1
|
Liu YL, Mei YM, Xun JQ, Lv ZY, He Q, Liu ZBR, Li L, Xie F, Dai RC. The biological function of integrin-linked kinase on bone formation. Bone Rep 2025; 25:101834. [PMID: 40171447 PMCID: PMC11957501 DOI: 10.1016/j.bonr.2025.101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 01/30/2025] [Accepted: 03/08/2025] [Indexed: 04/03/2025] Open
Abstract
Bone remodeling process is the basis for maintaining normal bone microstructure and promoting fracture repair. Recent studies have proven that integrins can promote bone formation and fracture repair. Integrin-linked kinase (ILK), as the proximal effector of the integrin receptor, is a key protein factor linking integrin and cytoskeleton. It is involved in crucial cellular processes including proliferation, survival, differentiation, migration, invasion, and angiogenesis reflects on systemic changes in the kidney, heart, muscle, skin, and vascular system. At present, the regulation effect of ILK in bone formation attracts the attention of researchers. This review emphasizes that ILK as a key molecule affects the functions of bone marrow stromal cells (BMSCs) and osteoblasts, and regulates bone formation. Additionally, ILK plays a key role in the process of"angiogenic-osteogenic coupling ". The present role of ILK in the pathogenesis of osteoporosis is also described. Strategies that target ILK may as a new prospective treatment for osteoporosis (OP).
Collapse
Affiliation(s)
- Yu-ling Liu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yue-ming Mei
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jing-qiong Xun
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhuo-yue Lv
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Qian He
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhou-bo-ran Liu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Lin Li
- Department of Endocrinology and Metabolism, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha 410005, Hunan, China
| | - Fen Xie
- Medicine School, Changsha Social Work College, Changsha 410004, Hunan, China
| | - Ru-chun Dai
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
2
|
Bock F, Li S, Pozzi A, Zent R. Integrins in the kidney - beyond the matrix. Nat Rev Nephrol 2025; 21:157-174. [PMID: 39643697 DOI: 10.1038/s41581-024-00906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 12/09/2024]
Abstract
The development and proper functioning of the kidney is dependent on the interaction of kidney cells with the surrounding extracellular matrix (ECM). These interactions are mediated by heterodimeric membrane-bound receptors called integrins, which bind to the ECM via their extracellular domain and via their cytoplasmic tail to intracellular adaptor proteins, to assemble large macromolecular adhesion complexes. These interactions enable integrins to control cellular functions such as intracellular signalling and organization of the actin cytoskeleton and are therefore crucial to organ function. The different nephron segments and the collecting duct system have unique morphologies, functions and ECM environments and are thus equipped with unique sets of integrins with distinct specificities for the ECM with which they interact. These cell-type-specific functions are facilitated by specific intracellular integrin binding proteins, which are critical in determining the integrin activation status, ligand-binding affinity and the type of ECM signals that are relayed to the intracellular structures. The spatiotemporal expression of integrins and their specific interactions with binding partners underlie the proper development, function and repair processes of the kidney. This Review summarizes our current understanding of how integrins, their binding partners and the actin cytoskeleton regulate kidney development, physiology and pathology.
Collapse
Affiliation(s)
- Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | - Shensen Li
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Department of Physiology and Molecular Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
3
|
Bildyug N. Inhibition of Integrin-Associated Kinases FAK and ILK on the In Vitro Model of Skin Wound Healing. Appl Biochem Biotechnol 2024; 196:5604-5615. [PMID: 38165590 DOI: 10.1007/s12010-023-04842-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/04/2024]
Abstract
Dermal fibroblasts are essential cells of skin tissue responsible for its normal functioning. In skin wounds, the differentiation of resident fibroblasts into myofibroblasts occurs, which is accompanied by the rearrangement of actin cytoskeleton with the expression of alpha-smooth muscle actin. This transformation is a prerequisite for a successful wound healing. At the same time, different studies indicate that extracellular matrix may be involved in regulation of this process. Since the connection between cells and matrix is provided by transmembrane integrin receptors, this work was aimed at studying the dynamics of signaling pathways associated with integrins on an in vitro model of wound healing using human skin fibroblasts. It was shown that the healing of simulated wound was accompanied by a change in the level of integrins as well as integrin-associated kinases ILK (integrin-linked kinase) and FAK (focal adhesion kinase). Pharmacological inhibition of ILK and FAK caused the suppression of p38 and Akt which proteins are involved in regulation of the actin cytoskeleton. Moreover, it resulted in an inefficient wound closure in vitro. The results of this study support the involvement of integrin-associated kinases in regulation of fibroblast-to-myofibroblast transition during wound healing.
Collapse
Affiliation(s)
- Natalya Bildyug
- Institute of Cytology Russian Academy of Sciences, Centre for Cell Technologies, Tikhoretsky ave. 4, 194064, Saint Petersburg, Russia.
| |
Collapse
|
4
|
Shen Y, Yuan Y, Dong W. The Mechanism of Hyperoxia-Induced Neonatal Renal Injury and the Possible Protective Effect of Resveratrol. Am J Perinatol 2024; 41:1126-1133. [PMID: 35381611 DOI: 10.1055/a-1817-5357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
With recent advances in neonatal intensive care, preterm infants are surviving into adulthood. Nonetheless, epidemiological data on the health status of these preterm infants have begun to reveal a worrying theme; prematurity and the supplemental oxygen therapy these infants receive after birth appear to be risk factors for kidney disease in adulthood, affecting their quality of life. As the incidence of chronic kidney disease and the survival time of preterm infants both increase, the management of the hyperoxia-induced renal disease is becoming increasingly relevant to neonatologists. The mechanism of this increased risk is currently unknown, but prematurity itself and hyperoxia exposure after birth may predispose to disease by altering the normal trajectory of kidney maturation. This article reviews altered renal reactivity due to hyperoxia, the possible mechanisms of renal injury due to hyperoxia, and the role of resveratrol in renal injury. KEY POINTS: · Premature infants commonly receive supplementary oxygen.. · Hyperoxia can cause kidney damage via signal pathways.. · We should reduce the occurrence of late sequelae..
Collapse
Affiliation(s)
- Yunchuan Shen
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yuan Yuan
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Wang Z, Zhao Y, Bai H, Chang F, Yang X, Wang X, Liu J, Wu M, Lin Q, Wang J, Liu H. Bioactive prosthesis interface compositing variable-stiffness hydrogels regulates stem cells fates to facilitate osseointegration through mechanotransduction. Int J Biol Macromol 2024; 259:129073. [PMID: 38184033 DOI: 10.1016/j.ijbiomac.2023.129073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/02/2023] [Accepted: 12/25/2023] [Indexed: 01/08/2024]
Abstract
Fluid hydrogel is proper to be incorporated with rigid porous prosthesis interface, acting as a soft carrier to support cells and therapeutic factors, to enhance osseointegration. In the previous study, we innovatively utilized self-healing supramolecular hydrogel as 3D cell culture platform to incorporate with 3D printed porous titanium alloy scaffold, constructing a novel bioactive interface. However, the concrete relationship and mechanism of hydrogel stiffness influencing cellular behaviors of bone marrow mesenchymal stem cells (BMSCs) within the interface are still inconclusive. Herein, we synthesized a series of supramolecular hydrogels with variable stiffness as extracellular matrix (ECM) to enhance the osseointegration of 3D printed prosthesis interface. BMSCs exposed to stiff hydrogel received massive environmental mechanical stimulations, subsequently transducing biophysical cues into biochemical signal through mechanotransduction process. The mRNA-sequencing analysis revealed that the activated FAK-MAPK pathway played significant roles in promoting osteogenic differentiation, thus contributing to a strong osseointegration. Our work preliminarily demonstrated the relationship of ECM stiffness and osteogenic differentiation trend of BMSCs, and optimized stiffness of hydrogel within a certain range benefitting for osteogenic differentiation and prosthesis interface osseointegration, providing a valuable insight into the development of orthopaedic implants equipped with osteogenic mechanotransduction ability.
Collapse
Affiliation(s)
- Zhonghan Wang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, PR China; Orthopaedic Research Institute of Jilin Province, Changchun 130041, PR China
| | - Yue Zhao
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Haotian Bai
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, PR China; Orthopaedic Research Institute of Jilin Province, Changchun 130041, PR China
| | - Fei Chang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, PR China; Orthopaedic Research Institute of Jilin Province, Changchun 130041, PR China
| | - Xiaoyu Yang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, PR China; Orthopaedic Research Institute of Jilin Province, Changchun 130041, PR China
| | - Xianggang Wang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, PR China; Orthopaedic Research Institute of Jilin Province, Changchun 130041, PR China
| | - Jiaqi Liu
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, PR China; Orthopaedic Research Institute of Jilin Province, Changchun 130041, PR China
| | - Minfei Wu
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, PR China; Orthopaedic Research Institute of Jilin Province, Changchun 130041, PR China
| | - Quan Lin
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Jincheng Wang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, PR China; Orthopaedic Research Institute of Jilin Province, Changchun 130041, PR China
| | - He Liu
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, PR China; Orthopaedic Research Institute of Jilin Province, Changchun 130041, PR China.
| |
Collapse
|
6
|
Rahman SMT, Zhou W, Deiters A, Haugh JM. Dissection of MKK6 and p38 Signaling Using Light-Activated Protein Kinases. Chembiochem 2024; 25:e202300551. [PMID: 37856284 DOI: 10.1002/cbic.202300551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
Stress-activated signaling pathways orchestrate cellular behaviors and fates. Studying the precise role(s) of stress-activated protein kinases is challenging, because stress conditions induce adaptation and impose selection pressure. To meet this challenge, we have applied an optogenetic system with a single plasmid to express light-activated p38α or its upstream activator, MKK6, in conjunction with live-cell fluorescence microscopy. In starved cells, decaging of constitutively active p38α or MKK6 by brief exposure to UV light elicits rapid p38-mediated signaling, release of cytochrome c from mitochondria, and apoptosis with different kinetics. In parallel, light activation of p38α also suppresses autophagosome formation, similarly to stimulation with growth factors that activate PI3K/Akt/mTORC1 signaling. Active MKK6 negatively regulates serum-induced ERK activity, which is p38-independent as previously reported. Here, we reproduce that result with the one plasmid system and show that although decaging active p38α does not reduce basal ERK activity in our cells, it can block growth factor-stimulated ERK signaling in serum-starved cells. These results clarify the roles of MKK6 and p38α in dynamic signaling programs, which act in concert to actuate apoptotic death while suppressing cell survival mechanisms.
Collapse
Affiliation(s)
- Shah Md Toufiqur Rahman
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Wenyuan Zhou
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, 911 Partners Way, Raleigh, NC, 27695, USA
| |
Collapse
|
7
|
Deacon E, Li A, Boivin F, Dvorkin-Gheva A, Cunanan J, Bridgewater D. β-Catenin in the kidney stroma modulates pathways and genes to regulate kidney development. Dev Dyn 2023; 252:1224-1239. [PMID: 37227110 DOI: 10.1002/dvdy.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Kidney development is regulated by cellular interactions between the ureteric epithelium, mesenchyme, and stroma. Previous studies demonstrate essential roles for stromal β-catenin in kidney development. However, how stromal β-catenin regulates kidney development is not known. We hypothesize that stromal β-catenin modulates pathways and genes that facilitate communications with neighboring cell populations to regulate kidney development. RESULTS We isolated purified stromal cells with wild type, deficient, and overexpressed β-catenin by fluorescence-activated cell sorting and conducted RNA Sequencing. A Gene Ontology network analysis demonstrated that stromal β-catenin modulates key kidney developmental processes, including branching morphogenesis, nephrogenesis and vascular formation. Specific stromal β-catenin candidate target genes that may mediate these effects included secreted, cell-surface and transcriptional factors that regulate branching morphogenesis and nephrogenesis (Wnts, Bmp, Fgfr, Tcf/Lef) and secreted vascular guidance cues (Angpt1, VEGF, Sema3a). We validated established β-catenin targets including Lef1 and novel candidate β-catenin targets including Sema3e which have unknown roles in kidney development. CONCLUSIONS These studies advance our understanding of gene and biological pathway dysregulation in the context of stromal β-catenin misexpression during kidney development. Our findings suggest that during normal kidney development, stromal β-catenin may regulate secreted and cell-surface proteins to communicate with adjacent cell populations.
Collapse
Affiliation(s)
- Erin Deacon
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anna Li
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Felix Boivin
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anna Dvorkin-Gheva
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Joanna Cunanan
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Darren Bridgewater
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Paes de Faria J, Vale-Silva RS, Fässler R, Werner HB, Relvas JB. Pinch2 regulates myelination in the mouse central nervous system. Development 2022; 149:275524. [DOI: 10.1242/dev.200597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The extensive morphological changes of oligodendrocytes during axon ensheathment and myelination involve assembly of the Ilk-Parvin-Pinch (IPP) heterotrimeric complex of proteins to relay essential mechanical and biochemical signals between integrins and the actin cytoskeleton. Binding of Pinch1 and Pinch2 isoforms to Ilk is mutually exclusive and allows the formation of distinct IPP complexes with specific signaling properties. Using tissue-specific conditional gene ablation in mice, we reveal an essential role for Pinch2 during central nervous system myelination. Unlike Pinch1 gene ablation, loss of Pinch2 in oligodendrocytes results in hypermyelination and in the formation of pathological myelin outfoldings in white matter regions. These structural changes concur with inhibition of Rho GTPase RhoA and Cdc42 activities and phenocopy aspects of myelin pathology observed in corresponding mouse mutants. We propose a dual role for Pinch2 in preventing an excess of myelin wraps through RhoA-dependent control of membrane growth and in fostering myelin stability via Cdc42-dependent organization of cytoskeletal septins. Together, these findings indicate that IPP complexes containing Pinch2 act as a crucial cell-autonomous molecular hub ensuring synchronous control of key signaling networks during developmental myelination.
Collapse
Affiliation(s)
- Joana Paes de Faria
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto 1 , 4200-135 Porto , Portugal
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto 2 , 4200-135 Porto , Portugal
| | - Raquel S. Vale-Silva
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto 1 , 4200-135 Porto , Portugal
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto 2 , 4200-135 Porto , Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto 3 , 4050-313 Porto , Portugal
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry 4 , 82152 Martinsried , Germany
| | - Hauke B. Werner
- Max Planck Institute of Experimental Medicine 5 Department of Neurogenetics , , D-37075 Gottingen , Germany
| | - João B. Relvas
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto 1 , 4200-135 Porto , Portugal
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto 2 , 4200-135 Porto , Portugal
- Faculty of Medicine, Universidade do Porto 6 Department of Biomedicine , , 4200-319 Porto , Portugal
| |
Collapse
|
9
|
Ying YT, Ren WJ, Tan X, Yang J, Liu R, Du AF. Annexin A2-Mediated Internalization of Staphylococcus aureus into Bovine Mammary Epithelial Cells Requires Its Interaction with Clumping Factor B. Microorganisms 2021; 9:2090. [PMID: 34683411 PMCID: PMC8538401 DOI: 10.3390/microorganisms9102090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/26/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is a leading cause of contagious mastitis in dairy cattle. Internalization of S. aureus by bovine mammary gland epithelial cells is thought to be responsible for persistent and chronic intramammary infection, but the underlying mechanisms are not fully understood. METHODS In the present study, we evaluated the role of Annexin A2 (AnxA2), a membrane-binding protein, in S. aureus invasion into bovine mammary epithelial cell line (MAC-T). In vitro binding assays were performed to co-immunoprecipitate the binding proteins of AnxA2 in the lysates of S. aureus. RESULTS AnxA2 mediated the internalization but not adherence of S. aureus. Engagement of AnxA2 stimulated an integrin-linked protein kinase (ILK)/p38 MAPK cascade to induce S. aureus invasion. One of the AnxA2-precipitated proteins was identified as S. aureus clumping factor B (ClfB) through use of mass spectrometry. Direct binding of ClfB to AnxA2 was further confirmed by using a pull-down assay. Pre-incubation with recombinant ClfB protein enhanced S. aureus internalization, an effect that was specially blocked by anti-AnxA2 antibody. CONCLUSION Our results demonstrate that binding of ClfB to AnxA2 has a function in promoting S. aureus internalization. Targeting the interaction of ClfB and AnxA2 may confer protection against S. aureus mastitis.
Collapse
Affiliation(s)
- Yi-Tian Ying
- Department of Veterinary Medicine, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (Y.-T.Y.); (W.-J.R.); (J.Y.); (R.L.); (A.-F.D.)
- Veterinary Medical Center, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
- Institute of Preventive Veterinary Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Wei-Jia Ren
- Department of Veterinary Medicine, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (Y.-T.Y.); (W.-J.R.); (J.Y.); (R.L.); (A.-F.D.)
- Veterinary Medical Center, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
- Institute of Preventive Veterinary Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Xun Tan
- Department of Veterinary Medicine, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (Y.-T.Y.); (W.-J.R.); (J.Y.); (R.L.); (A.-F.D.)
- Veterinary Medical Center, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
- Institute of Preventive Veterinary Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Jing Yang
- Department of Veterinary Medicine, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (Y.-T.Y.); (W.-J.R.); (J.Y.); (R.L.); (A.-F.D.)
- Veterinary Medical Center, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
- Institute of Preventive Veterinary Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Rui Liu
- Department of Veterinary Medicine, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (Y.-T.Y.); (W.-J.R.); (J.Y.); (R.L.); (A.-F.D.)
| | - Ai-Fang Du
- Department of Veterinary Medicine, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (Y.-T.Y.); (W.-J.R.); (J.Y.); (R.L.); (A.-F.D.)
- Veterinary Medical Center, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
- Institute of Preventive Veterinary Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| |
Collapse
|
10
|
Bulus N, Brown KL, Mernaugh G, Böttcher A, Dong X, Sanders CR, Pozzi A, Fässler R, Zent R. Disruption of the integrin-linked kinase (ILK) pseudokinase domain affects kidney development in mice. J Biol Chem 2021; 296:100361. [PMID: 33539921 PMCID: PMC7949147 DOI: 10.1016/j.jbc.2021.100361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 11/27/2022] Open
Affiliation(s)
- Nada Bulus
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kyle L Brown
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Glenda Mernaugh
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anika Böttcher
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany; Institute of Diabetes and Regeneration Research, HelmholtzZentrum, Munich, Germany
| | - Xinyu Dong
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Charles R Sanders
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Ambra Pozzi
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Veterans Affairs Hospital, Nashville, Tennessee, USA
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Roy Zent
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Veterans Affairs Hospital, Nashville, Tennessee, USA.
| |
Collapse
|
11
|
Neonatal Hyperoxia Downregulates Claudin-4, Occludin, and ZO-1 Expression in Rat Kidney Accompanied by Impaired Proximal Tubular Development. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2641461. [PMID: 33343804 PMCID: PMC7725566 DOI: 10.1155/2020/2641461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/25/2020] [Accepted: 11/09/2020] [Indexed: 11/21/2022]
Abstract
Hyperoxia is essential to manage in preterm infants but causes injury to immature kidney. Previous study indicates that hyperoxia causes oxidative damage to neonatal kidney and impairs renal development. However, the underlying mechanisms by which neonatal hyperoxia effects on immature kidney still need to be elucidated. Tight junction, among which the representative proteins are claudin-4, occludin, and ZO-1, plays a crucial role in nephrogenesis and maintaining renal function. Inflammatory cytokines are involved in the pleiotropic regulation of tight junction proteins. Here, we investigated how neonatal hyperoxia affected the expression of key tight junction proteins and inflammatory factors (IL-6 and TNF-α) in the developing rat kidneys and elucidated their correlation with renal injury. We found claudin-4, occludin, and zonula occludens-1 (ZO-1) expression in proximal tubules was significantly downregulated after neonatal hyperoxia. The expression of these tight junction proteins was positively correlated with that of IL-6 and TNF-α, while claudin-4 expression was positively correlated with injury score of proximal tubules in mature kidneys. These findings indicated that impaired expression of tight junction proteins in kidney might be a potential mechanism of hyperoxia-induced nephrogenic disorders. It provides new insights to further study oxidative renal injury and development disorders and will be helpful for seeking potential therapeutics for hyperoxia-induced renal injury in the future.
Collapse
|
12
|
Zeng B, Chen C, Yi Q, Zhang X, Wu X, Zheng S, Li N, She F. N-terminal region of Helicobacter pylori CagA induces IL-8 production in gastric epithelial cells via the β1 integrin receptor. J Med Microbiol 2020; 69:457-464. [DOI: 10.1099/jmm.0.001088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Introduction.
Helicobacter pylori
is associated with gastrointestinal disease, most notably gastric cancer. Cytotoxin-associated antigen A (CagA), an important virulence factor for
H. pylori
pathogenicity, induces host cells to release inflammatory factors, especially interleukin-8 (IL-8). The mechanism by which C-terminal CagA induces IL-8 production has been studied extensively, but little is known about the role of the N-terminus.
Aim. To investigate the effect of CagA303–456aa (a peptide in the N-terminal CagA) on IL-8 production by gastric epithelial cells.
Methodology. CagA303-456aa was produced by a prokaryotic expression system and purified by Strep-tag affinity chromatography. An integrin β1 (ITGB1)-deficient AGS cell line was constructed using the CRISPR/Cas9 technique, and NCTC 11637 cagA and/or cagL knockout mutants were constructed via homologous recombination. The levels of IL-8 production were determined by enzyme-linked immunosorbent assay (ELISA), and p38 and ERK1/2 phosphorylation were examined by Western blot.
Results. CagA303-456aa induced IL-8 expression by AGS cells. IL-8 induction by CagA303-456aawas specifically inhibited by ITGB1 deficiency. Notably, CagA303-456aa activated the phosphorylation of both p38 and ERK1/2, and blocking p38 and ERK1/2 activity significantly reduced IL-8 induction by CagA303-456aa. ITGB1 deficiency also inhibited the activation of p38 phosphorylation by CagA303-456aa. Finally, experiments in CagA and/or CagL knockout bacterial lines demonstrated that extracellular CagA might induce IL-8 production by AGS cells.
Conclusion. Residues 303–456 of the N-terminal region of CagA induce IL-8 production via a CagA303-456–ITGB1–p38–IL-8 pathway, and ERK1/2 is also involved in the release of IL-8. Extracellular CagA might induce IL-8 production before translocation into AGS cells.
Collapse
Affiliation(s)
- Bangwei Zeng
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian Province 350001, PR China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| | - Chu Chen
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| | - Qingfeng Yi
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| | - Xiaoyan Zhang
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| | - Xiangyan Wu
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| | - Shurong Zheng
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| | - Neng Li
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| | - Feifei She
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| |
Collapse
|
13
|
Huang M, Zhu S, Huang H, He J, Tsuji K, Jin WW, Xie D, Ham O, Capen DE, Lu W, Păunescu TG, Yang B, Lu HAJ. Integrin-Linked Kinase Deficiency in Collecting Duct Principal Cell Promotes Necroptosis of Principal Cell and Contributes to Kidney Inflammation and Fibrosis. J Am Soc Nephrol 2019; 30:2073-2090. [PMID: 31653783 PMCID: PMC6830785 DOI: 10.1681/asn.2018111162] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 07/15/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Necroptosis is a newly discovered cell death pathway that plays a critical role in AKI. The involvement of integrin-linked kinase (ILK) in necroptosis has not been studied. METHODS We performed experiments in mice with an Ilk deletion in collecting duct (CD) principal cells (PCs), and cultured tubular epithelial cells treated with an ILK inhibitor or ILK siRNA knockdown. RESULTS Ilk deletion in CD PCs resulted in acute tubular injury and early mortality in mice. Progressive interstitial fibrosis and inflammation associated with the activation of the canonical TGF-β signaling cascade were detected in the kidneys of the mice lacking ILK in the CD PCs. In contrast to the minimal apoptosis detected in the animals' injured CDs, widespread necroptosis was present in ILK-deficient PCs, characterized by cell swelling, deformed mitochondria, and rupture of plasma membrane. In addition, ILK deficiency resulted in increased expression and activation of necroptotic proteins MLKL and RIPK3, and membrane translocation of MLKL in CD PCs. ILK inhibition and siRNA knockdown reduced cell survival in cultured tubular cells, concomitant with increased membrane accumulation of MLKL and/or phospho-MLKL. Administration of a necroptosis inhibitor, necrostatin-1, blocked cell death in vitro and significantly attenuated inflammation, interstitial fibrosis, and renal failure in ILK-deficient mice. CONCLUSIONS The study demonstrates the critical involvement of ILK in necroptosis through modulation of the RIPK3 and MLKL pathway and highlights the contribution of CD PC injury to the development of inflammation and interstitial fibrosis of the kidney.
Collapse
Affiliation(s)
- Ming Huang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shuai Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Huihui Huang
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jinzhao He
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kenji Tsuji
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - William W Jin
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dongping Xie
- Department of Physiology, Tongji University School of Medicine, Shanghai, China; and
| | - Onju Ham
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Diane E Capen
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Weining Lu
- Renal Section, Departments of Medicine, and Pathology & Laboratory Medicine, Boston University Medical Center, Boston, Massachusetts
| | - Teodor G Păunescu
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China;
| | - Hua A Jenny Lu
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts;
| |
Collapse
|
14
|
Thotakura S, Basova L, Makarenkova HP. FGF Gradient Controls Boundary Position Between Proliferating and Differentiating Cells and Regulates Lacrimal Gland Growth Dynamics. Front Genet 2019; 10:362. [PMID: 31191595 PMCID: PMC6546953 DOI: 10.3389/fgene.2019.00362] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
Fibroblast growth factor (FGF) signaling plays an important role in controlling cell proliferation, survival, and cell movements during branching morphogenesis of many organs. In mammals branching morphogenesis is primarily regulated by members of the FGF7-subfamily (FGF7 and FGF10), which are expressed in the mesenchyme, and signal to the epithelial cells through the “b” isoform of fibroblast growth factor receptor-2 (FGFR2). Our previous work demonstrated that FGF7 and FGF10 form different gradients in the extracellular matrix (ECM) and induce distinct cellular responses and gene expression profiles in the lacrimal and submandibular glands. The last finding was the most surprising since both FGF7 and FGF10 bind signal most strongly through the same fibroblast growth factor receptor-2b isoform (FGFR2b). Here we revisit this question to gain an explanation of how the different FGFs regulate gene expression. For this purpose, we employed our ex vivo epithelial explant migration assay in which isolated epithelial explants are grown near the FGF loaded beads. We demonstrate that the graded distribution of FGF induces activation of ERK1/2 MAP kinases that define the position of the boundary between proliferating “bud” and differentiating “stalk” cells of growing lacrimal gland epithelium. Moreover, we showed that gene expression profiles of the epithelial explants exposed to distinct FGFs strictly depend on the ratio between “bud” and “stalk” area. Our data also suggests that differentiation of “stalk” and “bud” regions within the epithelial explants is necessary for directional and persistent epithelial migration. Gaining a better understanding of FGF functions is important for development of new approaches to enhance tissue regeneration.
Collapse
Affiliation(s)
- Suharika Thotakura
- Department of Molecular Medicine, The Scripps Research Institute, San Diego, CA, United States
| | - Liana Basova
- Department of Molecular Medicine, The Scripps Research Institute, San Diego, CA, United States
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, San Diego, CA, United States
| |
Collapse
|
15
|
Torban E, Braun F, Wanner N, Takano T, Goodyer PR, Lennon R, Ronco P, Cybulsky AV, Huber TB. From podocyte biology to novel cures for glomerular disease. Kidney Int 2019; 96:850-861. [PMID: 31420194 DOI: 10.1016/j.kint.2019.05.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/23/2019] [Accepted: 05/13/2019] [Indexed: 01/20/2023]
Abstract
The podocyte is a key component of the glomerular filtration barrier. Podocyte dysfunction is central to the underlying pathophysiology of many common glomerular diseases, including diabetic nephropathy, glomerulonephritis and genetic forms of nephrotic syndrome. Collectively, these conditions affect millions of people worldwide, and account for the majority of kidney diseases requiring dialysis and transplantation. The 12th International Podocyte Conference was held in Montreal, Canada from May 30 to June 2, 2018. The primary aim of this conference was to bring together nephrologists, clinician scientists, basic scientists and their trainees from all over the world to present their research and to establish networks with the common goal of developing new therapies for glomerular diseases based on the latest advances in podocyte biology. This review briefly highlights recent advances made in understanding podocyte structure and metabolism, experimental systems in which to study podocytes and glomerular disease, disease mediators, genetic and immune origins of glomerulopathies, and the development of novel therapeutic agents to protect podocyte and glomerular injury.
Collapse
Affiliation(s)
- Elena Torban
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada.
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tomoko Takano
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Paul R Goodyer
- Department of Pediatrics, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Pierre Ronco
- Sorbonne University, INSERM UMR_S 1155, and Nephrology and Dialysis Department, Hôpital Tenon, Paris France
| | - Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
16
|
Rsu1-dependent control of PTEN expression is regulated via ATF2 and cJun. J Cell Commun Signal 2019; 13:331-341. [PMID: 30680530 DOI: 10.1007/s12079-018-00504-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022] Open
Abstract
The Rsu1 protein contributes to cell adhesion and migration via its association with the adaptor complex of Integrin linked kinase (ILK), PINCH, and Parvin (IPP), which binds to the cytoplasmic domain of β1 integrins joining integrins to the actin cytoskeleton. Rsu1 binding to PINCH in the IPP complex is required for EGF-induced adhesion, spreading and migration in MCF10A mammary epithelial cells. In addition, Rsu1 expression inhibits Jun kinase but is necessary for the activation of MKK4 and p38 Map kinase signaling essential for migration in MCF10A cells. The data reported here examines the links between MKK4-p38-ATF2 signaling and AKT regulation in MCF10A cells. Ectopic Rsu1 inhibited AKT1 phosphorylation while Rsu1 depletion induced AKT activation and AKT1 phosphorylation of MKK4 on serine 80, blocking MKK4 activity. Rsu1 depletion also reduced the RNA for lipid phosphatase PTEN thus implicating PTEN in modulating levels of activated AKT in these conditions. ChIP analysis of the PTEN promoter revealed that Rsu1 depletion prevented binding of ATF2 to a positive regulatory site in the PTEN promoter and the enhanced binding of cJun to a negatively regulatory PTEN promoter site. These results demonstrate a mechanism by which Rsu1 adhesion signaling alters the balance between MKK4-p38-ATF2 and cJun activation thus altering PTEN expression in MCF10A cells.
Collapse
|
17
|
Yue G, Song W, Xu S, Sun Y, Wang Z. Role of ILK/p38 pathway in mediating the enhanced osteogenic differentiation of bone marrow mesenchymal stem cells on amorphous carbon coating. Biomater Sci 2019; 7:975-984. [DOI: 10.1039/c8bm01151f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Amorphous carbon (a-C) film is a promising candidate for metallic implant surface coatings to improve corrosion resistance and osteogenesis in vivo.
Collapse
Affiliation(s)
- Guangna Yue
- Department of Oral Implantology
- School of Stomatology & Shanghai Engineering Research Center of Tooth Restoration and Regeneration
- Tongji University
- Shanghai 200072
- China
| | - Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology
- Department of Prosthodontics
- School of Stomatology
- The Fourth Military Medical University
- Xi'an 710032
| | - Shuyu Xu
- Department of Oral Implantology
- School of Stomatology & Shanghai Engineering Research Center of Tooth Restoration and Regeneration
- Tongji University
- Shanghai 200072
- China
| | - Yao Sun
- Department of Oral Implantology
- School of Stomatology & Shanghai Engineering Research Center of Tooth Restoration and Regeneration
- Tongji University
- Shanghai 200072
- China
| | - Zuolin Wang
- Department of Oral Implantology
- School of Stomatology & Shanghai Engineering Research Center of Tooth Restoration and Regeneration
- Tongji University
- Shanghai 200072
- China
| |
Collapse
|
18
|
Kurtzeborn K, Cebrian C, Kuure S. Regulation of Renal Differentiation by Trophic Factors. Front Physiol 2018; 9:1588. [PMID: 30483151 PMCID: PMC6240607 DOI: 10.3389/fphys.2018.01588] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/23/2018] [Indexed: 12/11/2022] Open
Abstract
Classically, trophic factors are considered as proteins which support neurons in their growth, survival, and differentiation. However, most neurotrophic factors also have important functions outside of the nervous system. Especially essential renal growth and differentiation regulators are glial cell line-derived neurotrophic factor (GDNF), bone morphogenetic proteins (BMPs), and fibroblast growth factors (FGFs). Here we discuss how trophic factor-induced signaling contributes to the control of ureteric bud (UB) branching morphogenesis and to maintenance and differentiation of nephrogenic mesenchyme in embryonic kidney. The review includes recent advances in trophic factor functions during the guidance of branching morphogenesis and self-renewal versus differentiation decisions, both of which dictate the control of kidney size and nephron number. Creative utilization of current information may help better recapitulate renal differentiation in vitro, but it is obvious that significantly more basic knowledge is needed for development of regeneration-based renal therapies.
Collapse
Affiliation(s)
- Kristen Kurtzeborn
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Medicum, University of Helsinki, Helsinki, Finland
| | - Cristina Cebrian
- Developmental Biology Division, Cincinnati Children’s Hospital, Cincinnati, OH, United States
| | - Satu Kuure
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Medicum, University of Helsinki, Helsinki, Finland
- GM-Unit, Laboratory Animal Centre, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
Gong X, Guo X, Huang R, Liao H, Zhang Q, Yan J, Luo L, Zhang Q, Qiu A, Sun Y, Liang X. Expression of ILK in renal stroma is essential for multiple aspects of renal development. Am J Physiol Renal Physiol 2018; 315:F374-F385. [PMID: 29638158 DOI: 10.1152/ajprenal.00509.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kidney development involves reciprocal and inductive interactions between the ureteric bud (UB) and surrounding metanephric mesenchyme. Signals from renal stromal lineages are essential for differentiation and patterning of renal epithelial and mesenchymal cell types and renal vasculogenesis; however, underlying mechanisms remain not fully understood. Integrin-linked kinase (ILK), a key component of integrin signaling pathway, plays an important role in kidney development. However, the role of ILK in renal stroma remains unknown. Here, we ablated ILK in renal stromal lineages using a platelet-derived growth factor receptor B ( Pdgfrb) -Cre mouse line, and the resulting Ilk mutant mice presented postnatal growth retardation and died within 3 wk of age with severe renal developmental defects. Pdgfrb-Cre;Ilk mutant kidneys exhibited a significant decrease in UB branching and disrupted collecting duct formation. From E16.5 onward, renal interstitium was disorganized, forming medullary interstitial pseudocysts. Pdgfrb-Cre;Ilk mutants exhibited renal vasculature mispatterning and impaired glomerular vascular differentiation. Impaired glial cell-derived neurotrophic factor/Ret and bone morphogenetic protein 7 signaling pathways were observed in Pdgfrb-Cre;Ilk mutant kidneys. Furthermore, phosphoproteomic and Western blot analyses revealed a significant dysregulation of a number of key signaling pathways required for kidney morphogenesis, including PI3K/AKT and MAPK/ERK in Pdgfrb-Cre;Ilk mutants. Our results revealed a critical requirement for ILK in renal-stromal and vascular development, as well as a noncell autonomous role of ILK in UB branching morphogenesis.
Collapse
Affiliation(s)
- Xiaohui Gong
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, School of Medicine, Tongji University , Shanghai , China
| | - Xiaoxia Guo
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, School of Medicine, Tongji University , Shanghai , China
| | - Ru Huang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, School of Medicine, Tongji University , Shanghai , China
| | - Huimin Liao
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, School of Medicine, Tongji University , Shanghai , China
| | - Qingquan Zhang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, School of Medicine, Tongji University , Shanghai , China
| | - Jie Yan
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, School of Medicine, Tongji University , Shanghai , China
| | - Lina Luo
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, School of Medicine, Tongji University , Shanghai , China
| | - Qitong Zhang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, School of Medicine, Tongji University , Shanghai , China
| | - Andong Qiu
- School of Life Sciences and Technology, Tongji University , Shanghai , China
| | - Yunfu Sun
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, School of Medicine, Tongji University , Shanghai , China
| | - Xingqun Liang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, School of Medicine, Tongji University , Shanghai , China
| |
Collapse
|
20
|
Matricellular protein CCN1 mediates doxorubicin-induced cardiomyopathy in mice. Oncotarget 2017; 7:36698-36710. [PMID: 27167338 PMCID: PMC5095032 DOI: 10.18632/oncotarget.9162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/23/2016] [Indexed: 12/24/2022] Open
Abstract
Doxorubicin (DOX) is an effective chemotherapeutic agent however its clinical use is limited by its cumulative cardiotoxicity. Matricellular protein CCN1 mediates work-overload-induced cardiac injury. We aimed to assess the role of CCN1 in DOX-associated cardiomyopathy. Here we discovered CCN1 expression in the myocardium 1 day after DOX treatment (15 mg/kg; i.p.) in mice. Whereas CCN1 synergizes with Fas ligand (FasL) to induce cardiomyocyte apoptosis, we found that FasL was also induced by DOX in the heart. To assess the function of CCN1 in vivo, knockin mice (Ccn1dm/dm) expressing an β6β1-binding defective CCN1 mutant were treated with a single dose of DOX (15 mg/kg; i.p.). Compared with wild-type mice, Ccn1dm/dm mice were resistant to DOX-induced cardiac injury and dysfunction 14 days after injection. Using rat cardiomyoblast H9c2 cells, we demonstrated that DOX induced reactive oxygen species accumulation to upregulate CCN1 and FasL expression. CCN1 mediated DOX cardiotoxicity by engaging integrin β6β1 to promote p38 mitogen-activated protein kinase activation and the release of mitochondrial Smac and HtrA2 to cytosol, thereby counteracting the inhibition of XIAP and facilitating apoptosis. In summary, CCN1 critically mediates DOX-induced cardiotoxicity. Disrupting CCN1/β6β1 engagement abolishes DOX-associated cardiomyopathy in mice.
Collapse
|
21
|
Integrin-Linked Kinase (ILK) Deletion Disrupts Oligodendrocyte Development by Altering Cell Cycle. J Neurosci 2017; 37:397-412. [PMID: 28077718 DOI: 10.1523/jneurosci.2113-16.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/28/2016] [Accepted: 11/15/2016] [Indexed: 01/29/2023] Open
Abstract
During development, oligodendrocytes are initially specified, after which oligodendrocyte precursor cells (OPCs) migrate and proliferate before differentiating into myelinating cells. Lineage-specific programming of oligodendrocytes results from sensing environmental cues through membrane-bound receptors and related intracellular signaling molecules. Integrin-linked kinase (ILK) is an important protein that is expressed at the inner margins of the plasma membrane and can mediate some of these signals. The current studies demonstrate that ILK deletion reduces the proliferation and differentiation of OPCs in the developing CNS. There was a significant decrease in the number of OPCs and mature oligodendrocytes throughout postnatal development in Olig1Cre+/- × ILKfl/fl mice. These changes were accompanied by reduced numbers of myelinated axons. Key proteins involved in cell cycle regulation were dysregulated. Cyclin D1/D3 and cyclin-dependent kinase 2/4 (cdc2/cdc4) were downregulated and the cell cycle inhibitor protein p27 Kip1 was upregulated. Therefore, ILK deletion impaired the developmental profile, proliferation, and differentiation of OPCs by altering the expression of regulatory cytoplasmic and nuclear factors. SIGNIFICANCE STATEMENT Integrin-linked kinase (ILK) is a scaffolding protein involved in integrating signals from the extracellular environment and communicating those signals to downstream effectors within cells. It has been proposed to regulate aspects of oligodendrocyte process extension and thereby myelination. However, the current studies demonstrate that it has an earlier impact on cells in this lineage. Knocking down ILK in Olig1-Cre-expressing cells reduces the pool of oligodendrocyte progenitor cells (OPCs). This smaller pool of OPCs results from altered cell cycle and reduced cell proliferation. These cells myelinate fewer axons than in wild-type mice and, in corpus callosum, the myelin is thinner than in controls. Interestingly, the smaller pool of spinal cord oligodendrocytes generates myelin that is of normal thickness.
Collapse
|
22
|
Raman A, Reif GA, Dai Y, Khanna A, Li X, Astleford L, Parnell SC, Calvet JP, Wallace DP. Integrin-Linked Kinase Signaling Promotes Cyst Growth and Fibrosis in Polycystic Kidney Disease. J Am Soc Nephrol 2017; 28:2708-2719. [PMID: 28522687 DOI: 10.1681/asn.2016111235] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/12/2017] [Indexed: 12/15/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by innumerous fluid-filled cysts and progressive deterioration of renal function. Previously, we showed that periostin, a matricellular protein involved in tissue repair, is markedly overexpressed by cyst epithelial cells. Periostin promotes cell proliferation, cyst growth, interstitial fibrosis, and the decline in renal function in PKD mice. Here, we investigated the regulation of these processes by the integrin-linked kinase (ILK), a scaffold protein that links the extracellular matrix to the actin cytoskeleton and is stimulated by periostin. Pharmacologic inhibition or shRNA knockdown of ILK prevented periostin-induced Akt/mammalian target of rapamycin (mTOR) signaling and ADPKD cell proliferation in vitro Homozygous deletion of ILK in renal collecting ducts (CD) of Ilkfl/fl ;Pkhd1-Cre mice caused tubule dilations, apoptosis, fibrosis, and organ failure by 10 weeks of age. By contrast, Ilkfl/+ ;Pkhd1-Cre mice had normal renal morphology and function and survived >1 year. Reduced expression of ILK in Pkd1fl/fl ;Pkhd1-Cre mice, a rapidly progressive model of ADPKD, decreased renal Akt/mTOR activity, cell proliferation, cyst growth, and interstitial fibrosis, and significantly improved renal function and animal survival. Additionally, CD-specific knockdown of ILK strikingly reduced renal cystic disease and fibrosis and extended the life of pcy/pcy mice, a slowly progressive PKD model. We conclude that ILK is critical for maintaining the CD epithelium and renal function and is a key intermediate for periostin activation of signaling pathways involved in cyst growth and fibrosis in PKD.
Collapse
Affiliation(s)
- Archana Raman
- Department of Molecular and Integrative Physiology.,The Kidney Institute, and
| | - Gail A Reif
- The Kidney Institute, and.,Departments of Internal Medicine and
| | - Yuqiao Dai
- The Kidney Institute, and.,Departments of Internal Medicine and
| | - Aditi Khanna
- The Kidney Institute, and.,Departments of Internal Medicine and
| | - Xiaogang Li
- The Kidney Institute, and.,Departments of Internal Medicine and
| | | | - Stephen C Parnell
- The Kidney Institute, and.,Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - James P Calvet
- The Kidney Institute, and.,Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Darren P Wallace
- Department of Molecular and Integrative Physiology, .,The Kidney Institute, and.,Departments of Internal Medicine and
| |
Collapse
|
23
|
Smeeton J, Dhir P, Hu D, Feeney MM, Chen L, Rosenblum ND. Integrin-linked Kinase Controls Renal Branching Morphogenesis via Dual Specificity Phosphatase 8. J Am Soc Nephrol 2015; 27:1465-77. [PMID: 26407593 DOI: 10.1681/asn.2015020139] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 08/11/2015] [Indexed: 11/03/2022] Open
Abstract
Integrin-linked kinase (ILK) is an intracellular scaffold protein with critical cell-specific functions in the embryonic and mature mammalian kidney. Previously, we demonstrated a requirement for Ilk during ureteric branching and cell cycle regulation in collecting duct cells in vivo Although in vitro data indicate that ILK controls p38 mitogen-activated protein kinase (p38MAPK) activity, the contribution of ILK-p38MAPK signaling to branching morphogenesis in vivo is not defined. Here, we identified genes that are regulated by Ilk in ureteric cells using a whole-genome expression analysis of whole-kidney mRNA in mice with Ilk deficiency in the ureteric cell lineage. Six genes with expression in ureteric tip cells, including Wnt11, were downregulated, whereas the expression of dual-specificity phosphatase 8 (DUSP8) was upregulated. Phosphorylation of p38MAPK was decreased in kidney tissue with Ilk deficiency, but no significant decrease in the phosphorylation of other intracellular effectors previously shown to control renal morphogenesis was observed. Pharmacologic inhibition of p38MAPK activity in murine inner medullary collecting duct 3 (mIMCD3) cells decreased expression of Wnt11, Krt23, and Slo4c1 DUSP8 overexpression in mIMCD3 cells significantly inhibited p38MAPK activation and the expression of Wnt11 and Slo4c1. Adenovirus-mediated overexpression of DUSP8 in cultured embryonic murine kidneys decreased ureteric branching and p38MAPK activation. Together, these data demonstrate that Ilk controls branching morphogenesis by regulating the expression of DUSP8, which inhibits p38MAPK activity and decreases branching morphogenesis.
Collapse
Affiliation(s)
- Joanna Smeeton
- Program in Developmental and Stem Cell Biology, and Departments of Paediatrics, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Priya Dhir
- Program in Developmental and Stem Cell Biology, and
| | - Di Hu
- Program in Developmental and Stem Cell Biology, and
| | | | - Lin Chen
- Program in Developmental and Stem Cell Biology, and
| | - Norman D Rosenblum
- Program in Developmental and Stem Cell Biology, and Departments of Paediatrics, and Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada; and
| |
Collapse
|
24
|
Signaling during Kidney Development. Cells 2015; 4:112-32. [PMID: 25867084 PMCID: PMC4493451 DOI: 10.3390/cells4020112] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 12/17/2022] Open
Abstract
The kidney plays an essential role during excretion of metabolic waste products, maintenance of key homeostasis components such as ion concentrations and hormone levels. It influences the blood pressure, composition and volume. The kidney tubule system is composed of two distinct cell populations: the nephrons forming the filtering units and the collecting duct system derived from the ureteric bud. Nephrons are composed of glomeruli that filter the blood to the Bowman’s capsule and tubular structures that reabsorb and concentrate primary urine. The collecting duct is a Wolffian duct-derived epithelial tube that concentrates and collects urine and transfers it via the renal pelvis into the bladder. The mammalian kidney function depends on the coordinated development of specific cell types within a precise architectural framework. Due to the availability of modern analysis techniques, the kidney has become a model organ defining the paradigm to study organogenesis. As kidney diseases are a problem worldwide, the understanding of mammalian kidney cells is of crucial importance to develop diagnostic tools and novel therapies. This review focuses on how the pattern of renal development is generated, how the inductive signals are regulated and what are their effects on proliferation, differentiation and morphogenesis.
Collapse
|
25
|
Pan L, North HA, Sahni V, Jeong SJ, Mcguire TL, Berns EJ, Stupp SI, Kessler JA. β1-Integrin and integrin linked kinase regulate astrocytic differentiation of neural stem cells. PLoS One 2014; 9:e104335. [PMID: 25098415 PMCID: PMC4123915 DOI: 10.1371/journal.pone.0104335] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/11/2014] [Indexed: 11/18/2022] Open
Abstract
Astrogliosis with glial scar formation after damage to the nervous system is a major impediment to axonal regeneration and functional recovery. The present study examined the role of β1-integrin signaling in regulating astrocytic differentiation of neural stem cells. In the adult spinal cord β1-integrin is expressed predominantly in the ependymal region where ependymal stem cells (ESCs) reside. β1-integrin signaling suppressed astrocytic differentiation of both cultured ESCs and subventricular zone (SVZ) progenitor cells. Conditional knockout of β1-integrin enhanced astrogliogenesis both by cultured ESCs and by SVZ progenitor cells. Previous studies have shown that injection into the injured spinal cord of a self-assembling peptide amphiphile that displays an IKVAV epitope (IKVAV-PA) limits glial scar formation and enhances functional recovery. Here we find that injection of IKVAV-PA induced high levels of β1-integrin in ESCs in vivo, and that conditional knockout of β1-integrin abolished the astroglial suppressive effects of IKVAV-PA in vitro. Injection into an injured spinal cord of PAs expressing two other epitopes known to interact with β1-integrin, a Tenascin C epitope and the fibronectin epitope RGD, improved functional recovery comparable to the effects of IKVAV-PA. Finally we found that the effects of β1-integrin signaling on astrogliosis are mediated by integrin linked kinase (ILK). These observations demonstrate an important role for β1-integrin/ILK signaling in regulating astrogliosis from ESCs and suggest ILK as a potential target for limiting glial scar formation after nervous system injury.
Collapse
Affiliation(s)
- Liuliu Pan
- Department of Neurology, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| | - Hilary A. North
- Department of Neurology, Northwestern University, Chicago, Illinois, United States of America
| | - Vibhu Sahni
- Department of Neurology, Northwestern University, Chicago, Illinois, United States of America
| | - Su Ji Jeong
- Department of Neurology, Northwestern University, Chicago, Illinois, United States of America
| | - Tammy L. Mcguire
- Department of Neurology, Northwestern University, Chicago, Illinois, United States of America
| | - Eric J. Berns
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Samuel I. Stupp
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Chemistry, Northwestern University, Evanston, Illinois, United States of America
- Department of Medicine and Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - John A. Kessler
- Department of Neurology, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
26
|
Blake J, Rosenblum ND. Renal branching morphogenesis: morphogenetic and signaling mechanisms. Semin Cell Dev Biol 2014; 36:2-12. [PMID: 25080023 DOI: 10.1016/j.semcdb.2014.07.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 12/28/2022]
Abstract
The human kidney is composed of an arborized network of collecting ducts, calyces and urinary pelvis that facilitate urine excretion and regulate urine composition. The renal collecting system is formed in utero, completed by the 34th week of gestation in humans, and dictates final nephron complement. The renal collecting system arises from the ureteric bud, a derivative of the intermediate-mesoderm derived nephric duct that responds to inductive signals from adjacent tissues via a process termed ureteric induction. The ureteric bud subsequently undergoes a series of iterative branching and remodeling events in a process called renal branching morphogenesis. Altered signaling that disrupts patterning of the nephric duct, ureteric induction, or renal branching morphogenesis leads to varied malformations of the renal collecting system collectively known as congenital anomalies of the kidney and urinary tract (CAKUT) and is the most frequently detected congenital renal aberration in infants. Here, we describe critical morphogenetic and cellular events that govern nephric duct specification, ureteric bud induction, renal branching morphogenesis, and cessation of renal branching morphogenesis. We also highlight salient molecular signaling pathways that govern these processes, and the investigative techniques used to interrogate them.
Collapse
Affiliation(s)
- Joshua Blake
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Canada; Department of Physiology, University of Toronto, Canada
| | - Norman D Rosenblum
- Division of Nephrology, Department of Paediatrics, The Hospital for Sick Children, Canada; Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Canada; Department of Physiology, University of Toronto, Canada.
| |
Collapse
|
27
|
LUO LINGRONG, LIU HONG, DONG ZHENG, SUN LIN, PENG YOUMING, LIU FUYOU. Small interfering RNA targeting ILK inhibits EMT in human peritoneal mesothelial cells through phosphorylation of GSK-3β. Mol Med Rep 2014; 10:137-44. [DOI: 10.3892/mmr.2014.2162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 03/11/2014] [Indexed: 11/05/2022] Open
|
28
|
Ishida K, Yuge Y, Hanaoka M, Yasukawa M, Minami Y, Ogawa M, Masumoto KH, Shigeyoshi Y, Saito M, Tsuji T. Gadd45gregulates dental epithelial cell proliferation through p38 MAPK-mediatedp21expression. Genes Cells 2013; 18:660-71. [DOI: 10.1111/gtc.12067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/15/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Kentaro Ishida
- Research Institute for Science and Technology; Tokyo University of Science; Chiba; 278-8510; Japan
| | - Yohei Yuge
- Department of Biological Science and Technology; Graduate School of Industrial Science and Technology; Tokyo University of Science; Chiba; 278-8510; Japan
| | - Mai Hanaoka
- Department of Biological Science and Technology; Graduate School of Industrial Science and Technology; Tokyo University of Science; Chiba; 278-8510; Japan
| | - Masato Yasukawa
- Department of Biological Science and Technology; Graduate School of Industrial Science and Technology; Tokyo University of Science; Chiba; 278-8510; Japan
| | - Yoko Minami
- Department of Biological Science and Technology; Graduate School of Industrial Science and Technology; Tokyo University of Science; Chiba; 278-8510; Japan
| | - Miho Ogawa
- Organ Technologies Inc.; Tokyo; 101-0048; Japan
| | - Ko-hei Masumoto
- Department of Anatomy and Neurobiology; Kiniki University Faculty of Medicine; Osaka; 589-8511; Japan
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology; Kiniki University Faculty of Medicine; Osaka; 589-8511; Japan
| | | | | |
Collapse
|
29
|
Selective regulation of p38β protein and signaling by integrin-linked kinase mediates bladder cancer cell migration. Oncogene 2013; 33:690-701. [DOI: 10.1038/onc.2013.20] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/13/2012] [Accepted: 12/17/2012] [Indexed: 12/13/2022]
|
30
|
Jung YK, Han SW, Kim GW, Jeong JH, Kim HJ, Choi JY. DICAM inhibits osteoclast differentiation through attenuation of the integrin αVβ3 pathway. J Bone Miner Res 2012; 27:2024-34. [PMID: 22492581 DOI: 10.1002/jbmr.1632] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dual immunoglobulin (Ig) domain-containing adhesion molecule (DICAM) is involved in cell-cell adhesion through a heterophilic interaction with αVβ3 integrin, which suggests that DICAM may participate in osteoclast differentiation. DICAM was localized in the plasma membrane of RAW264.7 and THP-1 cells, and its expression gradually increased during osteoclastogenesis in mouse bone marrow-derived macrophages (BMMs) treated with receptor activator of nuclear factor κ-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Forced expression of DICAM in BMMs and RAW264.7 cells blocked the generation of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts. Conversely, knockdown of DICAM by small hairpin RNA (shRNA) increased osteoclast formation in RAW264.7 cells. DICAM-mediated suppression of osteoclast differentiation was in part due to the inhibition of the p38 mitogen-activated protein (MAP) kinase pathway, which was corroborated by a decrease in the expression of c-Fos and nuclear factor of activated T cells (NFAT)c1. Mechanistically, DICAM directly interacted with integrin β3, which inhibited heterodimerization between integrin αV and β3. Exogenous expression of integrin β3 or high-dose M-CSF rescued DICAM-mediated inhibition of osteoclastogenesis, suggesting crosstalk between the integrin β3 and c-Fms pathways. Finally, recombinant DICAM ectodomain suppressed the RANKL- and M-CSF-induced osteoclastogenesis of BMMs. Collectively, these results indicate that DICAM acts as a negative regulator of osteoclast differentiation by suppressing the integrin αVβ3 pathway.
Collapse
Affiliation(s)
- Youn-Kwan Jung
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu, Republic of Korea
| | | | | | | | | | | |
Collapse
|
31
|
β1 integrin NPXY motifs regulate kidney collecting-duct development and maintenance by induced-fit interactions with cytosolic proteins. Mol Cell Biol 2012; 32:4080-91. [PMID: 22869523 DOI: 10.1128/mcb.00568-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Loss of β1 integrin expression inhibits renal collecting-system development. Two highly conserved NPXY motifs in the distal β1 tail regulate integrin function by associating with phosphtyrosine binding (PTB) proteins, such as talin and kindlin. Here, we define the roles of these two tyrosines in collecting-system development and delineate the structural determinants of the distal β1 tail using nuclear magnetic resonance (NMR). Mice carrying alanine mutations have moderate renal collecting-system developmental abnormalities relative to β1-null mice. Phenylalanine mutations did not affect renal collecting-system development but increased susceptibility to renal injury. NMR spectra in bicelles showed the distal β1 tail is disordered and does not interact with the model membrane surface. Alanine or phenylalanine mutations did not alter β1 structure or interactions between α and β1 subunit transmembrane/cytoplasmic domains; however, they did decrease talin and kindlin binding. Thus, these studies highlight the fact that the functional roles of the NPXY motifs are organ dependent. Moreover, the β1 cytoplasmic tail, in the context of the adjacent transmembrane domain in bicelles, is significantly different from the more ordered, membrane-associated β3 integrin tail. Finally, tyrosine mutations of β1 NPXY motifs induce phenotypes by disrupting their interactions with critical integrin binding proteins like talins and kindlins.
Collapse
|
32
|
Ferrari G, Terushkin V, Wolff MJ, Zhang X, Valacca C, Poggio P, Pintucci G, Mignatti P. TGF-β1 induces endothelial cell apoptosis by shifting VEGF activation of p38(MAPK) from the prosurvival p38β to proapoptotic p38α. Mol Cancer Res 2012; 10:605-14. [PMID: 22522454 DOI: 10.1158/1541-7786.mcr-11-0507] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
TGF-β1 and VEGF, both angiogenesis inducers, have opposing effects on vascular endothelial cells. TGF-β1 induces apoptosis; VEGF induces survival. We have previously shown that TGF-β1 induces endothelial cell expression of VEGF, which mediates TGF-β1 induction of apoptosis through activation of p38 mitogen-activated protein kinase (MAPK). Because VEGF activates p38(MAPK) but protects the cells from apoptosis, this finding suggested that TGF-β1 converts p38(MAPK) signaling from prosurvival to proapoptotic. Four isoforms of p38(MAPK) -α, β, γ, and δ-have been identified. Therefore, we hypothesized that different p38(MAPK) isoforms control endothelial cell apoptosis or survival, and that TGF-β1 directs VEGF activation of p38(MAPK) from a prosurvival to a proapoptotic isoform. Here, we report that cultured endothelial cells express p38α, β, and γ. VEGF activates p38β, whereas TGF-β1 activates p38α. TGF-β1 treatment rapidly induces p38α activation and apoptosis. Subsequently, p38α activation is downregulated, p38β is activated, and the surviving cells become refractory to TGF-β1 induction of apoptosis and proliferate. Gene silencing of p38α blocks TGF-β1 induction of apoptosis, whereas downregulation of p38β or p38γ expression results in massive apoptosis. Thus, in endothelial cells p38α mediates apoptotic signaling, whereas p38β and p38γ transduce survival signaling. TGF-β1 activation of p38α is mediated by VEGF, which in the absence of TGF-β1 activates p38β. Therefore, these results show that TGF-β1 induces endothelial cell apoptosis by shifting VEGF signaling from the prosurvival p38β to the proapoptotic p38α.
Collapse
Affiliation(s)
- Giovanni Ferrari
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Sims-Lucas S, Di Giovanni V, Schaefer C, Cusack B, Eswarakumar VP, Bates CM. Ureteric morphogenesis requires Fgfr1 and Fgfr2/Frs2α signaling in the metanephric mesenchyme. J Am Soc Nephrol 2012; 23:607-17. [PMID: 22282599 DOI: 10.1681/asn.2011020165] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Conditional deletion of fibroblast growth factor receptors (Fgfrs) 1 and 2 in the metanephric mesenchyme (MM) of mice leads to a virtual absence of MM and unbranched ureteric buds that are occasionally duplex. Deletion of Fgfr2 in the MM leads to kidneys with cranially displaced ureteric buds along the Wolffian duct or duplex ureters. Mice with point mutations in Fgfr2's binding site for the docking protein Frs2α (Fgfr2(LR/LR)), however, have normal kidneys; the roles of the Fgfr2/Frs2α signaling axis in MM development and regulating the ureteric bud induction site are incompletely understood. Here, we generated mice with both Fgfr1 deleted in the MM and Fgfr2(LR/LR) point mutations (Fgfr1(Mes-/-)Fgfrf2(LR/LR)). Unlike mice lacking both Fgfr1 and Fgfr2 in the MM, these mice had no obvious MM defects but had cranially displaced or duplex ureteric buds, probably as a result of decreased Bmp4 expression. Fgfr1(Mes-/-)Fgfr2(LR/LR) mice also had subsequent defects in ureteric morphogenesis, including dilated, hyperproliferative tips and decreased branching. Ultimately, they developed progressive renal cystic dysplasia associated with abnormally oriented cell division. Furthermore, mutants had increased and ectopic expression of Ret and its downstream targets in ureteric trunks, and exhibited upregulation of Ret/Etv4/5 signaling effectors, including Met, Myb, Cxcr4, and Crlf1. These defects were associated with reduced expression of Bmp4 in mesenchymal cells near mutant ureteric bud tips. Taken together, these results demonstrate that Fgfr2/Frs2α signaling in the MM promotes Bmp4 expression, which represses Ret levels and signaling in the ureteric bud to ensure normal ureteric morphogenesis.
Collapse
Affiliation(s)
- Sunder Sims-Lucas
- Rangos Research Center, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15201, USA
| | | | | | | | | | | |
Collapse
|
34
|
Vanslambrouck J, Li J, Little MH. The Renal Papilla: An Enigma in Damage and Repair. J Am Soc Nephrol 2011; 22:2145-7. [DOI: 10.1681/asn.2011100984] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
35
|
Pozzi A, Zent R. Extracellular matrix receptors in branched organs. Curr Opin Cell Biol 2011; 23:547-53. [PMID: 21561755 PMCID: PMC3181278 DOI: 10.1016/j.ceb.2011.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 10/18/2022]
Abstract
Organ branching morphogenesis is a complex process that requires many coordinated cell functions, including cell migration, proliferation, and polarization. This process is regulated at numerous levels, including spatial and temporal expression of transcription factors and their regulators; growth factors and their receptors; as well as cell-cell and cell-extracellular matrix interactions. Integrins and dystroglycan are transmembrane receptors that control both the adhesion of cells to matrix components as well as transduction of signaling coming from and directed to the matrix. In this article we review current advances defining the roles of these receptors in branching morphogenesis focusing on the major epithelial cell derived structures in mammals, namely salivary gland, mammary gland, lung, pancreas, and kidney.
Collapse
Affiliation(s)
- Ambra Pozzi
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center and Veterans Affairs Hospital, Nashville, TN 37232, USA
| | | |
Collapse
|
36
|
Matsuura S, Kondo S, Suga K, Kinoshita Y, Urushihara M, Kagami S. Expression of focal adhesion proteins in the developing rat kidney. J Histochem Cytochem 2011; 59:864-74. [PMID: 21705647 DOI: 10.1369/0022155411413929] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Focal adhesions play a critical role as centers that transduce signals by cell-matrix interactions and regulate fundamental processes such as proliferation, migration, and differentiation. Focal adhesion kinase (FAK), paxillin, integrin-linked kinase (ILK), and hydrogen peroxide-inducible clone-5 (Hic-5) are major proteins that contribute to these events. In this study, we investigated the expression of focal adhesion proteins in the developing rat kidney. Western blotting analysis revealed that the protein levels of FAK, p-FAK(397), paxillin, p-paxillin(118), and Hic-5 were high in embryonic kidneys, while ILK expression persisted from the embryonic to the mature stage. Immunohistochemistry revealed that FAK, p-FAK(397), paxillin, and p-paxillin(118) were strongly expressed in condensed mesenchymal cells and the ureteric bud. They were detected in elongating tubules and immature glomerular cells in the nephrogenic zone. Hic-5 was predominantly expressed in mesenchymal cells as well as immature glomerular endothelial and mesangial cells, suggesting that Hic-5 might be involved in mesenchymal cell development. ILK expression was similar to that of FAK in the developmental stages. Interestingly, ILK was strongly expressed in podocytes in mature glomeruli. ILK might play a role in epithelial cell differentiation as well as kidney growth and morphogenesis. In conclusion, the temporospatially regulated expression of focal adhesion proteins during kidney development might play a role in morphogenesis and cell differentiation.
Collapse
Affiliation(s)
- Sato Matsuura
- Department of Pediatrics, Institute of Health Bioscience, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Fukuda K, Knight JDR, Piszczek G, Kothary R, Qin J. Biochemical, proteomic, structural, and thermodynamic characterizations of integrin-linked kinase (ILK): cross-validation of the pseudokinase. J Biol Chem 2011; 286:21886-95. [PMID: 21524996 PMCID: PMC3122243 DOI: 10.1074/jbc.m111.240093] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/05/2011] [Indexed: 12/13/2022] Open
Abstract
Integrin-linked kinase (ILK) is one of the few evolutionarily conserved focal adhesion proteins involved in diverse cell adhesion-dependent physiological and pathological responses. Despite more than a decade of studies and extensive literature, the kinase function of ILK is controversial. ILK contains a highly degraded kinase active site but it has been argued that ILK may be an unusual manganese (Mn)-dependent serine-threonine kinase that targets specific substrates such as glycogen synthase kinase-3β (GSK-3β). In this study, we have tackled this issue by a systematic bottom-up biochemical, proteomic, structural, and thermodynamic analysis of ILK. We show that recombinant ILK from either bacteria or mammalian cells exhibits no kinase activity on GSK-3β in the presence of either Mn(2+) or the conventional kinase co-factor Mg(2+). A comprehensive and unbiased whole cell-based kinase assay using entire mammalian CG-4 and C2C12 cell lysate did not identify any specific ILK substrates. High resolution crystallographic structure analysis further confirmed that the Mn-bound ILK adopts the same pseudo active site conformation as that of the Mg-bound ILK. More importantly, thermodynamic analysis revealed that the K220M mutation, previously thought to inactivate ILK by disrupting ATP binding, significantly impairs the structural integrity and stability of ILK, which provides a new basis for understanding how this mutation caused renal agenesis, a failure of fetal kidney development. Collectively, our data provide strong evidence that ILK lacks intrinsic kinase function. It is a bona fide pseudokinase that likely evolved from an ancestral catalytic counterpart to act as a distinct scaffold to mediate protein-protein interactions during focal adhesion assembly and many other cellular events.
Collapse
Affiliation(s)
- Koichi Fukuda
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - James D. R. Knight
- the Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
- the Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada, and
| | - Grzegorz Piszczek
- the Biophysics Core Facility, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Rashmi Kothary
- the Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
- the Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada, and
| | - Jun Qin
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
38
|
Smeeton J, Zhang X, Bulus N, Mernaugh G, Lange A, Karner CM, Carroll TJ, Fässler R, Pozzi A, Rosenblum ND, Zent R. Integrin-linked kinase regulates p38 MAPK-dependent cell cycle arrest in ureteric bud development. J Cell Sci 2010. [DOI: 10.1242/jcs.080705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|