1
|
Abós B, Morel E, Ama LFD, Ordás MC, Vicente-Gil S, Carrasco JC, Koppang E, Tafalla C, Herranz-Jusdado JG. Immunological characterization of the rainbow trout bursa. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110345. [PMID: 40246038 DOI: 10.1016/j.fsi.2025.110345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/19/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
The bursa of Fabricius is an immune organ, located in the caudo-dorsal surface of the cloaca, responsible for the development and maturation of avian B cells. A few years ago, a lymphoepithelial tissue placed caudal to the urogenital papilla of the cloaca analogous to the bursa was identified for the first time in Atlantic salmon (Salmo salar). The salmon bursa was demonstrated to involute around sexual maturation, as in birds. However, no primary lymphoid functions were identified in this tissue. In the current study, we have identified a homologous immune organ in rainbow trout (Oncorhynchus mykiss), a different salmonid species. This lymphoepithelium covering a blind sac, caudal to the anus, was identified in rainbow trout at different stages of development and it also experienced regression in an age-dependent way. It contained abundant IgM+ B cells and CD3+ cells and especially numerous was the number of MHC II-expressing cells. In contrast to Atlantic salmon, in rainbow trout, the bursa epithelium contained quite a few IgT+ B cells but very few IgD+ B cells. Thus, by flow cytometry, we could determine that the IgM+ B cells identified in the trout bursa had lost surface IgD expression. Interestingly, although an immunization of rainbow trout by bath barely had effects on the bursa at a transcriptional level, when fish were immunized anally with a model antigen, there were significant changes in the levels of transcription of immune genes in this tissue. These included secreted igm, secreted and membrane igd, bcma and prdm1-a2. Altogether these results evidence the existence of a bursa-like immune structure in another teleost species and provide novel information to understand the immune role of this tissue in fish, pointing to a relation to gut immune responses.
Collapse
Affiliation(s)
- Beatriz Abós
- Biotechnology Department, National Institute for Agricultural and Food Research and Technology (INIA), Spanish Research Council (CSIC), Madrid, Spain
| | - Esther Morel
- Biotechnology Department, National Institute for Agricultural and Food Research and Technology (INIA), Spanish Research Council (CSIC), Madrid, Spain
| | - Laura Fernández-Del Ama
- Animal Health Research Center (CISA), National Institute for Agricultural and Food Research and Technology (INIA), Spanish Research Council (CSIC), Valdeolmos, Madrid, Spain
| | - M Camino Ordás
- Biology, Geology, Physics and Chemistry Department, Rey Juan Carlos University, Móstoles, Madrid, Spain
| | - Samuel Vicente-Gil
- Biotechnology Department, National Institute for Agricultural and Food Research and Technology (INIA), Spanish Research Council (CSIC), Madrid, Spain
| | - Juan Carlos Carrasco
- Biotechnology Department, National Institute for Agricultural and Food Research and Technology (INIA), Spanish Research Council (CSIC), Madrid, Spain
| | - Erling Koppang
- Unit of Anatomy, Veterinary Faculty, Norwegian University of Life Sciences, Ås, Norway
| | - Carolina Tafalla
- Biotechnology Department, National Institute for Agricultural and Food Research and Technology (INIA), Spanish Research Council (CSIC), Madrid, Spain.
| | | |
Collapse
|
2
|
Bjørgen H, Koppang EO, Nowak BF. Gill Health in Fish Farmed in Recirculating Aquaculture Systems (RAS): A Review. JOURNAL OF FISH DISEASES 2025; 48:e14057. [PMID: 39648983 DOI: 10.1111/jfd.14057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/07/2024] [Accepted: 11/21/2024] [Indexed: 12/10/2024]
Abstract
Recirculating Aquaculture Systems (RAS) have been proposed as the future of aquaculture, because they can be used anywhere regardless of access to water, they offer high level of control over farming environment, including biosecurity, and are considered to be sustainable. However, despite of continuous development, there can be still issues with water quality affecting gill health of fish farmed in these systems. This review provides an overview of fish gill structure and gill immune response, and discusses the known impacts of RAS on gill health. Several experimental studies have inadequately reported conditions, particularly water quality, making it difficult to determine if the observed effects were due to water quality issues or RAS system itself. It is crucial for studies investigating the impact of RAS on fish to report water quality during the study. Furthermore, assessments of RAS effects on gill health should include sufficient independent replicates and flow through controls using a common water source. Various methods have been used to assess gill health in RAS, including gill histology, presence of pathogens, gene expression in the gills and gill microbiome analysis. Differences in gill health in fish from RAS and a flow through system have been shown for a number of freshwater and marine fish species. However, these results have been inconsistent across studies, and some results have been challenging to interpret as indicators of gill health. Holistic studies including a number of different methods to assess fish gills would give more conclusive results. More research is needed, in particular, on brackish and marine RAS, to fully understand their impacts on gill health.
Collapse
Affiliation(s)
- Håvard Bjørgen
- Unit of Anatomy, Veterinary Faculty, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Erling Olaf Koppang
- Unit of Anatomy, Veterinary Faculty, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Barbara F Nowak
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
3
|
Szőcs E, Balic A, Soós Á, Halasy V, Nagy N. Characterization and ontogeny of a novel lymphoid follicle inducer cell during development of the bursa of Fabricius. Front Immunol 2024; 15:1449117. [PMID: 39497831 PMCID: PMC11532080 DOI: 10.3389/fimmu.2024.1449117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/23/2024] [Indexed: 11/07/2024] Open
Abstract
The avian bursa of Fabricius (BF) is a primary lymphoid organ, where B-cell development occurs within bursal follicles of epithelial origin. During embryogenesis the epithelial anlage of the BF emerges as a diverticulum of the cloaca surrounded by undifferentiated tail bud mesenchyme. While it is believed that the epithelial-mesenchymal BF primordium provides a selective microenvironment for developing B cells, the initial events inducing lymphoid follicle formation are not fully elucidated. Using wild type and CSF1R-eGFP transgenic chick embryos, we find that separate B cell, macrophage and dendritic cell precursors enter the BF mesenchyme, migrate to the surface epithelium, and colonize the lymphoid follicle buds. Detailed immunocytochemical characterization revealed a novel EIV-E12+ blood-borne cell type, colonizing the surface epithelium of the BF rudiment before the entry of myeloid and lymphoid lineages and the appearance of this cell type coincides with the onset of follicle bud formation. Chick-duck chimeras and chick-quail tissue recombination experiments suggest that EIV-E12+ cells represent a transient lymphoid inducer cell population. They are not dendritic or B cells precursors, and they are capable of follicle bud induction in both dendritic cell- and B cell-depleted bursae.
Collapse
Affiliation(s)
- Emőke Szőcs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Adam Balic
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, United Kingdom
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Ádám Soós
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Viktória Halasy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Nándor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
4
|
Honaker CF, Taylor RL, Edens FW, Siegel PB. Growth of White Leghorn Chicken Immune Organs after Long-Term Divergent Selection for High or Low Antibody Response to Sheep Red Blood Cells. Animals (Basel) 2024; 14:1487. [PMID: 38791704 PMCID: PMC11117304 DOI: 10.3390/ani14101487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Long-term divergent selection from a common founder population for a single trait-antibody response to sheep erythrocytes 5 days post-injection-has resulted in two distinct lines of White Leghorn chickens with a well-documented difference in antibody titers: high (HAS)- and low (LAS)-antibody selected lines. Subpopulations-high (HAR)- and low (LAR)-antibody relaxed-were developed from generation 24 of the selected lines to relax selection. The objective of the current experiment was to determine if this long-term selection and relaxation of selection impacted the growth of two organs important to chicken immunity: the spleen and the bursa of Fabricius. Spleens and bursae were obtained from ten chickens per line at nine timepoints (E18, D0, D6, D13, D20, D35, D49, D63, and D91) throughout their rapid growth phase and presented as a percent of body weight. Significance was set at p ≤ 0.05. For the spleen, all lines consistently increased in size relative to body weight to D49, followed by a consistent decline. All lines had a similar growth pattern, but HAS spleens grew faster than LAS spleens. For the bursa, LAS was smaller than the other three lines as an embryo and also smaller than HAS through D63. In the selected lines, bursa weight peaked at D35, whereas the relaxed lines peaked at D49. By D91, there was no difference between lines. Artificial and natural selection, represented by the long-term selected and relaxed antibody lines, resulted in differences in the growth patterns and relative weights of the spleen and bursa of Fabricius.
Collapse
Affiliation(s)
| | - Robert L. Taylor
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Frank W. Edens
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Paul B. Siegel
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
5
|
Zeinali S, Sutton K, Zefreh MG, Mabbott N, Vervelde L. Discrimination of distinct chicken M cell subsets based on CSF1R expression. Sci Rep 2024; 14:8795. [PMID: 38627516 PMCID: PMC11021470 DOI: 10.1038/s41598-024-59368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
In mammals, a subset of follicle-associated epithelial (FAE) cells, known as M cells, conduct the transcytosis of antigens across the epithelium into the underlying lymphoid tissues. We previously revealed that M cells in the FAE of the chicken lung, bursa of Fabricius (bursa), and caecum based on the expression of CSF1R. Here, we applied RNA-seq analysis on highly enriched CSF1R-expressing bursal M cells to investigate their transcriptome and identify novel chicken M cell-associated genes. Our data show that, like mammalian M cells, those in the FAE of the chicken bursa also express SOX8, MARCKSL1, TNFAIP2 and PRNP. Immunohistochemical analysis also confirmed the expression of SOX8 in CSF1R-expressing cells in the lung, bursa, and caecum. However, we found that many other mammalian M cell-associated genes such as SPIB and GP2 were not expressed by chicken M cells or represented in the chicken genome. Instead, we show bursal M cells express high levels of related genes such as SPI1. Whereas our data show that bursal M cells expressed CSF1R-highly, the M cells in the small intestine lacked CSF1R and both expressed SOX8. This study offers insights into the transcriptome of chicken M cells, revealing the expression of CSF1R in M cells is tissue-specific.
Collapse
Affiliation(s)
- Safieh Zeinali
- Division of Immunology, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Kate Sutton
- Division of Immunology, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| | - Masoud Ghaderi Zefreh
- Division of Genetics and Genomics, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Neil Mabbott
- Division of Immunology, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Lonneke Vervelde
- Division of Immunology, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| |
Collapse
|
6
|
Oláh I, Felföldi B, Benyeda Z, Nagy N, Magyar A, Szőcs E, Soós Á. Effect of Intermediate Plus Vaccine and vvIBDV on Bursa Secretory Cells and Their Glycoprotein Production. Viruses 2023; 15:1301. [PMID: 37376601 DOI: 10.3390/v15061301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
There are two types of secretory cells in the chicken bursa of Fabricius (BF): (a) interfollicular epithelial cells (IFE), and (b) bursal secretory dendritic cells (BSDC) in the medulla of bursal follicles. Both cells produce secretory granules, and the cells are highly susceptible to IBDV vaccination and infection. Before and during embryonic follicular bud formation, an electron-dense, scarlet-acid fuchsin positive substance emerges in the bursal lumen, the role of which is unknown. In IFE cells, IBDV infection may induce rapid granular discharge, and in several cells, peculiar granule formation, which suggests that the glycosylation of protein is injured in the Golgi complex. In control birds, the discharged BSDC granules appear in membrane-bound and subsequently solubilized, fine-flocculated forms. The solubilized, fine-flocculated substance is Movat-positive and can be a component of the medullary microenvironment, which prevents the medullary B lymphocytes from nascent apoptosis. Vaccination interferes with the solubilization of the membrane-bound substance, resulting in: (i) aggregation of a secreted substance around the BSDC, and (ii) solid lumps in the depleted medulla. The non-solubilized substance is possibly not "available" for B lymphocytes, resulting in apoptosis and immunosuppression. In IBDV infection, one part of the Movat-positive Mals fuse together to form a medullary, gp-containing "cyst". The other part of Mals migrate into the cortex, recruiting granulocytes and initiating inflammation. During recovery the Movat-positive substance appears as solid, extracellular lumps between the cells of FAE and Mals. Possibly the Mals and Movat-positive extracellular lumps glide into the bursal lumen via FAE to eliminate cell detritus from the medulla.
Collapse
Affiliation(s)
- Imre Oláh
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1094 Budapest, Hungary
| | | | | | - Nándor Nagy
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1094 Budapest, Hungary
| | - Attila Magyar
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1094 Budapest, Hungary
| | - Emőke Szőcs
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1094 Budapest, Hungary
| | - Ádám Soós
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
7
|
Oláh I, Felföldi B, Benyeda Z, Nagy N, Kovács T. The morphology and differentiation of stromal cells in the cortex of follicles in the bursa of Fabricius of the chicken. Anat Rec (Hoboken) 2022; 305:3297-3306. [PMID: 35142074 PMCID: PMC9790315 DOI: 10.1002/ar.24893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/04/2022] [Accepted: 01/17/2022] [Indexed: 12/30/2022]
Abstract
Mesenchymal reticular cells (MRCs) form a supporting system in the cortex of the bursal follicle. The stellate-shaped MRCs exhibit a low electron density, which is helpful for their identification. A remarkable feature of MRC is the formation of multiple blebs in the nuclear envelope. The large, irregularly shaped blebs-which are perinuclear spaces-may be detached from the nuclear membrane, creating a sac-like granular endoplasmic reticulum (GER). Inside the bleb, membrane-bound bodies originate from cytoplasmic impressions. The cytoplasm contains a few round mitochondria, in which the internal membranes form either ovoid vesicles or the entire internal structure is indistinct. These mitochondria may be associated with the blebs. The classical Golgi complex with cis and trans faces cannot be recognized, but the accumulation of very small vesicles occurs around two or three stacked flat cisterns. The MRC forms a continuous layer along the corticomedullary basal lamina (CMBL), and during cell migration between the cortex and medulla, it may contribute to the temporary closure of the gap in the CMBL. At the outer surface of the cortex, transitory cells between the MRC and fibrocytes of the interfollicular connective tissue are present, and both cells can produce GER by blebbing. This finding suggests that MRCs and fibrocytes may have a common origin. The other stromal cell is the macrophage (Ma), which may fuse together to form multinucleated giant cells. The definition of histological classification of the third type of stromal cell is questionable, but certain morphological features may be referred to as progenitors of MRCs.
Collapse
Affiliation(s)
- Imre Oláh
- Department of Anatomy, Histology and EmbryologySemmelweis UniversityBudapestHungary
| | | | | | - Nándor Nagy
- Department of Anatomy, Histology and EmbryologySemmelweis UniversityBudapestHungary
| | - Tamás Kovács
- Department of Anatomy, Histology and EmbryologySemmelweis UniversityBudapestHungary
| |
Collapse
|
8
|
Shi L, Guo Y, Cheng Y, Xing Y, Guo S, Zhang L, Xu Y, Jin X, Yan S, Shi B. An Artemisia ordosica extract: Effects on growth performance, immune, and inflammatory response in lipopolysaccharide-challenged broilers. Front Vet Sci 2022; 9:980690. [PMID: 36157186 PMCID: PMC9500547 DOI: 10.3389/fvets.2022.980690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Artemisia ordosica has been applied as a traditional Chinese/Mongolian medicine for treating csertain inflammatory ailments. This study was conducted to investigate the effect of Artemisia ordosica alcohol extract (AOAE) supplemented in diets on growth performance, immune, and inflammatory response in lipopolysaccharide (LPS)-challenged broilers. A total of 240 one-day-old Arbor Acre male broilers were randomly allotted into 5 groups with 6 replicates (n = 8), which were basal diet group (CON), LPS-challenge and basal diet group (LPS), LPS-challenge and the basal diet added with low (500 mg/kg), middle (750 mg/kg), and high (1,000 mg/kg) dose of AOAE groups (AOAE-L, AOAE-M, and AOAE-H), respectively. On d 16, 18, 20, 22, 24, 26, and 28, all broilers were injected intra-abdominally either with LPS or an equivalent amount of saline. Results showed that dietary AOAE alleviated the LPS-induced decrease in average daily gain and average daily feed intake in the broilers (P < 0.05). Dietary AOAE supplementation reversed the increased spleen index and the decreased bursa index in LPS-challenged broilers (P < 0.05). Moreover, feeding AOAE could mitigate the elevation of IL-1β in serum, liver, and spleen, IL-2 in serum and liver, IL-6 in serum and spleen, and the decrease of IgG in spleen, IgM in serum, liver, and spleen, and IL-4 in serum of the LPS-challenged broilers (P < 0.05). This study also showed that AOAE supplementation alleviated the increase of mRNA expression of TLR4, MyD88, TRAF6, NF-κB p65, NF-κB p50, IL-1β, and IL-6, and the decrease of gene expression of IκBα and PPARγ in liver and/or spleen of broilers challenged by LPS (P < 0.05). We speculated that AOAE administration could effectively alleviate LPS-induced inflammation via decreasing over-production of proinflammatory cytokines, ultimately relieving the growth inhibition of broilers caused by LPS. In conclusion, 1,000 mg/kg AOAE has a strong capacity to enhance immunity and inhibit inflammation, and can be used as a potential novel feed additive with applications in treating inflammation-related diseases and bacterial infection in broilers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
9
|
Oláh I, Felföldi B, Benyeda Z, Kovács T, Nagy N, Magyar A. The bursal secretory dendritic cell (BSDC) and the enigmatic chB6 + macrophage-like cell (Mal). Poult Sci 2022; 101:101727. [PMID: 35172235 PMCID: PMC8851255 DOI: 10.1016/j.psj.2022.101727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/23/2022] Open
Abstract
The bursal secretory dendritic cell (BSDC) was discovered more than 40 yr ago. It is a highly polarized, granulated cell, locating in the medulla of bursal follicle. The cytoplasmic granules either discharge or fuse together forming large, irregular-shaped, dense bodies. Formation of the dense bodies could be the first sign of BSDC transformation to macrophage-like cell (Mal) which is the result of terminal maturation of BSDC. The BSDC is non-phagocytic, unlike Mal. The discharged substance may be attached to the cell membrane (membrane-bound form) and after detaching, appears as a flocculated substance in the extracellular space of medulla. Movat pentachrome staining shows, that this substance is a glycoprotein (gp), which may be contributed to the microenvironment of the medulla. Medullary lymphocytes are floating in the gp. Precursors of the BSDC locate in the corticomedullary epithelial arches, which operate under the effect of Notch/Serrate signaling. The Notch signaling determines the fate of lymphoblast-like precursor cells and inhibits the appearance of immunoglobulin heavy chain. In the arches, the precursor cells proliferate and entering the medulla differentiate. The dense bodies pack the virus particles, which prevents the granular discharge, resulting in disappearance of extracellular gp, but gp emerges inside the virus containing Mal. In infected birds, the Mal contains either apoptotic cells or virus particles. If vaccination or infectious bursal disease virus (IBDV) infection use up the BSDC precursors, the recovery of follicle is critical.
Collapse
Affiliation(s)
- Imre Oláh
- Department of Anatomy, Histology and Embryology Semmelweis University, Budapest 1094, Hungary.
| | | | | | - Tamás Kovács
- Department of Anatomy, Histology and Embryology Semmelweis University, Budapest 1094, Hungary
| | - Nándor Nagy
- Department of Anatomy, Histology and Embryology Semmelweis University, Budapest 1094, Hungary
| | - Attila Magyar
- Department of Anatomy, Histology and Embryology Semmelweis University, Budapest 1094, Hungary
| |
Collapse
|
10
|
Fejszák N, Kocsis K, Halasy V, Szőcs E, Soós Á, Roche DVL, Härtle S, Nagy N. Characterization and functional properties of a novel monoclonal antibody which identifies a B cell subpopulation in bursa of Fabricius. Poult Sci 2022; 101:101711. [PMID: 35151935 PMCID: PMC8844905 DOI: 10.1016/j.psj.2022.101711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 11/08/2022] Open
Abstract
The bursa of Fabricius (BF) plays a central role in the development of B lymphocytes in birds. During embryonic development the BF primordium is colonized by myeloid and lymphoid prebursal stem cells to form the follicle buds, which ultimately develop into lymphoid follicles with a central medullary and an outer cortical region. Lympho-myeloid differentiation within the medulla is fundamental to normal B cell development. In contrast, the complexity of the cellular composition of the follicular cortex and its role in B cell differentiation has only recently begun to be studied. As an effort to characterize the different bursal cells we have produced a large panel of monoclonal antibodies (mAbs) by immunizing mice with a BF cell suspension of guinea fowl (Numida meleagris). One of these antibodies (clone: 7H3) was found to recognize a 80 kDa cell surface antigen expressed first in the yolk sac blood island of 2-day-old guinea fowl and chicken embryos, and later detected in the embryonic circulation and primary lymphoid organs. Double immunofluorescence revealed that chB6+ (Bu-1+) B cells of embryonic BF co-express the 7H3 antigen. 7H3 immunoreactivity of the bursal follicles gradually diminished after hatching and only a subpopulation of cortical B cells expressed the 7H3 antigen. In addition, in post-hatched birds 7H3 mAb recognizes all T lymphocytes of the thymus, peripheral lymphoid organs and blood. Embryonic BF injected with the 7H3 mAb showed a near complete block of lymphoid follicle formation In conclusion, 7H3 mAb labels a new differentiation antigen specific for avian hematopoietic cells, which migrate through the embryonic mesenchyme, colonize the developing BF lymphoid follicles, and differentiate into a subpopulation of cortical B cells. The staining pattern of the 7H3 mAb and the correlation of expression with cell migration suggest that the antigen will serve as valuable immunological marker for studying the ontogeny of avian B cells.
Collapse
|
11
|
Choi WJ, Kim JH, Han GP, Kwon CH, Kil DY. Effects of dietary hatchery by-products on growth performance, relative organ weight, plasma measurements, immune organ index, meat quality, and tibia characteristics of broiler chickens. Anim Biosci 2021; 34:1181-1192. [PMID: 33561330 PMCID: PMC8255869 DOI: 10.5713/ab.20.0755] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023] Open
Abstract
Objective The objective of the current study was to investigate the effects of dietary hatchery by-products (HBPs) as a replacement of fish meal (FM) on growth performance, relative organ weight, plasma measurements, immune organ index, meat quality, and tibia characteristics of broiler chickens. Methods A total of 720 broiler chickens (3 d of age) were randomly allotted to 1 of 9 treatments with 8 replicates. Each replicate consisted of 5 male and 5 female birds. The basal diet was formulated to contain 5.0% commercial FM, whereas eight treatment diets were prepared by replacing 25%, 50%, 75%, or 100% of FM in the basal diet with infertile eggs (IFE) or a mixture of various HBPs (MIX); therefore, the inclusion levels of IFE or MIX in the experimental diets were 1.25%, 2.50%, 3.75%, or 5.00%. The diets and water were provided on an ad libitum basis for 32 d. Results Increasing inclusion levels of IFE as a replacement of FM in diets had no effects on growth performance, plasma measurements, immune organ index, and tibia characteristics of broiler chickens. Increasing inclusion levels of IFE in diets increased (linear, p<0.05) meat lightness (L*) but decreased (linear, p<0.05) meat redness (a*). The breast meat pH at 1-h postmortem was increased (linear, p<0.05) by increasing inclusion levels of IFE in diets. Likewise, increasing inclusion levels of MIX in diets had no effects on growth performance, relative organ weight, plasma measurements, immune organ index, and tibia characteristics. However, increasing inclusion levels of MIX in diets increased (linear, p<0.05) 1-h postmortem pH but decreased (linear, p<0.05) 24-h postmortem pH of breast meat. Increasing inclusion levels of MIX in diets decreased (linear, p<0.05) thiobarbituric acid reactive substances values of breast meat. Conclusion Both IFE and MIX are suitable alternatives to FM as protein ingredients in broiler diets.
Collapse
Affiliation(s)
- Won Jun Choi
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jong Hyuk Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Gi Ppeum Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Chan Ho Kwon
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Dong Yong Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
12
|
Løken OM, Bjørgen H, Hordvik I, Koppang EO. A teleost structural analogue to the avian bursa of Fabricius. J Anat 2019; 236:798-808. [PMID: 31877586 PMCID: PMC7163591 DOI: 10.1111/joa.13147] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2019] [Indexed: 01/26/2023] Open
Abstract
The bursa of Fabricius is a primary and secondary lymphoid organ considered exclusively present in birds, and studies of this structure have been vital to our current understanding of the adaptive immune system of vertebrates. In this study, we reveal substantial lymphoepithelial tissue in a previously undescribed bursa in Atlantic salmon (Salmo salar), situated caudal to the urogenital papilla of the cloaca and thus analogous to the anatomical placement of the bursa of Fabricius. We investigated three groups of Atlantic salmon at different maturational stages and characterized the structure by applying dissection, radiology, scanning electron microscopy and histological techniques, including immunohistochemistry and in situ hybridization. We found that the epithelial anlage of the salmon cloacal bursa developed into substantial lymphoepithelial tissue and subsequently regressed following sexual maturation. Such a dynamic development is also a key characteristic of the avian bursa. The presence of intraepithelial lymphocytes was concomitant with expression of the leukocyte-attracting chemokine CCL19, indicative of lymphoid organ functions. We did not observe recombination or gene conversion in salmon bursal lymphocytes at any developmental stage, indicating the absence of primary lymphoid organ functions in contrast to the bursa of Fabricius. However, the possibility of the bursa to trap both enteric and environmental antigens, combined with the presence of several antigen-presenting cells residing within the lymphoepithelium, suggest the structure has secondary lymphoid organ functions. We present the discovery of a lymphoid organ in Atlantic salmon with striking topographical similarities to that of the bursa of Fabricius in birds. In addition, the age-dependent dynamics of its lymphoepithelium suggest functions related to the maturation processes of lymphocytes.
Collapse
Affiliation(s)
- Oskar M Løken
- Section of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Håvard Bjørgen
- Section of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Ivar Hordvik
- Institute of Biology, University of Bergen, Bergen, Norway
| | - Erling O Koppang
- Section of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
13
|
Balic A, Chintoan-Uta C, Vohra P, Sutton KM, Cassady-Cain RL, Hu T, Donaldson DS, Stevens MP, Mabbott NA, Hume DA, Sang HM, Vervelde L. Antigen Sampling CSF1R-Expressing Epithelial Cells Are the Functional Equivalents of Mammalian M Cells in the Avian Follicle-Associated Epithelium. Front Immunol 2019; 10:2495. [PMID: 31695701 PMCID: PMC6817575 DOI: 10.3389/fimmu.2019.02495] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022] Open
Abstract
The follicle-associated epithelium (FAE) is a specialized structure that samples luminal antigens and transports them into mucosa-associated lymphoid tissues (MALT). In mammals, transcytosis of antigens across the gut epithelium is performed by a subset of FAE cells known as M cells. Here we show that colony-stimulating factor 1 receptor (CSF1R) is expressed by a subset of cells in the avian bursa of Fabricius FAE. Expression was initially detected using a CSF1R-reporter transgene that also label subsets of bursal macrophages. Immunohistochemical detection using a specific monoclonal antibody confirmed abundant expression of CSF1R on the basolateral membrane of FAE cells. CSF1R-transgene expressing bursal FAE cells were enriched for expression of markers previously reported as putative M cell markers, including annexin A10 and CD44. They were further distinguished from a population of CSF1R-transgene negative epithelial cells within FAE by high apical F-actin expression and differential staining with the lectins jacalin, PHA-L and SNA. Bursal FAE cells that express the CSF1R-reporter transgene were responsible for the bulk of FAE transcytosis of labeled microparticles in the size range 0.02-0.1 μm. Unlike mammalian M cells, they did not readily take up larger bacterial sized microparticles (0.5 μm). Their role in uptake of bacteria was tested using Salmonella, which can enter via M cells in mammals. Labeled Salmonella enterica serovar Typhimurium entered bursal tissue via the FAE. Entry was partially dependent upon Type III secretion system-1. However, the majority of invading bacteria were localized to CSF1R-negative FAE cells and in resident phagocytes that express the phosphatidylserine receptor TIM4. CSF1R-expressing FAE cells in infected follicles showed evidence of cell death and shedding into the bursal lumen. In mammals, CSF1R expression in the gut is restricted to macrophages which only indirectly control M cell differentiation. The novel expression of CSF1R in birds suggests that these functional equivalents to mammalian M cells may have different ontological origins and their development and function are likely to be regulated by different growth factors.
Collapse
Affiliation(s)
- Adam Balic
- Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom.,Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Cosmin Chintoan-Uta
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Prerna Vohra
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Kate M Sutton
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Robin L Cassady-Cain
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Tuan Hu
- Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David S Donaldson
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Mark P Stevens
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Neil A Mabbott
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - David A Hume
- Division of Genetics and Genomics, The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - Helen M Sang
- Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Lonneke Vervelde
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| |
Collapse
|
14
|
Luo J, Liu H, Wang J, Li L, Han C, Gan X, Li Y, Bai L, Mustafa A. Transcriptome reveals B lymphocyte apoptosis in duck embryonic bursa of Fabricius mediated by mitochondrial and Fas signaling pathways. Mol Immunol 2018; 101:120-129. [DOI: 10.1016/j.molimm.2018.06.266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/09/2017] [Accepted: 06/12/2018] [Indexed: 12/15/2022]
|
15
|
Dóra D, Fejszák N, Goldstein AM, Minkó K, Nagy N. Ontogeny of ramified CD45 cells in chicken embryo and their contribution to bursal secretory dendritic cells. Cell Tissue Res 2017; 368:353-370. [DOI: 10.1007/s00441-017-2595-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/23/2017] [Indexed: 12/15/2022]
|
16
|
Gredler ML. Developmental and Evolutionary Origins of the Amniote Phallus. Integr Comp Biol 2016; 56:694-704. [DOI: 10.1093/icb/icw102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
17
|
Zhao S, Jia Y, Han D, Ma H, Shah SZA, Ma Y, Teng K. Influence of the structural development of bursa on the susceptibility of chickens to infectious bursal disease virus. Poult Sci 2016; 95:2786-2794. [PMID: 27287377 DOI: 10.3382/ps/pew192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/14/2016] [Accepted: 04/08/2016] [Indexed: 11/20/2022] Open
Abstract
Infectious bursal disease (IBD), caused by IBD virus (IBDV), is an acute, highly contagious immunosuppressive avian disease. Although age-dependent changes in susceptibility of chickens to IBDV have been established, the relationship between age-dependent structural changes in bursa of Fabricius and susceptibility of chickens to IBDV is still unclear. In the present study, we examined the bursa anatomical structure and pathological changes in specific-pathogen-free (SPF) white leghorn chickens 0 to 8 weeks post hatch (w.p.h.) and IBDV BC6/85-infected SPF chickens 2 to 6 w.p.h. respectively, by histology, histopathology, immunohistochemistry, and transmission electron microscopy. Almost all IBDV-exposed chickens (2 to 6 w.p.h.) were infected, with the severest bursal inflammation and complication in chickens at 3 w.p.h. Furthermore, the bursae of healthy chickens at 3 to 6 w.p.h. had decreased laminin immunoreactivities, lots of splits, and irregular shapes in basement membrane (BM) of cortico-medullary epithelium (CME), irregularly arranged CME, and large numbers of immunoglobulin M-bearing (IgM+) B lymphocytes in the medulla. The decreased barrier function of corticomedullary border and large amount of IgM+ B lymphocytes provide a chance for IBDV to easily contact and infect target cells at 3 to 6 w.p.h. By contrast, regular BM, neatly arranged CME, and few IgM+ B lymphocytes in healthy chickens younger than 2 w.p.h., as well as reduced IgM+ B lymphocytes and high immunoglobulin A (IgA) content in healthy chickens older than 8 w.p.h., were observed, suggesting that the integrity of corticomedullary border barrier, a small amount of target cells and high IgA content of the bursa could be the reasons for these chickens being less susceptible to IBDV. Although studies have shown how IBDV affects bursa, we focus first on the age-dependent changes of CME, BM of CME and IgA content, and our findings are the first to elucidate the structural development of bursa in relation to IBDV susceptibility from a morphological perspective.
Collapse
Affiliation(s)
- Sufen Zhao
- College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Yuanyuan Jia
- College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Deping Han
- College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Haiyan Ma
- College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Syed Zahid Ali Shah
- College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Yunfei Ma
- College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Kedao Teng
- College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
18
|
Nagy N, Bódi I, Oláh I. Avian dendritic cells: Phenotype and ontogeny in lymphoid organs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:47-59. [PMID: 26751596 DOI: 10.1016/j.dci.2015.12.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/26/2015] [Accepted: 12/26/2015] [Indexed: 06/05/2023]
Abstract
Dendritic cells (DC) are critically important accessory cells in the innate and adaptive immune systems. Avian DCs were originally identified in primary and secondary lymphoid organs by their typical morphology, displaying long cell processes with cytoplasmic granules. Several subtypes are known. Bursal secretory dendritic cells (BSDC) are elongated cells which express vimentin intermediate filaments, MHC II molecules, macrophage colony-stimulating factor 1 receptor (CSF1R), and produce 74.3+ secretory granules. Avian follicular dendritic cells (FDC) highly resemble BSDC, express the CD83, 74.3 and CSF1R molecules, and present antigen in germinal centers. Thymic dendritic cells (TDC), which express 74.3 and CD83, are concentrated in thymic medulla while interdigitating DC are found in T cell-rich areas of secondary lymphoid organs. Avian Langerhans cells are a specialized 74.3-/MHC II+ cell population found in stratified squamous epithelium and are capable of differentiating into 74.3+ migratory DCs. During organogenesis hematopoietic precursors of DC colonize the developing lymphoid organ primordia prior to immigration of lymphoid precursor cells. This review summarizes our current understanding of the ontogeny, cytoarchitecture, and immunophenotype of avian DC, and offers an antibody panel for the in vitro and in vivo identification of these heterogeneous cell types.
Collapse
Affiliation(s)
- Nándor Nagy
- Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Tuzolto str. 58, Hungary.
| | - Ildikó Bódi
- Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Tuzolto str. 58, Hungary
| | - Imre Oláh
- Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Tuzolto str. 58, Hungary
| |
Collapse
|
19
|
Nagy N, Barad C, Graham HK, Hotta R, Cheng LS, Fejszak N, Goldstein AM. Sonic hedgehog controls enteric nervous system development by patterning the extracellular matrix. Development 2015; 143:264-75. [PMID: 26674309 DOI: 10.1242/dev.128132] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/04/2015] [Indexed: 11/20/2022]
Abstract
The enteric nervous system (ENS) develops from neural crest cells that migrate along the intestine, differentiate into neurons and glia, and pattern into two plexuses within the gut wall. Inductive interactions between epithelium and mesenchyme regulate gut development, but the influence of these interactions on ENS development is unknown. Epithelial-mesenchymal recombinations were constructed using avian hindgut mesenchyme and non-intestinal epithelium from the bursa of Fabricius. These recombinations led to abnormally large and ectopically positioned ganglia. We hypothesized that sonic hedgehog (Shh), a secreted intestinal epithelial protein not expressed in the bursa, mediates this effect. Inhibition of Shh signaling, by addition of cyclopamine or a function-blocking antibody, resulted in large, ectopic ganglia adjacent to the epithelium. Shh overexpression, achieved in ovo using Shh-encoding retrovirus and in organ culture using recombinant protein, led to intestinal aganglionosis. Shh strongly induced the expression of versican and collagen type IX, whereas cyclopamine reduced expression of these chondroitin sulfate proteoglycans that are known to be inhibitory to neural crest cell migration. Shh also inhibited enteric neural crest-derived cell (ENCC) proliferation, promoted neuronal differentiation, and reduced expression of Gdnf, a key regulator of ENS formation. Ptc1 and Ptc2 were not expressed by ENCCs, and migration of isolated ENCCs was not inhibited by Shh protein. These results suggest that epithelial-derived Shh acts indirectly on the developing ENS by regulating the composition of the intestinal microenvironment.
Collapse
Affiliation(s)
- Nandor Nagy
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - Csilla Barad
- Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - Hannah K Graham
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lily S Cheng
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nora Fejszak
- Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
20
|
Madej JP, Bednarczyk M. Effect of in ovo-delivered prebiotics and synbiotics on the morphology and specific immune cell composition in the gut-associated lymphoid tissue. Poult Sci 2015; 95:19-29. [PMID: 26527705 DOI: 10.3382/ps/pev291] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2015] [Indexed: 12/28/2022] Open
Abstract
The purpose of this study was to examine how pre- and synbiotic administration in ovo into the air chamber at d 12 of egg incubation influenced the specific immune cell composition and distribution in the ileum, cecal tonsils (CT) and bursa of Fabricius of broilers. The experiment was performed on 800 hatching eggs of the meat-type chickens (Ross 308). Hatching eggs were treated with: prebiotic, consisting of inulin (Pre1) or Bi(2)tos(®) (Pre2); symbiotic, composed of inulin and Lactococcus lactis subsp. lactis IBB SL1 (Syn1) or Bi(2)tos and Lactococcus lactis subsp. cremoris IBB SC1 (Syn2); or physiological saline as a control group. Seven chickens from each treatment group were randomly selected on , 1, 7, and 21 after hatch for tissue collection. Ileum, cecal tonsil and bursa of Fabricius samples were immunohistochemically stained and the proportions of Bu-1(+), CD3(+), CD4(+), CD8α(+) and TCRγδ(+) cells were estimated. It was indicated that the pre- and synbiotics do not adversely affect the development of the GALT of the chicken. The temporary decrease in B-cell number in bursa on d 7 after hatch suggested an increased colonization rate of the peripheral lymphoid organs by these cells after Pre1, Pre2, and Syn2 treatment. In CT at d 7 after hatch more potent colonization of the GALT by T cells was observed in all pre- and synbiotic treated groups and by B cells in both synbiotic-treated groups than those in respective controls. Then, on d 21 in both synbiotic-treated groups, an increase in T-cell number in ileum was also noticed with faster colonization of the CT by B cells. In 21-day-old chickens, both synbiotics exerted stronger stimulatory effect on the GALT colonization by T cells then prebiotics respectively. Similarly, the colonization by B cells was more pronounced in the Syn2 than in the Pre2 group. The data obtained in this study indicated that prebiotics and particularly synbiotics administrated in ovo stimulated GALT development after hatch.
Collapse
Affiliation(s)
- J P Madej
- Department of Histology and Embryology, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - M Bednarczyk
- Department of Animal Biochemistry and Biotechnology, UTP University of Science and Technology, 85-084 Bydgoszcz, Poland
| |
Collapse
|
21
|
Makino K, Omachi R, Suzuki H, Tomobe K, Kawashima T, Nakajima T, Kawashima-Ohya Y. Apoptosis Occurs during Early Development of the Bursa of Fabricius in Chicken Embryos. Biol Pharm Bull 2014; 37:1982-5. [DOI: 10.1248/bpb.b14-00489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kota Makino
- Laboratory of Immunology, Yokohama College of Pharmacy
| | - Runa Omachi
- Laboratory of Immunology, Yokohama College of Pharmacy
| | - Hiroka Suzuki
- Laboratory of Immunology, Yokohama College of Pharmacy
| | - Koji Tomobe
- Laboratory of Pathophysiology, Yokohama College of Pharmacy
| | | | | | | |
Collapse
|
22
|
Oláh I, Nagy N. Retrospection to discovery of bursal function and recognition of avian dendritic cells; past and present. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:310-315. [PMID: 23570710 DOI: 10.1016/j.dci.2013.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/14/2013] [Indexed: 06/02/2023]
Abstract
In 1954 the discovery of bursal function was one of the major contributions to the formation of the T and B cell concept of immunology. In 1978 the avian dendritic cells; bursal secretory dendritic cell (BSDC) and follicular dendritic cell (FDC) in the cecal tonsil were recognized. In 1982 the interdigitating dendritic cell was described in the periarteriolar lymphatic sheath (PALS) of the spleen. This paper is a retrospection of the stories of the discovery of bursal function and recognition of avian dendritic cells and includes the markers which can be used for monitoring and characterizing avian dendritic cells.
Collapse
Affiliation(s)
- Imre Oláh
- Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, Hungary.
| | | |
Collapse
|
23
|
Madej JP, Chrząstek K, Piasecki T, Wieliczko A. New insight into the structure, development, functions and popular disorders of bursa Fabricii. Anat Histol Embryol 2013; 42:321-31. [PMID: 23438192 DOI: 10.1111/ahe.12026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 12/01/2012] [Indexed: 01/28/2023]
Abstract
Humoral immune responses in birds, contrary to mammals, depend on the normal functioning of bursa Fabricii. Recent studies have delivered new information about the structure, development and origin of cells that compose the bursa environment. Several viral infections affect bursa, causing lymphocyte depletion or excessive proliferation. This review summarizes data on the development and histology of healthy bursa and introduces some common disorders that affect this organ.
Collapse
Affiliation(s)
- J P Madej
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, ul. Norwida 25/27, 50-375, Wrocław, Poland
| | | | | | | |
Collapse
|
24
|
Alitheen NB, McClure SJ, Yeap SK, Kristeen-Teo YW, Tan SW, McCullagh P. Establishment of an in vitro system representing the chicken gut-associated lymphoid tissue. PLoS One 2012. [PMID: 23185307 PMCID: PMC3501491 DOI: 10.1371/journal.pone.0049188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bursa of Fabricius is critical for B cell development and differentiation in chick embryos. This study describes the production in vitro, from dissociated cell suspensions, of cellular agglomerates with functional similarities to the chicken bursa. Co-cultivation of epithelial and lymphoid cells obtained from embryos at the appropriate developmental stage regularly led to agglomerate formation within 48 hours. These agglomerates resembled bursal tissue in having lymphoid clusters overlaid by well organized epithelium. Whereas lymphocytes within agglomerates were predominantly Bu-1a+, a majority of those emigrating onto the supporting membrane were Bu-1a− and IgM+. Both agglomerates and emigrant cells expressed activation-induced deaminase with levels increasing after 24 hours. Emigrating cells were actively proliferating at a rate in excess of both the starting cell population and the population of cells remaining in agglomerates. The potential usefulness of this system for investigating the response of bursal tissue to avian Newcastle disease virus (strain AF2240) was examined.
Collapse
Affiliation(s)
- Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | | | | | | | | |
Collapse
|