1
|
Katagade V, Kandroo M, Ratnaparkhi A. Embryonic spatiotemporal expression pattern of Folded gastrulation suggests roles in multiple morphogenetic events and regulation by AbdA. G3 (BETHESDA, MD.) 2024; 14:jkae032. [PMID: 38366558 PMCID: PMC11653764 DOI: 10.1093/g3journal/jkae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/03/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
In Drosophila, the signaling pathway activated by the ligand Folded gastrulation (Fog) is among the few known G protein-coupled receptor (GPCR) pathways to regulate cell shape change with a well-characterized role in gastrulation. However, an understanding of the spectrum of morphogenetic events regulated by Fog signaling is still lacking. Here, we present an analysis of the expression pattern and regulation of fog using a genome-engineered Fog::sfGFP line. We show that Fog expression is widespread and in tissues previously not associated with the signaling pathway including germ cells, trachea, and amnioserosa. In the central nervous system (CNS), we find that the ligand is expressed in multiple types of glia indicating a prominent role in the development of these cells. Consistent with this, we have identified 3 intronic enhancers whose expression in the CNS overlaps with Fog::sfGFP. Further, we show that enhancer-1, (fogintenh-1) located proximal to the coding exon is responsive to AbdA. Supporting this, we find that fog expression is downregulated in abdA mutants. Together, our study highlights the broad scope of Fog-GPCR signaling during embryogenesis and identifies Hox gene AbdA as a novel regulator of fog expression.
Collapse
Affiliation(s)
- Vrushali Katagade
- MACS-Agharkar Research Institute (Affiliated to Savitribai Phule Pune
University), Developmental Biology Group, G.G. Agarkar Road,
Pune 411 004, Maharashtra, India
| | - Manisha Kandroo
- MACS-Agharkar Research Institute (Affiliated to Savitribai Phule Pune
University), Developmental Biology Group, G.G. Agarkar Road,
Pune 411 004, Maharashtra, India
| | - Anuradha Ratnaparkhi
- MACS-Agharkar Research Institute (Affiliated to Savitribai Phule Pune
University), Developmental Biology Group, G.G. Agarkar Road,
Pune 411 004, Maharashtra, India
| |
Collapse
|
2
|
Wang Y, Wakelam MJO, Bankaitis VA, McDermott MI. The wide world of non-mammalian phospholipase D enzymes. Adv Biol Regul 2024; 91:101000. [PMID: 38081756 DOI: 10.1016/j.jbior.2023.101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 02/25/2024]
Abstract
Phospholipase D (PLD) hydrolyses phosphatidylcholine (PtdCho) to produce free choline and the critically important lipid signaling molecule phosphatidic acid (PtdOH). Since the initial discovery of PLD activities in plants and bacteria, PLDs have been identified in a diverse range of organisms spanning the taxa. While widespread interest in these proteins grew following the discovery of mammalian isoforms, research into the PLDs of non-mammalian organisms has revealed a fascinating array of functions ranging from roles in microbial pathogenesis, to the stress responses of plants and the developmental patterning of flies. Furthermore, studies in non-mammalian model systems have aided our understanding of the entire PLD superfamily, with translational relevance to human biology and health. Increasingly, the promise for utilization of non-mammalian PLDs in biotechnology is also being recognized, with widespread potential applications ranging from roles in lipid synthesis, to their exploitation for agricultural and pharmaceutical applications.
Collapse
Affiliation(s)
- Y Wang
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Microbiology, University of Washington, Seattle, WA98109, USA
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - M I McDermott
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
3
|
Hunt M, Torres M, Bachar-Wikström E, Wikström JD. Multifaceted roles of mitochondria in wound healing and chronic wound pathogenesis. Front Cell Dev Biol 2023; 11:1252318. [PMID: 37771375 PMCID: PMC10523588 DOI: 10.3389/fcell.2023.1252318] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Mitochondria are intracellular organelles that play a critical role in numerous cellular processes including the regulation of metabolism, cellular stress response, and cell fate. Mitochondria themselves are subject to well-orchestrated regulation in order to maintain organelle and cellular homeostasis. Wound healing is a multifactorial process that involves the stringent regulation of several cell types and cellular processes. In the event of dysregulated wound healing, hard-to-heal chronic wounds form and can place a significant burden on healthcare systems. Importantly, treatment options remain limited owing to the multifactorial nature of chronic wound pathogenesis. One area that has received more attention in recent years is the role of mitochondria in wound healing. With regards to this, current literature has demonstrated an important role for mitochondria in several areas of wound healing and chronic wound pathogenesis including metabolism, apoptosis, and redox signalling. Additionally, the influence of mitochondrial dynamics and mitophagy has also been investigated. However, few studies have utilised patient tissue when studying mitochondria in wound healing, instead using various animal models. In this review we dissect the current knowledge of the role of mitochondria in wound healing and discuss how future research can potentially aid in the progression of wound healing research.
Collapse
Affiliation(s)
- Matthew Hunt
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Monica Torres
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Etty Bachar-Wikström
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Jakob D. Wikström
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Guru A, Saravanan S, Sharma D, Narasimha M. The microtubule end-binding proteins EB1 and Patronin modulate the spatiotemporal dynamics of myosin and pattern pulsed apical constriction. Development 2022; 149:284823. [PMID: 36440630 DOI: 10.1242/dev.199759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/31/2022] [Indexed: 11/29/2022]
Abstract
Apical constriction powers amnioserosa contraction during Drosophila dorsal closure. The nucleation, movement and dispersal of apicomedial actomyosin complexes generates pulsed apical constrictions during early closure. Persistent apicomedial and circumapical actomyosin complexes drive unpulsed constrictions that follow. Here, we show that the microtubule end-binding proteins EB1 and Patronin pattern constriction dynamics and contraction kinetics by coordinating the balance of actomyosin forces in the apical plane. We find that microtubule growth from moving Patronin platforms governs the spatiotemporal dynamics of apicomedial myosin through the regulation of RhoGTPase signaling by transient EB1-RhoGEF2 interactions. We uncover the dynamic reorganization of a subset of short non-centrosomally nucleated apical microtubules that surround the coalescing apicomedial myosin complex, trail behind it as it moves and disperse as the complex dissolves. We demonstrate that apical microtubule reorganization is sensitive to Patronin levels. Microtubule depolymerization compromised apical myosin enrichment and altered constriction dynamics. Together, our findings uncover the importance of reorganization of an intact apical microtubule meshwork, by moving Patronin platforms and growing microtubule ends, in enabling the spatiotemporal modulation of actomyosin contractility and, through it, apical constriction.
Collapse
Affiliation(s)
- Anwesha Guru
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Surat Saravanan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Deepanshu Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Maithreyi Narasimha
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| |
Collapse
|
5
|
Athilingam T, Parihar SS, Bhattacharya R, Rizvi MS, Kumar A, Sinha P. Proximate larval epidermal cell layer generates forces for Pupal thorax closure in Drosophila. Genetics 2022; 221:6528854. [PMID: 35166774 PMCID: PMC9071563 DOI: 10.1093/genetics/iyac030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 11/14/2022] Open
Abstract
During tissue closures, such as embryonic dorsal closure in Drosophila melanogaster, a proximate extra-embryonic layer, amnioserosa, generates forces that drive migration of the flanking lateral embryonic epidermis, thereby zip-shutting the embryo. Arguably, this paradigm of tissue closure is also recapitulated in mammalian wound healing wherein proximate fibroblasts transform into contractile myofibroblasts, develop cell junctions, and form a tissue layer de novo: contraction of the latter then aids in wound closure. Given this parallelism between disparate exemplars, we posit a general principle of tissue closure via proximate cell layer-generated forces. Here, we have tested this hypothesis in pupal thorax closure wherein 2 halves of the presumptive adult thorax of Drosophila, the contralateral heminotal epithelia, migrate over an underlying larval epidermal cell layer. We show that the proximate larval epidermal cell layer promotes thorax closure by its active contraction, orchestrated by its elaborate actomyosin network-driven epithelial cell dynamics, cell delamination, and death-the latter being prefigured by the activation of caspases. Larval epidermal cell dynamics generate contraction forces, which when relayed to the flanking heminota-via their mutual integrin-based adhesions-mediate thorax closure. Compromising any of these contraction force-generating mechanisms in the larval epidermal cell layer slows down heminotal migration, while loss of its relay to the flanking heminota abrogates the thorax closure altogether. Mathematical modeling further reconciles the biophysical underpinning of this emergent mechanism of thorax closure. Revealing mechanism of thorax closure apart, these findings show conservation of an essential principle of a proximate cell layer-driven tissue closure.
Collapse
Affiliation(s)
- Thamarailingam Athilingam
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Saurabh S Parihar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Rachita Bhattacharya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Mohd S Rizvi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Amit Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Pradip Sinha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India,Corresponding author: Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
6
|
Nanavati BN, Yap AS, Teo JL. Symmetry Breaking and Epithelial Cell Extrusion. Cells 2020; 9:E1416. [PMID: 32517310 PMCID: PMC7349681 DOI: 10.3390/cells9061416] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022] Open
Abstract
Cell extrusion is a striking morphological event found in epithelia and endothelia. It is distinguished by two symmetry-breaking events: a loss of planar symmetry, as cells are extruded in either apical or basal directions; and loss of mechanochemical homogeneity within monolayers, as cells that are fated to be extruded become biochemically and mechanically distinct from their neighbors. Cell extrusion is elicited by many diverse events, from apoptosis to the expression of transforming oncogenes. Does the morphological outcome of extrusion reflect cellular processes that are common to these diverse biological phenomena? To address this question, in this review we compare the progress that has been made in understanding how extrusion is elicited by epithelial apoptosis and cell transformation.
Collapse
Affiliation(s)
| | - Alpha S. Yap
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (B.N.N.); (J.L.T.)
| | | |
Collapse
|
7
|
JNK-mediated Slit-Robo signaling facilitates epithelial wound repair by extruding dying cells. Sci Rep 2019; 9:19549. [PMID: 31863086 PMCID: PMC6925126 DOI: 10.1038/s41598-019-56137-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/03/2019] [Indexed: 01/09/2023] Open
Abstract
Multicellular organisms repair injured epithelium by evolutionarily conserved biological processes including activation of c-Jun N-terminal kinase (JNK) signaling. Here, we show in Drosophila imaginal epithelium that physical injury leads to the emergence of dying cells, which are extruded from the wounded tissue by JNK-induced Slit-Roundabout2 (Robo2) repulsive signaling. Reducing Slit-Robo2 signaling in the wounded tissue suppresses extrusion of dying cells and generates aberrant cells with highly upregulated growth factors Wingless (Wg) and Decapentaplegic (Dpp). The inappropriately elevated Wg and Dpp impairs wound repair, as halving one of these growth factor genes cancelled wound healing defects caused by Slit-Robo2 downregulation. Our data suggest that JNK-mediated Slit-Robo2 signaling contributes to epithelial wound repair by promoting extrusion of dying cells from the wounded tissue, which facilitates transient and appropriate induction of growth factors for proper wound healing.
Collapse
|
8
|
Identifying Genetic Players in Cell Sheet Morphogenesis Using a Drosophila Deficiency Screen for Genes on Chromosome 2R Involved in Dorsal Closure. G3-GENES GENOMES GENETICS 2018; 8:2361-2387. [PMID: 29776969 PMCID: PMC6027880 DOI: 10.1534/g3.118.200233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cell sheet morphogenesis characterizes key developmental transitions and homeostasis, in vertebrates and throughout phylogeny, including gastrulation, neural tube formation and wound healing. Dorsal closure, a process during Drosophila embryogenesis, has emerged as a model for cell sheet morphogenesis. ∼140 genes are currently known to affect dorsal closure and new genes are identified each year. Many of these genes were identified in screens that resulted in arrested development. Dorsal closure is remarkably robust and many questions regarding the molecular mechanisms involved in this complex biological process remain. Thus, it is important to identify all genes that contribute to the kinematics and dynamics of closure. Here, we used a set of large deletions (deficiencies), which collectively remove 98.5% of the genes on the right arm of Drosophila melanogaster’s 2nd chromosome to identify “dorsal closure deficiencies”. Through two crosses, we unambiguously identified embryos homozygous for each deficiency and time-lapse imaged them for the duration of closure. Images were analyzed for defects in cell shapes and tissue movements. Embryos homozygous for 47 deficiencies have notable, diverse defects in closure, demonstrating that a number of discrete processes comprise closure and are susceptible to mutational disruption. Further analysis of these deficiencies will lead to the identification of at least 30 novel “dorsal closure genes”. We expect that many of these novel genes will identify links to pathways and structures already known to coordinate various aspects of closure. We also expect to identify new processes and pathways that contribute to closure.
Collapse
|
9
|
Kiehart DP, Crawford JM, Aristotelous A, Venakides S, Edwards GS. Cell Sheet Morphogenesis: Dorsal Closure in Drosophila melanogaster as a Model System. Annu Rev Cell Dev Biol 2018; 33:169-202. [PMID: 28992442 DOI: 10.1146/annurev-cellbio-111315-125357] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dorsal closure is a key process during Drosophila morphogenesis that models cell sheet movements in chordates, including neural tube closure, palate formation, and wound healing. Closure occurs midway through embryogenesis and entails circumferential elongation of lateral epidermal cell sheets that close a dorsal hole filled with amnioserosa cells. Signaling pathways regulate the function of cellular structures and processes, including Actomyosin and microtubule cytoskeletons, cell-cell/cell-matrix adhesion complexes, and endocytosis/vesicle trafficking. These orchestrate complex shape changes and movements that entail interactions between five distinct cell types. Genetic and laser perturbation studies establish that closure is robust, resilient, and the consequence of redundancy that contributes to four distinct biophysical processes: contraction of the amnioserosa, contraction of supracellular Actomyosin cables, elongation (stretching?) of the lateral epidermis, and zipping together of two converging cell sheets. What triggers closure and what the emergent properties are that give rise to its extraordinary resilience and fidelity remain key, extant questions.
Collapse
Affiliation(s)
- Daniel P Kiehart
- Department of Biology, Duke University, Durham, North Carolina 27708;
| | - Janice M Crawford
- Department of Biology, Duke University, Durham, North Carolina 27708;
| | - Andreas Aristotelous
- Department of Mathematics, West Chester University, West Chester, Pennsylvania 19383
| | | | - Glenn S Edwards
- Physics Department, Duke University, Durham, North Carolina 27708
| |
Collapse
|
10
|
Fadul J, Rosenblatt J. The forces and fates of extruding cells. Curr Opin Cell Biol 2018; 54:66-71. [PMID: 29727745 DOI: 10.1016/j.ceb.2018.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023]
Abstract
Cell extrusion drives most epithelial cell death while maintaining a functional epithelial barrier. To extrude, a cell produces a lipid signal that triggers the neighboring cells to reorganize actin and myosin basally to squeeze the extruding cell out apically from the barrier. More studies continue to reveal other signals and mechanisms controlling apical extrusion. New developmental studies are uncovering mechanisms controlling basal extrusion, or ingression, which occurs when apical extrusion is defective or during de-differentiation in development. Here, we review recent advances in epithelial extrusion, focusing particularly on forces exerted upon extruding cells and their various later fates ranging from cell death, normal development, and cancer.
Collapse
Affiliation(s)
- John Fadul
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT, USA
| | - Jody Rosenblatt
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
11
|
Torres AY, Malartre M, Pret AM, Agnès F. JAK/STAT signaling is necessary for cell monosis prior to epithelial cell apoptotic extrusion. Cell Death Dis 2017; 8:e2814. [PMID: 28542149 PMCID: PMC5520696 DOI: 10.1038/cddis.2017.166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 12/19/2022]
Abstract
Epithelial cell extrusion is crucial for proper development and tissue homeostasis. High-resolution 3D reconstruction and 4D imaging, combined with genetic analyis, have allowed us to reveal the highly-sterotyped morphogenetic events controlled by JAK/STAT signaling in a developmentally-programmed case of epithelial cell extrusion. Specialized somatic cells, Polar Cells (PCs), are produced in excess and then undergo apoptotic elimination from the follicular epithelium in the Drosophila ovary. We show that supernumerary PCs are first systematically enveloped by PC neighbors on all sides, first laterally, then apically in conjunction with highly-reinforced adherens junctions, and finally basally. The PC to be removed thus loses all contact with follicle cells, germline cells and the basement membrane in a process we have called cell 'monosis', for 'isolation' in Greek. PC monosis takes several hours, and always precedes, and is independent of, activation of apoptosis. JAK/STAT signaling is necessary within the surrounding follicular epithelium for PC monosis. Minutes after monosis is complete, PC apoptotic corpses are formed and extruded laterally within the epithelium, in contrast to the apical and basal extrusions described to date. These apoptotic corpses are engulfed and eliminated by surrounding follicle cells, which are thus acting as non-professional phagocytes. This study therefore shows the non cell-autonomous impact of an epithelium, via JAK/STAT signaling activation, on cell morphogenesis events leading to apoptotic extrusion. It is likely that the use of high-resolution 3D and 4D imaging, which allows for better spatio-temporal understanding of morphogenetic events, will reveal that cell monosis and lateral extrusion within an epithelium are pertinent for other cases of epithelial cell extrusion as well.
Collapse
Affiliation(s)
- Alba Y Torres
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Marianne Malartre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Anne-Marie Pret
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université, Paris-Saclay, 91198 Gif-sur-Yvette Cedex France
- Université de Versailles St Quentin en Yvelines, 78035 Versailles, France
| | - François Agnès
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
12
|
Mapping Heart Development in Flies: Src42A Acts Non-Autonomously to Promote Heart Tube Formation in Drosophila. Vet Sci 2017; 4:vetsci4020023. [PMID: 29056682 PMCID: PMC5606601 DOI: 10.3390/vetsci4020023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/27/2016] [Accepted: 12/07/2016] [Indexed: 12/26/2022] Open
Abstract
Congenital heart defects, clinically identified in both small and large animals, are multifactorial and complex. Although heritable factors are known to have a role in cardiovascular disease, the full genetic aetiology remains unclear. Model organism research has proven valuable in providing a deeper understanding of the essential factors in heart development. For example, mouse knock-out studies reveal a role for the Integrin adhesion receptor in cardiac tissue. Recent research in Drosophila melanogaster (the fruit fly), a powerful experimental model, has demonstrated that the link between the extracellular matrix and the cell, mediated by Integrins, is required for multiple aspects of cardiogenesis. Here we test the hypothesis that Integrins signal to the heart cells through Src42A kinase. Using the powerful genetics and cell biology analysis possible in Drosophila, we demonstrate that Src42A acts in early events of heart tube development. Careful examination of mutant heart tissue and genetic interaction data suggests that Src42A’s role is independent of Integrin and the Integrin-related Focal Adhesion Kinase. Rather, Src42A acts non-autonomously by promoting programmed cell death of the amnioserosa, a transient tissue that neighbors the developing heart.
Collapse
|
13
|
Hayes P, Solon J. Drosophila dorsal closure: An orchestra of forces to zip shut the embryo. Mech Dev 2017; 144:2-10. [PMID: 28077304 DOI: 10.1016/j.mod.2016.12.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/17/2016] [Accepted: 12/23/2016] [Indexed: 10/20/2022]
Abstract
Dorsal closure, a late-embryogenesis process, consists in the sealing of an epidermal gap on the dorsal side of the Drosophila embryo. Because of its similarities with wound healing and neural tube closure in humans, it has been extensively studied in the last twenty years. The process requires the coordination of several force generating mechanisms, that together will zip shut the epidermis. Recent works have provided a precise description of the cellular behavior at the origin of these forces and proposed quantitative models of the process. In this review, we will describe the different forces acting in dorsal closure. We will present our current knowledge on the mechanisms generating and regulating these forces and report on the different quantitative mathematical models proposed so far.
Collapse
Affiliation(s)
- Peran Hayes
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Jérôme Solon
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.
| |
Collapse
|
14
|
Nazario-Yepiz NO, Riesgo-Escovar JR. piragua encodes a zinc finger protein required for development in Drosophila. Mech Dev 2016; 144:171-181. [PMID: 28011160 DOI: 10.1016/j.mod.2016.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 11/07/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023]
Abstract
We isolated and characterized embryonic lethal mutations in piragua (prg). The prg locus encodes a protein with an amino terminus Zinc Finger-Associated-Domain (ZAD) and nine C2H2 zinc fingers (ZF). prg mRNA and protein expression during embryogenesis is dynamic with widespread maternal contribution, and subsequent expression in epithelial precursors. About a quarter of prg mutant embryos do not develop cuticle, and from those that do a small fraction have cuticular defects. Roughly half of prg mutants die during embryogenesis. prg mutants have an extended phenocritical period encompassing embryogenesis and first instar larval stage, since the other half of prg mutants die as first or second instar larvae. During dorsal closure, time-lapse high-resolution imaging shows defects arising out of sluggishness in closure, resolving at times in failures of closure. prg is expressed in imaginal discs, and is required for imaginal development. prg was identified in imaginal tissue in a cell super competition screen, together with other genes, like flower. We find that flower mutations are also embryonic lethal with a similar phenocritical period and strong embryonic mutant phenotypes (head involution defects, primarily). The two loci interact genetically in the embryo, as they increase embryonic mortality to close to 90% with the same embryonic phenotypes (dorsal closure and head involution defects, plus lack of cuticle). Mutant prg clones generated in developing dorsal thorax and eye imaginal tissue have strong developmental defects (lack of bristles and ommatidial malformations). prg is required in several developmental morphogenetic processes.
Collapse
Affiliation(s)
- Nestor O Nazario-Yepiz
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM, Campus UNAM Juriquilla, Boulevard Juriquilla 3001, Querétaro, Querétaro c.p. 76230, Mexico
| | - Juan R Riesgo-Escovar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM, Campus UNAM Juriquilla, Boulevard Juriquilla 3001, Querétaro, Querétaro c.p. 76230, Mexico.
| |
Collapse
|
15
|
Kawamoto Y, Nakajima YI, Kuranaga E. Apoptosis in Cellular Society: Communication between Apoptotic Cells and Their Neighbors. Int J Mol Sci 2016; 17:ijms17122144. [PMID: 27999411 PMCID: PMC5187944 DOI: 10.3390/ijms17122144] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/07/2016] [Accepted: 12/15/2016] [Indexed: 12/22/2022] Open
Abstract
Apoptosis is one of the cell-intrinsic suicide programs and is an essential cellular behavior for animal development and homeostasis. Traditionally, apoptosis has been regarded as a cell-autonomous phenomenon. However, recent in vivo genetic studies have revealed that apoptotic cells actively influence the behaviors of surrounding cells, including engulfment, proliferation, and production of mechanical forces. Such interactions can be bidirectional, and apoptosis is non-autonomously induced in a cellular community. Of note, it is becoming evident that active communication between apoptotic cells and living cells contributes to physiological processes during tissue remodeling, regeneration, and morphogenesis. In this review, we focus on the mutual interactions between apoptotic cells and their neighbors in cellular society and discuss issues relevant to future studies of apoptosis.
Collapse
Affiliation(s)
- Yuhei Kawamoto
- Laboratory for Histogenetic Dynamics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan.
- Laboratory for Histogenetic Dynamics, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan.
| | - Yu-Ichiro Nakajima
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan.
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan.
| | - Erina Kuranaga
- Laboratory for Histogenetic Dynamics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan.
- Laboratory for Histogenetic Dynamics, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan.
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
16
|
Lu H, Sokolow A, Kiehart DP, Edwards GS. Quantifying dorsal closure in three dimensions. Mol Biol Cell 2016; 27:3948-3955. [PMID: 27798232 PMCID: PMC5156535 DOI: 10.1091/mbc.e16-06-0400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/12/2016] [Accepted: 10/18/2016] [Indexed: 01/31/2023] Open
Abstract
Dorsal closure is an essential stage of Drosophila embryogenesis and is a powerful model system for morphogenesis, wound healing, and tissue biomechanics. During closure, two flanks of lateral epidermis close an eye-shaped dorsal opening that is filled with amnioserosa. The two flanks of lateral epidermis are zipped together at each canthus ("corner" of the eye). Actomyosin-rich purse strings are localized at each of the two leading edges of lateral epidermis ("lids" of the eye). Here we report that each purse string indents the dorsal surface at each leading edge. The amnioserosa tissue bulges outward during the early-to-mid stages of closure to form a remarkably smooth, asymmetric dome indicative of an isotropic and uniform surface tension. Internal pressure of the embryo and tissue elastic properties help to shape the dorsal surface.
Collapse
Affiliation(s)
- Heng Lu
- Physics Department, Duke University, Durham, NC 27708
| | - Adam Sokolow
- Physics Department, Duke University, Durham, NC 27708
| | | | | |
Collapse
|
17
|
Teng X, Qin L, Le Borgne R, Toyama Y. Remodeling of adhesion and modulation of mechanical tensile forces during apoptosis in Drosophila epithelium. Development 2016; 144:95-105. [PMID: 27888195 DOI: 10.1242/dev.139865] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/10/2016] [Indexed: 02/01/2023]
Abstract
Apoptosis is a mechanism of eliminating damaged or unnecessary cells during development and tissue homeostasis. During apoptosis within a tissue, the adhesions between dying and neighboring non-dying cells need to be remodeled so that the apoptotic cell is expelled. In parallel, contraction of actomyosin cables formed in apoptotic and neighboring cells drives cell extrusion. To date, the coordination between the dynamics of cell adhesion and the progressive changes in tissue tension around an apoptotic cell is not fully understood. Live imaging of histoblast expansion, which is a coordinated tissue replacement process during Drosophila metamorphosis, shows remodeling of adherens junctions (AJs) between apoptotic and non-dying cells, with a reduction in the levels of AJ components, including E-cadherin. Concurrently, surrounding tissue tension is transiently released. Contraction of a supra-cellular actomyosin cable, which forms in neighboring cells, brings neighboring cells together and further reshapes tissue tension toward the completion of extrusion. We propose a model in which modulation of tissue tension represents a mechanism of apoptotic cell extrusion.
Collapse
Affiliation(s)
- Xiang Teng
- Department of Biological Sciences, National University of Singapore, Singapore 117543.,Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Lei Qin
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Roland Le Borgne
- CNRS, UMR 6290, Institute of Genetics and Development of Rennes, F-35043 Rennes, France.,Université Rennes 1, Faculté de Médecine, F35043 Rennes, France
| | - Yusuke Toyama
- Department of Biological Sciences, National University of Singapore, Singapore 117543 .,Mechanobiology Institute, National University of Singapore, Singapore 117411.,Temasek Life Sciences Laboratory, Singapore 117604
| |
Collapse
|
18
|
Duque J, Gorfinkiel N. Integration of actomyosin contractility with cell-cell adhesion during dorsal closure. Development 2016; 143:4676-4686. [PMID: 27836966 DOI: 10.1242/dev.136127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 10/27/2016] [Indexed: 02/01/2023]
Abstract
In this work, we combine genetic perturbation, time-lapse imaging and quantitative image analysis to investigate how pulsatile actomyosin contractility drives cell oscillations, apical cell contraction and tissue closure during morphogenesis of the amnioserosa, the main force-generating tissue during the dorsal closure in Drosophila We show that Myosin activity determines the oscillatory and contractile behaviour of amnioserosa cells. Reducing Myosin activity prevents cell shape oscillations and reduces cell contractility. By contrast, increasing Myosin activity increases the amplitude of cell shape oscillations and the time cells spend in the contracted phase relative to the expanded phase during an oscillatory cycle, promoting cell contractility and tissue closure. Furthermore, we show that in AS cells, Rok controls Myosin foci formation and Mbs regulates not only Myosin phosphorylation but also adhesion dynamics through control of Moesin phosphorylation, showing that Mbs coordinates actomyosin contractility with cell-cell adhesion during amnioserosa morphogenesis.
Collapse
Affiliation(s)
- Julia Duque
- Centro de Biología Molecular 'Severo Ochoa', CSIC-UAM, Cantoblanco, Madrid 28049, Spain
| | - Nicole Gorfinkiel
- Centro de Biología Molecular 'Severo Ochoa', CSIC-UAM, Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
19
|
Jurado J, de Navascués J, Gorfinkiel N. α-Catenin stabilises Cadherin-Catenin complexes and modulates actomyosin dynamics to allow pulsatile apical contraction. J Cell Sci 2016; 129:4496-4508. [PMID: 27831494 DOI: 10.1242/jcs.193268] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/02/2016] [Indexed: 01/07/2023] Open
Abstract
We have investigated how cell contractility and adhesion are functionally integrated during epithelial morphogenesis. To this end, we have analysed the role of α-Catenin, a key molecule linking E-Cadherin-based adhesion and the actomyosin cytoskeleton, during Drosophila embryonic dorsal closure, by studying a newly developed allelic series. We find that α-Catenin regulates pulsatile apical contraction in the amnioserosa, the main force-generating tissue driving closure of the embryonic epidermis. α-Catenin controls actomyosin dynamics by stabilising and promoting the formation of actomyosin foci, and also stabilises DE-Cadherin (Drosophila E-Cadherin, also known as Shotgun) at the cell membrane, suggesting that medioapical actomyosin contractility regulates junction stability. Furthermore, we uncover a genetic interaction between α-Catenin and Vinculin, and a tension-dependent recruitment of Vinculin to amniosersoa apical cell membranes, suggesting the existence of a mechano-sensitive module operating in this tissue.
Collapse
Affiliation(s)
- Jaime Jurado
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM, Cantoblanco, Madrid 28049, Spain
| | - Joaquín de Navascués
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Nicole Gorfinkiel
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM, Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
20
|
Lu H, Sokolow A, Kiehart DP, Edwards GS. Remodeling Tissue Interfaces and the Thermodynamics of Zipping during Dorsal Closure in Drosophila. Biophys J 2016; 109:2406-17. [PMID: 26636951 DOI: 10.1016/j.bpj.2015.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/16/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022] Open
Abstract
Dorsal closure during Drosophila embryogenesis is an important model system for investigating the biomechanics of morphogenesis. During closure, two flanks of lateral epidermis (with actomyosin-rich purse strings near each leading edge) close an eye-shaped opening that is filled with amnioserosa. At each canthus (corner of the eye) a zipping process remodels the tissue interfaces between the leading edges of the lateral epidermis and the amnioserosa. We investigated zipping dynamics and found that apposing leading edge cells come together at their apical ends and then square off basally to form a lateral junction. Meanwhile, the purse strings act as contractile elastic rods bent toward the embryo interior near each canthus. We propose that a canthus-localized force contributes to both bending the ends of the purse strings and the formation of lateral junctions. We developed a thermodynamic model for zipping based on three-dimensional remodeling of the tissue interfaces and the reaction dynamics of adhesion molecules in junctions and elsewhere, which we applied to zipping during unperturbed wild-type closure and to laser or genetically perturbed closure. We identified two processes that can contribute to the zipping mechanism, consistent with experiments, distinguished by whether amnioserosa dynamics do or do not augment canthus adhesion dynamics.
Collapse
Affiliation(s)
- Heng Lu
- Physics Department, Duke University, Durham, North Carolina
| | - Adam Sokolow
- Physics Department, Duke University, Durham, North Carolina
| | | | - Glenn S Edwards
- Physics Department, Duke University, Durham, North Carolina.
| |
Collapse
|
21
|
Schwayer C, Sikora M, Slováková J, Kardos R, Heisenberg CP. Actin Rings of Power. Dev Cell 2016; 37:493-506. [DOI: 10.1016/j.devcel.2016.05.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 12/21/2022]
|
22
|
Gudipaty SA, Rosenblatt J. Epithelial cell extrusion: Pathways and pathologies. Semin Cell Dev Biol 2016; 67:132-140. [PMID: 27212253 DOI: 10.1016/j.semcdb.2016.05.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 02/06/2023]
Abstract
To remove dying or unwanted cells from an epithelium while preserving the barrier function of the layer, epithelia use a unique process called cell extrusion. To extrude, the cell fated to die emits the lipid Sphingosine 1 Phosphate (S1P), which binds the G-protein-coupled receptor Sphingosine 1 Phosphate receptor 2 (S1P2) in the neighboring cells that activates Rho-mediated contraction of an actomyosin ring circumferentially and basally. This contraction acts to squeeze the cell out apically while drawing together neighboring cells and preventing any gaps to the epithelial barrier. Epithelia can extrude out cells targeted to die by apoptotic stimuli to repair the barrier in the face of death or extrude live cells to promote cell death when epithelial cells become too crowded. Indeed, because epithelial cells naturally turn over by cell death and division at some of the highest rates in the body, epithelia depend on crowding-induced live cell extrusion to preserve constant cell numbers. If extrusion is defective, epithelial cells rapidly lose contact inhibition and form masses. Additionally, because epithelia act as the first line of defense in innate immunity, preservation of this barrier is critical for preventing pathogens from invading the body. Given its role in controlling constant cell numbers and maintaining barrier function, a number of different pathologies can result when extrusion is disrupted. Here, we review mechanisms and signaling pathways that control epithelial extrusion and discuss how defects in these mechanisms can lead to multiple diseases. We also discuss tactics pathogens have devised to hijack the extrusion process to infect and colonize epithelia.
Collapse
Affiliation(s)
- Swapna Aravind Gudipaty
- Department of Oncological Sciences, Huntsman Cancer Institute, University Of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA
| | - Jody Rosenblatt
- Department of Oncological Sciences, Huntsman Cancer Institute, University Of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA.
| |
Collapse
|
23
|
Pérez-Garijo A, Steller H. Spreading the word: non-autonomous effects of apoptosis during development, regeneration and disease. Development 2016; 142:3253-62. [PMID: 26443630 DOI: 10.1242/dev.127878] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Apoptosis, in contrast to other forms of cell death such as necrosis, was originally regarded as a 'silent' mechanism of cell elimination designed to degrade the contents of doomed cells. However, during the past decade it has become clear that apoptotic cells can produce diverse signals that have a profound impact on neighboring cells and tissues. For example, apoptotic cells can release factors that influence the proliferation and survival of adjacent tissues. Apoptosis can also affect tissue movement and morphogenesis by modifying tissue tension in surrounding cells. As we review here, these findings reveal unexpected roles for apoptosis in tissue remodeling during development, as well as in regeneration and cancer.
Collapse
Affiliation(s)
- Ainhoa Pérez-Garijo
- Strang Laboratory of Apoptosis and Cancer Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Hermann Steller
- Strang Laboratory of Apoptosis and Cancer Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
24
|
Schmidt-Ott U, Kwan CW. Morphogenetic functions of extraembryonic membranes in insects. CURRENT OPINION IN INSECT SCIENCE 2016; 13:86-92. [PMID: 27436557 DOI: 10.1016/j.cois.2016.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 06/06/2023]
Abstract
Morphogenetic functions of the amnioserosa, the serosa, the amnion, and the yolk sac are reviewed on the basis of recent studies in flies (Drosophila, Megaselia), beetles (Tribolium), and hemipteran bugs (Oncopeltus). Three hypotheses are presented. First, it is suggested that the amnioserosa of Drosophila and the dorsal amnion of other fly species function in a similar manner. Second, it is proposed that in many species with an amniotic cavity, the amnion determines the site of serosa rupture, which, through interactions between the serosa and the amnion, enables the embryo to break free from the amniotic cavity and to close its backside. Finally, it is concluded that the yolk sac is likely an important player in insect morphogenesis.
Collapse
Affiliation(s)
- Urs Schmidt-Ott
- University of Chicago, Dept. of Organismal Biology and Anatomy, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60637, USA.
| | - Chun Wai Kwan
- University of Chicago, Dept. of Organismal Biology and Anatomy, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60637, USA
| |
Collapse
|
25
|
Yasin HWR, van Rensburg SH, Feiler CE, Johnson RI. The adaptor protein Cindr regulates JNK activity to maintain epithelial sheet integrity. Dev Biol 2016; 410:135-149. [PMID: 26772997 DOI: 10.1016/j.ydbio.2016.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/23/2015] [Accepted: 01/04/2016] [Indexed: 12/19/2022]
Abstract
Epithelia are essential barrier tissues that must be appropriately maintained for their correct function. To achieve this a plethora of protein interactions regulate epithelial cell number, structure and adhesion, and differentiation. Here we show that Cindr (the Drosophila Cin85 and Cd2ap ortholog) is required to maintain epithelial integrity. Reducing Cindr triggered cell delamination and movement. Most delaminating cells died. These behaviors were consistent with JNK activation previously associated with loss of epithelial integrity in response to ectopic oncogene activity. We confirmed a novel interaction between Cindr and Drosophila JNK (dJNK), which when perturbed caused inappropriate JNK signaling. Genetically reducing JNK signaling activity suppressed the effects of reducing Cindr. Furthermore, ectopic JNK signaling phenocopied loss of Cindr and was partially rescued by concomitant cindr over-expression. Thus, correct Cindr-dJNK stoichiometry is essential to maintain epithelial integrity and disturbing this balance may contribute to the pathogenesis of disease states, including cancer.
Collapse
Affiliation(s)
- Hannah W R Yasin
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | | | - Christina E Feiler
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | - Ruth I Johnson
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA.
| |
Collapse
|
26
|
Crews SM, McCleery WT, Hutson MS. Pathway to a phenocopy: Heat stress effects in early embryogenesis. Dev Dyn 2015; 245:402-13. [PMID: 26498920 DOI: 10.1002/dvdy.24360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/09/2015] [Accepted: 10/13/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Heat shocks applied at the onset of gastrulation in early Drosophila embryos frequently lead to phenocopies of U-shaped mutants-having characteristic failures in the late morphogenetic processes of germband retraction and dorsal closure. The pathway from nonspecific heat stress to phenocopied abnormalities is unknown. RESULTS Drosophila embryos subjected to 30-min, 38 °C heat shocks at gastrulation appear to recover and restart morphogenesis. Post-heat-shock development appears normal, albeit slower, until a large fraction of embryos develop amnioserosa holes (diameters > 100 µm). These holes are positively correlated with terminal U-shaped phenocopies. They initiate between amnioserosa cells and open over tens of minutes by evading normal wound healing responses. They are not caused by tissue-wide increases in mechanical stress or decreases in cell-cell adhesion, but instead appear to initiate from isolated apoptosis of amnioserosa cells. CONCLUSIONS The pathway from heat shock to U-shaped phenocopies involves the opening of one or more large holes in the amnioserosa that compromise its structural integrity and lead to failures in morphogenetic processes that rely on amnioserosa-generated tensile forces. The proposed mechanism by which heat shock leads to hole initiation and expansion is heterochonicity, i.e., disruption of morphogenetic coordination between embryonic and extra-embryonic cell types.
Collapse
Affiliation(s)
- Sarah M Crews
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee
| | - W Tyler McCleery
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee
| | - M Shane Hutson
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee.,Vanderbilt Institute for Integrative Biosystem Research and Education, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
27
|
Flores-Benitez D, Knust E. Crumbs is an essential regulator of cytoskeletal dynamics and cell-cell adhesion during dorsal closure in Drosophila. eLife 2015; 4. [PMID: 26544546 PMCID: PMC4718732 DOI: 10.7554/elife.07398] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 11/06/2015] [Indexed: 12/12/2022] Open
Abstract
The evolutionarily conserved Crumbs protein is required for epithelial polarity and morphogenesis. Here we identify a novel role of Crumbs as a negative regulator of actomyosin dynamics during dorsal closure in the Drosophila embryo. Embryos carrying a mutation in the FERM (protein 4.1/ezrin/radixin/moesin) domain-binding motif of Crumbs die due to an overactive actomyosin network associated with disrupted adherens junctions. This phenotype is restricted to the amnioserosa and does not affect other embryonic epithelia. This function of Crumbs requires DMoesin, the Rho1-GTPase, class-I p21-activated kinases and the Arp2/3 complex. Data presented here point to a critical role of Crumbs in regulating actomyosin dynamics, cell junctions and morphogenesis. DOI:http://dx.doi.org/10.7554/eLife.07398.001 A layer of epithelial cells covers the body surface of animals. Epithelial cells have a property known as polarity; this means that they have two different poles, one of which is in contact with the environment. Midway through embryonic development, the Drosophila embryo is covered by two kinds of epithelial sheets; the epidermis on the front, the belly and the sides of the embryo, and the amnioserosa on the back. In the second half of embryonic development, the amnioserosa is brought into the embryo in a process called dorsal closure, while the epidermis expands around the back of the embryo to encompass it. One of the major activities driving dorsal closure is the contraction of amnioserosa cells. This contraction depends on the highly dynamic activity of the protein network that helps give cells their shape, known as the actomyosin cytoskeleton. One major question in the field is how changes in the actomyosin cytoskeleton are controlled as tissues take shape (a process known as “morphogenesis”) and how the integrity of epithelial tissues is maintained during these processes. A key regulator of epidermal and amnioserosa polarity is an evolutionarily conserved protein called Crumbs. The epithelial tissues of mutant embryos that do not produce Crumbs lose polarity and integrity, and the embryos fail to develop properly. Flores-Benitez and Knust have now studied the role of Crumbs in the morphogenesis of the amnioserosa during dorsal closure. This revealed that fly embryos that produce a mutant Crumbs protein that cannot interact with a protein called Moesin (which links the cell membrane and the actomyosin cytoskeleton) are unable to complete dorsal closure. Detailed analyses showed that this failure of dorsal closure is due to the over-activity of the actomyosin cytoskeleton in the amnioserosa. This results in increased and uncoordinated contractions of the cells, and is accompanied by defects in cell-cell adhesion that ultimately cause the amnioserosa to lose integrity. Flores-Benitez and Knust’s genetic analyses further showed that several different signalling systems participate in this process. Flores-Benitez and Knust’s results reveal an unexpected role of Crumbs in coordinating polarity, actomyosin activity and cell-cell adhesion. Further work is now needed to understand the molecular mechanisms and interactions that enable Crumbs to coordinate these processes; in particular, to unravel how Crumbs influences the periodic contractions that drive changes in cell shape. It will also be important to investigate whether Crumbs is involved in similar mechanisms that operate in other developmental events in which actomyosin oscillations have been linked to tissue morphogenesis. DOI:http://dx.doi.org/10.7554/eLife.07398.002
Collapse
Affiliation(s)
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
28
|
E-cadherin junctions as active mechanical integrators in tissue dynamics. Nat Cell Biol 2015; 17:533-9. [PMID: 25925582 DOI: 10.1038/ncb3136] [Citation(s) in RCA: 385] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During epithelial morphogenesis, E-cadherin adhesive junctions play an important part in mechanically coupling the contractile cortices of cells together, thereby distributing the stresses that drive cell rearrangements at both local and tissue levels. Here we discuss the concept that cellular contractility and E-cadherin-based adhesion are functionally integrated by biomechanical feedback pathways that operate on molecular, cellular and tissue scales.
Collapse
|
29
|
Saias L, Swoger J, D’Angelo A, Hayes P, Colombelli J, Sharpe J, Salbreux G, Solon J. Decrease in Cell Volume Generates Contractile Forces Driving Dorsal Closure. Dev Cell 2015; 33:611-21. [DOI: 10.1016/j.devcel.2015.03.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 08/18/2014] [Accepted: 03/16/2015] [Indexed: 01/06/2023]
|
30
|
Gupte TM. Mitochondrial Fragmentation Due to Inhibition of Fusion Increases Cyclin B through Mitochondrial Superoxide Radicals. PLoS One 2015; 10:e0126829. [PMID: 26000631 PMCID: PMC4441460 DOI: 10.1371/journal.pone.0126829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 04/08/2015] [Indexed: 11/25/2022] Open
Abstract
During the cell cycle, mitochondria undergo regulated changes in morphology. Two particularly interesting events are first, mitochondrial hyperfusion during the G1-S transition and second, fragmentation during entry into mitosis. The mitochondria remain fragmented between late G2- and mitotic exit. This mitotic mitochondrial fragmentation constitutes a checkpoint in some cell types, of which little is known. We bypass the ‘mitotic mitochondrial fragmentation’ checkpoint by inducing fragmented mitochondrial morphology and then measure the effect on cell cycle progression. Using Drosophila larval hemocytes, Drosophila S2R+ cell and cells in the pouch region of wing imaginal disc of Drosophila larvae we show that inhibiting mitochondrial fusion, thereby increasing fragmentation, causes cellular hyperproliferation and an increase in mitotic index. However, mitochondrial fragmentation due to over-expression of the mitochondrial fission machinery does not cause these changes. Our experiments suggest that the inhibition of mitochondrial fusion increases superoxide radical content and leads to the upregulation of cyclin B that culminates in the observed changes in the cell cycle. We provide evidence for the importance of mitochondrial superoxide in this process. Our results provide an insight into the need for mitofusin-degradation during mitosis and also help in understanding the mechanism by which mitofusins may function as tumor suppressors.
Collapse
Affiliation(s)
- Tejas M. Gupte
- National Centre for Biological Sciences (NCBS-TIFR), UAS-GKVK campus, Bellary road, Bangalore, 560 065, Karnataka, India
- inStem, Institute for Stem Cell Biology and Regenerative Medicine, GKVK post, Bellary road, Bangalore, 560 065, Karnataka, India
- * E-mail:
| |
Collapse
|
31
|
Abstract
Studying how cells produce and transmit forces that drive morphogenesis is critical to understanding organismal development. A new paper by Monier et al. (2015) identifies an apicobasal actomyosin cable that characterizes apoptotic cells and contributes force(s) for cell sheet bending.
Collapse
|
32
|
Frohman MA. Role of mitochondrial lipids in guiding fission and fusion. J Mol Med (Berl) 2014; 93:263-9. [PMID: 25471483 DOI: 10.1007/s00109-014-1237-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/13/2014] [Accepted: 11/25/2014] [Indexed: 01/06/2023]
Abstract
Clinically important links have been established between mitochondrial function and cardiac physiology and disease in the context of signaling mechanisms, energy production, and muscle cell development. The proteins and processes that drive mitochondrial fusion and fission are now known to have emergent functions in intracellular calcium homeostasis, apoptosis, vascular smooth muscle cell proliferation, myofibril organization, and Notch-driven cell differentiation, all key issues in cardiac disease. Moreover, decreasing fission may confer protection against ischemic heart disease, particularly in the setting of obesity, diabetes, and heart failure. The importance of lipids in controlling mitochondrial fission and fusion is increasingly becoming appreciated. Roles for the bulk and signaling lipids cardiolipin, phosphatidylethanolamine, phosphatidic acid, diacylglycerol, and lysophosphatidic acid and the enzymes that synthesize or metabolize them in the control of mitochondrial shape and function are reviewed here. A number of diseases have been linked to loss-of-function alleles for a subset of the enzymes, emphasizing the importance of the lipid environment in this context.
Collapse
Affiliation(s)
- Michael A Frohman
- Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, 11794, USA,
| |
Collapse
|
33
|
DeVorkin L, Go NE, Hou YCC, Moradian A, Morin GB, Gorski SM. The Drosophila effector caspase Dcp-1 regulates mitochondrial dynamics and autophagic flux via SesB. ACTA ACUST UNITED AC 2014; 205:477-92. [PMID: 24862573 PMCID: PMC4033768 DOI: 10.1083/jcb.201303144] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Increasing evidence reveals that a subset of proteins participates in both the autophagy and apoptosis pathways, and this intersection is important in normal physiological contexts and in pathological settings. In this paper, we show that the Drosophila effector caspase, Drosophila caspase 1 (Dcp-1), localizes within mitochondria and regulates mitochondrial morphology and autophagic flux. Loss of Dcp-1 led to mitochondrial elongation, increased levels of the mitochondrial adenine nucleotide translocase stress-sensitive B (SesB), increased adenosine triphosphate (ATP), and a reduction in autophagic flux. Moreover, we find that SesB suppresses autophagic flux during midoogenesis, identifying a novel negative regulator of autophagy. Reduced SesB activity or depletion of ATP by oligomycin A could rescue the autophagic defect in Dcp-1 loss-of-function flies, demonstrating that Dcp-1 promotes autophagy by negatively regulating SesB and ATP levels. Furthermore, we find that pro-Dcp-1 interacts with SesB in a nonproteolytic manner to regulate its stability. These data reveal a new mitochondrial-associated molecular link between nonapoptotic caspase function and autophagy regulation in vivo.
Collapse
Affiliation(s)
- Lindsay DeVorkin
- The Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Nancy Erro Go
- The Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Ying-Chen Claire Hou
- The Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Annie Moradian
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 1L3, Canada
| | - Gregg B Morin
- The Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 1L3, Canada
| | - Sharon M Gorski
- The Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
34
|
Ha EEJ, Frohman MA. Regulation of mitochondrial morphology by lipids. Biofactors 2014; 40:419-24. [PMID: 24771456 PMCID: PMC4146713 DOI: 10.1002/biof.1169] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/12/2014] [Accepted: 04/14/2014] [Indexed: 11/05/2022]
Abstract
Although great progress has been made in identifying key protein factors that regulate mitochondrial morphology through mediating fission and fusion, signaling lipids are increasingly being recognized as important in the process as well. We review here roles that have been proposed for the signaling and bulk lipids cardiolipin, phosphatidic acid, lysophosphatidic acid, diacylglycerol, and phosphatidylethanolamine and the enzymes that generate or catabolize them in the regulation of mitochondrial morphology in yeast and mammals. Mutations in some of these enzymes are causal in a number of disease settings, highlighting the significance of controlling the lipid environment in this setting.
Collapse
Affiliation(s)
| | - Michael A. Frohman
- Corresponding author: Michael A. Frohman, 438 Center for Molecular Medicine, Stony Brook University, Stony Brook, NY, 11794, , Phone: 631-632-1476, Fax: 631-632-1692
| |
Collapse
|
35
|
Baba T, Kashiwagi Y, Arimitsu N, Kogure T, Edo A, Maruyama T, Nakao K, Nakanishi H, Kinoshita M, Frohman MA, Yamamoto A, Tani K. Phosphatidic acid (PA)-preferring phospholipase A1 regulates mitochondrial dynamics. J Biol Chem 2014; 289:11497-11511. [PMID: 24599962 PMCID: PMC4036285 DOI: 10.1074/jbc.m113.531921] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/04/2014] [Indexed: 12/14/2022] Open
Abstract
Recent studies have suggested that phosphatidic acid (PA), a cone-shaped phospholipid that can generate negative curvature of lipid membranes, participates in mitochondrial fusion. However, precise mechanisms underling the production and consumption of PA on the mitochondrial surface are not fully understood. Phosphatidic acid-preferring phospholipase A1 (PA-PLA1)/DDHD1 is the first identified intracellular phospholipase A1 and preferentially hydrolyzes PA in vitro. Its cellular and physiological functions have not been elucidated. In this study, we show that PA-PLA1 regulates mitochondrial dynamics. PA-PLA1, when ectopically expressed in HeLa cells, induced mitochondrial fragmentation, whereas its depletion caused mitochondrial elongation. The effects of PA-PLA1 on mitochondrial morphology appear to counteract those of MitoPLD, a mitochondrion-localized phospholipase D that produces PA from cardiolipin. Consistent with high levels of expression of PA-PLA1 in testis, PA-PLA1 knock-out mice have a defect in sperm formation. In PA-PLA1-deficient sperm, the mitochondrial structure is disorganized, and an abnormal gap structure exists between the middle and principal pieces. A flagellum is bent at that position, leading to a loss of motility. Our results suggest a possible mechanism of PA regulation of the mitochondrial membrane and demonstrate an in vivo function of PA-PLA1 in the organization of mitochondria during spermiogenesis.
Collapse
Affiliation(s)
- Takashi Baba
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yuriko Kashiwagi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Nagisa Arimitsu
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Takeshi Kogure
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Ayumi Edo
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Tomohiro Maruyama
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kazuki Nakao
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hiroki Nakanishi
- Research Center for Biosignal, Akita University, Akita 010-8543, Japan
| | - Makoto Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Michael A Frohman
- Department of Pharmacology and Center for Developmental Genetics, Stony Brook University, Stony Brook, New York 11794-5140, and
| | - Akitsugu Yamamoto
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Katsuko Tani
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan,.
| |
Collapse
|
36
|
Mitochondrial ROS Regulates Cytoskeletal and Mitochondrial Remodeling to Tune Cell and Tissue Dynamics in a Model for Wound Healing. Dev Cell 2014; 28:239-52. [DOI: 10.1016/j.devcel.2013.12.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 12/08/2013] [Accepted: 12/24/2013] [Indexed: 01/17/2023]
|
37
|
Ratnaparkhi A. Signaling by Folded gastrulation is modulated by mitochondrial fusion and fission. J Cell Sci 2013; 126:5369-76. [PMID: 24101729 DOI: 10.1242/jcs.127985] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondria are increasingly being identified as integrators and regulators of cell signaling pathways. Folded gastrulation (Fog) is a secreted signaling molecule best known for its role in regulating cell shape change at the ventral furrow during gastrulation in Drosophila. Fog is thought to signal, through a G-protein-coupled receptor, to effect downstream cytoskeletal changes necessary for cell shape change. However, the mechanisms regulating Fog signaling that lead to change in cell morphology are poorly understood. This study describes the identification of proteins involved in mitochondrial fusion and fission as regulators of Fog signaling. Pro-fission factors were found to function as enhancers of signaling, whereas pro-fusion factors were found to have the opposite effect. Consistent with this, activation of Fog signaling resulted in mitochondrial fragmentation, and inhibiting this process could attenuate Fog signaling. The findings presented here show that mitochondria, through regulation of fusion and fission, function as downstream effectors and modulators of Fog signaling and Fog-dependent cell shape change.
Collapse
Affiliation(s)
- Anuradha Ratnaparkhi
- Agharkar Research Institute, Animal Sciences Division, Zoology Group, G.G. Agarkar Road, Pune 411 004, India
| |
Collapse
|
38
|
Saravanan S, Meghana C, Narasimha M. Local, cell-nonautonomous feedback regulation of myosin dynamics patterns transitions in cell behavior: a role for tension and geometry? Mol Biol Cell 2013; 24:2350-61. [PMID: 23741052 PMCID: PMC3727928 DOI: 10.1091/mbc.e12-12-0868] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Signals, stresses, and myosin-dependent contractility influence cell geometry, tension, myosin dynamics, and pulsed constriction in the amnioserosa both cell-autonomously and -nonautonomously and feedback regulate cell behavior. Cell delamination is a locally patterned, nonautonomously regulated transition from pulsed to unpulsed constriction. How robust patterns of tissue dynamics emerge from heterogeneities, stochasticities, and asynchronies in cell behavior is an outstanding question in morphogenesis. A clear understanding of this requires examining the influence of the behavior of single cells on tissue patterning. Here we develop single-cell manipulation strategies to uncover the origin of patterned cell behavior in the amnioserosa during Drosophila dorsal closure. We show that the formation and dissolution of contractile, medial actomyosin networks previously shown to underlie pulsed apical constrictions in the amnioserosa are apparently asynchronous in adjacent cells. We demonstrate for the first time that mechanical stresses and Rho1 GTPase control myosin dynamics qualitatively and quantitatively, in amplitude and direction, both cell autonomously and nonautonomously. We then demonstrate that interfering with myosin-dependent contractility in single cells also influences pulsed constrictions cell nonautonomously. Our results suggest that signals and stresses can feedback regulate the amplitude and spatial propagation of pulsed constrictions through their influence on tension and geometry. We establish the relevance of these findings to native closure by showing that cell delamination represents a locally patterned and collective transition from pulsed to unpulsed constriction that also relies on the nonautonomous feedback control of myosin dynamics.
Collapse
Affiliation(s)
- Surat Saravanan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | | | | |
Collapse
|
39
|
Eisenhoffer GT, Rosenblatt J. Bringing balance by force: live cell extrusion controls epithelial cell numbers. Trends Cell Biol 2012; 23:185-92. [PMID: 23273931 DOI: 10.1016/j.tcb.2012.11.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/20/2012] [Accepted: 11/20/2012] [Indexed: 02/07/2023]
Abstract
To function as an intact barrier, epithelia must maintain constant cell numbers despite high rates of turnover. If the rate of death exceeds proliferation, epithelial barrier function could become compromised; if it lags behind proliferation, cells could amass into tumors. Although the balance between cell death and division is critical for preventing pathology, most studies focus on each process in isolation. Loss of contact inhibition is a hallmark of cancer cells and has suggested that cell contacts are important for linking rates of cell division and death. However, epithelial cells continuously divide and die while maintaining contacts with each other, so other factors must control this balance. Recent studies have found that cell-crowding forces from cell proliferation can drive cells to die by extrusion from the epithelium. Factors that alter this response to cell crowding may lead to barrier function diseases or promote hyperplasia and cancer.
Collapse
Affiliation(s)
- George T Eisenhoffer
- Department of Oncological Sciences, Huntsman Cancer Institute, University Of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
40
|
Ríos-Barrera LD, Riesgo-Escovar JR. Regulating cell morphogenesis: The drosophila jun N-terminal kinase pathway. Genesis 2012; 51:147-62. [DOI: 10.1002/dvg.22354] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 10/14/2012] [Accepted: 10/19/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Luis Daniel Ríos-Barrera
- Developmental Neurobioloy and Neurophysiology Department; Instituto de Neurobiología; Universidad Nacional Autónoma de México; Boulevard Juriquilla #3001; Querétaro, Querétaro; México; c.p. 76230
| | - Juan Rafael Riesgo-Escovar
- Developmental Neurobioloy and Neurophysiology Department; Instituto de Neurobiología; Universidad Nacional Autónoma de México; Boulevard Juriquilla #3001; Querétaro, Querétaro; México; c.p. 76230
| |
Collapse
|
41
|
New emerging roles for epithelial cell extrusion. Curr Opin Cell Biol 2012; 24:865-70. [PMID: 23044222 DOI: 10.1016/j.ceb.2012.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/12/2012] [Accepted: 09/17/2012] [Indexed: 01/09/2023]
Abstract
Epithelia use a unique process called 'cell extrusion' to remove cells from a layer, while preserving their barrier function. Specifically, a cell destined to die triggers formation of an actin and myosin-ring in the live neighboring epithelial cells surrounding it, which squeeze the dying cell out. During extrusion, the surrounding cells expand toward one another and meet to fill the gap left by the extruded cell. Recent studies have revealed new roles of extrusion in controlling developmental morphogenesis, maintaining homeostatic cell numbers, and how this process is usurped during bacterial pathogenesis. Here, we review recent advances in new processes that require cell extrusion and the signaling pathways controlling it.
Collapse
|
42
|
Gao Q, Frohman MA. Roles for the lipid-signaling enzyme MitoPLD in mitochondrial dynamics, piRNA biogenesis, and spermatogenesis. BMB Rep 2012; 45:7-13. [PMID: 22281006 DOI: 10.5483/bmbrep.2012.45.1.7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phospholipase D (PLD), a superfamily of signaling enzymes that most commonly generate the lipid second messenger Phosphatidic Acid (PA), is found in diverse organisms from bacteria to man and functions in multiple cellular pathways. A fascinating member of the family, MitoPLD, is anchored to the mitochondrial surface and has two reported roles. In the first role, MitoPLD-generated PA regulates mitochondrial shape through facilitating mitochondrial fusion. In the second role, MitoPLD performs a critical function in a pathway that creates a specialized form of RNAi required by developing spermatocytes to suppress transposon mobilization during meiosis. This spermatocyte-specific RNAi, known as piRNA, is generated in the nuage, an electron-dense accumulation of RNA templates and processing proteins that localize adjacent to mitochondria in a structure also called intermitochondrial cement. In this review, we summarize recent findings on these roles for MitoPLD functions, highlighting directions that need to be pursued to define the underlying mechanisms.
Collapse
Affiliation(s)
- Qun Gao
- Department of Pharmacology & Center for Developmental Genetics, Stony Brook University, NY 11794-5140, USA
| | | |
Collapse
|
43
|
Cell crawling mediates collective cell migration to close undamaged epithelial gaps. Proc Natl Acad Sci U S A 2012; 109:10891-6. [PMID: 22711834 DOI: 10.1073/pnas.1117814109] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fundamental biological processes such as morphogenesis and wound healing involve the closure of epithelial gaps. Epithelial gap closure is commonly attributed either to the purse-string contraction of an intercellular actomyosin cable or to active cell migration, but the relative contribution of these two mechanisms remains unknown. Here we present a model experiment to systematically study epithelial closure in the absence of cell injury. We developed a pillar stencil approach to create well-defined gaps in terms of size and shape within an epithelial cell monolayer. Upon pillar removal, cells actively respond to the newly accessible free space by extending lamellipodia and migrating into the gap. The decrease of gap area over time is strikingly linear and shows two different regimes depending on the size of the gap. In large gaps, closure is dominated by lamellipodium-mediated cell migration. By contrast, closure of gaps smaller than 20 μm was affected by cell density and progressed independently of Rac, myosin light chain kinase, and Rho kinase, suggesting a passive physical mechanism. By changing the shape of the gap, we observed that low-curvature areas favored the appearance of lamellipodia, promoting faster closure. Altogether, our results reveal that the closure of epithelial gaps in the absence of cell injury is governed by the collective migration of cells through the activation of lamellipodium protrusion.
Collapse
|
44
|
Mitochondria: signaling with phosphatidic acid. Int J Biochem Cell Biol 2012; 44:1346-50. [PMID: 22609101 DOI: 10.1016/j.biocel.2012.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 05/04/2012] [Accepted: 05/08/2012] [Indexed: 11/20/2022]
Abstract
Mitochondria, once viewed as functioning relatively autonomously in the cell, have increasingly been recognized to be involved in numerous signaling networks that impact on a wide range of cell biological processes. In addition to the many types of proteins that mediate these pathways, the importance of signaling functions regulated via lipids and lipid second messengers generated on the mitochondrial surface is also becoming well appreciated. We focus here on phosphatidic acid, a lipid second messenger produced via several different pathways that can in turn stimulate the formation of multiple other bioactive lipids. Taken together, fascinating roles for phosphatidic acid and the connected lipids in mitochondrial function and interaction with other organelles are being uncovered. These pathways present new opportunities for the development of therapeutic approaches relevant to reproduction, metabolism, and neurodegenerative disease.
Collapse
|
45
|
Osisami M, Ali W, Frohman MA. A role for phospholipase D3 in myotube formation. PLoS One 2012; 7:e33341. [PMID: 22428023 PMCID: PMC3299777 DOI: 10.1371/journal.pone.0033341] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 02/14/2012] [Indexed: 01/02/2023] Open
Abstract
Phospholipase D3 (PLD3) is a non-classical, poorly characterized member of the PLD superfamily of signaling enzymes. PLD3 is a type II glycoprotein associated with the endoplasmic reticulum, is expressed in a wide range of tissues and cells, and undergoes dramatic upregulation in neurons and muscle cells during differentiation. Using an in vitro skeletal muscle differentiation system, we define the ER-tethering mechanism and report that increased PLD3 expression enhances myotube formation, whereas a putatively dominant-negative PLD3 mutant isoform reduces myotube formation. ER stress, which also enhances myotube formation, is shown here to increase PLD3 expression levels. PLD3 protein was observed to localize to a restricted set of subcellular membrane sites in myotubes that may derive from or constitute a subdomain of the endoplasmic reticulum. These findings suggest that PLD3 plays a role in myogenesis during myotube formation, potentially in the events surrounding ER reorganization.
Collapse
Affiliation(s)
- Mary Osisami
- Center for Developmental Genetics, Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, United States of America
| | - Wahida Ali
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Michael A. Frohman
- Center for Developmental Genetics, Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, United States of America
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|