1
|
Lehr S, Brückner DB, Minchington TG, Greunz-Schindler M, Merrin J, Hannezo E, Kicheva A. Self-organized pattern formation in the developing mouse neural tube by a temporal relay of BMP signaling. Dev Cell 2025; 60:567-580.e14. [PMID: 39603235 DOI: 10.1016/j.devcel.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/08/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Developing tissues interpret dynamic changes in morphogen activity to generate cell type diversity. To quantitatively study bone morphogenetic protein (BMP) signaling dynamics in the mouse neural tube, we developed an embryonic stem cell differentiation system tailored for growing tissues. Differentiating cells form striking self-organized patterns of dorsal neural tube cell types driven by sequential phases of BMP signaling that are observed both in vitro and in vivo. Data-driven biophysical modeling showed that these dynamics result from coupling fast negative feedback with slow positive regulation of signaling by the specification of an endogenous BMP source. Thus, in contrast to relays that propagate morphogen signaling in space, we identify a BMP signaling relay that operates in time. This mechanism allows for a rapid initial concentration-sensitive response that is robustly terminated, thereby regulating balanced sequential cell type generation. Our study provides an experimental and theoretical framework to understand how signaling dynamics are exploited in developing tissues.
Collapse
Affiliation(s)
- Stefanie Lehr
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - David B Brückner
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | | | | | - Jack Merrin
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Edouard Hannezo
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria.
| | - Anna Kicheva
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria.
| |
Collapse
|
2
|
Yin Y, Zhou W, Zhu J, Chen Z, Jiang L, Zhuang X, Chen J, Wei J, Lu X, Liu Y, Pang W, Zhang Q, Cao Y, Li Z, Zhu Y, Xiang Y. Generation of self-organized neuromusculoskeletal tri-tissue organoids from human pluripotent stem cells. Cell Stem Cell 2025; 32:157-171.e8. [PMID: 39657678 DOI: 10.1016/j.stem.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/26/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
The human body function requires crosstalk between different tissues. An essential crosstalk is in the neuromusculoskeletal (NMS) axis involving neural, muscular, and skeletal tissues, which is challenging to model using human cells. Here, we describe the generation of three-dimensional, NMS tri-tissue organoids (hNMSOs) from human pluripotent stem cells through a co-development strategy. Staining, single-nucleus RNA sequencing, and spatial transcriptome profiling revealed the co-emergence and self-organization of neural, muscular, and skeletal lineages within individual organoids, and the neural domains of hNMSOs obtained a ventral-specific identity and produced motor neurons innervating skeletal muscles. The neural, muscular, and skeletal regions of hNMSOs exhibited maturation and established functional connections during development. Notably, structural, functional, and transcriptomic analyses revealed that skeletal support in hNMSOs benefited human muscular development. Modeling with hNMSOs also unveiled the neuromuscular alterations following pathological skeletal degeneration. Together, our study provides an accessible experimental model for future studies of human NMS crosstalk and abnormality.
Collapse
Affiliation(s)
- Yao Yin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jinkui Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ziling Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Linlin Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xuran Zhuang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jia Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Jianfeng Wei
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoxiang Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yantong Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Pang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qinzhi Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yajing Cao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhuoya Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yuyan Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yangfei Xiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China.
| |
Collapse
|
3
|
Hojo H, Tani S, Ohba S. Modeling of skeletal development and diseases using human pluripotent stem cells. J Bone Miner Res 2024; 40:5-19. [PMID: 39498496 DOI: 10.1093/jbmr/zjae178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2024] [Accepted: 11/02/2024] [Indexed: 01/07/2025]
Abstract
Human skeletal elements are formed from distinct origins at distinct positions of the embryo. For example, the neural crest produces the facial bones, the paraxial mesoderm produces the axial skeleton, and the lateral plate mesoderm produces the appendicular skeleton. During skeletal development, different combinations of signaling pathways are coordinated from distinct origins during the sequential developmental stages. Models for human skeletal development have been established using human pluripotent stem cells (hPSCs) and by exploiting our understanding of skeletal development. Stepwise protocols for generating skeletal cells from different origins have been designed to mimic developmental trails. Recently, organoid methods have allowed the multicellular organization of skeletal cell types to recapitulate complicated skeletal development and metabolism. Similarly, several genetic diseases of the skeleton have been modeled using patient-derived induced pluripotent stem cells and genome-editing technologies. Model-based drug screening is a powerful tool for identifying drug candidates. This review briefly summarizes our current understanding of the embryonic development of skeletal tissues and introduces the current state-of-the-art hPSC methods for recapitulating skeletal development, metabolism, and diseases. We also discuss the current limitations and future perspectives for applications of the hPSC-based modeling system in precision medicine in this research field.
Collapse
Affiliation(s)
- Hironori Hojo
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shoichiro Tani
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Shinsuke Ohba
- Department of Tissue and Developmental Biology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Krammer T, Stuart HT, Gromberg E, Ishihara K, Cislo D, Melchionda M, Becerril Perez F, Wang J, Costantini E, Lehr S, Arbanas L, Hörmann A, Neumüller RA, Elvassore N, Siggia E, Briscoe J, Kicheva A, Tanaka EM. Mouse neural tube organoids self-organize floorplate through BMP-mediated cluster competition. Dev Cell 2024; 59:1940-1953.e10. [PMID: 38776925 DOI: 10.1016/j.devcel.2024.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/08/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
During neural tube (NT) development, the notochord induces an organizer, the floorplate, which secretes Sonic Hedgehog (SHH) to pattern neural progenitors. Conversely, NT organoids (NTOs) from embryonic stem cells (ESCs) spontaneously form floorplates without the notochord, demonstrating that stem cells can self-organize without embryonic inducers. Here, we investigated floorplate self-organization in clonal mouse NTOs. Expression of the floorplate marker FOXA2 was initially spatially scattered before resolving into multiple clusters, which underwent competition and sorting, resulting in a stable "winning" floorplate. We identified that BMP signaling governed long-range cluster competition. FOXA2+ clusters expressed BMP4, suppressing FOXA2 in receiving cells while simultaneously expressing the BMP-inhibitor NOGGIN, promoting cluster persistence. Noggin mutation perturbed floorplate formation in NTOs and in the NT in vivo at mid/hindbrain regions, demonstrating how the floorplate can form autonomously without the notochord. Identifying the pathways governing organizer self-organization is critical for harnessing the developmental plasticity of stem cells in tissue engineering.
Collapse
Affiliation(s)
- Teresa Krammer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Hannah T Stuart
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; The Francis Crick Institute, London, UK
| | - Elena Gromberg
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Keisuke Ishihara
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Dillon Cislo
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY, USA
| | | | - Fernando Becerril Perez
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Jingkui Wang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Elena Costantini
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Stefanie Lehr
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Laura Arbanas
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | | | | | - Nicola Elvassore
- Department of Industrial Engineering, University of Padova & Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Eric Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY, USA
| | | | - Anna Kicheva
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Elly M Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria.
| |
Collapse
|
5
|
Draga M, Scaal M. Building a vertebra: Development of the amniote sclerotome. J Morphol 2024; 285:e21665. [PMID: 38100740 DOI: 10.1002/jmor.21665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
In embryonic development, the vertebral column arises from the sclerotomal compartment of the somites. The sclerotome is a mesenchymal cell mass which can be subdivided into several subpopulations specified by different regulatory mechanisms and giving rise to different parts of the vertebrae like vertebral body, vertebral arch, ribs, and vertebral joints. This review gives a short overview on the molecular and cellular basis of the formation of sclerotomal subdomains and the morphogenesis of their vertebral derivatives.
Collapse
Affiliation(s)
- Margarethe Draga
- Faculty of Medicine and University Hospital Cologne, Center of Anatomy, University of Cologne, Cologne, Germany
| | - Martin Scaal
- Faculty of Medicine and University Hospital Cologne, Center of Anatomy, University of Cologne, Cologne, Germany
| |
Collapse
|
6
|
Zhang Y, Lin D, Zheng Y, Chen Y, Yu M, Cui D, Huang M, Su X, Sun Y, Chen Y, Qian Z, Carlson KS, Wen R, Wang D. MiR-9-1 controls osteoblastic regulation of lymphopoiesis. Leukemia 2023; 37:2261-2275. [PMID: 37670087 PMCID: PMC10844005 DOI: 10.1038/s41375-023-02014-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023]
Abstract
The highly conserved MicroRNA-9 (miR-9) family consists of three members. We discovered that miR-9-1 deletion reduced mature miR-9 expression, causing 43% of the mice to display smaller size and postweaning lethality. MiR-9-1-deficient mice with growth defects experienced severe lymphopenia, but other blood cells were unaffected. The lymphopenia wasn't due to defects in hematopoietic progenitors, as mutant bone marrow (BM) cells underwent normal lymphopoiesis after transplantation into wild-type recipients. Additionally, miR-9-1-deficient mice exhibited impaired osteoblastic bone formation, as mutant mesenchymal stem cells (MSCs) failed to differentiate into osteoblastic cells (OBs). RNA sequencing revealed reduced expression of master transcription factors for osteoblastic differentiation, Runt-related transcription factor 2 (Runx2) and Osterix (Osx), and genes related to collagen formation, extracellular matrix organization, and cell adhesion, in miR-9-1-deficient MSCs. Follistatin (Fst), an antagonist of bone morphogenetic proteins (BMPs), was found to be a direct target of miR-9-1. Its deficiency led to the up-regulation of Fst, inhibiting BMP signaling in MSCs, and reducing IL-7 and IGF-1. Thus, miR-9-1 controls osteoblastic regulation of lymphopoiesis by targeting the Fst/BMP/Smad signaling axis.
Collapse
Affiliation(s)
- Yongguang Zhang
- Versiti Blood Research Institute, Milwaukee, WI, 53213, USA
- Biomedical Research Center of South China, Fujian Normal University, Fujian, 350117, China
| | - Danfeng Lin
- Biomedical Research Center of South China, Fujian Normal University, Fujian, 350117, China
| | - Yongwei Zheng
- Versiti Blood Research Institute, Milwaukee, WI, 53213, USA
| | - Yuhong Chen
- Versiti Blood Research Institute, Milwaukee, WI, 53213, USA
| | - Mei Yu
- Versiti Blood Research Institute, Milwaukee, WI, 53213, USA
| | - Dongya Cui
- Biomedical Research Center of South China, Fujian Normal University, Fujian, 350117, China
| | - Miaohui Huang
- Biomedical Research Center of South China, Fujian Normal University, Fujian, 350117, China
| | - Xinlin Su
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 205006, China
| | - Yong Sun
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Research Department, Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35294, USA
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Research Department, Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35294, USA
| | - Zhijian Qian
- Division of Hematology and Oncology, Department of Medicine, Department of Biochemistry and Molecular Biology, the University of Florida, Gainesville, FL, 32610, USA
| | - Karen-Sue Carlson
- Versiti Blood Research Institute, Milwaukee, WI, 53213, USA
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Renren Wen
- Versiti Blood Research Institute, Milwaukee, WI, 53213, USA.
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Demin Wang
- Versiti Blood Research Institute, Milwaukee, WI, 53213, USA.
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
7
|
Loder S, Patel N, Morgani S, Sambon M, Leucht P, Levi B. Genetic models for lineage tracing in musculoskeletal development, injury, and healing. Bone 2023; 173:116777. [PMID: 37156345 PMCID: PMC10860167 DOI: 10.1016/j.bone.2023.116777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
Musculoskeletal development and later post-natal homeostasis are highly dynamic processes, marked by rapid structural and functional changes across very short periods of time. Adult anatomy and physiology are derived from pre-existing cellular and biochemical states. Consequently, these early developmental states guide and predict the future of the system as a whole. Tools have been developed to mark, trace, and follow specific cells and their progeny either from one developmental state to the next or between circumstances of health and disease. There are now many such technologies alongside a library of molecular markers which may be utilized in conjunction to allow for precise development of unique cell 'lineages'. In this review, we first describe the development of the musculoskeletal system beginning as an embryonic germ layer and at each of the key developmental stages that follow. We then discuss these structures in the context of adult tissues during homeostasis, injury, and repair. Special focus is given in each of these sections to the key genes involved which may serve as markers of lineage or later in post-natal tissues. We then finish with a technical assessment of lineage tracing and the techniques and technologies currently used to mark cells, tissues, and structures within the musculoskeletal system.
Collapse
Affiliation(s)
- Shawn Loder
- Department of Plastic Surgery, University of Pittsburgh, Scaife Hall, Suite 6B, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Nicole Patel
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | - Benjamin Levi
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
8
|
Rothschild SC, Row RH, Martin BL, Clements WK. Sclerotome is compartmentalized by parallel Shh and Bmp signaling downstream of CaMKII. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550086. [PMID: 37503202 PMCID: PMC10370206 DOI: 10.1101/2023.07.21.550086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The sclerotome in vertebrates comprises an embryonic population of cellular progenitors that give rise to diverse adult tissues including the axial skeleton, ribs, intervertebral discs, connective tissue, and vascular smooth muscle. In the thorax, this cell population arises in the ventromedial region of each of the segmented tissue blocks known as somites. How and when sclerotome adult tissue fates are specified and how the gene signatures that predate those fates are regulated has not been well studied. We have identified a previously unknown role for Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) in regulating sclerotome patterning in zebrafish. Mechanistically, CaMKII regulates the activity of parallel signaling inputs that pattern sclerotome gene expression. In one downstream arm, CaMKII regulates distribution of the established sclerotome-inductive morphogen sonic hedgehog (Shh), and thus Shh-dependent sclerotome genes. In the second downstream arm, we show a previously unappreciated inductive requirement for Bmp signaling, where CaMKII activates expression of bmp4 and consequently Bmp activity. Bmp activates expression of a second subset of stereotypical sclerotome genes, while simultaneously repressing Shh-dependent markers. Our work demonstrates that CaMKII promotes parallel Bmp and Shh signaling as a mechanism to first promote global sclerotome specification, and that these pathways subsequently regionally activate and refine discrete compartmental genetic programs. Our work establishes how the earliest unique gene signatures that likely drive distinct cell behaviors and adult fates arise within the sclerotome.
Collapse
|
9
|
Luyckx I, Verstraeten A, Goumans MJ, Loeys B. SMAD6-deficiency in human genetic disorders. NPJ Genom Med 2022; 7:68. [DOI: 10.1038/s41525-022-00338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
AbstractSMAD6 encodes an intracellular inhibitor of the bone morphogenetic protein (BMP) signalling pathway. Until now, SMAD6-deficiency has been associated with three distinctive human congenital conditions, i.e., congenital heart diseases, including left ventricular obstruction and conotruncal defects, craniosynostosis and radioulnar synostosis. Intriguingly, a similar spectrum of heterozygous loss-of-function variants has been reported to cause these clinically distinct disorders without a genotype–phenotype correlation. Even identical nucleotide changes have been described in patients with either a cardiovascular phenotype, craniosynostosis or radioulnar synostosis. These findings suggest that the primary pathogenic variant alone cannot explain the resultant patient phenotype. In this review, we summarise clinical and (patho)genetic (dis)similarities between these three SMAD6-related conditions, compare published Madh6 mouse models, in which the importance and impact of the genetic background with respect to the observed phenotype is highlighted, and elaborate on the cellular key mechanisms orchestrated by SMAD6 in the development of these three discrete inherited disorders. In addition, we discuss future research needed to elucidate the pathogenetic mechanisms underlying these diseases in order to improve their molecular diagnosis, advance therapeutic strategies and facilitate counselling of patients and their families.
Collapse
|
10
|
Humphreys PA, Mancini FE, Ferreira MJS, Woods S, Ogene L, Kimber SJ. Developmental principles informing human pluripotent stem cell differentiation to cartilage and bone. Semin Cell Dev Biol 2022; 127:17-36. [PMID: 34949507 DOI: 10.1016/j.semcdb.2021.11.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022]
Abstract
Human pluripotent stem cells can differentiate into any cell type given appropriate signals and hence have been used to research early human development of many tissues and diseases. Here, we review the major biological factors that regulate cartilage and bone development through the three main routes of neural crest, lateral plate mesoderm and paraxial mesoderm. We examine how these routes have been used in differentiation protocols that replicate skeletal development using human pluripotent stem cells and how these methods have been refined and improved over time. Finally, we discuss how pluripotent stem cells can be employed to understand human skeletal genetic diseases with a developmental origin and phenotype, and how developmental protocols have been applied to gain a better understanding of these conditions.
Collapse
Affiliation(s)
- Paul A Humphreys
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, University of Manchester, UK
| | - Fabrizio E Mancini
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Miguel J S Ferreira
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, University of Manchester, UK
| | - Steven Woods
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Leona Ogene
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| |
Collapse
|
11
|
Rux D, Helbig K, Han B, Cortese C, Koyama E, Han L, Pacifici M. Primary Cilia Direct Murine Articular Cartilage Tidemark Patterning Through Hedgehog Signaling and Ambulatory Load. J Bone Miner Res 2022; 37:1097-1116. [PMID: 35060644 PMCID: PMC9177786 DOI: 10.1002/jbmr.4506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/01/2022] [Accepted: 01/08/2022] [Indexed: 11/06/2022]
Abstract
Articular cartilage (AC) is essential for body movement but is highly susceptible to degenerative diseases and has poor self-repair capacity. To improve current subpar regenerative treatments, developmental mechanisms of AC should be clarified and, specifically, how its postnatal multizone organization is acquired. Primary cilia are cell surface organelles crucial for mammalian tissue morphogenesis. Although their importance for chondrocyte function is appreciated, their specific roles in postnatal AC morphogenesis remain unclear. To explore these mechanisms, we used a murine conditional loss-of-function approach (Ift88-flox) targeting joint-lineage progenitors (Gdf5Cre) and monitored postnatal knee AC development. Joint formation and growth up to juvenile stages were largely unaffected. However, mature AC (aged 2 months) exhibited disorganized extracellular matrix, decreased aggrecan and collagen II due to reduced gene expression (not increased catabolism), and marked reduction of AC modulus by 30%-50%. In addition, and unexpectedly, we discovered that tidemark patterning was severely disrupted, as was hedgehog signaling, and exhibited specificity based on regional load-bearing functions of AC. Interestingly, Prg4 expression was markedly increased in highly loaded sites in mutants. Together, our data provide evidence that primary cilia orchestrate postnatal AC morphogenesis including tidemark topography, zonal matrix composition, and ambulation load responses. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Danielle Rux
- Translational Research Program in Pediatric Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kimberly Helbig
- Translational Research Program in Pediatric Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Biao Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Courtney Cortese
- Translational Research Program in Pediatric Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
12
|
El Fersioui Y, Pinton G, Allaman-Pillet N, Schorderet DF. Premature Vertebral Mineralization in hmx1-Mutant Zebrafish. Cells 2022; 11:cells11071088. [PMID: 35406651 PMCID: PMC8997757 DOI: 10.3390/cells11071088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
H6 family homeobox 1 (HMX1) regulates multiple aspects of craniofacial development, and mutations in HMX1 are linked to an ocular defect termed oculoauricular syndrome of Schorderet–Munier–Franceschetti (OAS) (MIM #612109). Recently, additional altered orofacial features have been reported, including short mandibular rami, asymmetry of the jaws, and altered premaxilla. We found that in two mutant zebrafish lines termed hmx1mut10 and hmx1mut150, precocious mineralization of the proximal vertebrae occurred. Zebrafish hmx1mut10 and hmx1mut150 report mutations in the SD1 and HD domains, which are essential for dimerization and activity of hmx1. In hmx1mut10, the bone morphogenetic protein (BMP) antagonists chordin and noggin1 were downregulated, while bmp2b and bmp4 were highly expressed and specifically localized to the dorsal region prior to the initiation of the osteogenic process. The osteogenic promoters runx2b and spp1 were also upregulated. Supplementation with DMH1—an inhibitor of the BMP signaling pathway—at the specific stage in which bmp2b and bmp4 are highly expressed resulted in reduced vertebral mineralization, resembling the wildtype mineralization progress of the axial skeleton. These results point to a possible role of hmx1 as part of a complex gene network that inhibits bmp2b and bmp4 in the dorsal region, thus regulating early axial skeleton development.
Collapse
Affiliation(s)
- Younes El Fersioui
- IRO—Institute for Research in Ophthalmology, 1950 Sion, Switzerland; (G.P.); (N.A.-P.); (D.F.S.)
- Jules-Gonin Eye Hospital, Unit of Gene Therapy and Stem Cell Biology, 1004 Lausanne, Switzerland
- Correspondence:
| | - Gaëtan Pinton
- IRO—Institute for Research in Ophthalmology, 1950 Sion, Switzerland; (G.P.); (N.A.-P.); (D.F.S.)
| | - Nathalie Allaman-Pillet
- IRO—Institute for Research in Ophthalmology, 1950 Sion, Switzerland; (G.P.); (N.A.-P.); (D.F.S.)
| | - Daniel F. Schorderet
- IRO—Institute for Research in Ophthalmology, 1950 Sion, Switzerland; (G.P.); (N.A.-P.); (D.F.S.)
- Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
13
|
Campbell GP, Farkas DR, Chapman DL. Ectopic expression of T in the paraxial mesoderm disrupts somite maturation in the mouse. Dev Biol 2022; 485:37-49. [PMID: 35276131 DOI: 10.1016/j.ydbio.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 11/03/2022]
Abstract
T is the founding member of the T-box family of transcription factors; family members are critical for cell fate decisions and tissue morphogenesis throughout the animal kingdom. T is expressed in the primitive streak and notochord with mouse mutant studies revealing its critical role in mesoderm formation in the primitive streak and notochord integrity. We previously demonstrated that misexpression of Tbx6 in the paraxial and lateral plate mesoderm results in embryos resembling Tbx15 and Tbx18 nulls. This, together with results from in vitro transcriptional assays, suggested that ectopically expressed Tbx6 can compete with endogenously expressed Tbx15 and Tbx18 at the binding sites of target genes. Since T-box proteins share a similar DNA binding domain, we hypothesized that misexpressing T in the paraxial and lateral plate mesoderm would also interfere with the endogenous Tbx15 and Tbx18, causing embryonic phenotypes resembling those seen upon Tbx6 expression in the somites and limbs. Interestingly, ectopic T expression led to distinct embryonic phenotypes, specifically, reduced-sized somites in embryos expressing the highest levels of T, which ultimately affects axis length and neural tube morphogenesis. We further demonstrate that ectopic T leads to ectopic expression of Tbx6 and Mesogenin 1, known targets of T. These results suggests that ectopic T expression contributes to the phenotype by activating its own targets rather than via a straight competition with endogenous T-box factors.
Collapse
Affiliation(s)
- Gregory P Campbell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Deborah R Farkas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Deborah L Chapman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
14
|
Della Gaspera B, Weill L, Chanoine C. Evolution of Somite Compartmentalization: A View From Xenopus. Front Cell Dev Biol 2022; 9:790847. [PMID: 35111756 PMCID: PMC8802780 DOI: 10.3389/fcell.2021.790847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Somites are transitory metameric structures at the basis of the axial organization of vertebrate musculoskeletal system. During evolution, somites appear in the chordate phylum and compartmentalize mainly into the dermomyotome, the myotome, and the sclerotome in vertebrates. In this review, we summarized the existing literature about somite compartmentalization in Xenopus and compared it with other anamniote and amniote vertebrates. We also present and discuss a model that describes the evolutionary history of somite compartmentalization from ancestral chordates to amniote vertebrates. We propose that the ancestral organization of chordate somite, subdivided into a lateral compartment of multipotent somitic cells (MSCs) and a medial primitive myotome, evolves through two major transitions. From ancestral chordates to vertebrates, the cell potency of MSCs may have evolved and gave rise to all new vertebrate compartments, i.e., the dermomyome, its hypaxial region, and the sclerotome. From anamniote to amniote vertebrates, the lateral MSC territory may expand to the whole somite at the expense of primitive myotome and may probably facilitate sclerotome formation. We propose that successive modifications of the cell potency of some type of embryonic progenitors could be one of major processes of the vertebrate evolution.
Collapse
|
15
|
Abstract
The reproductive lifespan of female mammals is limited and ultimately depends on the production of a sufficient number of high quality oocytes from a pool of non-growing primordial follicles that are set aside during embryonic and perinatal development. Recent studies show multiple signaling pathways are responsible for maintaining primordial follicle arrest and regulation of activation. Identification of these pathways and their regulatory mechanisms is essential for developing novel treatments for female infertility, improving existing in vitro fertilization techniques, and more recently, restoring the function of cryopreserved ovarian tissue. This review focuses on recent developments in transforming growth factor beta (TGFβ) family signaling in ovarian follicle development and its potential application to therapeutic design. Mouse models have been an essential tool for discovering genes critical for fertility, and recent advancements in human organ culture have additionally allowed for the translation of murine discoveries into human research and clinical settings.
Collapse
|
16
|
From Bipotent Neuromesodermal Progenitors to Neural-Mesodermal Interactions during Embryonic Development. Int J Mol Sci 2021; 22:ijms22179141. [PMID: 34502050 PMCID: PMC8431582 DOI: 10.3390/ijms22179141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
To ensure the formation of a properly patterned embryo, multiple processes must operate harmoniously at sequential phases of development. This is implemented by mutual interactions between cells and tissues that together regulate the segregation and specification of cells, their growth and morphogenesis. The formation of the spinal cord and paraxial mesoderm derivatives exquisitely illustrate these processes. Following early gastrulation, while the vertebrate body elongates, a population of bipotent neuromesodermal progenitors resident in the posterior region of the embryo generate both neural and mesodermal lineages. At later stages, the somitic mesoderm regulates aspects of neural patterning and differentiation of both central and peripheral neural progenitors. Reciprocally, neural precursors influence the paraxial mesoderm to regulate somite-derived myogenesis and additional processes by distinct mechanisms. Central to this crosstalk is the activity of the axial notochord, which, via sonic hedgehog signaling, plays pivotal roles in neural, skeletal muscle and cartilage ontogeny. Here, we discuss the cellular and molecular basis underlying this complex developmental plan, with a focus on the logic of sonic hedgehog activities in the coordination of the neural-mesodermal axis.
Collapse
|
17
|
O’Reilly S. Circulating Gremlin-1 is elevated in systemic sclerosis patients. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2021; 6:286-289. [PMID: 35382498 PMCID: PMC8922663 DOI: 10.1177/23971983211036571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/12/2021] [Indexed: 11/15/2022]
Abstract
Introduction: Systemic sclerosis is an autoimmune connective tissue disease in which there
is activation of the immune system, vascular disease and fibrosis.
Activation of quiescent fibroblasts to myofibroblasts is key to disease
pathogenesis. Gremlin-1 is a bone morphogenetic protein antagonist which is
important in development and we recently reported in skin fibrosis. The aim
of this study was to determine the serum circulating levels of Gremlin-1 in
early diffuse systemic sclerosis. Methods: Twenty-one early diffuse systemic sclerosis patients (less than 2 years from
first non-Raynaud’s symptom) were included and age and sex-matched healthy
controls. Serum was isolated from blood and measured with a specific
enzyme-linked immunoassay for Gremlin-1. Clinical variables were also
measured. Results: Significantly elevated Gremlin-1 was found in sera of early diffuse systemic
sclerosis patients (p < 0.001). In patients with
interstitial lung disease, this compared to systemic sclerosis without
evidence of interstitial lung disease, Gremlin-1 was significantly elevated
(p < 0.0007). A correlation was found between
circulating Gremlin-1 and modified Rodnan Skin Score, albeit weak. Discussion: In early diffuse systemic sclerosis patients, elevated Gremlin-1 is found in
serum. This is particularly prominent in systemic sclerosis–associated
interstitial lung disease. This suggests that Gremlin-1 may be a biomarker
for systemic sclerosis interstitial lung disease.
Collapse
|
18
|
Ledesma-Colunga MG, Weidner H, Vujic Spasic M, Hofbauer LC, Baschant U, Rauner M. Shaping the bone through iron and iron-related proteins. Semin Hematol 2021; 58:188-200. [PMID: 34389111 DOI: 10.1053/j.seminhematol.2021.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 06/08/2021] [Indexed: 01/04/2023]
Abstract
Well-controlled iron levels are indispensable for health. Iron deficiency is the most common cause of anemia, whereas iron overload, either hereditary or secondary due to disorders of ineffective erythropoiesis, causes widespread organ failure. Bone is particularly sensitive to fluctuations in systemic iron levels as both iron deficiency and overload are associated with low bone mineral density and fragility. Recent studies have shown that not only iron itself, but also iron-regulatory proteins that are mutated in hereditary hemochromatosis can control bone mass. This review will summarize the current knowledge on the effects of iron on bone homeostasis and bone cell activities, and on the role of proteins that regulate iron homeostasis, i.e. hemochromatosis proteins and proteins of the bone morphogenetic protein pathway, on bone remodeling. As disorders of iron homeostasis are closely linked to bone fragility, deeper insights into common regulatory mechanisms may provide new opportunities to concurrently treat disorders affecting iron homeostasis and bone.
Collapse
Affiliation(s)
- Maria G Ledesma-Colunga
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany
| | - Heike Weidner
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany
| | - Maja Vujic Spasic
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Lorenz C Hofbauer
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
19
|
Duffy L, Henderson J, Brown M, Pryzborski S, Fullard N, Summa L, Distler JHW, Stratton R, O'Reilly S. Bone Morphogenetic Protein Antagonist Gremlin-1 Increases Myofibroblast Transition in Dermal Fibroblasts: Implications for Systemic Sclerosis. Front Cell Dev Biol 2021; 9:681061. [PMID: 34150776 PMCID: PMC8213337 DOI: 10.3389/fcell.2021.681061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/13/2021] [Indexed: 11/18/2022] Open
Abstract
Objective Systemic Sclerosis is an autoimmune connective tissue disease which results in fibrosis of the skin and lungs. The disease is characterized by activation of myofibroblasts but what governs this is unknown. Gremlin-1 is a BMP antagonist that is developmentally regulated and we sought to investigate its role in Systemic Sclerosis. Methods Dermal fibroblasts were transfected with Grem1pcDNA3.1 expression vectors or empty vectors. Various markers of myofibroblasts were measured at the mRNA and protein levels. Scratch wound assays were also performed. Media Transfer experiments were performed to evaluate cytokine like effects. Various inhibitors of TGF-β signaling and MAPK signaling were used post-transfection. siRNA to Gremlin-1 in SSc dermal fibroblasts were performed to evaluate the role of Gremlin-1. Different cytokines were incubated with fibroblasts and Gremlin-1 measured. Bleomycin was used as model of fibrosis and immunohistochemistry performed. Results Overexpression of Gremlin-1 was achieved in primary dermal fibroblasts and lead to activation of quiescent cells to myofibroblasts indicated by collagen and α-Smooth muscle actin. Overexpression also led to functional effects. This was associated with increased TGF-β1 levels and SBE luciferase activity but not increased Thrombospondin-1 expression. Inhibition of Gremlin-1 overexpression cells with antibodies to TGF-β1 but not isotype controls led to reduced collagen and various TGF-β pathway chemical inhibitors also led to reduced collagen levels. In SSc cells siRNA mediated reduction of Gremlin-1 reduced collagen expression and CTGF gene and protein levels in these cells. IL-13 did not lead to elevated Gremlin-1 expression nor did IL-11. Gremlin-1 was elevated in an animal model of fibrosis compared to NaCl-treated mice. Conclusion Gremlin-1 is a key regulator of myofibroblast transition leading to enhanced ECM deposition. Strategies that block Gremlin-1 maybe a possible therapeutic target in fibrotic diseases such as SSc.
Collapse
Affiliation(s)
- Laura Duffy
- Faculty of Health and Life Science, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - John Henderson
- Faculty of Health and Life Science, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Max Brown
- Biosciences Department, Durham University, Durham, United Kingdom
| | | | - Nicola Fullard
- Biosciences Department, Durham University, Durham, United Kingdom
| | - Lena Summa
- Department of Internal Medicine 3 Friedrich-Alexander-University, Erlangen-Nurnberg, Germany
| | - Jorg H W Distler
- Department of Internal Medicine 3 Friedrich-Alexander-University, Erlangen-Nurnberg, Germany
| | - Richard Stratton
- Centre for Rheumatology, University College London, London, United Kingdom
| | - Steven O'Reilly
- Biosciences Department, Durham University, Durham, United Kingdom
| |
Collapse
|
20
|
Veenvliet JV, Bolondi A, Kretzmer H, Haut L, Scholze-Wittler M, Schifferl D, Koch F, Guignard L, Kumar AS, Pustet M, Heimann S, Buschow R, Wittler L, Timmermann B, Meissner A, Herrmann BG. Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites. Science 2021; 370:370/6522/eaba4937. [PMID: 33303587 DOI: 10.1126/science.aba4937] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/13/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Post-implantation embryogenesis is a highly dynamic process comprising multiple lineage decisions and morphogenetic changes that are inaccessible to deep analysis in vivo. We found that pluripotent mouse embryonic stem cells (mESCs) form aggregates that upon embedding in an extracellular matrix compound induce the formation of highly organized "trunk-like structures" (TLSs) comprising the neural tube and somites. Comparative single-cell RNA sequencing analysis confirmed that this process is highly analogous to mouse development and follows the same stepwise gene-regulatory program. Tbx6 knockout TLSs developed additional neural tubes mirroring the embryonic mutant phenotype, and chemical modulation could induce excess somite formation. TLSs thus reveal an advanced level of self-organization and provide a powerful platform for investigating post-implantation embryogenesis in a dish.
Collapse
Affiliation(s)
- Jesse V Veenvliet
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| | - Adriano Bolondi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Leah Haut
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.,Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Manuela Scholze-Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Dennis Schifferl
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Frederic Koch
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Léo Guignard
- Max Delbrück Center for Molecular Medicine and Berlin Institute of Health, 10115 Berlin, Germany
| | - Abhishek Sampath Kumar
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Milena Pustet
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Simon Heimann
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - René Buschow
- Microscopy and Cryo-Electron Microscopy, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Lars Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany. .,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Bernhard G Herrmann
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany. .,Institute for Medical Genetics, Charité-University Medicine Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| |
Collapse
|
21
|
Tessier S, Risbud MV. Understanding embryonic development for cell-based therapies of intervertebral disc degeneration: Toward an effort to treat disc degeneration subphenotypes. Dev Dyn 2020; 250:302-317. [PMID: 32564440 DOI: 10.1002/dvdy.217] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic low back and neck pain are associated with intervertebral disc degeneration and are major contributors to the global burden of disability. New evidence now suggests that disc degeneration comprises a spectrum of subphenotypes influenced by genetic background, age, and environmental factors, which may be contributing to the mixed outcomes seen in clinical trials of cell-based therapies that aim to treat disc degeneration. This problem is further compounded by the fact that disc degeneration and aging coincide with an exhaustion of endogenous progenitor cells, imposing limitations on the regenerative capacity of the disc. At the bench-side, current work is focused on applying our knowledge of embryonic disc development to direct and refine differentiation of adult and human-induced pluripotent stem cells into notochord-like and nucleus pulposus-like cells for use in novel cell-based therapies. Accordingly, this review presents the salient features of intervertebral disc development, post-natal maintenance, and regeneration, with emphasis on recent advancements. We also discuss how a stratified approach can be undertaken for the development of future cell-based therapies to bring emerging subphenotypes into consideration.
Collapse
Affiliation(s)
- Steven Tessier
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA.,Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Huycke TR, Miller BM, Gill HK, Nerurkar NL, Sprinzak D, Mahadevan L, Tabin CJ. Genetic and Mechanical Regulation of Intestinal Smooth Muscle Development. Cell 2020; 179:90-105.e21. [PMID: 31539501 DOI: 10.1016/j.cell.2019.08.041] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/31/2019] [Accepted: 08/22/2019] [Indexed: 11/30/2022]
Abstract
The gastrointestinal tract is enveloped by concentric and orthogonally aligned layers of smooth muscle; however, an understanding of the mechanisms by which these muscles become patterned and aligned in the embryo has been lacking. We find that Hedgehog acts through Bmp to delineate the position of the circumferentially oriented inner muscle layer, whereas localized Bmp inhibition is critical for allowing formation of the later-forming, longitudinally oriented outer layer. Because the layers form at different developmental stages, the muscle cells are exposed to unique mechanical stimuli that direct their alignments. Differential growth within the early gut tube generates residual strains that orient the first layer circumferentially, and when formed, the spontaneous contractions of this layer align the second layer longitudinally. Our data link morphogen-based patterning to mechanically controlled smooth muscle cell alignment and provide a mechanistic context for potentially understanding smooth muscle organization in a wide variety of tubular organs.
Collapse
Affiliation(s)
- Tyler R Huycke
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Bess M Miller
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hasreet K Gill
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nandan L Nerurkar
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - David Sprinzak
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - L Mahadevan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA; Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138, USA
| | - Clifford J Tabin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Turner BRH, Itasaki N. Local modulation of the Wnt/β-catenin and bone morphogenic protein (BMP) pathways recapitulates rib defects analogous to cerebro-costo-mandibular syndrome. J Anat 2019; 236:931-945. [PMID: 31884688 DOI: 10.1111/joa.13144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/01/2019] [Accepted: 11/28/2019] [Indexed: 12/01/2022] Open
Abstract
Ribs are seldom affected by developmental disorders, however, multiple defects in rib structure are observed in the spliceosomal disease cerebro-costo-mandibular syndrome (CCMS). These defects include rib gaps, found in the posterior part of the costal shaft in multiple ribs, as well as missing ribs, shortened ribs and abnormal costotransverse articulations, which result in inadequate ventilation at birth and high perinatal mortality. The genetic mechanism of CCMS is a loss-of-function mutation in SNRPB, a component of the major spliceosome, and knockdown of this gene in vitro affects the activity of the Wnt/β-catenin and bone morphogenic protein (BMP) pathways. The aim of the present study was to investigate whether altering these pathways in vivo can recapitulate rib gaps and other rib abnormalities in the model animal. Chick embryos were implanted with beads soaked in Wnt/β-catenin and BMP pathway modulators during somitogenesis, and incubated until the ribs were formed. Some embryos were harvested in the preceding days for analysis of the chondrogenic marker Sox9, to determine whether pathway modulation affected somite patterning or chondrogenesis. Wnt/β-catenin inhibition manifested characteristic rib phenotypes seen in CCMS, including rib gaps (P < 0.05) and missing ribs (P < 0.05). BMP pathway activation did not cause rib gaps but yielded missing rib (P < 0.01) and shortened rib phenotypes (P < 0.05). A strong association with vertebral phenotypes was also noted with BMP4 (P < 0.001), including scoliosis (P < 0.05), a feature associated with CCMS. Reduced expression of Sox9 was detected with Wnt/β-catenin inhibition, indicating that inhibition of chondrogenesis precipitated the rib defects in the presence of Wnt/β-catenin inhibitors. BMP pathway activators also reduced Sox9 expression, indicating an interruption of somite patterning in the manifestation of rib defects with BMP4. The present study demonstrates that local inhibition of the Wnt/β-catenin and activation of the BMP pathway can recapitulate rib defects, such as those observed in CCMS. The balance of Wnt/β-catenin and BMP in the somite is vital for correct rib morphogenesis, and alteration of the activity of these two pathways in CCMS may perturb this balance during somite patterning, leading to the observed rib defects.
Collapse
Affiliation(s)
| | - Nobue Itasaki
- Faculty of Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
24
|
El-Magd MA, Elsayed SA, El-Shetry ES, Abdelfattah-Hassan A, Saleh AA, Allen S, McGonnell I, Patel K. The role of chick Ebf genes in the mediolateral patterning of the somites. Genesis 2019; 57:e23339. [PMID: 31724301 DOI: 10.1002/dvg.23339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 11/06/2022]
Abstract
This study was conducted to check whether the three chick Early B-cell Factor (Ebf) genes, particularly cEbf1, would be targets for Shh and Bmp signals during somites mediolateral (ML) patterning. Tissue manipulations and gain and loss of function experiments for Shh and Bmp4 were performed and the results revealed that cEbf1 expression was initiated in the cranial presomitic mesoderm by low dose of Bmp4 from the lateral mesoderm and maintained in the ventromedial part of the epithelial somite and the medial sclerotome by Shh from the notochord; while cEbf2/3 expression was induced and maintained by Bmp4 and inhibited by high dose of Shh. To determine whether Ebf1 plays a role in somite patterning, transfection of a dominant-negative construct was carried out; this showed suppression of cPax1 expression in the medial sclerotome and upregulation and medial expansion of cEbf3 and cPax3 expression in sclerotome and dermomyotome, respectively, suggesting that Ebf1 is important for ML patterning. Thus, it is possible that low doses of Bmp4 set up Ebf1 expression which, together with Shh from the notochord, leads to establishment of the medial sclerotome and suppression of lateral identities. These data also conclude that Bmp4 is required in both the medial and lateral domain of the somitic mesoderm to keep the ML identity of the sclerotome through maintenance of cEbf gene expression. These striking findings are novel and give a new insight on the role of Bmp4 on mediolateral patterning of somites.
Collapse
Affiliation(s)
- Mohammed A El-Magd
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kfrelsheikh, Egypt
| | - Shafika A Elsayed
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Eman S El-Shetry
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Abdelfattah-Hassan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ayman A Saleh
- Department of Animal Wealth Development, Genetics and Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Steve Allen
- Department of Veterinary Basic Sciences, Royal Veterinary College, London, United Kingdom
| | - Imelda McGonnell
- Department of Veterinary Basic Sciences, Royal Veterinary College, London, United Kingdom
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
25
|
Blázquez-Medela AM, Jumabay M, Rajbhandari P, Sallam T, Guo Y, Yao J, Vergnes L, Reue K, Zhang L, Yao Y, Fogelman AM, Tontonoz P, Lusis AJ, Wu X, Boström KI. Noggin depletion in adipocytes promotes obesity in mice. Mol Metab 2019; 25:50-63. [PMID: 31027994 PMCID: PMC6600080 DOI: 10.1016/j.molmet.2019.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/30/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Obesity has increased to pandemic levels and enhanced understanding of adipose regulation is required for new treatment strategies. Although bone morphogenetic proteins (BMPs) influence adipogenesis, the effect of BMP antagonists such as Noggin is largely unknown. The aim of the study was to define the role of Noggin, an extracellular BMP inhibitor, in adipogenesis. METHODS We generated adipose-derived progenitor cells and a mouse model with adipocyte-specific Noggin deletion using the AdiponectinCre transgenic mouse, and determined the adipose phenotype of Noggin-deficiency. RESULTS Our studies showed that Noggin is expressed in progenitor cells but declines in adipocytes, possibly allowing for lipid accumulation. Correspondingly, adipocyte-specific Noggin deletion in vivo promoted age-related obesity in both genders with no change in food intake. Although the loss of Noggin caused white adipose tissue hypertrophy, and whitening and impaired function in brown adipose tissue in both genders, there were clear gender differences with the females being most affected. The females had suppressed expression of brown adipose markers and thermogenic genes including peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1alpha) and uncoupling protein 1 (UCP1) as well as genes associated with adipogenesis and lipid metabolism. The males, on the other hand, had early changes in a few BAT markers and thermogenic genes, but the main changes were in the genes associated with adipogenesis and lipid metabolism. Further characterization revealed that both genders had reductions in VO2, VCO2, and RER, whereas females also had reduced heat production. Noggin was also reduced in diet-induced obesity in inbred mice consistent with the obesity phenotype of the Noggin-deficient mice. CONCLUSIONS BMP signaling regulates female and male adipogenesis through different metabolic pathways. Modulation of adipose tissue metabolism by select BMP antagonists may be a strategy for long-term regulation of age-related weight gain and obesity.
Collapse
Affiliation(s)
- Ana M Blázquez-Medela
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | - Tamer Sallam
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Yina Guo
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Laurent Vergnes
- Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Karen Reue
- Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Alan M Fogelman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Aldons J Lusis
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, USA.
| |
Collapse
|
26
|
Antagonism of BMP signaling is insufficient to induce fibrous differentiation in primary sclerotome. Exp Cell Res 2019; 378:11-20. [PMID: 30817928 PMCID: PMC6501840 DOI: 10.1016/j.yexcr.2019.01.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/04/2019] [Accepted: 01/18/2019] [Indexed: 01/29/2023]
Abstract
Sclerotome is the embryonic progenitor of the axial skeleton. It was previously shown that Tgfbr2 is required in sclerotome for differentiation of fibrous skeletal tissues including the annulus fibrosus of the intervertebral disc. Alternatively, BMP signaling is required to form the vertebral body through chondrogenesis. In addition, TGFβ added to sclerotome cultures induces expression of markers for fibrous tissue differentiation but not cartilage or bone. The mechanism of how TGFβ signaling regulates this lineage decision in sclerotome is not known and could be due to the production of instructive or inhibitory signals or a combination of the two. Here we show that TGFβ antagonizes BMP/ Smad1/5 signaling in primary sclerotome likely through regulation of Noggin, an extracellular BMP antagonist, to prevent chondrogenesis. We then tested whether inhibition of BMP signaling, and inhibition of chondrogenesis, is sufficient to push cells toward the fibrous cell fate. While Noggin inhibited BMP/ Smad1/5 signaling and the formation of chondrogenic nodules in sclerotome cultures; Noggin and inhibition of BMP signaling through Gremlin or DMH2 were insufficient to induce fibrous tissue differentiation. The results suggest inhibition of BMP signaling is not sufficient to stimulate fibrous tissue differentiation and additional signals are likely required. We propose that TGFβ has a dual role in regulating sclerotome fate. First, it inhibits BMP signaling potentially through Noggin to prevent chondrogenesis and, second, it provides an unknown instructive signal to promote fibrous tissue differentiation in sclerotome. The results have implications for the design of stem cell-based therapies for skeletal diseases.
Collapse
|
27
|
Mohanty S, Dahia CL. Defects in intervertebral disc and spine during development, degeneration, and pain: New research directions for disc regeneration and therapy. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e343. [PMID: 30977275 DOI: 10.1002/wdev.343] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 03/11/2019] [Accepted: 03/25/2019] [Indexed: 12/12/2022]
Abstract
Intervertebral discs are cartilaginous joints present between vertebrae. The centers of the intervertebral discs consist of a gelatinous nucleus pulposus derived from the embryonic notochord. With age or injury, intervertebral discs may degenerate, causing neurological symptoms including back pain, which affects millions of people worldwide. Back pain is a multifactorial disorder, and disc degeneration is one of the primary contributing factors. Recent studies in mice have identified the key molecules involved in the formation of intervertebral discs. Several of these key molecules including sonic hedgehog and Brachyury are not only expressed by notochord during development, but are also expressed by neonatal mouse nucleus pulposus cells, and are crucial for postnatal disc maintenance. These findings suggest that intrinsic signals in each disc may maintain the nucleus pulposus microenvironment. However, since expression of these developmental signals declines with age and degeneration, disc degeneration may be related to the loss of these intrinsic signals. In addition, findings from mouse and other mammalian models have identified similarities between the patterning capabilities of the embryonic notochord and young nucleus pulposus cells, suggesting that mouse is a suitable model system to understand disc development and aging. Future research aimed at understanding the upstream regulators of these developmental signals and the modes by which they regulate disc growth and maintenance will likely provide mechanistic insights into disc growth and aging. Further, such findings will likely provide insights relevant to the development of effective therapies for treatment of back pain and reversing the disc degenerative process. This article is categorized under: Birth Defects > Organ Anomalies Vertebrate Organogenesis > Musculoskeletal and Vascular Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Aging.
Collapse
Affiliation(s)
- Sarthak Mohanty
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Chitra L Dahia
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York.,Department of Cell and Developmental Biology, Weill Cornell Medicine, Graduate School of Medical Science, New York, New York
| |
Collapse
|
28
|
Wang F, Zhang C, Sinkemani A, Shi R, Xie ZY, Chen L, Mao L, Wu XT. A histocytological and radiological overview of the natural history of intervertebral disk: from embryonic formation to age-related degeneration. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2019; 28:633-648. [PMID: 30715648 DOI: 10.1007/s00586-019-05903-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 01/05/2019] [Accepted: 01/25/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE To elucidate the natural history of intervertebral disk (IVD) and characterize its embryonic beginnings and age-related degeneration. METHODS Coronal sections of embryonic (E13.5-neonatal) and postnatal (4-60-week-old) Sprague-Dawley rat IVD were stained by a series of histological stainings (hematoxylin and eosin, Alcian blue, Picrosirius red, Masson, Periodic acid-Schiff). Growth kinetics within embryonic IVD were evaluated by immunohistochemical staining of Ki67 and proliferating cell nuclear antigen. Postnatal maturation and degeneration of IVD were visualized on radiology by X-ray, CT, and MR imaging. RESULTS During the formation of rat IVD, inner annulus fibrosus (AF) and cartilaginous endplate (CEP) shared similar cell density, extracellular matrix, and potential of growth kinetics; notochord provided increased and enlarged cytoplasmic vacuoles to generate nucleus pulposus (NP), part of which was retained within CEP. Postnatally, vacuolated notochord cells were reduced by devacuolation, while chondrocytic NP cells increased; cartilaginous layers of CEP were narrowed by vertebrae growth and secondary ossification; fibrotic portion of AF decreased as cartilaginous matrix accumulated and infiltrated outward. In aged and degenerated IVD, large longitudinal fissures were detected near the boundaries between inner and outer AF, whereas both reduced cellularity and accumulated cell clusters were evident within the dehydrated NP; only part of these histocytological changes could be reported on radiology. CONCLUSIONS By showing that the natural history of IVD is orchestrated by a dynamic histocytological regulation, our study may facilitate better understanding of the developmental defects, cellular heterogeneity, age-related degenerative mechanisms, and biological regeneration of IVD. These slides can be retrieved under Electronic Supplementary Material.
Collapse
Affiliation(s)
- Feng Wang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China.,Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China
| | - Cong Zhang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China.,Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China
| | - Arjun Sinkemani
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China.,Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China
| | - Rui Shi
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China.,Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China
| | - Zhi-Yang Xie
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China.,Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China
| | - Lu Chen
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China.,Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China
| | - Lu Mao
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China.,Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China
| | - Xiao-Tao Wu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China. .,Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China.
| |
Collapse
|
29
|
Magli A, Baik J, Mills LJ, Kwak IY, Dillon BS, Mondragon Gonzalez R, Stafford DA, Swanson SA, Stewart R, Thomson JA, Garry DJ, Dynlacht BD, Perlingeiro RCR. Time-dependent Pax3-mediated chromatin remodeling and cooperation with Six4 and Tead2 specify the skeletal myogenic lineage in developing mesoderm. PLoS Biol 2019; 17:e3000153. [PMID: 30807574 PMCID: PMC6390996 DOI: 10.1371/journal.pbio.3000153] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 02/01/2019] [Indexed: 12/26/2022] Open
Abstract
The transcriptional mechanisms driving lineage specification during development are still largely unknown, as the interplay of multiple transcription factors makes it difficult to dissect these molecular events. Using a cell-based differentiation platform to probe transcription function, we investigated the role of the key paraxial mesoderm and skeletal myogenic commitment factors-mesogenin 1 (Msgn1), T-box 6 (Tbx6), forkhead box C1 (Foxc1), paired box 3 (Pax3), Paraxis, mesenchyme homeobox 1 (Meox1), sine oculis-related homeobox 1 (Six1), and myogenic factor 5 (Myf5)-in paraxial mesoderm and skeletal myogenesis. From this study, we define a genetic hierarchy, with Pax3 emerging as the gatekeeper between the presomitic mesoderm and the myogenic lineage. By assaying chromatin accessibility, genomic binding and transcription profiling in mesodermal cells from mouse and human Pax3-induced embryonic stem cells and Pax3-null embryonic day (E)9.5 mouse embryos, we identified conserved Pax3 functions in the activation of the skeletal myogenic lineage through modulation of Hedgehog, Notch, and bone morphogenetic protein (BMP) signaling pathways. In addition, we demonstrate that Pax3 molecular function involves chromatin remodeling of its bound elements through an increase in chromatin accessibility and cooperation with sine oculis-related homeobox 4 (Six4) and TEA domain family member 2 (Tead2) factors. To our knowledge, these data provide the first integrated analysis of Pax3 function, demonstrating its ability to remodel chromatin in mesodermal cells from developing embryos and proving a mechanistic footing for the transcriptional hierarchy driving myogenesis.
Collapse
Affiliation(s)
- Alessandro Magli
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - June Baik
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Lauren J. Mills
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Il-Youp Kwak
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Bridget S. Dillon
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ricardo Mondragon Gonzalez
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - David A. Stafford
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Scott A. Swanson
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - Ron Stewart
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - James A. Thomson
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - Daniel J. Garry
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Brian D. Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, New York, United States of America
| | - Rita C. R. Perlingeiro
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
30
|
Abstract
Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the transforming growth factor-β family of ligands. BMPs exhibit widespread utility and pleiotropic, context-dependent effects, and the strength and duration of BMP pathway signaling is tightly regulated at numerous levels via mechanisms operating both inside and outside the cell. Defects in the BMP pathway or its regulation underlie multiple human diseases of different organ systems. Yet much remains to be discovered about the BMP pathway in its original context, i.e., the skeleton. In this review, we provide a comprehensive overview of the intricacies of the BMP pathway and its inhibitors in bone development, homeostasis, and disease. We frame the content of the review around major unanswered questions for which incomplete evidence is available. First, we consider the gene regulatory network downstream of BMP signaling in osteoblastogenesis. Next, we examine why some BMP ligands are more osteogenic than others and what factors limit BMP signaling during osteoblastogenesis. Then we consider whether specific BMP pathway components are required for normal skeletal development, and if the pathway exerts endogenous effects in the aging skeleton. Finally, we propose two major areas of need of future study by the field: greater resolution of the gene regulatory network downstream of BMP signaling in the skeleton, and an expanded repertoire of reagents to reliably and specifically inhibit individual BMP pathway components.
Collapse
Affiliation(s)
- Jonathan W Lowery
- Division of Biomedical Science, Marian University College of Osteopathic Medicine , Indianapolis, Indiana ; and Department of Developmental Biology, Harvard School of Dental Medicine , Boston, Massachusetts
| | - Vicki Rosen
- Division of Biomedical Science, Marian University College of Osteopathic Medicine , Indianapolis, Indiana ; and Department of Developmental Biology, Harvard School of Dental Medicine , Boston, Massachusetts
| |
Collapse
|
31
|
Abstract
Development of the axial skeleton is a complex, stepwise process that relies on intricate signaling and coordinated cellular differentiation. Disruptions to this process can result in a myriad of skeletal malformations that range in severity. The notochord and the sclerotome are embryonic tissues that give rise to the major components of the intervertebral discs and the vertebral bodies of the spinal column. Through a number of mouse models and characterization of congenital abnormalities in human patients, various growth factors, transcription factors, and other signaling proteins have been demonstrated to have critical roles in the development of the axial skeleton. Balance between opposing growth factors as well as other environmental cues allows for cell fate specification and divergence of tissue types during development. Furthermore, characterization of progenitor cells for specific cell lineages has furthered the understanding of specific spatiotemporal cues that cells need in order to initiate and complete development of distinct tissues. Identifying specific marker genes that can distinguish between the various embryonic and mature cell types is also of importance. Clinically, understanding developmental clues can aid in the generation of therapeutics for musculoskeletal disease through the process of developmental engineering. Studies into potential stem cell therapies are based on knowledge of the normal processes that occur in the embryo, which can then be applied to stepwise tissue engineering strategies.
Collapse
Affiliation(s)
| | | | - Rosa Serra
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
32
|
Ma RC, Jacobs CT, Sharma P, Kocha KM, Huang P. Stereotypic generation of axial tenocytes from bipartite sclerotome domains in zebrafish. PLoS Genet 2018; 14:e1007775. [PMID: 30388110 PMCID: PMC6235400 DOI: 10.1371/journal.pgen.1007775] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/14/2018] [Accepted: 10/17/2018] [Indexed: 12/17/2022] Open
Abstract
Development of a functional musculoskeletal system requires coordinated generation of muscles, bones, and tendons. However, how axial tendon cells (tenocytes) are generated during embryo development is still poorly understood. Here, we show that axial tenocytes arise from the sclerotome in zebrafish. In contrast to mouse and chick, the zebrafish sclerotome consists of two separate domains: a ventral domain and a previously undescribed dorsal domain. While dispensable for sclerotome induction, Hedgehog (Hh) signaling is required for the migration and maintenance of sclerotome derived cells. Axial tenocytes are located along the myotendinous junction (MTJ), extending long cellular processes into the intersomitic space. Using time-lapse imaging, we show that both sclerotome domains contribute to tenocytes in a dynamic and stereotypic manner. Tenocytes along a given MTJ always arise from the sclerotome of the adjacent anterior somite. Inhibition of Hh signaling results in loss of tenocytes and enhanced sensitivity to muscle detachment. Together, our work shows that axial tenocytes in zebrafish originate from the sclerotome and are essential for maintaining muscle integrity. The coordinated generation of bones, muscles and tendons at the correct time and location is critical for the development of a functional musculoskeletal system. Although it is well known that tendon is the connective tissue that attaches muscles to bones, it is still poorly understood how tendon cells, or tenocytes, are generated during embryo development. Using the zebrafish model, we identify trunk tenocytes located along the boundary of muscle segments. Using cell tracing in live animals, we find that tenocytes originate from the sclerotome, an embryonic structure that is previously known to generate the trunk skeleton. In contrast to higher vertebrates, the zebrafish sclerotome consists of two separate domains, a ventral domain and a novel dorsal domain. Both domains give rise to trunk tenocytes in a dynamic and stereotypic manner. Hedgehog (Hh) signaling, an important cell signaling pathway, is not required for sclerotome induction but essential for the generation of sclerotome derived cells. Inhibition of Hh signaling leads to loss of tenocytes and increased sensitivity to muscle detachment. Thus, our work shows that tenocytes develop from the sclerotome and play an important role in maintaining muscle integrity.
Collapse
Affiliation(s)
- Roger C. Ma
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Craig T. Jacobs
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Priyanka Sharma
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Katrinka M. Kocha
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Peng Huang
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- * E-mail:
| |
Collapse
|
33
|
Séguin CA, Chan D, Dahia CL, Gazit Z. Latest advances in intervertebral disc development and progenitor cells. JOR Spine 2018; 1:e1030. [PMID: 30687811 PMCID: PMC6338208 DOI: 10.1002/jsp2.1030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
This paper is a concise review aiming to assemble the most relevant topics presented by the authors at ORS-Philadelphia Spine Research Society Fourth International Spine Research Symposium. It centers on the latest advances in disc development, its main structural entities, and the populating cells, with emphasis on the advances in pivotal molecular pathways responsible for forming the intervertebral discs (IVD). The objective of finding and emphasizing pathways and mechanisms that function to control tissue formation is to identify and to explore modifications occurring during normal aging, disease, and tissue repair. Thus, to comprehend that the cellular and molecular basis of tissue degeneration are crucial in the study of the dynamic interplay that includes cell-cell communication, gene regulation, and growth factors required to form a healthy and functional tissue during normal development.
Collapse
Affiliation(s)
- Cheryle A Séguin
- Schulich School of Medicine and Dentistry Bone and Joint Institute, The University of Western Ontario London ON Canada
| | - Danny Chan
- School of Biomedical Sciences LKS Faculty of Medicine, The University of Hong Kong Hong Kong China
| | - Chitra L Dahia
- Hospital for Special Surgery Weill Cornell Medical College New York New York
| | - Zulma Gazit
- Department of Surgery Regenerative Medicine Institute, Cedars-Sinai Medical Center Los Angeles California
| |
Collapse
|
34
|
Kowalczewski CJ, Saul JM. Biomaterials for the Delivery of Growth Factors and Other Therapeutic Agents in Tissue Engineering Approaches to Bone Regeneration. Front Pharmacol 2018; 9:513. [PMID: 29896102 PMCID: PMC5986909 DOI: 10.3389/fphar.2018.00513] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/27/2018] [Indexed: 12/14/2022] Open
Abstract
Bone fracture followed by delayed or non-union typically requires bone graft intervention. Autologous bone grafts remain the clinical "gold standard". Recently, synthetic bone grafts such as Medtronic's Infuse Bone Graft have opened the possibility to pharmacological and tissue engineering strategies to bone repair following fracture. This clinically-available strategy uses an absorbable collagen sponge as a carrier material for recombinant human bone morphogenetic protein 2 (rhBMP-2) and a similar strategy has been employed by Stryker with BMP-7, also known as osteogenic protein-1 (OP-1). A key advantage to this approach is its "off-the-shelf" nature, but there are clear drawbacks to these products such as edema, inflammation, and ectopic bone growth. While there are clinical challenges associated with a lack of controlled release of rhBMP-2 and OP-1, these are among the first clinical examples to wed understanding of biological principles with biochemical production of proteins and pharmacological principles to promote tissue regeneration (known as regenerative pharmacology). After considering the clinical challenges with such synthetic bone grafts, this review considers the various biomaterial carriers under investigation to promote bone regeneration. This is followed by a survey of the literature where various pharmacological approaches and molecular targets are considered as future strategies to promote more rapid and mature bone regeneration. From the review, it should be clear that pharmacological understanding is a key aspect to developing these strategies.
Collapse
Affiliation(s)
| | - Justin M Saul
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, United States
| |
Collapse
|
35
|
Boghossian NS, Sicko RJ, Giannakou A, Dimopoulos A, Caggana M, Tsai MY, Yeung EH, Pankratz N, Cole BR, Romitti PA, Browne ML, Fan R, Liu A, Kay DM, Mills JL. Rare copy number variants identified in prune belly syndrome. Eur J Med Genet 2017; 61:145-151. [PMID: 29174092 DOI: 10.1016/j.ejmg.2017.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 11/26/2022]
Abstract
Prune belly syndrome (PBS), also known as Eagle-Barrett syndrome, is a rare congenital disorder characterized by absence or hypoplasia of the abdominal wall musculature, urinary tract anomalies, and cryptorchidism in males. The etiology of PBS is largely unresolved, but genetic factors are implicated given its recurrence in families. We examined cases of PBS to identify novel pathogenic copy number variants (CNVs). A total of 34 cases (30 males and 4 females) with PBS identified from all live births in New York State (1998-2005) were genotyped using Illumina HumanOmni2.5 microarrays. CNVs were prioritized if they were absent from in-house controls, encompassed ≥10 consecutive probes, were ≥20 Kb in size, had ≤20% overlap with common variants in population reference controls, and had ≤20% overlap with any variant previously detected in other birth defect phenotypes screened in our laboratory. We identified 17 candidate autosomal CNVs; 10 cases each had one CNV and four cases each had two CNVs. The CNVs included a 158 Kb duplication at 4q22 that overlaps the BMPR1B gene; duplications of different sizes carried by two cases in the intron of STIM1 gene; a 67 Kb duplication 202 Kb downstream of the NOG gene, and a 1.34 Mb deletion including the MYOCD gene. The identified rare CNVs spanned genes involved in mesodermal, muscle, and urinary tract development and differentiation, which might help in elucidating the genetic contribution to PBS. We did not have parental DNA and cannot identify whether these CNVs were de novo or inherited. Further research on these CNVs, particularly BMP signaling is warranted to elucidate the pathogenesis of PBS.
Collapse
Affiliation(s)
- Nansi S Boghossian
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States; Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.
| | - Robert J Sicko
- Division of Genetics, Wadsworth Center, Department of Health, Albany, NY, United States
| | - Andreas Giannakou
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Aggeliki Dimopoulos
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Michele Caggana
- Division of Genetics, Wadsworth Center, Department of Health, Albany, NY, United States
| | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Edwina H Yeung
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Benjamin R Cole
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Paul A Romitti
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, IA, United States
| | - Marilyn L Browne
- New York State Department of Health, Congenital Malformations Registry, Albany, NY, United States; University at Albany School of Public Health, Rensselaer, NY, United States
| | - Ruzong Fan
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center (GUMC), Washington, DC, United States
| | - Aiyi Liu
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Denise M Kay
- Division of Genetics, Wadsworth Center, Department of Health, Albany, NY, United States
| | - James L Mills
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
36
|
Fogel JL, Lakeland DL, Mah IK, Mariani FV. A minimally sufficient model for rib proximal-distal patterning based on genetic analysis and agent-based simulations. eLife 2017; 6:e29144. [PMID: 29068314 PMCID: PMC5693115 DOI: 10.7554/elife.29144] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/24/2017] [Indexed: 12/19/2022] Open
Abstract
For decades, the mechanism of skeletal patterning along a proximal-distal axis has been an area of intense inquiry. Here, we examine the development of the ribs, simple structures that in most terrestrial vertebrates consist of two skeletal elements-a proximal bone and a distal cartilage portion. While the ribs have been shown to arise from the somites, little is known about how the two segments are specified. During our examination of genetically modified mice, we discovered a series of progressively worsening phenotypes that could not be easily explained. Here, we combine genetic analysis of rib development with agent-based simulations to conclude that proximal-distal patterning and outgrowth could occur based on simple rules. In our model, specification occurs during somite stages due to varying Hedgehog protein levels, while later expansion refines the pattern. This framework is broadly applicable for understanding the mechanisms of skeletal patterning along a proximal-distal axis.
Collapse
Affiliation(s)
- Jennifer L Fogel
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell ResearchUniversity of Southern CaliforniaLos AngelesUnited States
| | | | - In Kyoung Mah
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell ResearchUniversity of Southern CaliforniaLos AngelesUnited States
| | - Francesca V Mariani
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell ResearchUniversity of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
37
|
Kuta A, Mao Y, Martin T, Ferreira de Sousa C, Whiting D, Zakaria S, Crespo-Enriquez I, Evans P, Balczerski B, Mankoo B, Irvine KD, Francis-West PH. Fat4-Dchs1 signalling controls cell proliferation in developing vertebrae. Development 2017; 143:2367-75. [PMID: 27381226 DOI: 10.1242/dev.131037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 05/11/2016] [Indexed: 01/15/2023]
Abstract
The protocadherins Fat4 and Dchs1 act as a receptor-ligand pair to regulate many developmental processes in mice and humans, including development of the vertebrae. Based on conservation of function between Drosophila and mammals, Fat4-Dchs1 signalling has been proposed to regulate planar cell polarity (PCP) and activity of the Hippo effectors Yap and Taz, which regulate cell proliferation, survival and differentiation. There is strong evidence for Fat regulation of PCP in mammals but the link with the Hippo pathway is unclear. In Fat4(-/-) and Dchs1(-/-) mice, many vertebrae are split along the midline and fused across the anterior-posterior axis, suggesting that these defects might arise due to altered cell polarity and/or changes in cell proliferation/differentiation. We show that the somite and sclerotome are specified appropriately, the transcriptional network that drives early chondrogenesis is intact, and that cell polarity within the sclerotome is unperturbed. We find that the key defect in Fat4 and Dchs1 mutant mice is decreased proliferation in the early sclerotome. This results in fewer chondrogenic cells within the developing vertebral body, which fail to condense appropriately along the midline. Analysis of Fat4;Yap and Fat4;Taz double mutants, and expression of their transcriptional target Ctgf, indicates that Fat4-Dchs1 regulates vertebral development independently of Yap and Taz. Thus, we have identified a new pathway crucial for the development of the vertebrae and our data indicate that novel mechanisms of Fat4-Dchs1 signalling have evolved to control cell proliferation within the developing vertebrae.
Collapse
Affiliation(s)
- Anna Kuta
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London SE1 9RT, UK
| | - Yaopan Mao
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Tina Martin
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London SE1 9RT, UK
| | - Catia Ferreira de Sousa
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London SE1 9RT, UK
| | - Danielle Whiting
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London SE1 9RT, UK
| | - Sana Zakaria
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London SE1 9RT, UK
| | - Ivan Crespo-Enriquez
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London SE1 9RT, UK
| | - Philippa Evans
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London SE1 9RT, UK
| | - Bartosz Balczerski
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London SE1 9RT, UK
| | - Baljinder Mankoo
- Randall Division of Cell and Molecular Biophysics, Faculty of Life Sciences & Medicine, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Kenneth D Irvine
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Philippa H Francis-West
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London SE1 9RT, UK
| |
Collapse
|
38
|
Endocultivation: continuous application of rhBMP-2 via mini-osmotic pumps to induce bone formation at extraskeletal sites. Int J Oral Maxillofac Surg 2017; 46:655-661. [DOI: 10.1016/j.ijom.2017.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/10/2016] [Accepted: 01/18/2017] [Indexed: 11/23/2022]
|
39
|
Ghannam M, Jumah F, Mansour S, Samara A, Alkhdour S, Alzuabi MA, Aker L, Adeeb N, Massengale J, Oskouian RJ, Tubbs RS. Surgical anatomy, radiological features, and molecular biology of the lumbar intervertebral discs. Clin Anat 2017; 30:251-266. [PMID: 27997062 DOI: 10.1002/ca.22822] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/04/2016] [Indexed: 01/07/2023]
Abstract
The intervertebral disc (IVD) is a joint unique in structure and functions. Lying between adjacent vertebrae, it provides both the primary support and the elasticity required for the spine to move stably. Various aspects of the IVD have long been studied by researchers seeking a better understanding of its dynamics, aging, and subsequent disorders. In this article, we review the surgical anatomy, imaging modalities, and molecular biology of the lumbar IVD. Clin. Anat. 30:251-266, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Malik Ghannam
- An-Najah National University Hospital, Nablus, Palestine
| | - Fareed Jumah
- An-Najah National University Hospital, Nablus, Palestine
| | - Shaden Mansour
- An-Najah National University Hospital, Nablus, Palestine
| | - Amjad Samara
- An-Najah National University Hospital, Nablus, Palestine
| | - Saja Alkhdour
- An-Najah National University Hospital, Nablus, Palestine
| | | | - Loai Aker
- An-Najah National University Hospital, Nablus, Palestine
| | - Nimer Adeeb
- Department of Neurosurgery, Boston Medical Center, Boston University, Massachusetts
| | - Justin Massengale
- Department of Neurosurgery, Boston Medical Center, Boston University, Massachusetts
| | | | - R Shane Tubbs
- Department of Anatomical Sciences, St. George's University, Grenada.,Seattle Science Foundation, Seattle, Washington
| |
Collapse
|
40
|
Smeeton J, Askary A, Crump JG. Building and maintaining joints by exquisite local control of cell fate. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2017; 6:10.1002/wdev.245. [PMID: 27581688 PMCID: PMC5877473 DOI: 10.1002/wdev.245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 12/18/2022]
Abstract
We owe the flexibility of our bodies to sophisticated articulations between bones. Establishment of these joints requires the integration of multiple tissue types: permanent cartilage that cushions the articulating bones, synovial membranes that enclose a lubricating fluid-filled cavity, and a fibrous capsule and ligaments that provide structural support. Positioning the prospective joint region involves establishment of an "interzone" region of joint progenitor cells within a nascent cartilage condensation, which is achieved through the interplay of activators and inhibitors of multiple developmental signaling pathways. Within the interzone, tight regulation of BMP and TGFβ signaling prevents the hypertrophic maturation of joint chondrocytes, in part through downstream transcriptional repressors and epigenetic modulators. Synovial cells then acquire further specializations through expression of genes that promote lubrication, as well as the formation of complex structures such as cavities and entheses. Whereas genetic investigations in mice and humans have uncovered a number of regulators of joint development and homeostasis, recent work in zebrafish offers a complementary reductionist approach toward understanding joint positioning and the regulation of chondrocyte fate at joints. The complexity of building and maintaining joints may help explain why there are still few treatments for osteoarthritis, one of the most common diseases in the human population. A major challenge will be to understand how developmental abnormalities in joint structure, as well as postnatal roles for developmental genes in joint homeostasis, contribute to birth defects and degenerative diseases of joints. WIREs Dev Biol 2017, 6:e245. doi: 10.1002/wdev.245 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Joanna Smeeton
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Amjad Askary
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - J. Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
41
|
Deletion of the sclerotome-enriched lncRNA PEAT augments ribosomal protein expression. Proc Natl Acad Sci U S A 2016; 114:101-106. [PMID: 27986952 DOI: 10.1073/pnas.1612069113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To define a complete catalog of the genes that are activated during mouse sclerotome formation, we sequenced RNA from embryonic mouse tissue directed to form sclerotome in culture. In addition to well-known early markers of sclerotome, such as Pax1, Pax9, and the Bapx2/Nkx3-2 homolog Nkx3-1, the long-noncoding RNA PEAT (Pax1 enhancer antisense transcript) was induced in sclerotome-directed samples. Strikingly, PEAT is located just upstream of the Pax1 gene. Using CRISPR/Cas9, we generated a mouse line bearing a complete deletion of the PEAT-transcribed unit. RNA-seq on PEAT mutant embryos showed that loss of PEAT modestly increases bone morphogenetic protein target gene expression and also elevates the expression of a large subset of ribosomal protein mRNAs.
Collapse
|
42
|
Abstract
The discovery of the transforming growth factor β (TGF-β) family ligands and the realization that their bioactivities need to be tightly controlled temporally and spatially led to intensive research that has identified a multitude of extracellular modulators of TGF-β family ligands, uncovered their functions in developmental and pathophysiological processes, defined the mechanisms of their activities, and explored potential modulator-based therapeutic applications in treating human diseases. These studies revealed a diverse repertoire of extracellular and membrane-associated molecules that are capable of modulating TGF-β family signals via control of ligand availability, processing, ligand-receptor interaction, and receptor activation. These molecules include not only soluble ligand-binding proteins that were conventionally considered as agonists and antagonists of TGF-β family of growth factors, but also extracellular matrix (ECM) proteins and proteoglycans that can serve as "sink" and control storage and release of both the TGF-β family ligands and their regulators. This extensive network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of TGF-β family signals. This article reviews our knowledge of extracellular modulation of TGF-β growth factors by diverse proteins and their molecular mechanisms to regulate TGF-β family signaling.
Collapse
Affiliation(s)
- Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
43
|
Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 2016; 4:16009. [PMID: 27563484 PMCID: PMC4985055 DOI: 10.1038/boneres.2016.9] [Citation(s) in RCA: 1147] [Impact Index Per Article: 127.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/11/2022] Open
Abstract
Transforming growth factor-beta (TGF-β) and bone morphogenic protein (BMP) signaling has fundamental roles in both embryonic skeletal development and postnatal bone homeostasis. TGF-βs and BMPs, acting on a tetrameric receptor complex, transduce signals to both the canonical Smad-dependent signaling pathway (that is, TGF-β/BMP ligands, receptors, and Smads) and the non-canonical-Smad-independent signaling pathway (that is, p38 mitogen-activated protein kinase/p38 MAPK) to regulate mesenchymal stem cell differentiation during skeletal development, bone formation and bone homeostasis. Both the Smad and p38 MAPK signaling pathways converge at transcription factors, for example, Runx2 to promote osteoblast differentiation and chondrocyte differentiation from mesenchymal precursor cells. TGF-β and BMP signaling is controlled by multiple factors, including the ubiquitin–proteasome system, epigenetic factors, and microRNA. Dysregulated TGF-β and BMP signaling result in a number of bone disorders in humans. Knockout or mutation of TGF-β and BMP signaling-related genes in mice leads to bone abnormalities of varying severity, which enable a better understanding of TGF-β/BMP signaling in bone and the signaling networks underlying osteoblast differentiation and bone formation. There is also crosstalk between TGF-β/BMP signaling and several critical cytokines’ signaling pathways (for example, Wnt, Hedgehog, Notch, PTHrP, and FGF) to coordinate osteogenesis, skeletal development, and bone homeostasis. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in osteoblast differentiation, chondrocyte differentiation, skeletal development, cartilage formation, bone formation, bone homeostasis, and related human bone diseases caused by the disruption of TGF-β/BMP signaling.
Collapse
Affiliation(s)
- Mengrui Wu
- Department of Pathology, University of Alabama at Birmingham , Birmingham, USA
| | - Guiqian Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, USA; Department of neurology, Bruke Medical Research Institute, Weil Cornell Medicine of Cornell University, White Plains, USA
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham , Birmingham, USA
| |
Collapse
|
44
|
Abstract
Since the identification in 1988 of bone morphogenetic protein 2 (BMP2) as a potent inducer of bone and cartilage formation, BMP superfamily signalling has become one of the most heavily investigated topics in vertebrate skeletal biology. Whereas a large part of this research has focused on the roles of BMP2, BMP4 and BMP7 in the formation and repair of endochondral bone, a large number of BMP superfamily molecules have now been implicated in almost all aspects of bone, cartilage and joint biology. As modulating BMP signalling is currently a major therapeutic target, our rapidly expanding knowledge of how BMP superfamily signalling affects most tissue types of the skeletal system creates enormous potential to translate basic research findings into successful clinical therapies that improve bone mass or quality, ameliorate diseases of skeletal overgrowth, and repair damage to bone and joints. This Review examines the genetic evidence implicating BMP superfamily signalling in vertebrate bone and joint development, discusses a selection of human skeletal disorders associated with altered BMP signalling and summarizes the status of modulating the BMP pathway as a therapeutic target for skeletal trauma and disease.
Collapse
Affiliation(s)
- Valerie S Salazar
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Laura W Gamer
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
45
|
Early development of the vertebral column. Semin Cell Dev Biol 2016; 49:83-91. [DOI: 10.1016/j.semcdb.2015.11.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/05/2015] [Indexed: 11/20/2022]
|
46
|
Chan SCW, Tekari A, Benneker LM, Heini PF, Gantenbein B. Osteogenic differentiation of bone marrow stromal cells is hindered by the presence of intervertebral disc cells. Arthritis Res Ther 2015; 18:29. [PMID: 26809343 PMCID: PMC4727301 DOI: 10.1186/s13075-015-0900-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/14/2015] [Indexed: 02/04/2023] Open
Abstract
Background Clinical observations indicate that the presence of nucleus pulposus (NP) tissue during spinal fusion hinders the rate of disc ossification. While the underlying mechanism remains unknown, this observation could be due to incomplete removal of NP cells (NPCs) that secrete factors preventing disc calcification, such as bone morphogenetic protein (BMP) antagonists including noggin and members of the DAN (differential screening selected gene aberrative in neuroblastoma) family. Methods Monolayer human bone marrow-derived mesenchymal stem cells (MSCs) were cocultured withNPCs and annulus fibrosus cells (AFCs) embedded in alginate for 21 days. At the end of coculture, MSCs were stained for mineral deposition by alizarin red, and relative expression of bone-related genes [Runt-related transcription factor 2, (RUNX2), Osteopontin (OPN), and Alkaline phosphatase (ALP)] and ALP activity were analyzed. Relative expression of three BMP antagonists, chordin (CHRD), gremlin (GREM1), and noggin (NOG), was determined in primary human NPCs and AFCs. These cells were also stained for Gremlin and Noggin by immunocytochemistry. Results Alizarin red staining showed that MSC osteogenesis in monolayer cultures was inhibited by coculture with NPCs or AFCs. ALP activity and RT-PCR analyses confirmed these results and demonstrated inhibition of osteogenesis of MSC in the presence of disc cells. NOG was significantly up-regulated in MSCs after coculture. Relative gene expression of intervertebral disc (IVD) cells showed higher expression of GREM1 in NPCs than in AFCs. Conclusions We show that primary IVD cells inhibit osteogenesis of MSCs. BMP inhibitors NOG, GREM1 and CHRD were expressed in IVD cells. GREM1 appears to be differentially expressed in NPCs and AFCs. Our results have implications for the design and development of treatments for non-union in spinal fusion.
Collapse
Affiliation(s)
- Samantha C W Chan
- Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, Bern, CH-3014, Switzerland. .,Biointerfaces, EMPA, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St Gallen, CH-9014, Switzerland.
| | - Adel Tekari
- Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, Bern, CH-3014, Switzerland.
| | - Lorin M Benneker
- Department for Orthopedic Surgery and Traumatology, Inselspital, University of Bern, Freiburgstrasse 4, Bern, CH-3010, Switzerland. .,AOSpine Research Network, Stettbachstrasse 6, Dübendorf, CH-8600, Switzerland.
| | - Paul F Heini
- Orthopedic Department, Sonnenhof Clinic, Buchserstrasse 30, Bern, CH-3006, Switzerland.
| | - Benjamin Gantenbein
- Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, Bern, CH-3014, Switzerland. .,AOSpine Research Network, Stettbachstrasse 6, Dübendorf, CH-8600, Switzerland.
| |
Collapse
|
47
|
Fleming A, Kishida MG, Kimmel CB, Keynes RJ. Building the backbone: the development and evolution of vertebral patterning. Development 2015; 142:1733-44. [PMID: 25968309 DOI: 10.1242/dev.118950] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The segmented vertebral column comprises a repeat series of vertebrae, each consisting of two key components: the vertebral body (or centrum) and the vertebral arches. Despite being a defining feature of the vertebrates, much remains to be understood about vertebral development and evolution. Particular controversy surrounds whether vertebral component structures are homologous across vertebrates, how somite and vertebral patterning are connected, and the developmental origin of vertebral bone-mineralizing cells. Here, we assemble evidence from ichthyologists, palaeontologists and developmental biologists to consider these issues. Vertebral arch elements were present in early stem vertebrates, whereas centra arose later. We argue that centra are homologous among jawed vertebrates, and review evidence in teleosts that the notochord plays an instructive role in segmental patterning, alongside the somites, and contributes to mineralization. By clarifying the evolutionary relationship between centra and arches, and their varying modes of skeletal mineralization, we can better appreciate the detailed mechanisms that regulate and diversify vertebral patterning.
Collapse
Affiliation(s)
- Angeleen Fleming
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Marcia G Kishida
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Charles B Kimmel
- Institute of Neuroscience, 1254 University of Oregon, Eugene OR 97403-1254, USA
| | - Roger J Keynes
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| |
Collapse
|
48
|
Beck-Broichsitter BE, Becker ST, Seitz H, Wiltfang J, Warnke PH. Endocultivation: Histomorphological effects of repetitive rhBMP-2 application into prefabricated hydroxyapatite scaffolds at extraskeletal sites. J Craniomaxillofac Surg 2015; 43:981-8. [DOI: 10.1016/j.jcms.2015.03.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/29/2015] [Accepted: 03/30/2015] [Indexed: 11/30/2022] Open
|
49
|
Ray A, Singh PNP, Sohaskey ML, Harland RM, Bandyopadhyay A. Precise spatial restriction of BMP signaling is essential for articular cartilage differentiation. Development 2015; 142:1169-79. [PMID: 25758226 DOI: 10.1242/dev.110940] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The articular cartilage, which lines the joints of the limb skeleton, is distinct from the adjoining transient cartilage, and yet, it differentiates as a unique population within a contiguous cartilage element. Current literature suggests that articular cartilage and transient cartilage originate from different cell populations. Using a combination of lineage tracing and pulse-chase of actively proliferating chondrocytes, we here demonstrate that, similar to transient cartilage, embryonic articular cartilage cells also originate from the proliferating chondrocytes situated near the distal ends of skeletal anlagen. We show that nascent cartilage cells are capable of differentiating as articular or transient cartilage, depending on exposure to Wnt or BMP signaling, respectively. The spatial organization of the articular cartilage results from a band of Nog-expressing cells, which insulates these proliferating chondrocytes from BMP signaling and allows them to differentiate as articular cartilage under the influence of Wnt signaling emanating from the interzone. Through experiments conducted in both chick and mouse embryos we have developed a model explaining simultaneous growth and differentiation of transient and articular cartilage in juxtaposed domains.
Collapse
Affiliation(s)
- Ayan Ray
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, U.P. 208016, India
| | - Pratik Narendra Pratap Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, U.P. 208016, India
| | - Michael L Sohaskey
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Richard M Harland
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Amitabha Bandyopadhyay
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, U.P. 208016, India
| |
Collapse
|
50
|
Brazil DP, Church RH, Surae S, Godson C, Martin F. BMP signalling: agony and antagony in the family. Trends Cell Biol 2015; 25:249-64. [DOI: 10.1016/j.tcb.2014.12.004] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 01/14/2023]
|