1
|
Shafiei G, Talaei SA, Enderami SE, Mahabady MK, Mahabadi JA. Pluripotent stem cell-derived gametes: A gap for infertility treatment and reproductive medicine in the future. Tissue Cell 2025; 95:102904. [PMID: 40203683 DOI: 10.1016/j.tice.2025.102904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/26/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025]
Abstract
Infertility affects 10-15 % of reproductive-age couples worldwide, with male infertility linked to sperm dysfunction and female infertility caused by ovulation disorders and reproductive abnormalities. Stem cell research presents a promising avenue for infertility treatment through germ cell differentiation. However, standardizing differentiation protocols and ensuring the functionality of in vitro-derived gametes remain significant challenges before clinical application becomes feasible.
Collapse
Affiliation(s)
- Golnaz Shafiei
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Sayyed Alireza Talaei
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Javad Amini Mahabadi
- Gametogenesis Research Center, Kashan University of Medical Science, Kashan, Iran.
| |
Collapse
|
2
|
Ou H, Yang Q, Zhang Y, Tang X, Xiao M, Li S, Lei L, Xie Z. The role of cells and their derivatives in otorhinolaryngologic diseases treatment. Life Sci 2024; 352:122898. [PMID: 38997061 DOI: 10.1016/j.lfs.2024.122898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/23/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Otolaryngology is an important specialty in the field of surgery that deals with the diagnosis and treatment of the ear, nose, throat, trachea, as well as related anatomical structures. Various otolaryngological disorders are difficult to treat using established pharmacological and surgical approaches. The advent of molecular and cellular therapies led to further progress in this respect. This article reviews the therapeutic strategies of using stem cells, immune cells, and chondrocytes in otorhinolaryngology. As the most widely recognized cell derivatives, exosomes were also systematically reviewed for their therapeutic potential in head and neck cancer, otitis media, and allergic rhinitis. Finally, we summarize the limitations of stem cells, chondrocytes, and exosomes, as well as possible solutions, and provide an outlook on the future direction of cell- and derivative-based therapies in otorhinolaryngology, to offer a theoretical foundation for the clinical translation of this therapeutic modality.
Collapse
Affiliation(s)
- Haibo Ou
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Xiaojun Tang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Minna Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China.
| | - Zuozhong Xie
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
3
|
Da Silva D, Crous A, Abrahamse H. Enhancing Osteoblast Differentiation from Adipose-Derived Stem Cells Using Hydrogels and Photobiomodulation: Overcoming In Vitro Limitations for Osteoporosis Treatment. Curr Issues Mol Biol 2024; 46:6346-6365. [PMID: 39057021 PMCID: PMC11276038 DOI: 10.3390/cimb46070379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Osteoporosis represents a widespread and debilitating chronic bone condition that is increasingly prevalent globally. Its hallmark features include reduced bone density and heightened fragility, which significantly elevate the risk of fractures due to the decreased presence of mature osteoblasts. The limitations of current pharmaceutical therapies, often accompanied by severe side effects, have spurred researchers to seek alternative strategies. Adipose-derived stem cells (ADSCs) hold considerable promise for tissue repair, albeit they encounter obstacles such as replicative senescence in laboratory conditions. In comparison, employing ADSCs within three-dimensional (3D) environments provides an innovative solution, replicating the natural extracellular matrix environment while offering a controlled and cost-effective in vitro platform. Moreover, the utilization of photobiomodulation (PBM) has emerged as a method to enhance ADSC differentiation and proliferation potential by instigating cellular stimulation and facilitating beneficial performance modifications. This literature review critically examines the shortcomings of current osteoporosis treatments and investigates the potential synergies between 3D cell culture and PBM in augmenting ADSC differentiation towards osteogenic lineages. The primary objective of this study is to assess the efficacy of combined 3D environments and PBM in enhancing ADSC performance for osteoporosis management. This research is notably distinguished by its thorough scrutiny of the existing literature, synthesis of recent advancements, identification of future research trajectories, and utilization of databases such as PubMed, Scopus, Web of Science, and Google Scholar for this literature review. Furthermore, the exploration of biomechanical and biophysical stimuli holds promise for refining treatment strategies. The future outlook suggests that integrating PBM with ADSCs housed within 3D environments holds considerable potential for advancing bone regeneration efforts. Importantly, this review aspires to catalyse further advancements in combined therapeutic strategies for osteoporosis regeneration.
Collapse
Affiliation(s)
| | | | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa; (D.D.S.); (A.C.)
| |
Collapse
|
4
|
Redó-Riveiro A, Al-Mousawi J, Linneberg-Agerholm M, Proks M, Perera M, Salehin N, Brickman JM. Transcription factor co-expression mediates lineage priming for embryonic and extra-embryonic differentiation. Stem Cell Reports 2024; 19:174-186. [PMID: 38215757 PMCID: PMC10874857 DOI: 10.1016/j.stemcr.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 01/14/2024] Open
Abstract
In early mammalian development, cleavage stage blastomeres and inner cell mass (ICM) cells co-express embryonic and extra-embryonic transcriptional determinants. Using a protein-based double reporter we identify an embryonic stem cell (ESC) population that co-expresses the extra-embryonic factor GATA6 alongside the embryonic factor SOX2. Based on single cell transcriptomics, we find this population resembles the unsegregated ICM, exhibiting enhanced differentiation potential for endoderm while maintaining epiblast competence. To relate transcription factor binding in these cells to future fate, we describe a complete enhancer set in both ESCs and naive extra-embryonic endoderm stem cells and assess SOX2 and GATA6 binding at these elements in the ICM-like ESC sub-population. Both factors support cooperative recognition in these lineages, with GATA6 bound alongside SOX2 on a fraction of pluripotency enhancers and SOX2 alongside GATA6 more extensively on endoderm enhancers, suggesting that cooperative binding between these antagonistic factors both supports self-renewal and prepares progenitor cells for later differentiation.
Collapse
Affiliation(s)
- Alba Redó-Riveiro
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Jasmina Al-Mousawi
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Madeleine Linneberg-Agerholm
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Martin Proks
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Marta Perera
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Nazmus Salehin
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Joshua M Brickman
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
5
|
Miyazaki S, Yamano H, Motooka D, Tashiro F, Matsuura T, Miyazaki T, Miyazaki JI. Zfp296 knockout enhances chromatin accessibility and induces a unique state of pluripotency in embryonic stem cells. Commun Biol 2023; 6:771. [PMID: 37488353 PMCID: PMC10366109 DOI: 10.1038/s42003-023-05148-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/17/2023] [Indexed: 07/26/2023] Open
Abstract
The Zfp296 gene encodes a zinc finger-type protein. Its expression is high in mouse embryonic stem cells (ESCs) but rapidly decreases following differentiation. Zfp296-knockout (KO) ESCs grew as flat colonies, which were reverted to rounded colonies by exogenous expression of Zfp296. KO ESCs could not form teratomas when transplanted into mice but could efficiently contribute to germline-competent chimeric mice following blastocyst injection. Transcriptome analysis revealed that Zfp296 deficiency up- and down-regulates a distinct group of genes, among which Dppa3, Otx2, and Pou3f1 were markedly downregulated. Chromatin immunoprecipitation sequencing demonstrated that ZFP296 binding is predominantly seen in the vicinity of the transcription start sites (TSSs) of a number of genes, and ZFP296 was suggested to negatively regulate transcription. Consistently, chromatin accessibility assay clearly showed that ZFP296 binding reduces the accessibility of the TSS regions of target genes. Zfp296-KO ESCs showed increased histone H3K9 di- and trimethylation. Co-immunoprecipitation analyses revealed interaction of ZFP296 with G9a and GLP. These results show that ZFP296 plays essential roles in maintaining the global epigenetic state of ESCs through multiple mechanisms including activation of Dppa3, attenuation of chromatin accessibility, and repression of H3K9 methylation, but that Zfp296-KO ESCs retain a unique state of pluripotency while lacking the teratoma-forming ability.
Collapse
Affiliation(s)
- Satsuki Miyazaki
- Division of Stem Cell Regulation Research, Center for Medical Research and Education, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroyuki Yamano
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fumi Tashiro
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Takumi Matsuura
- Division of Stem Cell Regulation Research, Center for Medical Research and Education, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Toray Industries, Inc., Tokyo, Japan
| | - Tatsushi Miyazaki
- Division of Stem Cell Regulation Research, Center for Medical Research and Education, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jun-Ichi Miyazaki
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
6
|
In vitro differentiation of primed human induced pluripotent stem cells into primordial germ cell-like cells. Mol Biol Rep 2023; 50:1971-1979. [PMID: 36534237 DOI: 10.1007/s11033-022-08012-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/06/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Previous studies have shown significant results in the differentiation of mouse-induced pluripotent stem cells (miPSCs) into primordial germ cell-like cells (PGCLCs) and that human iPSCs (hiPSCs) can also differentiate into PGCLCs; however, the efficiency of PGCLC induction from hiPSCs is < 5%. In this study, we examined a new protocol to differentiate hiPSCs into PGCLCs. METHODS AND RESULTS hiPSCs-derived embryoid bodies (EBs) were exposed to differentiate inducing factors, bone morphogenetic protein 4 (BMP4), and retinoic acid (RA) for 6 days. Cell differentiation was assessed by reverse transcriptase-polymerase chain reaction (RT-PCR) and immunofluorescence (IF) studies. Our results showed increased expression of the PRDM1 gene on the first day of differentiation. On other days, DAZL, VASA, and STRA8 genes increased, and the expression of PRDM1, NANOG, and OCT4 genes decreased. The expression of VASA, C-KIT, and STRA8 proteins was confirmed by IF. A flow cytometry analysis revealed that ~ 60% of differentiated cells were VASA- and STRA8-positive. CONCLUSION EB formation and constant exposure of EBs to BMP4 and RA lead to the differentiation of hiPSCs into PGCLCs.
Collapse
|
7
|
Charbe NB, Tambuwala M, Palakurthi SS, Warokar A, Hromić‐Jahjefendić A, Bakshi H, Zacconi F, Mishra V, Khadse S, Aljabali AA, El‐Tanani M, Serrano‐Aroca Ã, Palakurthi S. Biomedical applications of three-dimensional bioprinted craniofacial tissue engineering. Bioeng Transl Med 2023; 8:e10333. [PMID: 36684092 PMCID: PMC9842068 DOI: 10.1002/btm2.10333] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
Anatomical complications of the craniofacial regions often present considerable challenges to the surgical repair or replacement of the damaged tissues. Surgical repair has its own set of limitations, including scarcity of the donor tissues, immune rejection, use of immune suppressors followed by the surgery, and restriction in restoring the natural aesthetic appeal. Rapid advancement in the field of biomaterials, cell biology, and engineering has helped scientists to create cellularized skeletal muscle-like structures. However, the existing method still has limitations in building large, highly vascular tissue with clinical application. With the advance in the three-dimensional (3D) bioprinting technique, scientists and clinicians now can produce the functional implants of skeletal muscles and bones that are more patient-specific with the perfect match to the architecture of their craniofacial defects. Craniofacial tissue regeneration using 3D bioprinting can manage and eliminate the restrictions of the surgical transplant from the donor site. The concept of creating the new functional tissue, exactly mimicking the anatomical and physiological function of the damaged tissue, looks highly attractive. This is crucial to reduce the donor site morbidity and retain the esthetics. 3D bioprinting can integrate all three essential components of tissue engineering, that is, rehabilitation, reconstruction, and regeneration of the lost craniofacial tissues. Such integration essentially helps to develop the patient-specific treatment plans and damage site-driven creation of the functional implants for the craniofacial defects. This article is the bird's eye view on the latest development and application of 3D bioprinting in the regeneration of the skeletal muscle tissues and their application in restoring the functional abilities of the damaged craniofacial tissue. We also discussed current challenges in craniofacial bone vascularization and gave our view on the future direction, including establishing the interactions between tissue-engineered skeletal muscle and the peripheral nervous system.
Collapse
Affiliation(s)
- Nitin Bharat Charbe
- Irma Lerma Rangel College of PharmacyTexas A&M Health Science CenterKingsvilleTexasUSA
| | - Murtaza Tambuwala
- School of Pharmacy and Pharmaceutical ScienceUlster UniversityColeraineUK
| | | | - Amol Warokar
- Department of PharmacyDadasaheb Balpande College of PharmacyNagpurIndia
| | - Altijana Hromić‐Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural SciencesInternational University of SarajevoSarajevoBosnia and Herzegovina
| | - Hamid Bakshi
- School of Pharmacy and Pharmaceutical ScienceUlster UniversityColeraineUK
| | - Flavia Zacconi
- Departamento de Quimica Orgánica, Facultad de Química y de FarmaciaPontificia Universidad Católica de ChileSantiagoChile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
| | - Vijay Mishra
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraIndia
| | - Saurabh Khadse
- Department of Pharmaceutical ChemistryR.C. Patel Institute of Pharmaceutical Education and ResearchDhuleIndia
| | - Alaa A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical SciencesYarmouk UniversityIrbidJordan
| | - Mohamed El‐Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of PharmacyAl‐Ahliyya Amman UniversityAmmanJordan
| | - Ãngel Serrano‐Aroca
- Biomaterials and Bioengineering Lab Translational Research Centre San Alberto MagnoCatholic University of Valencia San Vicente MártirValenciaSpain
| | - Srinath Palakurthi
- Irma Lerma Rangel College of PharmacyTexas A&M Health Science CenterKingsvilleTexasUSA
| |
Collapse
|
8
|
Chow SYA, Hu H, Osaki T, Levi T, Ikeuchi Y. Advances in construction and modeling of functional neural circuits in vitro. Neurochem Res 2022; 47:2529-2544. [PMID: 35943626 PMCID: PMC9463289 DOI: 10.1007/s11064-022-03682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022]
Abstract
Over the years, techniques have been developed to culture and assemble neurons, which brought us closer to creating neuronal circuits that functionally and structurally mimic parts of the brain. Starting with primary culture of neurons, preparations of neuronal culture have advanced substantially. Development of stem cell research and brain organoids has opened a new path for generating three-dimensional human neural circuits. Along with the progress in biology, engineering technologies advanced and paved the way for construction of neural circuit structures. In this article, we overview research progress and discuss perspective of in vitro neural circuits and their ability and potential to acquire functions. Construction of in vitro neural circuits with complex higher-order functions would be achieved by converging development in diverse major disciplines including neuroscience, stem cell biology, tissue engineering, electrical engineering and computer science.
Collapse
Affiliation(s)
- Siu Yu A Chow
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | - Huaruo Hu
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Osaki
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | - Timothée Levi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
- IMS laboratory, CNRS UMR 5218, University of Bordeaux, Talence, France
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan.
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
9
|
OUP accepted manuscript. Stem Cells 2022; 40:751-762. [DOI: 10.1093/stmcls/sxac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022]
|
10
|
Yeh CY, Huang WH, Chen HC, Meir YJJ. Capturing Pluripotency and Beyond. Cells 2021; 10:cells10123558. [PMID: 34944066 PMCID: PMC8700150 DOI: 10.3390/cells10123558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
During the development of a multicellular organism, the specification of different cell lineages originates in a small group of pluripotent cells, the epiblasts, formed in the preimplantation embryo. The pluripotent epiblast is protected from premature differentiation until exposure to inductive cues in strictly controlled spatially and temporally organized patterns guiding fetus formation. Epiblasts cultured in vitro are embryonic stem cells (ESCs), which recapitulate the self-renewal and lineage specification properties of their endogenous counterparts. The characteristics of totipotency, although less understood than pluripotency, are becoming clearer. Recent studies have shown that a minor ESC subpopulation exhibits expanded developmental potential beyond pluripotency, displaying a characteristic reminiscent of two-cell embryo blastomeres (2CLCs). In addition, reprogramming both mouse and human ESCs in defined media can produce expanded/extended pluripotent stem cells (EPSCs) similar to but different from 2CLCs. Further, the molecular roadmaps driving the transition of various potency states have been clarified. These recent key findings will allow us to understand eutherian mammalian development by comparing the underlying differences between potency network components during development. Using the mouse as a paradigm and recent progress in human PSCs, we review the epiblast's identity acquisition during embryogenesis and their ESC counterparts regarding their pluripotent fates and beyond.
Collapse
Affiliation(s)
- Chih-Yu Yeh
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.Y.); (W.-H.H.)
| | - Wei-Han Huang
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.Y.); (W.-H.H.)
| | - Hung-Chi Chen
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.Y.); (W.-H.H.)
- Limbal Stem Cell Laboratory, Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Correspondence: (H.-C.C.); (Y.-J.J.M.)
| | - Yaa-Jyuhn James Meir
- Limbal Stem Cell Laboratory, Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: (H.-C.C.); (Y.-J.J.M.)
| |
Collapse
|
11
|
Hawdon A, Aberkane A, Zenker J. Microtubule-dependent subcellular organisation of pluripotent cells. Development 2021; 148:272646. [PMID: 34710215 DOI: 10.1242/dev.199909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
With the advancement of cutting-edge live imaging technologies, microtubule remodelling has evolved as an integral regulator for the establishment of distinct differentiated cells. However, despite their fundamental role in cell structure and function, microtubules have received less attention when unravelling the regulatory circuitry of pluripotency. Here, we summarise the role of microtubule organisation and microtubule-dependent events required for the formation of pluripotent cells in vivo by deciphering the process of early embryogenesis: from fertilisation to blastocyst. Furthermore, we highlight current advances in elucidating the significance of specific microtubule arrays in in vitro culture systems of pluripotent stem cells and how the microtubule cytoskeleton serves as a highway for the precise intracellular movement of organelles. This Review provides an informed understanding of the intrinsic role of subcellular architecture of pluripotent cells and accentuates their regenerative potential in combination with innovative light-inducible microtubule techniques.
Collapse
Affiliation(s)
- Azelle Hawdon
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Asma Aberkane
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jennifer Zenker
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
12
|
Gómez-Gálvez P, Anbari S, Escudero LM, Buceta J. Mechanics and self-organization in tissue development. Semin Cell Dev Biol 2021; 120:147-159. [PMID: 34417092 DOI: 10.1016/j.semcdb.2021.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 01/01/2023]
Abstract
Self-organization is an all-important feature of living systems that provides the means to achieve specialization and functionality at distinct spatio-temporal scales. Herein, we review this concept by addressing the packing organization of cells, the sorting/compartmentalization phenomenon of cell populations, and the propagation of organizing cues at the tissue level through traveling waves. We elaborate on how different theoretical models and tools from Topology, Physics, and Dynamical Systems have improved the understanding of self-organization by shedding light on the role played by mechanics as a driver of morphogenesis. Altogether, by providing a historical perspective, we show how ideas and hypotheses in the field have been revisited, developed, and/or rejected and what are the open questions that need to be tackled by future research.
Collapse
Affiliation(s)
- Pedro Gómez-Gálvez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla and Departamento de Biologia Celular, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Samira Anbari
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla and Departamento de Biologia Celular, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Javier Buceta
- Institute for Integrative Systems Biology (I2SysBio), CSIC-UV, Paterna, 46980 Valencia, Spain.
| |
Collapse
|
13
|
Abstract
Micropatterning encompasses a set of methods aimed at precisely controlling the spatial distribution of molecules onto the surface of materials. Biologists have borrowed the idea and adapted these methods, originally developed for electronics, to impose physical constraints on biological systems with the aim of addressing fundamental questions across biological scales from molecules to multicellular systems. Here, I approach this topic from a developmental biologist's perspective focusing specifically on how and why micropatterning has gained in popularity within the developmental biology community in recent years. Overall, this Primer provides a concise overview of how micropatterns are used to study developmental processes and emphasises how micropatterns are a useful addition to the developmental biologist's toolbox.
Collapse
Affiliation(s)
- Guillaume Blin
- Institute for Regeneration and Repair, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, 5 Little France Drive, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| |
Collapse
|
14
|
Induced Tissue-Specific Stem Cells (iTSCs): Their Generation and Possible Use in Regenerative Medicine. Pharmaceutics 2021; 13:pharmaceutics13060780. [PMID: 34071015 PMCID: PMC8224740 DOI: 10.3390/pharmaceutics13060780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 11/29/2022] Open
Abstract
Induced tissue-specific stem cells (iTSCs) are partially reprogrammed cells which have an intermediate state, such as progenitors or stem cells. They originate from the de-differentiation of differentiated somatic cells into pluripotent stem cells, such as induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs), or from the differentiation of undifferentiated cells. They show a limited capacity to differentiate and a morphology similar to that of somatic cell stem cells present in tissues, but distinct from that of iPSCs and ESCs. iTSCs can be generally obtained 7 to 10 days after reprogramming of somatic cells with Yamanaka’s factors, and their fibroblast-like morphology remains unaltered. iTSCs can also be obtained directly from iPSCs cultured under conditions allowing cellular differentiation. In this case, to effectively induce iTSCs, additional treatment is required, as exemplified by the conversion of iPSCs into naïve iPSCs. iTSCs can proliferate continuously in vitro, but when transplanted into immunocompromised mice, they fail to generate solid tumors (teratomas), implying loss of tumorigenic potential. The low tendency of iTSCs to elicit tumors is beneficial, especially considering applications for regenerative medicine in humans. Several iTSC types have been identified, including iTS-L, iTS-P, and iTS-D, obtained by reprogramming hepatocytes, pancreatic cells, and deciduous tooth-derived dental pulp cells, respectively. This review provides a brief overview of iPSCs and discusses recent advances in the establishment of iTSCs and their possible applications in regenerative medicine.
Collapse
|
15
|
Wang X, Ruan Y, Zhang J, Tian Y, Liu L, Wang J, Liu G, Cheng Y, Xu Y, Yang Y, Yu M, Zhao B, Zhang Y, Wang J, Wang J, Wu W, He P, Xiao L, Xiong J, Jian R. Expression levels and activation status of Yap splicing isoforms determine self-renewal and differentiation potential of embryonic stem cells. STEM CELLS (DAYTON, OHIO) 2021; 39:1178-1191. [PMID: 33938099 DOI: 10.1002/stem.3389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/30/2021] [Indexed: 11/10/2022]
Abstract
Yap is the key effector of Hippo signaling; however, its role in embryonic stem cells (ESCs) remains controversial. Here, we identify two Yap splicing isoforms (Yap472 and Yap488), which show equal expression levels but heterogeneous distribution in ESCs. Knockout (KO) of both isoforms reduces ESC self-renewal, accelerates pluripotency exit, but arrests terminal differentiation, while overexpression of each isoform leads to the reverse phenotype. The effect of both Yap isoforms on self-renewal is Teads-dependent and mediated by c-Myc. Nonetheless, different isoforms are found to affect overlapping yet distinct genes, and confer different developmental potential to Yap-KO cells, with Yap472 exerting a more pronounced biological effect and being more essential for neuroectoderm differentiation. Constitutive activation of Yaps, particularly Yap472, dramatically upregulates p53 and Cdx2, inducing trophectoderm trans-differentiation even under self-renewal conditions. These findings reveal the combined roles of different Yap splicing isoforms and mechanisms in regulating self-renewal efficiency and differentiation potential of ESCs.
Collapse
Affiliation(s)
- Xueyue Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China.,Department of Paediatrics, The General Hospital of PLA Tibet Military Area Command, Lhasa, People's Republic of China
| | - Yan Ruan
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Junlei Zhang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Yanping Tian
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Lianlian Liu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - JiaLi Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Gaoke Liu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Yuda Cheng
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Yixiao Xu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China.,Southwest Hospital/Southwest Eye Hospital, The First Hospital Affiliated to Army Medical University, Chongqing, People's Republic of China
| | - Yi Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, People's Republic of China
| | - Meng Yu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Binyu Zhao
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Yue Zhang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China.,Southwest Hospital/Southwest Eye Hospital, The First Hospital Affiliated to Army Medical University, Chongqing, People's Republic of China
| | - Jiaqi Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Jiangjun Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Wei Wu
- Thoracic Surgery Department, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing, People's Republic of China
| | - Ping He
- Cardiac Surgery Department, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing, People's Republic of China
| | - Lan Xiao
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Jiaxiang Xiong
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, People's Republic of China
| | - Rui Jian
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
16
|
Nakamura T, Fujiwara K, Saitou M, Tsukiyama T. Non-human primates as a model for human development. Stem Cell Reports 2021; 16:1093-1103. [PMID: 33979596 PMCID: PMC8185448 DOI: 10.1016/j.stemcr.2021.03.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Human development has been studied for over a century, but the molecular mechanisms underlying human embryogenesis remain largely unknown due to technical difficulties and ethical issues. Accordingly, mice have been used as a model for mammalian development and studied extensively to infer human biology based on the conservation of fundamental processes between the two species. As research has progressed, however, species-specific differences in characteristics between rodents and primates have become apparent. Non-human primates (NHPs) have also been used for biomedical research, and are now attracting attention as a model for human development. Here, we summarize primate species from the evolutionary and genomic points of view. Then we review the current issues and progress in gene modification technology for NHPs. Finally, we discuss recent studies on the early embryogenesis of primates and future perspectives.
Collapse
Affiliation(s)
- Tomonori Nakamura
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; The Hakubi Center for Advanced Research, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Kohei Fujiwara
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomoyuki Tsukiyama
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Research Center for Animal Life Science, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga 520-2192, Japan.
| |
Collapse
|
17
|
Guan BX, Bhanu B, Theagarajan R, Liu H, Talbot P, Weng N. Human embryonic stem cell classification: random network with autoencoded feature extractor. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200148SSRR. [PMID: 33928769 PMCID: PMC8084167 DOI: 10.1117/1.jbo.26.5.052913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
SIGNIFICANCE Automated understanding of human embryonic stem cell (hESC) videos is essential for the quantified analysis and classification of various states of hESCs and their health for diverse applications in regenerative medicine. AIM This paper aims to develop an ensemble method and bagging of deep learning classifiers as a model for hESC classification on a video dataset collected using a phase contrast microscope. APPROACH The paper describes a deep learning-based random network (RandNet) with an autoencoded feature extractor for the classification of hESCs into six different classes, namely, (1) cell clusters, (2) debris, (3) unattached cells, (4) attached cells, (5) dynamically blebbing cells, and (6) apoptotically blebbing cells. The approach uses unlabeled data to pre-train the autoencoder network and fine-tunes it using the available annotated data. RESULTS The proposed approach achieves a classification accuracy of 97.23 ± 0.94 % and outperforms the state-of-the-art methods. Additionally, the approach has a very low training cost compared with the other deep-learning-based approaches, and it can be used as a tool for annotating new videos, saving enormous hours of manual labor. CONCLUSIONS RandNet is an efficient and effective method that uses a combination of subnetworks trained using both labeled and unlabeled data to classify hESC images.
Collapse
Affiliation(s)
- Benjamin X. Guan
- University of California–Riverside, Center for Research in Intelligent Systems, Riverside, California, United States
| | - Bir Bhanu
- University of California–Riverside, Center for Research in Intelligent Systems, Riverside, California, United States
| | - Rajkumar Theagarajan
- University of California–Riverside, Center for Research in Intelligent Systems, Riverside, California, United States
| | - Hengyue Liu
- University of California–Riverside, Center for Research in Intelligent Systems, Riverside, California, United States
| | - Prue Talbot
- University of California–Riverside, Stem Cell Center, Riverside, California, United States
| | - Nikki Weng
- University of California–Riverside, Stem Cell Center, Riverside, California, United States
| |
Collapse
|
18
|
Tomoda K, Kime C. Synthetic embryology: Early mammalian embryo modeling systems from cell cultures. Dev Growth Differ 2021; 63:116-126. [PMID: 33540477 DOI: 10.1111/dgd.12713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 12/20/2022]
Abstract
Recently, the fields of embryology, developmental biology, stem cell biology, and cell reprogramming, have intersected with synthetic embryo systems (SESs) from cultured cells. Among such SESs, several approaches have engaged early-embryo-like cells, cells with atypical potency, or assembled traditional in vitro stem cell populations with synergy, to advance life discovery systems that may yield emergent knowledge and biotechnical advance. Such models center on the competent generation of blastocyst-like and post-implantation embryo-like forms. Our group, and several others have recently pioneered unique SES strategies covering a broad spectrum of key early embryo-like developmental stages and features to seed an emerging SES field. Herein, we provide a comprehensive perspective of synthetic embryology and the powerful promise that excites us.
Collapse
Affiliation(s)
- Kiichiro Tomoda
- Gladstone Institutes, San Francisco, CA, USA.,Center for iPS Cell Research and Application, Kyoto, Japan.,Osaka Medical College, Osaka, Japan
| | - Cody Kime
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
19
|
Xiao C, Grzonka M, Meyer-Gerards C, Mack M, Figge R, Bazzi H. Gradual centriole maturation associates with the mitotic surveillance pathway in mouse development. EMBO Rep 2021; 22:e51127. [PMID: 33410253 PMCID: PMC7857428 DOI: 10.15252/embr.202051127] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/23/2022] Open
Abstract
Centrosomes, composed of two centrioles and pericentriolar material, organize mitotic spindles during cell division and template cilia during interphase. The first few divisions during mouse development occur without centrioles, which form around embryonic day (E) 3. However, disruption of centriole biogenesis in Sas-4 null mice leads to embryonic arrest around E9. Centriole loss in Sas-4-/- embryos causes prolonged mitosis and p53-dependent cell death. Studies in vitro discovered a similar USP28-, 53BP1-, and p53-dependent mitotic surveillance pathway that leads to cell cycle arrest. In this study, we show that an analogous pathway is conserved in vivo where 53BP1 and USP28 are upstream of p53 in Sas-4-/- embryos. The data indicate that the pathway is established around E7 of development, four days after the centrioles appear. Our data suggest that the newly formed centrioles gradually mature to participate in mitosis and cilia formation around the beginning of gastrulation, coinciding with the activation of mitotic surveillance pathway upon centriole loss.
Collapse
Affiliation(s)
- Cally Xiao
- Department of Dermatology and Venereology, University Hospital of Cologne, Cologne, Germany.,The Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Graduate Program in Pharmacology and Experimental Therapeutics, University Hospital of Cologne, Cologne, Germany.,Graduate School for Biological Sciences, University of Cologne, Cologne, Germany
| | - Marta Grzonka
- Department of Dermatology and Venereology, University Hospital of Cologne, Cologne, Germany.,The Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Graduate School for Biological Sciences, University of Cologne, Cologne, Germany
| | - Charlotte Meyer-Gerards
- Department of Dermatology and Venereology, University Hospital of Cologne, Cologne, Germany.,The Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Graduate School for Biological Sciences, University of Cologne, Cologne, Germany
| | - Miriam Mack
- Department of Dermatology and Venereology, University Hospital of Cologne, Cologne, Germany.,The Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Masters Program in Biological Sciences, University of Cologne, Cologne, Germany
| | - Rebecca Figge
- Graduate School for Biological Sciences, University of Cologne, Cologne, Germany
| | - Hisham Bazzi
- Department of Dermatology and Venereology, University Hospital of Cologne, Cologne, Germany.,The Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
20
|
Progress and Challenges of Amniotic Fluid Derived Stem Cells in Therapy of Ischemic Heart Disease. Int J Mol Sci 2020; 22:ijms22010102. [PMID: 33374215 PMCID: PMC7794729 DOI: 10.3390/ijms22010102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/13/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023] Open
Abstract
Cardiovascular disease is the leading cause of deaths worldwide, claiming an estimated total of 17.9 million lives each year, of which one-third of the people are under the age of 70 years. Since adult cardiomyocytes fail to regenerate, the heart loses the ability to repair itself after an injury, making patients with heart disease suffer from poor prognosis. Pluripotent stem cells have the ability to differentiate into cardiomyocytes in vitro through a well-established process, which is a new advancement in cardiac regeneration therapy. However, pluripotent stem cell-derived cardiomyocytes have certain drawbacks, such as the risk of arrhythmia and immune incompatibility. Thus, amniotic fluid stem cells (AFSCs), a relatively novel source of stem cells, have been exploited for their ability of pluripotent differentiation. In addition, since AFSCs are weakly positive for the major histocompatibility class II molecules, they may have high immune tolerance. In summary, the possibility of development of cardiomyocytes from AFSCs, as well as their transplantation in host cells to produce mechanical contraction, has been discussed. Thus, this review article highlights the progress of AFSC therapy and its application in the treatment of heart diseases in recent years.
Collapse
|
21
|
Niu F, Sharma A, Wang Z, Feng L, Muresanu DF, Sahib S, Tian ZR, Lafuente JV, Buzoianu AD, Castellani RJ, Nozari A, Patnaik R, Wiklund L, Sharma HS. Co-administration of TiO 2-nanowired dl-3-n-butylphthalide (dl-NBP) and mesenchymal stem cells enhanced neuroprotection in Parkinson's disease exacerbated by concussive head injury. PROGRESS IN BRAIN RESEARCH 2020; 258:101-155. [PMID: 33223034 DOI: 10.1016/bs.pbr.2020.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
dl-3-n-butylphthalide (dl-NBP) is a powerful antioxidant compound with profound neuroprotective effects in stroke and brain injury. However, its role in Parkinson's disease (PD) is not well known. Traumatic brain injury (TBI) is one of the key factors in precipitating PD like symptoms in civilians and particularly in military personnel. Thus, it would be interesting to explore the possible neuroprotective effects of NBP in PD following concussive head injury (CHI). In this chapter effect of nanowired delivery of NBP together with mesenchymal stem cells (MSCs) in PD with CHI is discussed based on our own investigations. It appears that CHI exacerbates PD pathophysiology in terms of p-tau, α-synuclein (ASNC) levels in the cerebrospinal fluid (CSF) and the loss of TH immunoreactivity in substantia niagra pars compacta (SNpc) and striatum (STr) along with dopamine (DA), dopamine decarboxylase (DOPAC). And homovanillic acid (HVA). Our observations are the first to show that a combination of NBP with MSCs when delivered using nanowired technology induces superior neuroprotective effects in PD brain pathology exacerbated by CHI, not reported earlier.
Collapse
Affiliation(s)
- Feng Niu
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, Hebei Province, China
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Zhenguo Wang
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, Hebei Province, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
22
|
Yi JK, Park S, Ha JJ, Kim DH, Huang H, Park SJ, Lee MH, Ryoo ZY, Kim SH, Kim MO. Effects of Dimethyl Sulfoxide on the Pluripotency and Differentiation Capacity of Mouse Embryonic Stem Cells. Cell Reprogram 2020; 22:244-253. [DOI: 10.1089/cell.2020.0006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Jun-Koo Yi
- Department of Embryo Transfer Research, Gyeongbuk Livestock Research Institute, Yeongju, Korea
| | - Song Park
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea
| | - Jae-Jung Ha
- Department of Embryo Transfer Research, Gyeongbuk Livestock Research Institute, Yeongju, Korea
| | - Dae-Hyun Kim
- Department of Embryo Transfer Research, Gyeongbuk Livestock Research Institute, Yeongju, Korea
| | - Hai Huang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Korea
| | - Si-Jun Park
- Department of Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju, Jeollanamdo, Korea
- China-US (Henan) Hormel Cancer Institute, No. 127 Dongming Road, Zhengzhou, Henan, China
| | - Zae-Young Ryoo
- Department of Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Sung-Hyun Kim
- Life Medicine Analysis Korea Polytechnics Institute, Nonsan, Korea
| | - Myoung-Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Korea
| |
Collapse
|
23
|
Wang L, Li J. 'Artificial spermatid'-mediated genome editing†. Biol Reprod 2020; 101:538-548. [PMID: 31077288 DOI: 10.1093/biolre/ioz087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/27/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022] Open
Abstract
For years, extensive efforts have been made to use mammalian sperm as the mediator to generate genetically modified animals; however, the strategy of sperm-mediated gene transfer (SMGT) is unable to produce stable and diversified modifications in descendants. Recently, haploid embryonic stem cells (haESCs) have been successfully derived from haploid embryos carrying the genome of highly specialized gametes, and can stably maintain haploidy (through periodic cell sorting based on DNA quantity) and both self-renewal and pluripotency in long-term cell culture. In particular, haESCs derived from androgenetic haploid blastocysts (AG-haESCs), carrying only the sperm genome, can support the generation of live mice (semi-cloned, SC mice) through oocyte injection. Remarkably, after removal of the imprinted control regions H19-DMR (differentially methylated region of DNA) and IG-DMR in AG-haESCs, the double knockout (DKO)-AG-haESCs can stably produce SC animals with high efficiency, and so can serve as a sperm equivalent. Importantly, DKO-AG-haESCs can be used for multiple rounds of gene modifications in vitro, followed by efficient generation of live and fertile mice with the expected genetic traits. Thus, DKO-AG-haESCs (referred to as 'artificial spermatids') combed with CRISPR-Cas technology can be used as the genetically tractable fertilization agent, to efficiently create genetically modified offspring, and is a versatile genetic tool for in vivo analyses of gene function.
Collapse
Affiliation(s)
- Lingbo Wang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
24
|
Kiyokawa Y, Sato M, Noguchi H, Inada E, Iwase Y, Kubota N, Sawami T, Terunuma M, Maeda T, Hayasaki H, Saitoh I. Drug-Induced Naïve iPS Cells Exhibit Better Performance than Primed iPS Cells with Respect to the Ability to Differentiate into Pancreatic β-Cell Lineage. J Clin Med 2020; 9:jcm9092838. [PMID: 32887316 PMCID: PMC7564489 DOI: 10.3390/jcm9092838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/03/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Pluripotent stem cells are classified as naïve and primed cells, based on their in vitro growth characteristics and potential to differentiate into various types of cells. Human-induced pluripotent stem cells (iPSCs, also known as epiblast stem cells [EpiSCs]) have limited capacity to differentiate and are slightly more differentiated than naïve stem cells (NSCs). Although there are several in vitro protocols that allow iPSCs to differentiate into pancreatic lineage, data concerning generation of β-cells from these iPSCs are limited. Based on the pluripotentiality of NSCs, it was hypothesized that NSCs can differentiate into pancreatic β-cells when placed under an appropriate differentiation induction condition. We examined whether NSCs can be efficiently induced to form potentially pancreatic β cells after being subjected to an in vitro protocol. Several colonies resembling in vitro-produced β-cell foci, with β-cell-specific marker expression, were observed when NSC-derived embryoid bodies (EBs) were induced to differentiate into β-cell lineage. Conversely, EpiSC-derived EBs failed to form such foci in vitro. Intrapancreatic grafting of the in vitro-formed β-cell foci into nude mice (BALB/c-nu/nu) generated a cell mass containing insulin-producing cells (IPCs), without noticeable tumorigenesis. These NSCs can be used as a promising resource for curing type 1 diabetes.
Collapse
Affiliation(s)
- Yuki Kiyokawa
- Division of Pediatric Dentistry, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (Y.K.); (Y.I.); (H.H.)
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan;
| | - Emi Inada
- Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan; (E.I.); (N.K.)
| | - Yoko Iwase
- Division of Pediatric Dentistry, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (Y.K.); (Y.I.); (H.H.)
| | - Naoko Kubota
- Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan; (E.I.); (N.K.)
| | - Tadashi Sawami
- Yokohama City Center for Oral Health of Persons with Disabilities, Kanagawa 231-0012, Japan;
| | - Miho Terunuma
- Department of Oral Biochemistry, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan;
| | - Takeyasu Maeda
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan;
| | - Haruaki Hayasaki
- Division of Pediatric Dentistry, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (Y.K.); (Y.I.); (H.H.)
| | - Issei Saitoh
- Division of Pediatric Dentistry, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (Y.K.); (Y.I.); (H.H.)
- Correspondence: ; Tel.: +81-25-227-2911
| |
Collapse
|
25
|
Cota-Coronado J, Sandoval-Ávila S, Gaytan-Dávila Y, Diaz N, Vega-Ruiz B, Padilla-Camberos E, Díaz-Martínez N. New transgenic models of Parkinson's disease using genome editing technology. NEUROLOGÍA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.nrleng.2017.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
26
|
Navarro M, Soto DA, Pinzon CA, Wu J, Ross PJ. Livestock pluripotency is finally captured in vitro. Reprod Fertil Dev 2020; 32:11-39. [PMID: 32188555 DOI: 10.1071/rd19272] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pluripotent stem cells (PSCs) have demonstrated great utility in improving our understanding of mammalian development and continue to revolutionise regenerative medicine. Thanks to the improved understanding of pluripotency in mice and humans, it has recently become feasible to generate stable livestock PSCs. Although it is unlikely that livestock PSCs will be used for similar applications as their murine and human counterparts, new exciting applications that could greatly advance animal agriculture are being developed, including the use of PSCs for complex genome editing, cellular agriculture, gamete generation and invitro breeding schemes.
Collapse
Affiliation(s)
- Micaela Navarro
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA
| | - Delia A Soto
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA
| | - Carlos A Pinzon
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Pablo J Ross
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA; and Corresponding author.
| |
Collapse
|
27
|
Liu G, Ruan Y, Zhang J, Wang X, Wu W, He P, Wang J, Xiong J, Cheng Y, Liu L, Yang Y, Tian Y, Jian R. ABHD11 Is Critical for Embryonic Stem Cell Expansion, Differentiation and Lipid Metabolic Homeostasis. Front Cell Dev Biol 2020; 8:570. [PMID: 32733886 PMCID: PMC7358615 DOI: 10.3389/fcell.2020.00570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Growing evidence supports the notion that lipid metabolism is critical for embryonic stem cell (ESC) maintenance. Recently, α/β-hydrolase domain-containing (ABHD) proteins have emerged as novel pivotal regulators in lipid synthesis or degradation while their functions in ESCs have not been investigated. In this study, we revealed the role of ABHD11 in ESC function using classical loss and gain of function experiments. Knockout of Abhd11 hampered ESC expansion and differentiation, triggering the autophagic flux and apoptosis. In contrast, Abhd11 overexpression exerted anti-apoptotic effects in ESCs. Moreover, Abhd11 knockout disturbed GSK3β/β-Catenin and ERK signaling transduction. Finally, Abhd11 knockout led to the misexpression of key metabolic enzymes related to lipid synthesis, glycolysis, and amino acid metabolism, and ABHD11 contributed to the homeostasis of lipid metabolism. These findings provide new insights into the broad role of ABHD proteins and highlight the significance of regulators of lipid metabolism in the control of stem cell function.
Collapse
Affiliation(s)
- Gaoke Liu
- Laboratory of Stem Cell and Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Yan Ruan
- Laboratory of Stem Cell and Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Junlei Zhang
- Laboratory of Stem Cell and Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Xueyue Wang
- Laboratory of Stem Cell and Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Wei Wu
- Department of Thoracic Surgery, Southwest Hospital, First Affiliated Hospital Third Military Medical University, Chongqing, China
| | - Ping He
- Cardiac Surgery Department, Southwest Hospital, First Affiliated Hospital Third Military Medical University, Chongqing, China
| | - Jiali Wang
- Laboratory of Stem Cell and Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Jiaxiang Xiong
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Yuda Cheng
- Laboratory of Stem Cell and Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Lianlian Liu
- Laboratory of Stem Cell and Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Yi Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Yanping Tian
- Laboratory of Stem Cell and Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Rui Jian
- Laboratory of Stem Cell and Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| |
Collapse
|
28
|
Goszczynski DE, Cheng H, Demyda-Peyrás S, Medrano JF, Wu J, Ross PJ. In vitro breeding: application of embryonic stem cells to animal production†. Biol Reprod 2020; 100:885-895. [PMID: 30551176 DOI: 10.1093/biolre/ioy256] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/12/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022] Open
Abstract
Embryonic stem cells (ESCs) are derived from the inner cell mass of preimplantation blastocysts. For decades, attempts to efficiently derive ESCs in animal livestock species have been unsuccessful, but this goal has recently been achieved in cattle. Together with the recent reconstitution of the germ cell differentiation processes from ESCs in mice, these achievements open new avenues for the development of promising technologies oriented toward improving health, animal production, and the environment. In this article, we present a strategy that will notably accelerate genetic improvement in livestock populations by reducing the generational interval, namely in vitro breeding (IVB). IVB combines genomic selection, a widely used strategy for genetically improving livestock, with ESC derivation and in vitro differentiation of germ cells from pluripotent stem cells. We also review the most recent findings in the fields on which IVB is based. Evidence suggests this strategy will be soon within reach.
Collapse
Affiliation(s)
| | - Hao Cheng
- Department of Animal Science, University of California, Davis, California, USA
| | - Sebastian Demyda-Peyrás
- Instituto de Genetica Veterinaria, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, California, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Pablo J Ross
- Department of Animal Science, University of California, Davis, California, USA
| |
Collapse
|
29
|
Han NR, Baek S, Kim HY, Lee KY, Yun JI, Choi JH, Lee E, Park CK, Lee ST. Generation of embryonic stem cells derived from the inner cell mass of blastocysts of outbred ICR mice. Anim Cells Syst (Seoul) 2020; 24:91-98. [PMID: 32489688 PMCID: PMC7241472 DOI: 10.1080/19768354.2020.1752306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/03/2020] [Accepted: 03/18/2020] [Indexed: 10/28/2022] Open
Abstract
Embryonic stem cells (ESCs) derived from outbred mice which share several genetic characteristics similar to humans have been requested for developing stem cell-based bioengineering techniques directly applicable to humans. Here, we report the generation of ESCs derived from the inner cell mass of blastocysts retrieved from 9-week-old female outbred ICR mice mated with 9-week-old male outbred ICR mice (ICRESCs). Similar to those from 129/Ola mouse blastocysts (E14ESCs), the established ICRESCs showed inherent characteristics of ESCs except for partial and weak protein expression and activity of alkaline phosphatase. Moreover, ICRESCs were not originated from embryonic germ cells or pluripotent cells that may co-exist in outbred ICR strain-derived mouse embryonic fibroblasts (ICRMEFs) used for deriving colonies from inner cell mass of outbred ICR mouse blastocysts. Furthermore, instead of outbred ICRMEFs, hybrid B6CBAF1MEFs as feeder cells could sufficiently support in vitro maintenance of ICRESC self-renewal. Additionally, ICRESC-specific characteristics (self-renewal, pluripotency, and chromosomal normality) were observed in ICRESCs cultured for 40th subpassages (164 days) on B6CBAF1MEFs without any alterations. These results confirmed the successful establishment of ESCs derived from outbred ICR mice, and indicated that self-renewal and pluripotency of the established ICRESCs could be maintained on B6CBAF1MEFs in culture.
Collapse
Affiliation(s)
- Na Rae Han
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea
| | - Song Baek
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea
| | - Hwa-Young Kim
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea
| | - Kwon Young Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Korea
| | - Jung Im Yun
- Institute of Animal Resources, Kangwon National University, Chuncheon, Korea
| | - Jung Hoon Choi
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Korea
| | - Eunsong Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Korea
| | - Choon-Keun Park
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea.,Department of Applied Animal Science, Kangwon National University, Chuncheon, Korea
| | - Seung Tae Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea.,Department of Applied Animal Science, Kangwon National University, Chuncheon, Korea.,KustoGen Inc., Chuncheon, Korea
| |
Collapse
|
30
|
Hannezo E, Heisenberg CP. Mechanochemical Feedback Loops in Development and Disease. Cell 2020; 178:12-25. [PMID: 31251912 DOI: 10.1016/j.cell.2019.05.052] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 12/31/2022]
Abstract
There is increasing evidence that both mechanical and biochemical signals play important roles in development and disease. The development of complex organisms, in particular, has been proposed to rely on the feedback between mechanical and biochemical patterning events. This feedback occurs at the molecular level via mechanosensation but can also arise as an emergent property of the system at the cellular and tissue level. In recent years, dynamic changes in tissue geometry, flow, rheology, and cell fate specification have emerged as key platforms of mechanochemical feedback loops in multiple processes. Here, we review recent experimental and theoretical advances in understanding how these feedbacks function in development and disease.
Collapse
Affiliation(s)
- Edouard Hannezo
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| | | |
Collapse
|
31
|
The effect of dual inhibition of Ras-MEK-ERK and GSK3β pathways on development of in vitro cultured rabbit embryos. ZYGOTE 2020; 28:183-190. [PMID: 32192548 DOI: 10.1017/s0967199419000753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Dual inhibition (2i) of Ras-MEK-ERK and GSK3β pathways enables the derivation of embryo stem cells (ESCs) from refractory mouse strains and, for permissive strains, allows ESC derivation with no external protein factor stimuli involvement. In addition, blocking of ERK signalling in 8-cell-stage mouse embryos leads to ablation of GATA4/6 expression in hypoblasts, suggesting fibroblast growth factor (FGF) dependence of hypoblast formation in the mouse. In human, bovine or porcine embryos, the hypoblast remains unaffected or displays slight-to-moderate reduction in cell number. In this study, we demonstrated that segregation of the hypoblast and the epiblast in rabbit embryos is FGF independent and 2i treatment elicits only a limited reinforcement in favour of OCT4-positive epiblast populations against the GATA4-/6-positive hypoblast population. It has been previously shown that TGFβ/Activin A inhibition overcomes the pervasive differentiation and inhomogeneity of rat iPSCs, rat ESCs and human iPSCs while prompting them to acquire naïve properties. However, TGFβ/Activin A inhibition, alone or together with Rho-associated, coiled-coil containing protein kinase (ROCK) inhibition, was not compatible with the viability of rabbit embryos according to the ultrastructural analysis of preimplantation rabbit embryos by electron microscopy. In rabbit models ovulation upon mating allows the precise timing of progression of the pregnancy. It produces several embryos of the desired stage in one pregnancy and a relatively short gestation period, making the rabbit embryo a suitable model to discover the cellular functions and mechanisms of maintenance of pluripotency in embryonic cells and the embryo-derived stem cells of other mammals.
Collapse
|
32
|
Mossahebi-Mohammadi M, Quan M, Zhang JS, Li X. FGF Signaling Pathway: A Key Regulator of Stem Cell Pluripotency. Front Cell Dev Biol 2020; 8:79. [PMID: 32133359 PMCID: PMC7040165 DOI: 10.3389/fcell.2020.00079] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/29/2020] [Indexed: 12/19/2022] Open
Abstract
Pluripotent stem cells (PSCs) isolated in vitro from embryonic stem cells (ESCs), induced PSC (iPSC) and also post-implantation epiblast-derived stem cells (EpiSCs) are known for their two unique characteristics: the ability to give rise to all somatic lineages and the self-renewal capacity. Numerous intrinsic signaling pathways contribute to the maintenance of the pluripotency state of stem cells by tightly controlling key transcriptional regulators of stemness including sex determining region Y box 2 (Sox-2), octamer-binding transcription factor (Oct)3/4, krueppel-like factor 4 (Klf-4), Nanog, and c-Myc. Signaling by fibroblast growth factor (FGF) is of critical importance in regulating stem cells pluripotency. The FGF family is comprised of 22 ligands that interact with four FGF receptors (FGFRs). FGF/FGFR signaling governs fundamental cellular processes such as cell survival, proliferation, migration, differentiation, embryonic development, organogenesis, tissue repair/regeneration, and metabolism. FGF signaling is mediated by the activation of RAS - mitogen-activated protein kinase (MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-AKT, Phospholipase C Gamma (PLCγ), and signal transducers and activators of transcription (STAT), which intersects and synergizes with other signaling pathways such as Wnt, retinoic acid (RA) and transforming growth factor (TGF)-β signaling. In the current review, we summarize the role of FGF signaling in the maintenance of pluripotency state of stem cells through regulation of key transcriptional factors.
Collapse
Affiliation(s)
- Majid Mossahebi-Mohammadi
- School of Pharmaceutical Sciences and International Collaborative Center on Growth Factor Research, Wenzhou Medical University, Wenzhou, China
| | - Meiyu Quan
- School of Pharmaceutical Sciences and International Collaborative Center on Growth Factor Research, Wenzhou Medical University, Wenzhou, China
| | - Jin-San Zhang
- School of Pharmaceutical Sciences and International Collaborative Center on Growth Factor Research, Wenzhou Medical University, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences and International Collaborative Center on Growth Factor Research, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
33
|
Rodriguez‐Terrones D, Hartleben G, Gaume X, Eid A, Guthmann M, Iturbide A, Torres‐Padilla M. A distinct metabolic state arises during the emergence of 2-cell-like cells. EMBO Rep 2020; 21:e48354. [PMID: 31849178 PMCID: PMC6944916 DOI: 10.15252/embr.201948354] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/27/2022] Open
Abstract
Pluripotent stem cells are thought of as a surrogate of early developmental stages that sustain the capacity to generate all cell types in the body, thereby constituting an invaluable tool to address the mechanisms underlying cellular plasticity. In the mouse, cells resembling totipotent 2-cell-stage embryos (2-cell-like cells) arise at a very low frequency in embryonic stem cell (ESC) cultures. However, the extent to which these early-embryonic-like cells recapitulate the molecular features of the early embryo is unclear. Here, we have undertaken a characterization of some of the metabolic features of early-embryonic-like cells in culture. Our data indicate that early-embryonic-like cells exhibit decreased glycolytic and respiratory activity, lower levels of reactive oxygen species and increased glucose uptake, suggesting a shift of the metabolic programme during 2-cell-like cell reprogramming. Accordingly, we find that 2-cell-like cells can be induced by defined metabolites. Thus, in addition to their transcriptional and chromatin features, 2-cell-like cells recapitulate some of the metabolic features of their in vivo counterpart. Altogether, our work underscores a distinct metabolic state of early-embryonic-like cells and identifies compounds that can induce their emergence in vitro.
Collapse
Affiliation(s)
| | - Götz Hartleben
- Institute for Diabetes and CancerGerman Center for Diabetes ResearchHelmholtz Zentrum MünchenNeuherbergGermany
| | - Xavier Gaume
- Institute of Epigenetics and Stem CellsHelmholtz Zentrum MünchenMünchenGermany
| | - André Eid
- Institute of Epigenetics and Stem CellsHelmholtz Zentrum MünchenMünchenGermany
| | - Manuel Guthmann
- Institute of Epigenetics and Stem CellsHelmholtz Zentrum MünchenMünchenGermany
| | - Ane Iturbide
- Institute of Epigenetics and Stem CellsHelmholtz Zentrum MünchenMünchenGermany
| | - Maria‐Elena Torres‐Padilla
- Institute of Epigenetics and Stem CellsHelmholtz Zentrum MünchenMünchenGermany
- Faculty of BiologyLudwig‐Maximilians UniversitätMünchenGermany
| |
Collapse
|
34
|
Transcriptomic profiling of porcine pluripotency identifies species-specific reprogramming requirements for culturing iPSCs. Stem Cell Res 2019; 41:101645. [DOI: 10.1016/j.scr.2019.101645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 10/09/2019] [Accepted: 10/30/2019] [Indexed: 12/23/2022] Open
|
35
|
Fiorenza MT, Rava A. The TCL1 function revisited focusing on metabolic requirements of stemness. Cell Cycle 2019; 18:3055-3063. [PMID: 31564197 DOI: 10.1080/15384101.2019.1672465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The oncogenic ability of the T-cell leukemia/lymphoma 1 gene, TCL1, has captured the attention in the field of prolymphocytic T-cell and B-cell chronic leukemias for more than two decades. However, the finding that TCL1 is also expressed in totipotent cells of the mouse preimplantation embryos and that it is among the 10 genes, including the transcription factors Nanog, Oct4, Sox2, Tbx3, and Esrrb, that are required for maintaining the mitotic self-renewal state of embryonic stem cells, raises a great interest. In this review, we highlight newly acquired evidence pinpointing TCL1 as a crucial regulator of metabolic pathways that dictate somatic cell reprogramming toward pluripotency. In our opinion, this feature provides a relevant hint for reframing the role that this factor plays at early stages of mammalian embryo development and in tumorigenesis. Hence, the TCL1-dependent enhancement of serine/threonine AKT/PKB kinase activity favoring cell proliferation appears to be associated to the promotion of glucose transport and activation of glycolytic pathways. This is also consistent with the TCL1 ability to suppress mitochondrial biogenesis and oxygen consumption, downplaying the contribution of oxidative phosphorylation to energy metabolism. It thus appears that TCL1 masters the direction of energy metabolism toward the glycolytic pathway to meet a critical metabolic requirement that goes beyond the mere ATP production. For instance, the synthesis of glycolytic intermediates that are required for DNA synthesis likely represents the most pressing cellular need for both cleavage-stage embryos and rapidly proliferating tumor cells.
Collapse
Affiliation(s)
- Maria Teresa Fiorenza
- Department of Psychology, Division of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome , Rome , Italy.,IRCCS Fondazione Santa Lucia , Rome , Italy
| | - Alessandro Rava
- Department of Psychology, Division of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome , Rome , Italy
| |
Collapse
|
36
|
Zhang X, Xue B, Li Y, Wei R, Yu Z, Jin J, Zhang Y, Liu Z. A novel chemically defined serum- and feeder-free medium for undifferentiated growth of porcine pluripotent stem cells. J Cell Physiol 2019; 234:15380-15394. [PMID: 30701540 DOI: 10.1002/jcp.28185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Development and improvement of in vitro culture system supporting self-renewal and unlimited proliferation of porcine pluripotent stem cells (pPSCs) is an indispensable process for the naïve pPSCs establishment. In this study, we modified the previous culture system and attempted to develop a novel chemically defined medium (KOFL) for the establishment of pPSCs. It has been cultured >45 passages with flat colony morphology and normal karyotypes in in vitro environment. These cells exhibited alkaline phosphatase activity and expressed pluripotency markers such as OCT4, SOX2, and NANOG, and also possessed differentiation abilities both in vitro and in vivo, proving by the formation of embryonic bodies and teratomas into three germ layers. Then the cells transfected with a green fluorescent protein (GFP) and the GFP positive cells contribute to the porcine preimplantation embryo development. In addition, these cells maintained long duration under feeder-free condition. In conclusion, our results demonstrated that the pPSCs could be derived from preimplantation porcine embryos in serum-free medium and cultured under the feeder-free condition, providing an effective reference for further optimization of the pPSCs culture system.
Collapse
Affiliation(s)
- Xue Zhang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Binghua Xue
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yan Li
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Renyue Wei
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhuoran Yu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Junxue Jin
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yu Zhang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
37
|
Ko EB, Hwang KA, Choi KC. Prenatal toxicity of the environmental pollutants on neuronal and cardiac development derived from embryonic stem cells. Reprod Toxicol 2019; 90:15-23. [PMID: 31425785 DOI: 10.1016/j.reprotox.2019.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/31/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022]
Abstract
Pesticides, antibiotics, and industrial excipients are widely used in agriculture, medicine, and chemical industry, respectively. They often end up in the environment, not only being not easily decomposed but also being accumulated. Moreover, they may cause serious toxic problems such as reproductive and developmental defects, immunological toxicity, and carcinogenesis. Hence, they are called environmental pollutants. It is known that the environmental pollutants easily enter the body through various channels such as respiration, ingestion of food, and skin contact etc. in everyday life. If they enter the mother through the placenta, they can cause the disturbance in embryo development as well as malfunction of organs after birth because early prenatal developmental process is highly sensitive to toxic chemicals and stress. Embryonic stem cells (ESCs) that consist of inner cell mass of blastocyst differentiate into distinct cell lineages via three germ layers such as the ectoderm, mesoderm, and endoderm due to their pluripotency. The differentiation process initiated from ESCs reflects dynamic nature of embryonic development. Therefore, ESCs have been used as a useful tool to investigate early developmental toxicities of a variety of stress. Based on relatively recent scientific results, this review would address toxicity of a few chemical substances that have been widely used as pesticide, antibiotics, and industrial excipient on ESCs based-prenatal developmental process. This review further suggests how they act on the viability of ESCs and/or early stages of cardiac and neuronal development derived from ESCs as well as on expression of pluripotency and/or differentiation markers through diverse mechanisms.
Collapse
Affiliation(s)
- Eul-Bee Ko
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
38
|
Tian TV, Di Stefano B, Stik G, Vila-Casadesús M, Sardina JL, Vidal E, Dasti A, Segura-Morales C, De Andrés-Aguayo L, Gómez A, Goldmann J, Jaenisch R, Graf T. Whsc1 links pluripotency exit with mesendoderm specification. Nat Cell Biol 2019; 21:824-834. [PMID: 31235934 DOI: 10.1038/s41556-019-0342-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 05/09/2019] [Indexed: 12/19/2022]
Abstract
How pluripotent stem cells differentiate into the main germ layers is a key question of developmental biology. Here, we show that the chromatin-related factor Whsc1 (also known as Nsd2 and MMSET) has a dual role in pluripotency exit and germ layer specification of embryonic stem cells. On induction of differentiation, a proportion of Whsc1-depleted embryonic stem cells remain entrapped in a pluripotent state and fail to form mesendoderm, although they are still capable of generating neuroectoderm. These functions of Whsc1 are independent of its methyltransferase activity. Whsc1 binds to enhancers of the mesendodermal regulators Gata4, T (Brachyury), Gata6 and Foxa2, together with Brd4, and activates the expression of these genes. Depleting each of these regulators also delays pluripotency exit, suggesting that they mediate the effects observed with Whsc1. Our data indicate that Whsc1 links silencing of the pluripotency regulatory network with activation of mesendoderm lineages.
Collapse
Affiliation(s)
- Tian V Tian
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Bruno Di Stefano
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Grégoire Stik
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria Vila-Casadesús
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - José Luis Sardina
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Enrique Vidal
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Alessandro Dasti
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carolina Segura-Morales
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luisa De Andrés-Aguayo
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Antonio Gómez
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Johanna Goldmann
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,The Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Rudolf Jaenisch
- The Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas Graf
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain. .,Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
39
|
The Role of Ubiquitination in Regulating Embryonic Stem Cell Maintenance and Cancer Development. Int J Mol Sci 2019; 20:ijms20112667. [PMID: 31151253 PMCID: PMC6600158 DOI: 10.3390/ijms20112667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/19/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022] Open
Abstract
Ubiquitination regulates nearly every aspect of cellular events in eukaryotes. It modifies intracellular proteins with 76-amino acid polypeptide ubiquitin (Ub) and destines them for proteolysis or activity alteration. Ubiquitination is generally achieved by a tri-enzyme machinery involving ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2) and ubiquitin ligases (E3). E1 activates Ub and transfers it to the active cysteine site of E2 via a transesterification reaction. E3 coordinates with E2 to mediate isopeptide bond formation between Ub and substrate protein. The E1-E2-E3 cascade can create diverse types of Ub modifications, hence effecting distinct outcomes on the substrate proteins. Dysregulation of ubiquitination results in severe consequences and human diseases. There include cancers, developmental defects and immune disorders. In this review, we provide an overview of the ubiquitination machinery and discuss the recent progresses in the ubiquitination-mediated regulation of embryonic stem cell maintenance and cancer biology.
Collapse
|
40
|
Zhang M, Wang C, Jiang H, Liu M, Yang N, Zhao L, Hou D, Jin Y, Chen Q, Chen Y, Wang J, Dai Y, Li R. Derivation of novel naive-like porcine embryonic stem cells by a reprogramming factor-assisted strategy. FASEB J 2019; 33:9350-9361. [PMID: 31125263 DOI: 10.1096/fj.201802809r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The establishment of ungulate embryonic stem cells (ESCs) has been notoriously difficult via a conventional approach. We combined a traditional ESC culture method with reprogramming factors to assist the establishment of porcine naive-like ESCs (nESCs). Pig embryonic fibroblasts were transfected with a tetracycline-inducible vector carrying 4 classic mouse reprogramming factors, followed by somatic cell nuclear transfer and culturing to the blastocyst stage. Then, the inner cell mass was isolated and seeded in culture medium. The naive-like ESCs had characteristic verys similar to those of mouse ESCs and showed no signs of altered morphology or differentiation, even after 130 passages. They depended on leukemia inhibitory factor signals for maintenance of pluripotency, and the female cell lines had low expression of the X-inactive specific transcript gene and no histone H3 lysine 27 trimethylation spot. Notably, the ESCs differentiated into 3 germ layers in vitro and could be induced to undergo directional neural and kidney precursor differentiation under defined conditions, and the ESCs could keep proliferating after doxycycline was removed. nESCs can be established, and the well-characterized ESC lines will be useful for the research of transgenic pig models for human disease.-Zhang, M., Wang, C., Jiang, H., Liu, M., Yang, N., Zhao, L., Hou, D., Jin, Y., Chen, Q., Chen, Y., Wang, J., Dai, Y., Li, R. Derivation of novel naive-like porcine embryonic stem cells by a reprogramming factor-assisted strategy.
Collapse
Affiliation(s)
- Manling Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.,The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Chenyu Wang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Haibin Jiang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Manling Liu
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ning Yang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Lihua Zhao
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Daorong Hou
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yong Jin
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Nephrology, The Affiliated Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Qiaoyu Chen
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yuan Chen
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Junzheng Wang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Rongfeng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
41
|
Assadollahi V, Hassanzadeh K, Abdi M, Alasvand M, Nasseri S, Fathi F. Effect of embryo cryopreservation on derivation efficiency, pluripotency, and differentiation capacity of mouse embryonic stem cells. J Cell Physiol 2019; 234:21962-21972. [DOI: 10.1002/jcp.28759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/07/2019] [Accepted: 04/11/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Vahideh Assadollahi
- Cellular and Molecular Research Center Research Institute for Health Development, Kurdistan University of Medical Sciences Sanandaj Iran
| | - Kambiz Hassanzadeh
- Cellular and Molecular Research Center Research Institute for Health Development, Kurdistan University of Medical Sciences Sanandaj Iran
| | - Mohammad Abdi
- Cellular and Molecular Research Center Research Institute for Health Development, Kurdistan University of Medical Sciences Sanandaj Iran
| | - Masoud Alasvand
- Department of Medical Physiology and Pharmacology, Faculty of Medicine Kurdistan University of Medical Sciences Sanandaj Iran
| | - Sherko Nasseri
- Cellular and Molecular Research Center Research Institute for Health Development, Kurdistan University of Medical Sciences Sanandaj Iran
| | - Fardin Fathi
- Cellular and Molecular Research Center Research Institute for Health Development, Kurdistan University of Medical Sciences Sanandaj Iran
| |
Collapse
|
42
|
Fang F, Li Z, Zhao Q, Li H, Xiong C. Human induced pluripotent stem cells and male infertility: an overview of current progress and perspectives. Hum Reprod 2019; 33:188-195. [PMID: 29315416 PMCID: PMC5850345 DOI: 10.1093/humrep/dex369] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Indexed: 01/30/2023] Open
Abstract
Recently, significant progress has been made in ART for the treatment of male infertility. However, current ART has failed to help infertile patients with non-obstructive azoospermia, unless donor sperm is used. In fact, most couples wish to have their own genetically related child. Human induced pluripotent stem cells (hiPSCs) can be generated from patients’ somatic cells and in vitro derivation of functional germ cells from patient-specific iPSCs may provide new therapeutic strategies for infertile couples. The overall developmental dynamics of human primordial germ cells are similar to that in mice, but accumulating evidence suggests that there are crucial differences between human and mouse PGC specification. Unlike mouse iPSCs (miPSCs) in naive state, hiPSCs exhibit a primed pluripotency which possess less potential for the germ cell fate. Based on research in mice, male germ cells at different stages have been derived from hiPSCs with different protocols, including spontaneous differentiation, overexpression of germ cell regulators, addition of cytokines, co-culture with gonadal cells in vitro and xeno-transplantation. The aim of this review is to summarize the current advances in derivation of male germ cells from hiPSCs and raise the perspectives of hiPSCs in medical application for male infertility, as well as in basic research for male germ cell development.
Collapse
Affiliation(s)
- Fang Fang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Zili Li
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.,Center for Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, 128 Sanyang Road, Wuhan 430013, China
| | - Qian Zhao
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Honggang Li
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Chengliang Xiong
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.,Center for Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, 128 Sanyang Road, Wuhan 430013, China
| |
Collapse
|
43
|
Evidence of Extracellular Vesicles Biogenesis and Release in Mouse Embryonic Stem Cells. Stem Cell Rev Rep 2018; 14:262-276. [PMID: 29032399 DOI: 10.1007/s12015-017-9776-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles (EVs) released by mouse embryonic stem cells (mESCs) are considered a source of bioactive molecules that modulate their microenvironment by acting on intercellular communication. Either intracellular endosomal machinery or their derived EVs have been considered a relevant system of signal circuits processing. Herein, we show that these features are found in mESCs. Ultrastructural analysis revealed structures and organelles of the endosomal system such as coated pits and endocytosis-related vesicles, prominent rough endoplasmic reticulum and Golgi apparatus, and multivesicular bodies (MVBs) containing either few or many intraluminal vesicles (ILVs) that could be released as exosomes to extracellular milieu. Besides, budding vesicles shed from the plasma membrane to the extracellular space is suggestive of microvesicle biogenesis in mESCs. mESCs and mouse blastocyst express specific markers of the Endosomal Sorting Complex Required for Transport (ESCRT) system. Ultrastructural analysis and Nanoparticle Tracking Analysis (NTA) of isolated EVs revealed a heterogeneous population of exosomes and microvesicles released by mESCs. These vesicles contain Wnt10b and the Notch ligand Delta-like 4 (DLL4) and also the co-chaperone stress inducible protein 1 (STI1) and its partner Hsp90. Wnt10b and Dll4 colocalize with EVs biogenesis markers in mESCs. Overall, the present study supports the function of the mESCs endocytic network and their EVs as players in stem cell biology.
Collapse
|
44
|
Abstract
Establishing the different lineages of the early mammalian embryo takes place over several days and several rounds of cell divisions from the fertilized egg. The resulting blastocyst contains the pluripotent cells of the epiblast, from which embryonic stem cells can be derived, as well as the extraembryonic lineages required for a mammalian embryo to survive in the uterine environment. The dynamics of the cellular and genetic interactions controlling the initiation and maintenance of these lineages in the mouse embryo are increasingly well understood through application of the tools of single-cell genomics, gene editing, and in vivo imaging. Exploring the similarities and differences between mouse and human development will be essential for translation of these findings into new insights into human biology, derivation of stem cells, and improvements in fertility treatments.
Collapse
Affiliation(s)
- Janet Rossant
- Program in Stem Cell and Developmental Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
45
|
Nett IR, Mulas C, Gatto L, Lilley KS, Smith A. Negative feedback via RSK modulates Erk-dependent progression from naïve pluripotency. EMBO Rep 2018; 19:e45642. [PMID: 29895711 PMCID: PMC6073214 DOI: 10.15252/embr.201745642] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 01/08/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signalling is implicated in initiation of embryonic stem (ES) cell differentiation. The pathway is subject to complex feedback regulation. Here, we examined the ERK-responsive phosphoproteome in ES cells and identified the negative regulator RSK1 as a prominent target. We used CRISPR/Cas9 to create combinatorial mutations in RSK family genes. Genotypes that included homozygous null mutations in Rps6ka1, encoding RSK1, resulted in elevated ERK phosphorylation. These RSK-depleted ES cells exhibit altered kinetics of transition into differentiation, with accelerated downregulation of naïve pluripotency factors, precocious expression of transitional epiblast markers and early onset of lineage specification. We further show that chemical inhibition of RSK increases ERK phosphorylation and expedites ES cell transition without compromising multilineage potential. These findings demonstrate that the ERK activation profile influences the dynamics of pluripotency progression and highlight the role of signalling feedback in temporal control of cell state transitions.
Collapse
Affiliation(s)
- Isabelle Re Nett
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Carla Mulas
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Laurent Gatto
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
- Computational Proteomics Unit, Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | - Kathryn S Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Austin Smith
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
46
|
Laowtammathron C, Chingsuwanrote P, Choavaratana R, Phornwilardsiri S, Sitthirit K, Kaewjunun C, Makemaharn O, Terbto P, Waeteekul S, Lorthongpanich C, U-Pratya Y, Srisook P, Kheolamai P, Issaragrisil S. High-efficiency derivation of human embryonic stem cell lines using a culture system with minimized trophoblast cell proliferation. Stem Cell Res Ther 2018; 9:138. [PMID: 29751777 PMCID: PMC5948903 DOI: 10.1186/s13287-018-0866-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/28/2018] [Accepted: 04/11/2018] [Indexed: 01/29/2023] Open
Abstract
Background Due to their extensive self-renewal and multilineage differentiation capacity, human embryonic stem cells (hESCs) have great potential for studying developmental biology, disease modeling, and developing cell replacement therapy. The first hESC line was generated in 1998 by culturing inner cell mass (ICM) cells isolated from human blastocysts using an immunosurgery technique. Since then, many techniques including mechanical ICM isolation, laser dissection, and whole embryo culture have been used to derive hESC lines. However, the hESC derivation efficiency remains low, usually less than 50%, and it requires a large number of human embryos to derive a significant number of hESC lines. Due to a shortage of and restricted access to human embryos, a novel approach with better hESC derivation efficiency is badly needed to decrease the number of embryos used. Methods We hypothesized that the low hESC derivation efficiency might be due to extensive proliferation of trophoblast (TE) cells which could interfere with ICM proliferation. We therefore developed a methodology to minimize TE cell proliferation by culturing ICM in a feeder-free system for 3 days before transferring them onto feeder cells. Results This minimized trophoblast cell proliferation (MTP) technique could be successfully used to derive hESCs from normal, abnormal, and frozen–thawed embryos with better derivation efficiency of more than 50% (range 50–100%; median 70%). Conclusions We successfully developed a better hESC derivation methodology using the “MTP” culture system. This methodology can be effectively used to derive hESCs from both normal and abnormal embryos under feeder-free conditions with higher efficiency when compared with other methodologies. With this methodology, large-scale production of clinical-grade hESCs is feasible. Electronic supplementary material The online version of this article (10.1186/s13287-018-0866-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chuti Laowtammathron
- Siriraj Center of Excellence for Stem Cell Research (SiSCR), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pimjai Chingsuwanrote
- Siriraj Center of Excellence for Stem Cell Research (SiSCR), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Roungsin Choavaratana
- Division of Infertility and Reproductive Biology, Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Suphadtra Phornwilardsiri
- Division of Infertility and Reproductive Biology, Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Ketsara Sitthirit
- Division of Infertility and Reproductive Biology, Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Chidchanok Kaewjunun
- Division of Infertility and Reproductive Biology, Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Orawan Makemaharn
- Division of Infertility and Reproductive Biology, Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Papussorn Terbto
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Supaporn Waeteekul
- Division of Medical Genetics, Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research (SiSCR), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Yaowalak U-Pratya
- Siriraj Center of Excellence for Stem Cell Research (SiSCR), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pimonwan Srisook
- Siriraj Center of Excellence for Stem Cell Research (SiSCR), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pakpoom Kheolamai
- Siriraj Center of Excellence for Stem Cell Research (SiSCR), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Division of Cell Biology, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research (SiSCR), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand. .,Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
47
|
Behar RZ, Wang Y, Talbot P. Comparing the cytotoxicity of electronic cigarette fluids, aerosols and solvents. Tob Control 2018; 27:325-333. [PMID: 28596276 PMCID: PMC6397802 DOI: 10.1136/tobaccocontrol-2016-053472] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/21/2017] [Accepted: 04/24/2017] [Indexed: 11/04/2022]
Abstract
BACKGROUND As thousands of electronic cigarette (e-cigarette) refill fluids continue to be formulated and distributed, there is a growing need to understand the cytotoxicity of the flavouring chemicals and solvents used in these products to ensure they are safe. The purpose of this study was to compare the cytotoxicity of e-cigarette refill fluids/solvents and their corresponding aerosols using in vitro cultured cells. METHODS E-cigarette refill fluids and do-it-yourself products were screened in liquid and aerosol form for cytotoxicity using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The sensitivity of human pulmonary fibroblasts, lung epithelial cells (A549) and human embryonic stem cells to liquids and aerosols was compared. Aerosols were produced using Johnson Creek's Vea cartomizer style e-cigarette. RESULTS A hierarchy of potency was established for the aerosolised products. Our data show that (1) e-cigarette aerosols can produce cytotoxic effects in cultured cells, (2) four patterns of cytotoxicity were found when comparing refill fluids and their corresponding aerosols, (3) fluids accurately predicted aerosol cytotoxicity 74% of the time, (4) stem cells were often more sensitive to aerosols than differentiated cells and (5) 91% of the aerosols made from refill fluids containing only glycerin were cytotoxic, even when produced at a low voltage. CONCLUSIONS Our data show that various flavours/brands of e-cigarette refill fluids and their aerosols are cytotoxic and demonstrate the need for further evaluation of e-cigarette products to better understand their potential health effects.
Collapse
Affiliation(s)
- Rachel Z Behar
- Cell Molecular and Developmental Biology Graduate Program, University of California, Riverside, California, USA
- Department of Cell Biology and Neuroscience, University of California, Riverside, California, USA
| | - Yuhuan Wang
- Department of Cell Biology and Neuroscience, University of California, Riverside, California, USA
| | - Prue Talbot
- Department of Cell Biology and Neuroscience, University of California, Riverside, California, USA
| |
Collapse
|
48
|
He W, Zhang X, Zhang Y, Zheng W, Xiong Z, Hu X, Wang M, Zhang L, Zhao K, Qiao Z, Lai W, Lv C, Kou X, Zhao Y, Yin J, Liu W, Jiang Y, Chen M, Xu R, Le R, Li C, Wang H, Wan X, Wang H, Han Z, Jiang C, Gao S, Chen J. Reduced Self-Diploidization and Improved Survival of Semi-cloned Mice Produced from Androgenetic Haploid Embryonic Stem Cells through Overexpression of Dnmt3b. Stem Cell Reports 2018; 10:477-493. [PMID: 29396184 PMCID: PMC5831042 DOI: 10.1016/j.stemcr.2017.12.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 12/29/2017] [Accepted: 12/29/2017] [Indexed: 01/01/2023] Open
Abstract
Androgenetic haploid embryonic stem cells (AG-haESCs) hold great promise for exploring gene functions and generating gene-edited semi-cloned (SC) mice. However, the high incidence of self-diploidization and low efficiency of SC mouse production are major obstacles preventing widespread use of these cells. Moreover, although SC mice generation could be greatly improved by knocking out the differentially methylated regions of two imprinted genes, 50% of the SC mice did not survive into adulthood. Here, we found that the genome-wide DNA methylation level in AG-haESCs is extremely low. Subsequently, downregulation of both de novo methyltransferase Dnmt3b and other methylation-related genes was determined to be responsible for DNA hypomethylation. We further demonstrated that ectopic expression of Dnmt3b in AG-haESCs could effectively improve DNA methylation level, and the high incidence of self-diploidization could be markedly rescued. More importantly, the developmental potential of SC embryos was improved, and most SC mice could survive into adulthood.
Collapse
Affiliation(s)
- Wenteng He
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaobai Zhang
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yalin Zhang
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Weisheng Zheng
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zeyu Xiong
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Xinjie Hu
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Mingzhu Wang
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Linfeng Zhang
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Kun Zhao
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhibin Qiao
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Weiyi Lai
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Cong Lv
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaochen Kou
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanhong Zhao
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiqing Yin
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Wenqiang Liu
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yonghua Jiang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Mo Chen
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ruimin Xu
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Rongrong Le
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Chong Li
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hong Wang
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoping Wan
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hailin Wang
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cizhong Jiang
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Shaorong Gao
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Jiayu Chen
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
49
|
Nassiri Asl M, Aali E. Review on the mesenchymal stem cells and their potential application in regenerative medicine. THE JOURNAL OF QAZVIN UNIVERSITY OF MEDICAL SCIENCES 2018. [DOI: 10.29252/qums.21.6.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
50
|
Establishment and Characterization of Naïve Pluripotency in Human Embryonic Stem Cells. Methods Mol Biol 2018; 1516:13-46. [PMID: 27044048 DOI: 10.1007/7651_2016_347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Mouse embryonic stem cells are known to represent the naïve state of pluripotency, while human embryonic stem cells typically represented the primed state of pluripotency, characterized by a higher drift toward differentiation and some other disadvantages. Here we describe an efficient method for rapid, transgene free induction of the naïve pluripotent state in human by applying a novel combination of small molecules and growth factors in the culture medium (2i, LIF, basic fibroblast growth factor, ascorbic acid, and forskolin). Conversion of primed human embryonic stem cells towards the naive pluripotent state should be confirmed by a detailed characterization of the cells, as described in this chapter.
Collapse
|