cip1 in MG. Although ID4 is the predominant isoform expressed by MG in the chick retina, id1 and id2a are predominantly expressed by resting MG and downregulated in activated MG and MGPCs in zebrafish retinas. We conclude that ID factors have a significant impact on regulating the responses of MG to retinal damage, controlling the ability of MG to proliferate by regulating levels of p21Cip1, and suppressing the neurogenic potential of MGPCs.
Collapse
Affiliation(s)
- Olivia B. Taylor
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Snehal P. Patel
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Evan C. Hawthorn
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Heithem M. El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Andy J. Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
4
|
Sun K, Han Y, Li J, Yu S, Huang Y, Zhang Y, Reilly J, Tu J, Gao P, Jia D, Chen X, Hu H, Ren M, Li P, Luo J, Ren X, Zhang X, Shu X, Liu F, Liu M, Tang Z. The splicing factor DHX38 enables retinal development through safeguarding genome integrity. iScience 2023; 26:108103. [PMID: 37867960 PMCID: PMC10589891 DOI: 10.1016/j.isci.2023.108103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/03/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
DEAH-Box Helicase 38 (DHX38) is a pre-mRNA splicing factor and also a disease-causing gene of autosomal recessive retinitis pigmentosa (arRP). The role of DHX38 in the development and maintenance of the retina remains largely unknown. In this study, by using the dhx38 knockout zebrafish model, we demonstrated that Dhx38 deficiency causes severe differentiation defects and apoptosis of retinal progenitor cells (RPCs) through disrupted mitosis and increased DNA damage. Furthermore, we found a significant accumulation of R-loops in the dhx38-deficient RPCs and human cell lines. Finally, we found that DNA replication stress is the prerequisite for R-loop-induced DNA damage in the DHX38 knockdown cells. Taken together, our study demonstrates a necessary role of DHX38 in the development of retina and reveals a DHX38/R-loop/replication stress/DNA damage regulatory axis that is relatively independent of the known functions of DHX38 in mitosis control.
Collapse
Affiliation(s)
- Kui Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Yunqiao Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Jingzhen Li
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Shanshan Yu
- Institute of Visual Neuroscience and Stem Cell Engineering, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Yangjun Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Jamas Reilly
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, Scotland G4 0BA, UK
| | - Jiayi Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Pan Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Danna Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Xiang Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Hualei Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Mengmeng Ren
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Pei Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Jiong Luo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Xianqin Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Xinhua Shu
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, Scotland G4 0BA, UK
| | - Fei Liu
- Institute of Hydrobiology, Chinese Academy of Science, Wuhan 430072, P.R. China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| |
Collapse
|
5
|
Mi J, Andersson O. Efficient knock-in method enabling lineage tracing in zebrafish. Life Sci Alliance 2023; 6:e202301944. [PMID: 36878640 PMCID: PMC9990459 DOI: 10.26508/lsa.202301944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Here, we devised a cloning-free 3' knock-in strategy for zebrafish using PCR amplified dsDNA donors that avoids disrupting the targeted genes. The dsDNA donors carry genetic cassettes coding for fluorescent proteins and Cre recombinase in frame with the endogenous gene but separated from it by self-cleavable peptides. Primers with 5' AmC6 end-protections generated PCR amplicons with increased integration efficiency that were coinjected with preassembled Cas9/gRNA ribonucleoprotein complexes for early integration. We targeted four genetic loci (krt92, nkx6.1, krt4, and id2a) and generated 10 knock-in lines, which function as reporters for the endogenous gene expression. The knocked-in iCre or CreERT2 lines were used for lineage tracing, which suggested that nkx6.1 + cells are multipotent pancreatic progenitors that gradually restrict to the bipotent duct, whereas id2a + cells are multipotent in both liver and pancreas and gradually restrict to ductal cells. In addition, the hepatic id2a + duct show progenitor properties upon extreme hepatocyte loss. Thus, we present an efficient and straightforward knock-in technique with widespread use for cellular labelling and lineage tracing.
Collapse
Affiliation(s)
- Jiarui Mi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Thiel WA, Blume ZI, Mitchell DM. Compensatory engulfment and Müller glia reactivity in the absence of microglia. Glia 2022; 70:1402-1425. [PMID: 35451181 DOI: 10.1002/glia.24182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 01/25/2023]
Abstract
Microglia are known for important phagocytic functions in the vertebrate retina. Reports also suggest that Müller glia have phagocytic capacity, though the relative levels and contexts in which this occurs remain to be thoroughly examined. Here, we investigate Müller glial engulfment of dying cells in the developing zebrafish retina in the presence and absence of microglia, using a genetic mutant in which microglia do not develop. We show that in normal conditions clearance of dying cells is dominated by microglia; however, Müller glia do have a limited clearance role. In retinas lacking intact microglial populations, we found a striking increase in the engulfment load assumed by the Müller glia, which displayed prominent cellular compartments containing apoptotic cells, several of which localized with the early phagosome/endosome marker Rab5. Consistent with increased engulfment, lysosomal staining was also increased in Müller glia in the absence of microglia. Increased engulfment load led to evidence of Müller glia reactivity including upregulation of gfap but did not trigger cell cycle re-entry by differentiated Müller glia. Our work provides important insight into the phagocytic capacity of Müller glia and the ability for compensatory functions and downstream effects. Therefore, effects of microglial deficiency or depletion on other glial cell types should be well-considered in experimental manipulations, in neurodegenerative disease, and in therapeutic approaches that target microglia. Our findings further justify future work to understand differential mechanisms and contexts of phagocytosis by glial cells in the central nervous system, and the significance of these mechanisms in health and disease.
Collapse
Affiliation(s)
- Whitney A Thiel
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Zachary I Blume
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Diana M Mitchell
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
7
|
Tworig JM, Feller MB. Müller Glia in Retinal Development: From Specification to Circuit Integration. Front Neural Circuits 2022; 15:815923. [PMID: 35185477 PMCID: PMC8856507 DOI: 10.3389/fncir.2021.815923] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/23/2021] [Indexed: 01/21/2023] Open
Abstract
Müller glia of the retina share many features with astroglia located throughout the brain including maintenance of homeostasis, modulation of neurotransmitter spillover, and robust response to injury. Here we present the molecular factors and signaling events that govern Müller glial specification, patterning, and differentiation. Next, we discuss the various roles of Müller glia in retinal development, which include maintaining retinal organization and integrity as well as promoting neuronal survival, synaptogenesis, and phagocytosis of debris. Finally, we review the mechanisms by which Müller glia integrate into retinal circuits and actively participate in neuronal signaling during development.
Collapse
Affiliation(s)
- Joshua M. Tworig
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- *Correspondence: Joshua M. Tworig,
| | - Marla B. Feller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
8
|
The immune response is a critical regulator of zebrafish retinal pigment epithelium regeneration. Proc Natl Acad Sci U S A 2021; 118:2017198118. [PMID: 34006636 DOI: 10.1073/pnas.2017198118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Loss of the retinal pigment epithelium (RPE) because of dysfunction or disease can lead to blindness in humans. Harnessing the intrinsic ability of the RPE to self-repair is an attractive therapeutic strategy; however, mammalian RPE is limited in its regenerative capacity. Zebrafish possess tremendous intrinsic regenerative potential in ocular tissues, including the RPE, but little is known about the mechanisms driving RPE regeneration. Here, utilizing transgenic and mutant zebrafish lines, pharmacological manipulations, transcriptomics, and imaging analyses, we identified elements of the immune response as critical mediators of intrinsic RPE regeneration. After genetic ablation, the RPE express immune-related genes, including leukocyte recruitment factors such as interleukin 34 We demonstrate that macrophage/microglia cells are responsive to RPE damage and that their function is required for the timely progression of the regenerative response. These data identify the molecular and cellular underpinnings of RPE regeneration and hold significant potential for translational approaches aimed toward promoting a pro-regenerative environment in mammalian RPE.
Collapse
|
9
|
Fan X, Yang H, Hu L, Wang D, Wang R, Hao A, Chen X. Propofol impairs specification of retinal cell types in zebrafish by inhibiting Zisp-mediated Noggin-1 palmitoylation and trafficking. Stem Cell Res Ther 2021; 12:195. [PMID: 33743805 PMCID: PMC7980560 DOI: 10.1186/s13287-021-02204-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background Propofol can have adverse effects on developing neurons, leading to cognitive disorders, but the mechanism of such an effect remains elusive. Here, we aimed to investigate the effect of propofol on neuronal development in zebrafish and to identify the molecular mechanism(s) involved in this pathway. Methods The effect of propofol on neuronal development was demonstrated by a series of in vitro and in vivo experiments. mRNA injections, whole-mount in situ hybridization and immunohistochemistry, quantitative real-time polymerase chain reaction, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, 5-ethynyl-2′-deoxyuridine labeling, co-immunoprecipitation, and acyl–biotin exchange labeling were used to identify the potential mechanisms of propofol-mediated zisp expression and determine its effect on the specification of retinal cell types. Results Propofol impaired the specification of retinal cell types, thereby inhibiting neuronal and glial cell formation in retinas, mainly through the inhibition of Zisp expression. Furthermore, Zisp promoted the stabilization and secretion of a soluble form of the membrane-associated protein Noggin-1, a specific palmitoylation substrate. Conclusions Propofol caused a severe phenotype during neuronal development in zebrafish. Our findings established a direct link between an anesthetic agent and protein palmitoylation in the regulation of neuronal development. This could be used to investigate the mechanisms via which the improper use of propofol might result in neuronal defects. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02204-0.
Collapse
Affiliation(s)
- Xiaoqing Fan
- Department of Anesthesiology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China (USTC), No. 17, Lujiang Road, Hefei, 230001, Anhui, China
| | - Haoran Yang
- Department of Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Lizhu Hu
- Department of Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Delong Wang
- Department of Anesthesiology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China (USTC), No. 17, Lujiang Road, Hefei, 230001, Anhui, China
| | - Ruiting Wang
- Department of Anesthesiology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China (USTC), No. 17, Lujiang Road, Hefei, 230001, Anhui, China
| | - Aijun Hao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, No. 44, Wenhua Xi Road, Jinan, 250012, Shandong, China.
| | - Xueran Chen
- Department of Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China. .,Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.
| |
Collapse
|
10
|
Li J, Liu F, Lv Y, Sun K, Zhao Y, Reilly J, Zhang Y, Tu J, Yu S, Liu X, Qin Y, Huang Y, Gao P, Jia D, Chen X, Han Y, Shu X, Luo D, Tang Z, Liu M. Prpf31 is essential for the survival and differentiation of retinal progenitor cells by modulating alternative splicing. Nucleic Acids Res 2021; 49:2027-2043. [PMID: 33476374 PMCID: PMC7913766 DOI: 10.1093/nar/gkab003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/23/2022] Open
Abstract
Dysfunction of splicing factors often result in abnormal cell differentiation and apoptosis, especially in neural tissues. Mutations in pre-mRNAs processing factor 31 (PRPF31) cause autosomal dominant retinitis pigmentosa, a progressive retinal degeneration disease. The transcriptome-wide splicing events specifically regulated by PRPF31 and their biological roles in the development and maintenance of retina are still unclear. Here, we showed that the differentiation and viability of retinal progenitor cells (RPCs) are severely perturbed in prpf31 knockout zebrafish when compared with other tissues at an early embryonic stage. At the cellular level, significant mitotic arrest and DNA damage were observed. These defects could be rescued by the wild-type human PRPF31 rather than the disease-associated mutants. Further bioinformatic analysis and experimental verification uncovered that Prpf31 deletion predominantly causes the skipping of exons with a weak 5′ splicing site. Moreover, genes necessary for DNA repair and mitotic progression are most enriched among the differentially spliced events, which may explain the cellular and tissular defects in prpf31 mutant retinas. This is the first time that Prpf31 is demonstrated to be essential for the survival and differentiation of RPCs during retinal neurogenesis by specifically modulating the alternative splicing of genes involved in DNA repair and mitosis.
Collapse
Affiliation(s)
- Jingzhen Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Fei Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Yuexia Lv
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Kui Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Yuntong Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Science, Wuhan 430072, PR China
| | - Jamas Reilly
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland, UK
| | - Yangjun Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Jiayi Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Shanshan Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Xiliang Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Yayun Qin
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Pan Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Danna Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Xiang Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Yunqiao Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Xinhua Shu
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland, UK
| | - Daji Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Science, Wuhan 430072, PR China
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| |
Collapse
|
11
|
Midkine-a Is Required for Cell Cycle Progression of Müller Glia during Neuronal Regeneration in the Vertebrate Retina. J Neurosci 2019; 40:1232-1247. [PMID: 31882403 PMCID: PMC7002140 DOI: 10.1523/jneurosci.1675-19.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/27/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022] Open
Abstract
In the retina of zebrafish, Müller glia have the ability to reprogram into stem cells capable of regenerating all classes of retinal neurons and restoring visual function. Understanding the cellular and molecular mechanisms controlling the stem cell properties of Müller glia in zebrafish may provide cues to unlock the regenerative potential in the mammalian nervous system. Midkine is a cytokine/growth factor with multiple roles in neural development, tissue repair, and disease. In the retina of zebrafish, Müller glia have the ability to reprogram into stem cells capable of regenerating all classes of retinal neurons and restoring visual function. Understanding the cellular and molecular mechanisms controlling the stem cell properties of Müller glia in zebrafish may provide cues to unlock the regenerative potential in the mammalian nervous system. Midkine is a cytokine/growth factor with multiple roles in neural development, tissue repair, and disease. In midkine-a loss-of-function mutants of both sexes, Müller glia initiate the appropriate reprogramming response to photoreceptor death by increasing expression of stem cell-associated genes, and entering the G1 phase of the cell cycle. However, transition from G1 to S phase is blocked in the absence of Midkine-a, resulting in significantly reduced proliferation and selective failure to regenerate cone photoreceptors. Failing to progress through the cell cycle, Müller glia undergo reactive gliosis, a pathological hallmark in the injured CNS of mammals. Finally, we determined that the Midkine-a receptor, anaplastic lymphoma kinase, is upstream of the HLH regulatory protein, Id2a, and of the retinoblastoma gene, p130, which regulates progression through the cell cycle. These results demonstrate that Midkine-a functions as a core component of the mechanisms that regulate proliferation of stem cells in the injured CNS. SIGNIFICANCE STATEMENT The death of retinal neurons and photoreceptors is a leading cause of vision loss. Regenerating retinal neurons is a therapeutic goal. Zebrafish can regenerate retinal neurons from intrinsic stem cells, Müller glia, and are a powerful model to understand how stem cells might be used therapeutically. Midkine-a, an injury-induced growth factor/cytokine that is expressed by Müller glia following neuronal death, is required for Müller glia to progress through the cell cycle. The absence of Midkine-a suspends proliferation and neuronal regeneration. With cell cycle progression stalled, Müller glia undergo reactive gliosis, a pathological hallmark of the mammalian retina. This work provides a unique insight into mechanisms that control the cell cycle during neuronal regeneration.
Collapse
|
12
|
DeMarco E, Xu N, Baier H, Robles E. Neuron types in the zebrafish optic tectum labeled by an id2b transgene. J Comp Neurol 2019; 528:1173-1188. [PMID: 31725916 DOI: 10.1002/cne.24815] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 01/30/2023]
Abstract
The larval zebrafish optic tectum has emerged as a prominent model for understanding how neural circuits control visually guided behaviors. Further advances in this area will require tools to monitor and manipulate tectal neurons with cell type specificity. Here, we characterize the morphology and neurotransmitter phenotype of tectal neurons labeled by an id2b:gal4 transgene. Whole-brain imaging of stable transgenic id2b:gal4 larvae revealed labeling in a subset of neurons in optic tectum, cerebellum, and hindbrain. Genetic mosaic labeling of single neurons within the id2b:gal4 expression pattern enabled us to characterize three tectal neuron types with distinct morphologies and connectivities. The first is a neuron type previously identified in the optic tectum of other teleost fish: the tectal pyramidal neuron (PyrN). PyrNs are local interneurons that form two stratified dendritic arbors and one stratified axonal arbor in the tectal neuropil. The second tectal neuron type labeled by the id2b:gal4 transgene is a projection neuron that forms a stratified dendritic arbor in the tectal neuropil and an axon that exits tectum to form a topographic projection to torus longitudinalis (TL). A third neuron type labeled is a projection neuron with a nonstratified dendritic arbor and a descending axonal projection to tegmentum. These findings establish the id2b:gal4 transgenic as a useful tool for future studies aimed at elucidating the functional role of tectum, TL, and tegmentum in visually guided behaviors.
Collapse
Affiliation(s)
- Elisabeth DeMarco
- Department of Biological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| | - Nina Xu
- Department of Biological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| | - Herwig Baier
- Max Planck Institute for Neurobiology, Martinsried, Germany
| | - Estuardo Robles
- Department of Biological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| |
Collapse
|
13
|
Locker M, Perron M. In Vivo Assessment of Neural Precursor Cell Cycle Kinetics in the Amphibian Retina. Cold Spring Harb Protoc 2019; 2019:pdb.prot105536. [PMID: 31147394 DOI: 10.1101/pdb.prot105536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cell cycle progression is intimately linked to cell fate commitment during development. In addition, adult stem cells show specific proliferative behaviors compared to progenitors. Exploring cell cycle dynamics and regulation is therefore of utmost importance, but constitutes a great challenge in vivo. Here we provide a protocol for evaluating in vivo the length of all cell cycle phases of neural stem and progenitor cells in the post-embryonic Xenopus retina. These cells are localized in the ciliary marginal zone (CMZ), a peripheral region of the retina that sustains continuous neurogenesis throughout the animal's life. The CMZ bears two tremendous advantages for cell cycle kinetics analyses. First, this region, where proliferative cells are sequestered, can be easily delineated. Second, the spatial organization of the CMZ mirrors the temporal sequence of retinal development, allowing for topological distinction between retinal stem cells (residing in the most peripheral margin), and amplifying progenitors (located more centrally). We describe herein how to determine CMZ cell cycle parameters using a combination of (i) a cumulative labeling assay, (ii) the percentage of labeled mitosis calculation, and (iii) the mitotic index measurement. Taken together, these techniques allow us to estimate total cell cycle length (TC) as well as the duration of all cell cycle phases (TS/G2/M/G1). Although the method presented here was adapted to the particular system of the CMZ, it should be applicable to other tissues and developmental stages as well.
Collapse
Affiliation(s)
- Morgane Locker
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Univ Paris-Sud, University Paris-Saclay, 91405 Orsay, France
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Univ Paris-Sud, University Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
14
|
Li J, Yang Y, Fan J, Xu H, Fan L, Li H, Zhao RC. Long noncoding RNA ANCR inhibits the differentiation of mesenchymal stem cells toward definitive endoderm by facilitating the association of PTBP1 with ID2. Cell Death Dis 2019; 10:492. [PMID: 31235689 PMCID: PMC6591386 DOI: 10.1038/s41419-019-1738-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/17/2019] [Accepted: 06/10/2019] [Indexed: 12/28/2022]
Abstract
The generation of definitive endoderm (DE) cells in sufficient numbers is a prerequisite for cell-replacement therapy for liver and pancreatic diseases. Previously, we reported that human adipose-derived mesenchymal stem cells (hAMSCs) can be induced to DE lineages and subsequent functional cells. Clarifying the regulatory mechanisms underlying the fate conversion from hAMSCs to DE is helpful for developing new strategies to improve the differentiation efficiency from hAMSCs to DE organs. Long noncoding RNAs (lncRNAs) have been shown to play pivotal roles in developmental processes, including cell fate determination and differentiation. In this study, we profiled the expression changes of lncRNAs and found that antidifferentiation noncoding RNA (ANCR) was downregulated during the differentiation of both hAMSCs and embryonic stem cells (ESCs) to DE cells. ANCR knockdown resulted in the elevated expression of DE markers in hAMSCs, but not in ESCs. ANCR overexpression reduced the efficiency of hAMSCs to differentiate into DE cells. Inhibitor of DNA binding 2 (ID2) was notably downregulated after ANCR knockdown. ID2 knockdown enhanced DE differentiation, whereas overexpression of ID2 impaired this process in hAMSCs. ANCR interacts with RNA-binding polypyrimidine tract-binding protein 1 (PTBP1) to facilitate its association with ID2 mRNA, leading to increased ID2 mRNA stability. Thus, the ANCR/PTBP1/ID2 network restricts the differentiation of hAMSCs toward DE. Our work highlights the inherent discrepancies between hAMSCs and ESCs. Defining hAMSC-specific signaling pathways might be important for designing optimal differentiation protocols for directing hAMSCs toward DE.
Collapse
Affiliation(s)
- Jing Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), 100005, Beijing, China
| | - Yanlei Yang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), 100005, Beijing, China
| | - Junfen Fan
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), 100005, Beijing, China
| | - Haoying Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), 100005, Beijing, China
| | - Linyuan Fan
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), 100005, Beijing, China
| | - Hongling Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), 100005, Beijing, China.
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), 100005, Beijing, China.
| |
Collapse
|
15
|
Seritrakul P, Gross JM. Tet-mediated DNA hydroxymethylation regulates retinal neurogenesis by modulating cell-extrinsic signaling pathways. PLoS Genet 2017; 13:e1006987. [PMID: 28926578 PMCID: PMC5621703 DOI: 10.1371/journal.pgen.1006987] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/29/2017] [Accepted: 08/18/2017] [Indexed: 12/28/2022] Open
Abstract
DNA hydroxymethylation has recently been shown to play critical roles in regulating gene expression and terminal differentiation events in a variety of developmental contexts. However, little is known about its function during eye development. Methylcytosine dioxygenases of the Tet family convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), an epigenetic mark thought to serve as a precursor for DNA demethylation and as a stable mark in neurons. Here, we report a requirement for Tet activity during zebrafish retinal neurogenesis. In tet2-/-;tet3-/- mutants, retinal neurons are specified but most fail to terminally differentiate. While differentiation of the first born retinal neurons, the retinal ganglion cells (RGCs), is less affected in tet2-/-;tet3-/- mutants than other retinal cell types, the majority of RGCs do not undergo terminal morphogenesis and form axons. Moreover, the few photoreceptors that differentiate in tet2-/-;tet3-/- mutants fail to form outer segments, suggesting that Tet function is also required for terminal morphogenesis of differentiated retinal neurons. Mosaic analyses revealed a surprising cell non-autonomous requirement for tet2 and tet3 activity in facilitating retinal neurogenesis. Through a combination of candidate gene analysis, transcriptomics and pharmacological manipulations, we identified the Notch and Wnt pathways as cell-extrinsic pathways regulated by tet2 and tet3 activity during RGC differentiation and morphogenesis. Transcriptome analyses also revealed the ectopic expression of non-retinal genes in tet2-/-;tet3-/- mutant retinae, and this correlated with locus-specific reduction in 5hmC. These data provide the first evidence that Tet-dependent regulation of 5hmC formation is critical for retinal neurogenesis, and highlight an additional layer of complexity in the progression from retinal progenitor cell to differentiated retinal neuron during development of the vertebrate retina.
Collapse
Affiliation(s)
- Pawat Seritrakul
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States of America
- Departments of Ophthalmology, and Developmental Biology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Jeffrey M. Gross
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States of America
- Departments of Ophthalmology, and Developmental Biology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| |
Collapse
|
16
|
Uribe RA, Gu T, Bronner ME. A novel subset of enteric neurons revealed by ptf1a:GFP in the developing zebrafish enteric nervous system. Genesis 2016; 54:123-8. [PMID: 26865080 DOI: 10.1002/dvg.22927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 01/04/2016] [Accepted: 02/09/2016] [Indexed: 02/01/2023]
Abstract
The enteric nervous system, the largest division of the peripheral nervous system, is derived from vagal neural crest cells that invade and populate the entire length of the gut to form diverse neuronal subtypes. Here, we identify a novel population of neurons within the enteric nervous system of zebrafish larvae that express the transgenic marker ptf1a:GFP within the midgut. Genetic lineage analysis reveals that enteric ptf1a:GFP(+) cells are derived from the neural crest and that most ptf1a:GFP(+) neurons express the neurotransmitter 5HT, demonstrating that they are serotonergic. This transgenic line, Tg(ptf1a:GFP), provides a novel neuronal marker for a subpopulation of neurons within the enteric nervous system, and highlights the possibility that Ptf1a may act as an important transcription factor for enteric neuron development.
Collapse
Affiliation(s)
- Rosa A Uribe
- California Institute of Technology, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Tiffany Gu
- California Institute of Technology, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Marianne E Bronner
- California Institute of Technology, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| |
Collapse
|
17
|
Xu J, Cui J, Del Campo A, Shin CH. Four and a Half LIM Domains 1b (Fhl1b) Is Essential for Regulating the Liver versus Pancreas Fate Decision and for β-Cell Regeneration. PLoS Genet 2016; 12:e1005831. [PMID: 26845333 PMCID: PMC4741517 DOI: 10.1371/journal.pgen.1005831] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022] Open
Abstract
The liver and pancreas originate from overlapping embryonic regions, and single-cell lineage tracing in zebrafish has shown that Bone morphogenetic protein 2b (Bmp2b) signaling is essential for determining the fate of bipotential hepatopancreatic progenitors towards the liver or pancreas. Despite its pivotal role, the gene regulatory networks functioning downstream of Bmp2b signaling in this process are poorly understood. We have identified four and a half LIM domains 1b (fhl1b), which is primarily expressed in the prospective liver anlage, as a novel target of Bmp2b signaling. fhl1b depletion compromised liver specification and enhanced induction of pancreatic cells from endodermal progenitors. Conversely, overexpression of fhl1b favored liver specification and inhibited induction of pancreatic cells. By single-cell lineage tracing, we showed that fhl1b depletion led lateral endodermal cells, destined to become liver cells, to become pancreatic cells. Reversely, when fhl1b was overexpressed, medially located endodermal cells, fated to differentiate into pancreatic and intestinal cells, contributed to the liver by directly or indirectly modulating the discrete levels of pdx1 expression in endodermal progenitors. Moreover, loss of fhl1b increased the regenerative capacity of β-cells by increasing pdx1 and neurod expression in the hepatopancreatic ductal system. Altogether, these data reveal novel and critical functions of Fhl1b in the hepatic versus pancreatic fate decision and in β-cell regeneration. Lineage-specific multipotent progenitors play crucial roles in embryonic development, regeneration in adult tissues, and diseases such as cancer. Bone morphogenetic protein (Bmp) signaling is critical for regulating the cell fate choice of liver versus pancreas, two essential organs of body metabolism. Through transcriptome profiling of endodermal tissues exposed to increased or decreased Bmp2b signaling, we have discovered the zebrafish gene four and a half LIM domains 1b (fhl1b) as a novel target of Bmp2b signaling. fhl1b is primarily expressed in the prospective liver anlage. Loss- and gain-of-function analyses indicate that Fhl1b suppresses specification of the pancreas and induces the liver. By single-cell lineage tracing, we showed that depletion of fhl1b caused a liver-to-pancreas fate switch, while fhl1b overexpression redirected pancreatic progenitors to become liver cells. At later stages, Fhl1b regulates regeneration of insulin-secreting β-cells by directly or indirectly modulating pdx1 and neurod expression in the hepatopancreatic ductal system. Therefore, our work provides a novel paradigm of how Bmp signaling regulates the hepatic versus pancreatic fate decision and β-cell regeneration through its novel target Fhl1b.
Collapse
Affiliation(s)
- Jin Xu
- School of Biology and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Jiaxi Cui
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Chong Hyun Shin
- School of Biology and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
18
|
|
19
|
Diotel N, Beil T, Strähle U, Rastegar S. Differential expression of id genes and their potential regulator znf238 in zebrafish adult neural progenitor cells and neurons suggests distinct functions in adult neurogenesis. Gene Expr Patterns 2015; 19:1-13. [PMID: 26107416 DOI: 10.1016/j.gep.2015.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022]
Abstract
Teleost fish display a remarkable ability to generate new neurons and to repair brain lesions during adulthood. They are, therefore, a very popular model to investigate the molecular mechanisms of constitutive and induced neurogenesis in adult vertebrates. In this study, we investigated the expression patterns of inhibitor of DNA binding (id) genes and of their potential transcriptional repressor, znf238, in the whole brain of adult zebrafish. We show that while id1 is exclusively expressed in ventricular cells in the whole brain, id2a, id3 and id4 genes are expressed in broader areas. Interestingly, znf238 was also detected in these regions, its expression overlapping with id2a, id3 and id4 expression. Further detailed characterization of the id-expressing cells demonstrated that (a) id1 is expressed in type 1 and type 2 neural progenitors as previously published, (b) id2a in type 1, 2 and 3 neural progenitors, (c) id3 in type 3 neural progenitors and (d) id4 in postmitotic neurons. Our data provide a detailed map of id and znf238 expression in the brain of adult zebrafish, supplying a framework for studies of id genes function during adult neurogenesis and brain regeneration in the zebrafish.
Collapse
Affiliation(s)
- Nicolas Diotel
- Karlsruhe Institute of Technology, Campus Nord, Institute of Toxicology and Genetics, Karlsruhe, Germany; Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, Sainte-Clotilde, F-97490, France; Université de La Réunion, UMR 1188, Sainte-Clotilde, F-97490, France.
| | - Tanja Beil
- Karlsruhe Institute of Technology, Campus Nord, Institute of Toxicology and Genetics, Karlsruhe, Germany
| | - Uwe Strähle
- Karlsruhe Institute of Technology, Campus Nord, Institute of Toxicology and Genetics, Karlsruhe, Germany
| | - Sepand Rastegar
- Karlsruhe Institute of Technology, Campus Nord, Institute of Toxicology and Genetics, Karlsruhe, Germany.
| |
Collapse
|
20
|
Id2a is required for hepatic outgrowth during liver development in zebrafish. Mech Dev 2015; 138 Pt 3:399-414. [PMID: 26022495 DOI: 10.1016/j.mod.2015.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/24/2015] [Accepted: 05/14/2015] [Indexed: 12/19/2022]
Abstract
During development, inhibitor of DNA binding (Id) proteins, a subclass of the helix-loop-helix family of proteins, regulate cellular proliferation, differentiation, and apoptosis in various organs. However, a functional role of Id2a in liver development has not yet been reported. Here, using zebrafish as a model organism, we provide in vivo evidence that Id2a regulates hepatoblast proliferation and cell death during liver development. Initially, in the liver, id2a is expressed in hepatoblasts and after their differentiation, id2a expression is restricted to biliary epithelial cells. id2a knockdown in zebrafish embryos had no effect on hepatoblast specification or hepatocyte differentiation. However, liver size was greatly reduced in id2a morpholino-injected embryos, indicative of a hepatic outgrowth defect attributable to the significant decrease in proliferating hepatoblasts concomitant with the significant increase in hepatoblast cell death. Altogether, these data support the role of Id2a as an important regulator of hepatic outgrowth via modulation of hepatoblast proliferation and survival during liver development in zebrafish.
Collapse
|
21
|
Wong L, Power N, Miles A, Tropepe V. Mutual antagonism of the paired-type homeobox genes, vsx2 and dmbx1, regulates retinal progenitor cell cycle exit upstream of ccnd1 expression. Dev Biol 2015; 402:216-28. [PMID: 25872183 DOI: 10.1016/j.ydbio.2015.03.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 03/17/2015] [Accepted: 03/25/2015] [Indexed: 01/04/2023]
Abstract
Understanding the mechanisms that regulate the transition between the proliferative and a post-mitotic state of retinal progenitor cells (RPCs) is key to advancing our knowledge of retinal growth and maturation. In the present study we determined that during zebrafish embryonic retinal neurogenesis, two paired-type homeobox genes - vsx2 and dmbx1 - function in a mutually antagonistic manner. We demonstrate that vsx2 gene expression requires active Fgf signaling and that this in turn suppresses dmbx1 expression and maintains cells in an undifferentiated, proliferative RPC state. This vsx2-dependent RPC state can be prolonged cell-autonomously by knockdown of dmbx1, or it can be suppressed prematurely by the over-expression of dmbx1, which we show can inhibit vsx2 expression and lead to precocious neuronal differentiation. dmbx1 loss of function also results in altered expression of canonical cell cycle genes, and in particular up-regulation of ccnd1, which correlates with our previous finding of a prolonged RPC cell cycle. By knocking down ccnd1 and dmbx1 simultaneously, we show that RPCs can overcome this phenotype to exit the cell cycle on time and differentiate normally into retinal neurons. Collectively, our data provide novel insight into the mechanism that enables RPCs to exit the cell cycle through a previously unrecognized antagonistic interaction of two paired-type homeobox genes that are central regulators of an Fgf-vsx2-dmbx1-ccnd1 signaling axis.
Collapse
Affiliation(s)
- Loksum Wong
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Namita Power
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Amanda Miles
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Vincent Tropepe
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada M5T 3A9; Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada M5S 3B2.
| |
Collapse
|
22
|
Gramage E, Li J, Hitchcock P. The expression and function of midkine in the vertebrate retina. Br J Pharmacol 2014; 171:913-23. [PMID: 24460673 PMCID: PMC3925030 DOI: 10.1111/bph.12495] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/21/2013] [Accepted: 10/24/2013] [Indexed: 12/20/2022] Open
Abstract
The functional role of midkine during development, following injury and in disease has been studied in a variety of tissues. In this review, we summarize what is known about midkine in the vertebrate retina, focusing largely on recent studies utilizing the zebrafish (Danio rerio) as an animal model. Zebrafish are a valuable animal model for studying the retina, due to its very rapid development and amazing ability for functional neuronal regeneration following neuronal cell death. The zebrafish genome harbours two midkine paralogues, midkine-a (mdka) and midkine-b (mdkb), which, during development, are expressed in nested patterns among different cell types. mdka is expressed in the retinal progenitors and mdkb is expressed in newly post-mitotic cells. Interestingly, studies of loss-and gain-of-function in zebrafish larvae indicate that midkine-a regulates cell cycle kinetics. Moreover, both mdka and mdkb are expressed in different cell types in the normal adult zebrafish retina, but after light-induced death of photoreceptors, both are up-regulated and expressed in proliferating Müller glia and photoreceptor progenitors, suggesting an important and (perhaps) coincident role for these cytokines during stem cell-based neuronal regeneration. Based on its known role in other tissues and the expression and function of the midkine paralogues in the zebrafish retina, we propose that midkine has an important functional role both during development and regeneration in the retina. Further studies are needed to understand this role and the mechanisms that underlie it.
Collapse
Affiliation(s)
- E Gramage
- Department of Ophthalmology and Visual Sciences, W. K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
23
|
Walcher T, Xie Q, Sun J, Irmler M, Beckers J, Öztürk T, Niessing D, Stoykova A, Cvekl A, Ninkovic J, Götz M. Functional dissection of the paired domain of Pax6 reveals molecular mechanisms of coordinating neurogenesis and proliferation. Development 2013; 140:1123-36. [PMID: 23404109 DOI: 10.1242/dev.082875] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To achieve adequate organ development and size, cell proliferation and differentiation have to be tightly regulated and coordinated. The transcription factor Pax6 regulates patterning, neurogenesis and proliferation in forebrain development. The molecular basis of this regulation is not well understood. As the bipartite DNA-binding paired domain of Pax6 regulates forebrain development, we examined mice with point mutations in its individual DNA-binding subdomains PAI (Pax6(Leca4), N50K) and RED (Pax6(Leca2), R128C). This revealed distinct roles in regulating proliferation in the developing cerebral cortex, with the PAI and RED subdomain mutations reducing and increasing, respectively, the number of mitoses. Conversely, neurogenesis was affected only by the PAI subdomain mutation, phenocopying the neurogenic defects observed in full Pax6 mutants. Genome-wide expression profiling identified molecularly discrete signatures of Pax6(Leca4) and Pax6(Leca2) mutations. Comparison to Pax6 targets identified by chromatin immunoprecipitation led to the identification and functional characterization of distinct DNA motifs in the promoters of target genes dysregulated in the Pax6(Leca2) or Pax6(Leca4) mutants, further supporting the distinct regulatory functions of the DNA-binding subdomains. Thus, Pax6 achieves its key roles in the developing forebrain by utilizing particular subdomains to coordinate patterning, neurogenesis and proliferation simultaneously.
Collapse
Affiliation(s)
- Tessa Walcher
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg-Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Janssens E, Gaublomme D, De Groef L, Darras VM, Arckens L, Delorme N, Claes F, Van Hove I, Moons L. Matrix metalloproteinase 14 in the zebrafish: an eye on retinal and retinotectal development. PLoS One 2013; 8:e52915. [PMID: 23326364 PMCID: PMC3541391 DOI: 10.1371/journal.pone.0052915] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 11/22/2012] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) are members of the metzincin superfamily of proteinases that cleave structural elements of the extracellular matrix and many molecules involved in signal transduction. Although there is evidence that MMPs promote the proper development of retinotectal projections, the nature and working mechanisms of specific MMPs in retinal development remain to be elucidated. Here, we report a role for zebrafish Mmp14a, one of the two zebrafish paralogs of human MMP14, in retinal neurogenesis and retinotectal development. RESULTS Whole mount in situ hybridization and immunohistochemical stainings for Mmp14a in developing zebrafish embryos reveal expression in the optic tectum, in the optic nerve and in defined retinal cell populations, including retinal ganglion cells (RGCs). Furthermore, Mmp14a loss-of-function results in perturbed retinoblast cell cycle kinetics and consequently, in a delayed retinal neurogenesis, differentiation and lamination. These Mmp14a-dependent retinal defects lead to microphthalmia and a significantly reduced innervation of the optic tectum (OT) by RGC axons. Mmp14b, on the contrary, does not appear to alter retinal neurogenesis or OT innervation. As mammalian MMP14 is known to act as an efficient MMP2-activator, we also explored and found a functional link and a possible co-involvement of Mmp2 and Mmp14a in zebrafish retinotectal development. CONCLUSION Both the Mmp14a expression in the developing visual system and the Mmp14a loss-of-function phenotype illustrate a critical role for Mmp14a activity in retinal and retinotectal development.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/metabolism
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Gene Knockdown Techniques
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Immunohistochemistry
- In Situ Hybridization
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Matrix Metalloproteinase 14/genetics
- Matrix Metalloproteinase 14/metabolism
- Matrix Metalloproteinase 2/genetics
- Matrix Metalloproteinase 2/metabolism
- Microphthalmos/embryology
- Microphthalmos/genetics
- Microphthalmos/metabolism
- Microscopy, Confocal
- Neurogenesis/genetics
- Optic Lobe, Nonmammalian/cytology
- Optic Lobe, Nonmammalian/embryology
- Optic Lobe, Nonmammalian/metabolism
- Protein Binding
- Retina/embryology
- Retina/metabolism
- Retinal Ganglion Cells/metabolism
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Els Janssens
- Research Group Neural Circuit Development and Regeneration, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Djoere Gaublomme
- Research Group Neural Circuit Development and Regeneration, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Lies De Groef
- Research Group Neural Circuit Development and Regeneration, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Veerle M. Darras
- Laboratory of Comparative Endocrinology, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Lut Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Nathalie Delorme
- Research Group Neural Circuit Development and Regeneration, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Filip Claes
- Research Group Neural Circuit Development and Regeneration, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Inge Van Hove
- Research Group Neural Circuit Development and Regeneration, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Lieve Moons
- Research Group Neural Circuit Development and Regeneration, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
- * E-mail:
| |
Collapse
|
25
|
Luo J, Uribe RA, Hayton S, Calinescu AA, Gross JM, Hitchcock PF. Midkine-A functions upstream of Id2a to regulate cell cycle kinetics in the developing vertebrate retina. Neural Dev 2012; 7:33. [PMID: 23111152 PMCID: PMC3531272 DOI: 10.1186/1749-8104-7-33] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/31/2012] [Indexed: 02/04/2023] Open
Abstract
Background Midkine is a small heparin binding growth factor expressed in numerous tissues during development. The unique midkine gene in mammals has two paralogs in zebrafish: midkine-a (mdka) and midkine-b (mdkb). In the zebrafish retina, during both larval development and adult photoreceptor regeneration, mdka is expressed in retinal stem and progenitor cells and functions as a molecular component of the retina’s stem cell niche. In this study, loss-of-function and conditional overexpression were used to investigate the function of Mdka in the retina of the embryonic zebrafish. Results The results show that during early retinal development Mdka functions to regulate cell cycle kinetics. Following targeted knockdown of Mdka synthesis, retinal progenitors cycle more slowly, and this results in microphthalmia, a diminished rate of cell cycle exit and a temporal delay of cell cycle exit and neuronal differentiation. In contrast, Mdka overexpression results in acceleration of the cell cycle and retinal overgrowth. Mdka gain-of-function, however, does not temporally advance cell cycle exit. Experiments to identify a potential Mdka signaling pathway show that Mdka functions upstream of the HLH regulatory protein, Id2a. Gene expression analysis shows Mdka regulates id2a expression, and co-injection of Mdka morpholinos and id2a mRNA rescues the Mdka loss-of-function phenotype. Conclusions These data show that in zebrafish, Mdka resides in a shared Id2a pathway to regulate cell cycle kinetics in retinal progenitors. This is the first study to demonstrate the function of Midkine during retinal development and adds Midkine to the list of growth factors that transcriptionally regulate Id proteins.
Collapse
Affiliation(s)
- Jing Luo
- Department of Ophthalmology and Visual Sciences, University of Michigan, W, K, Kellogg Eye Center, 1000 Wall Street, Ann Arbor, MI 48105-0714, USA
| | | | | | | | | | | |
Collapse
|
26
|
Id2a functions to limit Notch pathway activity and thereby influence the transition from proliferation to differentiation of retinoblasts during zebrafish retinogenesis. Dev Biol 2012; 371:280-92. [PMID: 22981606 DOI: 10.1016/j.ydbio.2012.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/16/2012] [Accepted: 08/28/2012] [Indexed: 12/16/2022]
Abstract
During vertebrate retinogenesis, the precise balance between retinoblast proliferation and differentiation is spatially and temporally regulated through a number of intrinsic factors and extrinsic signaling pathways. Moreover, there are complex gene regulatory network interactions between these intrinsic factors and extrinsic pathways, which ultimately function to determine when retinoblasts exit the cell cycle and terminally differentiate. We recently uncovered a cell non-autonomous role for the intrinsic HLH factor, Id2a, in regulating retinoblast proliferation and differentiation, with Id2a-deficient retinae containing an abundance of proliferative retinoblasts and an absence of terminally differentiated retinal neurons and glia. Here, we report that Id2a function is necessary and sufficient to limit Notch pathway activity during retinogenesis. Id2a-deficient retinae possess elevated levels of Notch pathway component gene expression, while retinae overexpressing id2a possess reduced expression of Notch pathway component genes. Attenuation of Notch signaling activity by DAPT or by morpholino knockdown of Notch1a is sufficient to rescue both the proliferative and differentiation defects in Id2a-deficient retinae. In addition to regulating Notch pathway activity, through a novel RNA-Seq and differential gene expression analysis of Id2a-deficient retinae, we identify a number of additional intrinsic and extrinsic regulatory pathway components whose expression is regulated by Id2a. These data highlight the integral role played by Id2a in the gene regulatory network governing the transition from retinoblast proliferation to terminal differentiation during vertebrate retinogenesis.
Collapse
|
27
|
Hutchinson SA, Tooke-Locke E, Wang J, Tsai S, Katz T, Trede NS. Tbl3 regulates cell cycle length during zebrafish development. Dev Biol 2012; 368:261-72. [PMID: 22659140 DOI: 10.1016/j.ydbio.2012.05.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 05/21/2012] [Accepted: 05/21/2012] [Indexed: 02/07/2023]
Abstract
The regulation of cell cycle rate is essential for the correct timing of proliferation and differentiation during development. Changes to cell cycle rate can have profound effects on the size, shape and cell types of a developing organ. We previously identified a zebrafish mutant ceylon (cey) that has a severe reduction in T cells and hematopoietic stem/progenitor cells (HSPCs). Here we find that the cey phenotype is due to absence of the gene transducin (beta)-like 3 (tbl3). The tbl3 homolog in yeast regulates the cell cycle by maintaining rRNA levels and preventing p53-induced cell death. Zebrafish tbl3 is maternally expressed, but later in development its expression is restricted to specific tissues. Tissues expressing tbl3 are severely reduced in cey mutants, including HSPCs, the retina, exocrine pancreas, intestine, and jaw cartilage. Specification of these tissues is normal, suggesting the reduced size is due to a reduced number of differentiated cells. Tbl3 MO injection into either wild-type or p53-/- mutant embryos phenocopies cey, indicating that loss of tbl3 causes specific defects in cey. Progression of both hematopoietic and retinal development is delayed beginning at 3 day post fertilization due to a slowing of the cell cycle. In contrast to yeast, reduction of Tbl3 causes a slowing of the cell cycle without a corresponding increase in p53 induced cell death. These data suggest that tbl3 plays a tissue-specific role regulating cell cycle rate during development.
Collapse
Affiliation(s)
- Sarah A Hutchinson
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | |
Collapse
|
28
|
Das A, Crump JG. Bmps and id2a act upstream of Twist1 to restrict ectomesenchyme potential of the cranial neural crest. PLoS Genet 2012; 8:e1002710. [PMID: 22589745 PMCID: PMC3349740 DOI: 10.1371/journal.pgen.1002710] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/28/2012] [Indexed: 11/18/2022] Open
Abstract
Cranial neural crest cells (CNCCs) have the remarkable capacity to generate both the non-ectomesenchyme derivatives of the peripheral nervous system and the ectomesenchyme precursors of the vertebrate head skeleton, yet how these divergent lineages are specified is not well understood. Whereas studies in mouse have indicated that the Twist1 transcription factor is important for ectomesenchyme development, its role and regulation during CNCC lineage decisions have remained unclear. Here we show that two Twist1 genes play an essential role in promoting ectomesenchyme at the expense of non-ectomesenchyme gene expression in zebrafish. Twist1 does so by promoting Fgf signaling, as well as potentially directly activating fli1a expression through a conserved ectomesenchyme-specific enhancer. We also show that Id2a restricts Twist1 activity to the ectomesenchyme lineage, with Bmp activity preferentially inducing id2a expression in non-ectomesenchyme precursors. We therefore propose that the ventral migration of CNCCs away from a source of Bmps in the dorsal ectoderm promotes ectomesenchyme development by relieving Id2a-dependent repression of Twist1 function. Together our model shows how the integration of Bmp inhibition at its origin and Fgf activation along its migratory route would confer temporal and spatial specificity to the generation of ectomesenchyme from the neural crest.
Collapse
Affiliation(s)
| | - J. Gage Crump
- Broad CIRM Center, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
29
|
Cellular expression of Smarca4 (Brg1)-regulated genes in zebrafish retinas. BMC DEVELOPMENTAL BIOLOGY 2011; 11:45. [PMID: 21756345 PMCID: PMC3155967 DOI: 10.1186/1471-213x-11-45] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 07/14/2011] [Indexed: 11/10/2022]
Abstract
Background In a recent genomic study, Leung et al. used a factorial microarray analysis to identify Smarca4 (Brg1)-regulated genes in micro-dissected zebrafish retinas. Two hundred and fifty nine genes were grouped in three-way ANOVA models which carried the most specific retinal change. To validate the microarray results and to elucidate cellular expression patterns of the significant genes for further characterization, 32 known genes were randomly selected from this group. In situ hybridization of these genes was performed on the same types of samples (wild-type (WT) and smarca4a50/a50 (yng) mutant) at the same stages (36 and 52 hours post-fertilization (hpf)) as in the microarray study. Results Thirty out of 32 riboprobes showed a positive in situ staining signal. Twenty seven out of these 30 genes were originally further classified as Smarca4-regulated retinal genes, while the remaining three as retinal-specific expression independent of Smarca4 regulation. It was found that 90.32% of the significant microarray comparisons that were used to identify Smarca4-regulated retinal genes had a corresponding qualitative expression change in the in situ hybridization comparisons. This is highly concordant with the theoretical true discovery rate of 95%. Hierarchical clustering was used to investigate the similarity of the cellular expression patterns of 25 out of the 27 Smarca4-regulated retinal genes that had a sufficiently high expression signal for an unambiguous identification of retinal expression domains. Three broad groups of expression pattern were identified; including 1) photoreceptor layer/outer nuclear layer specific expression at 52 hpf, 2) ganglion cell layer (GCL) and/or inner nuclear layer (INL) specific expression at both 36 & 52 hpf, and 3) GCL and/or INL specific expression at 52 hpf only. Some of these genes have recently been demonstrated to play key roles in retinal cell-type specification, differentiation and lamination. For the remaining three retinal-specific genes that are independent of Smarca4 regulation, they all had a subtle expression difference between WT and smarca4a50/a50 retinas as detected by in situ hybridization. This subtle expression difference was also detected by the original microarray analysis. However, the difference was lower than the fold change cut-off used in that study and hence these genes were not inferred as Smarca4-regulated retinal genes. Conclusions This study has successfully investigated the expression pattern of 32 genes identified from the original factorial microarray analysis. The results have demonstrated that the true discovery rate for identifying Smarca4-regulated retinal genes is 90.3%. Hence, the significant genes from the microarray study are good candidates for cell-type specific markers and will aid further investigation of retinal differentiation.
Collapse
|