1
|
Xu H, Guo J, Huang Y, Zhang M, Wang Y, Xia L, Cheng X, Meng T, Hao R, Wei X, Li C, Zhang P, Xu Y. Insights into the role of hnRNPK in spermatogenesis via the piRNA pathway. Sci Rep 2025; 15:6438. [PMID: 39987352 PMCID: PMC11846892 DOI: 10.1038/s41598-025-91081-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/18/2025] [Indexed: 02/24/2025] Open
Abstract
Deletion of hnRNPK in mouse spermatogonia leads to male sterility due to arrest permatogenesis, yet the underlying molecular mechanisms remain elusive. This study investigated the testicular proteome on postnatal day 28 (P28) to elucidate the infertility associated with Hnrnpk deficiency, identifying 791 proteins with altered expression: 256 were upregulated, and 535 were downregulated. Pathway enrichment analysis demonstrated that the downregulated proteins are primarily involved in spermatogenesis, fertilization, and piRNA metabolic processes. In Hnrnpk cKO mice, key proteins essential for piRNA metabolism, such as PIWIL1, TDRD7, DDX4, and MAEL, exhibited reduced expression, resulting in impaired piRNA production. Mechanistic studies employing RNA immunoprecipitation (RIP), dual-luciferase reporter assays, and fluorescence in situ hybridization/immunofluorescence (FISH/IF) assays demonstrated that hnRNPK directly interacts with the 3'UTR of piRNA pathway transcripts, enhancing their translational efficiency. These results establish that Hnrnpk deficiency disrupts the piRNA pathway by diminishing the expression of essential regulatory proteins, thereby impairing piRNA production and spermatogenesis. Our findings elucidate a novel molecular basis for infertility linked to hnRNPK dysfunction and advance understanding of post-transcriptional regulation in male germ cell development.
Collapse
Affiliation(s)
- Haixia Xu
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, 464000, China
| | - Jiahua Guo
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Yueru Huang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Mengjia Zhang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Yuxi Wang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Lianren Xia
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Xiaofang Cheng
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, 464000, China
| | - Tiantian Meng
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, 464000, China
| | - Ruijie Hao
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, 464000, China
| | - Xuefeng Wei
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, 464000, China
| | - Cencen Li
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China.
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, 464000, China.
| | - Pengpeng Zhang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China.
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, 464000, China.
| | - Yongjie Xu
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China.
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, 464000, China.
| |
Collapse
|
2
|
Elhajjajy SI, Weng Z. A novel NLP-based method and algorithm to discover RNA-binding protein (RBP) motifs, contexts, binding preferences, and interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.631609. [PMID: 39896518 PMCID: PMC11785142 DOI: 10.1101/2025.01.20.631609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
RNA-binding proteins (RBPs) are essential modulators in the regulation of mRNA processing. The binding patterns, interactions, and functions of most RBPs are not well-characterized. Previous studies have shown that motif context is an important contributor to RBP binding specificity, but its precise role remains unclear. Despite recent computational advances to predict RBP binding, existing methods are challenging to interpret and largely lack a categorical focus on RBP motif contexts and RBP-RBP interactions. There remains a need for interpretable predictive models to disambiguate the contextual determinants of RBP binding specificity in vivo . Here, we present a novel and comprehensive pipeline to address these knowledge gaps. We devise a Natural Language Processing-based decomposition method to deconstruct sequences into entities consisting of a central target k -mer and its flanking regions, then use this representation to formulate the RBP binding prediction task as a weakly supervised Multiple Instance Learning problem. To interpret our predictions, we introduce a deterministic motif discovery algorithm designed to handle our data structure, recapitulating the established motifs of numerous RBPs as validation. Importantly, we characterize the binding motifs and binding contexts for 71 RBPs, with many of them being novel. Finally, through feature integration, transitive inference, and a new cross-prediction approach, we propose novel cooperative and competitive RBP-RBP interaction partners and hypothesize their potential regulatory functions. In summary, we present a complete computational strategy for investigating the contextual determinants of specific RBP binding, and we demonstrate the significance of our findings in delineating RBP binding patterns, interactions, and functions.
Collapse
|
3
|
Jiang X, Gatt A, Lashley T. HnRNP Pathologies in Frontotemporal Lobar Degeneration. Cells 2023; 12:1633. [PMID: 37371103 DOI: 10.3390/cells12121633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Frontotemporal dementia (FTD) is the second most common form of young-onset (<65 years) dementia. Clinically, it primarily manifests as a disorder of behavioural, executive, and/or language functions. Pathologically, frontotemporal lobar degeneration (FTLD) is the predominant cause of FTD. FTLD is a proteinopathy, and the main pathological proteins identified so far are tau, TAR DNA-binding protein 43 (TDP-43), and fused in sarcoma (FUS). As TDP-43 and FUS are members of the heterogeneous ribonucleic acid protein (hnRNP) family, many studies in recent years have expanded the research on the relationship between other hnRNPs and FTLD pathology. Indeed, these studies provide evidence for an association between hnRNP abnormalities and FTLD. In particular, several studies have shown that multiple hnRNPs may exhibit nuclear depletion and cytoplasmic mislocalisation within neurons in FTLD cases. However, due to the diversity and complex association of hnRNPs, most studies are still at the stage of histological discovery of different hnRNP abnormalities in FTLD. We herein review the latest studies relating hnRNPs to FTLD. Together, these studies outline an important role of multiple hnRNPs in the pathogenesis of FTLD and suggest that future research into FTLD should include the whole spectrum of this protein family.
Collapse
Affiliation(s)
- Xinwa Jiang
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Ariana Gatt
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
4
|
Yuan A, Nixon RA. Posttranscriptional regulation of neurofilament proteins and tau in health and disease. Brain Res Bull 2023; 192:115-127. [PMID: 36441047 PMCID: PMC9907725 DOI: 10.1016/j.brainresbull.2022.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 01/16/2023]
Abstract
Neurofilament and tau proteins are neuron-specific cytoskeletal proteins that are enriched in axons, regulated by many of the same protein kinases, interact physically, and are the principal constituents of neurofibrillary lesions in major adult-onset dementias. Both proteins share functions related to the modulation of stability and functions of the microtubule network in axons, axonal transport and scaffolding of organelles, long-term synaptic potentiation, and learning and memory. Expression of these proteins is regulated not only at the transcriptional level but also through posttranscriptional control of pre-mRNA splicing, mRNA stability, transport, localization, local translation and degradation. Current evidence suggests that posttranscriptional determinants of their levels are usually regulated by RNA-binding proteins and microRNAs primarily through 3'-untranslated regions of neurofilament and tau mRNAs. Dysregulations of neurofilament and tau expression caused by mutations or pathologies of RNA-binding proteins such as TDP43, FUS and microRNAs are increasingly recognized in association with varied neurological disorders. In this review, we summarize the current understanding of posttranscriptional control of neurofilament and tau by examining the posttranscriptional regulation of neurofilament and tau by RNA-binding proteins and microRNAs implicated in health and diseases.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA; NYU Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA.
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA,Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA,Department of Cell Biology, New York University Langone Health, New York, NY 10016, USA,NYU Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA,Correspondence to: Center for Dementia Research, Nathan Kline Institute, New York University Langone Health, New York, NY 10016, USA, (A. Yuan), (R.A. Nixon)
| |
Collapse
|
5
|
Kavanagh T, Halder A, Drummond E. Tau interactome and RNA binding proteins in neurodegenerative diseases. Mol Neurodegener 2022; 17:66. [PMID: 36253823 PMCID: PMC9575286 DOI: 10.1186/s13024-022-00572-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/30/2022] [Indexed: 11/19/2022] Open
Abstract
Pathological tau aggregation is a primary neuropathological feature of many neurodegenerative diseases. Intriguingly, despite the common presence of tau aggregates in these diseases the affected brain regions, clinical symptoms, and morphology, conformation, and isoform ratio present in tau aggregates varies widely. The tau-mediated disease mechanisms that drive neurodegenerative disease are still unknown. Tau interactome studies are critically important for understanding tauopathy. They reveal the interacting partners that define disease pathways, and the tau interactions present in neuropathological aggregates provide potential insight into the cellular environment and protein interactions present during pathological tau aggregation. Here we provide a combined analysis of 12 tau interactome studies of human brain tissue, human cell culture models and rodent models of disease. Together, these studies identified 2084 proteins that interact with tau in human tissue and 1152 proteins that interact with tau in rodent models of disease. Our combined analysis of the tau interactome revealed consistent enrichment of interactions between tau and proteins involved in RNA binding, ribosome, and proteasome function. Comparison of human and rodent tau interactome studies revealed substantial differences between the two species. We also performed a second analysis to identify the tau interacting proteins that are enriched in neurons containing granulovacuolar degeneration or neurofibrillary tangle pathology. These results revealed a timed dysregulation of tau interactions as pathology develops. RNA binding proteins, particularly HNRNPs, emerged as early disease-associated tau interactors and therefore may have an important role in driving tau pathology.
Collapse
Affiliation(s)
- Tomas Kavanagh
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Sydney, NSW Australia
| | - Aditi Halder
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Sydney, NSW Australia
| | - Eleanor Drummond
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Sydney, NSW Australia
| |
Collapse
|
6
|
Montalbano M, Jaworski E, Garcia S, Ellsworth A, McAllen S, Routh A, Kayed R. Tau Modulates mRNA Transcription, Alternative Polyadenylation Profiles of hnRNPs, Chromatin Remodeling and Spliceosome Complexes. Front Mol Neurosci 2021; 14:742790. [PMID: 34924950 PMCID: PMC8678415 DOI: 10.3389/fnmol.2021.742790] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Tau protein is a known contributor in several neurodegenerative diseases, including Alzheimer’s disease (AD) and frontotemporal dementia (FTD). It is well-established that tau forms pathological aggregates and fibrils in these diseases. Tau has been observed within the nuclei of neurons, but there is a gap in understanding regarding the mechanism by which tau modulates transcription. We are interested in the P301L mutation of tau, which has been associated with FTD and increased tau aggregation. Our study utilized tau-inducible HEK (iHEK) cells to reveal that WT and P301L tau distinctively alter the transcription and alternative polyadenylation (APA) profiles of numerous nuclear precursors mRNAs, which then translate to form proteins involved in chromatin remodeling and splicing. We isolated total mRNA before and after over-expressing tau and then performed Poly(A)-ClickSeq (PAC-Seq) to characterize mRNA expression and APA profiles. We characterized changes in Gene Ontology (GO) pathways using EnrichR and Gene Set Enrichment Analysis (GSEA). We observed that P301L tau up-regulates genes associated with reactive oxygen species responsiveness as well as genes involved in dendrite, microtubule, and nuclear body/speckle formation. The number of genes regulated by WT tau is greater than the mutant form, which indicates that the P301L mutation causes loss-of-function at the transcriptional level. WT tau up-regulates genes contributing to cytoskeleton-dependent intracellular transport, microglial activation, microtubule and nuclear chromatin organization, formation of nuclear bodies and speckles. Interestingly, both WT and P301L tau commonly down-regulate genes responsible for ubiquitin-proteosome system. In addition, WT tau significantly down-regulates several genes implicated in chromatin remodeling and nucleosome organization. Although there are limitations inherent to the model systems used, this study will improve understanding regarding the nuclear impact of tau at the transcriptional and post-transcriptional level. This study also illustrates the potential impact of P301L tau on the human brain genome during early phases of pathogenesis.
Collapse
Affiliation(s)
- Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, United States.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Elizabeth Jaworski
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Stephanie Garcia
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, United States.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Anna Ellsworth
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, United States.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Salome McAllen
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, United States.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Andrew Routh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States.,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, United States
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, United States.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
7
|
HnRNP K mislocalisation is a novel protein pathology of frontotemporal lobar degeneration and ageing and leads to cryptic splicing. Acta Neuropathol 2021; 142:609-627. [PMID: 34274995 PMCID: PMC8423707 DOI: 10.1007/s00401-021-02340-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 02/08/2023]
Abstract
Heterogeneous nuclear ribonucleoproteins (HnRNPs) are a group of ubiquitously expressed RNA-binding proteins implicated in the regulation of all aspects of nucleic acid metabolism. HnRNP K is a member of this highly versatile hnRNP family. Pathological redistribution of hnRNP K to the cytoplasm has been linked to the pathogenesis of several malignancies but, until now, has been underexplored in the context of neurodegenerative disease. Here we show hnRNP K mislocalisation in pyramidal neurons of the frontal cortex to be a novel neuropathological feature that is associated with both frontotemporal lobar degeneration and ageing. HnRNP K mislocalisation is mutually exclusive to TDP-43 and tau pathological inclusions in neurons and was not observed to colocalise with mitochondrial, autophagosomal or stress granule markers. De-repression of cryptic exons in RNA targets following TDP-43 nuclear depletion is an emerging mechanism of potential neurotoxicity in frontotemporal lobar degeneration and the mechanistically overlapping disorder amyotrophic lateral sclerosis. We silenced hnRNP K in neuronal cells to identify the transcriptomic consequences of hnRNP K nuclear depletion. Intriguingly, by performing RNA-seq analysis we find that depletion of hnRNP K induces 101 novel cryptic exon events. We validated cryptic exon inclusion in an SH-SY5Y hnRNP K knockdown and in FTLD brain exhibiting hnRNP K nuclear depletion. We, therefore, present evidence for hnRNP K mislocalisation to be associated with FTLD and for this to induce widespread changes in splicing.
Collapse
|
8
|
Lynch EM, Robertson S, FitzGibbons C, Reilly M, Switalski C, Eckardt A, Tey SR, Hayakawa K, Suzuki M. Transcriptome analysis using patient iPSC-derived skeletal myocytes: Bet1L as a new molecule possibly linked to neuromuscular junction degeneration in ALS. Exp Neurol 2021; 345:113815. [PMID: 34310943 DOI: 10.1016/j.expneurol.2021.113815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/23/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disease in which patients gradually become paralyzed due to loss of motor function. Many genetically inheritable mutations have been linked to ALS; however, the majority of ALS patients are considered sporadic. Therefore, there is a need for a common therapy that is effective for all ALS patients. Although there is evidence of the disease beginning in the periphery at the neuromuscular junction (NMJ), the specific processes involved in skeletal muscle and at the NMJ are still largely unknown. To study common disease mechanisms in ALS skeletal muscle, we performed RNA sequencing of skeletal myocytes differentiated from induced pluripotent stem cells (iPSCs) derived from familial ALS (with C9ORF72, SOD1, or TARDBP mutations) and sporadic ALS patients. Compared to healthy control lines, the myocytes from all ALS lines showed downregulation of four genes: BET1L, DCX, GPC3, and HNRNPK. We next measured the expression levels of these four genes in hind limb muscle samples from a rat model of familial ALS (SOD1G93A transgenic) and found that only the Bet1L gene, which encodes Bet1 Golgi Vesicular Membrane Trafficking Protein Like, was commonly downregulated. Bet1L protein appeared to be localized to the basal lamina of the NMJ, with decreased expression over time in SOD1G93A transgenic rats. Importantly, the expression levels began to decrease early in the disease process. Our results indicate that loss of Bet1L at the NMJ could be of interest for better understanding ALS disease progression.
Collapse
Affiliation(s)
- Eileen M Lynch
- Department of Comparative Biosciences, University of Wisconsin-Madison, WI, USA
| | - Samantha Robertson
- Department of Comparative Biosciences, University of Wisconsin-Madison, WI, USA
| | - Claire FitzGibbons
- Department of Comparative Biosciences, University of Wisconsin-Madison, WI, USA
| | - Megan Reilly
- Department of Comparative Biosciences, University of Wisconsin-Madison, WI, USA
| | - Colton Switalski
- Department of Comparative Biosciences, University of Wisconsin-Madison, WI, USA
| | - Adam Eckardt
- Department of Comparative Biosciences, University of Wisconsin-Madison, WI, USA
| | - Sin-Ruow Tey
- Department of Comparative Biosciences, University of Wisconsin-Madison, WI, USA
| | - Koji Hayakawa
- Department of Toxicology, Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Masatoshi Suzuki
- Department of Comparative Biosciences, University of Wisconsin-Madison, WI, USA; Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, WI, USA.
| |
Collapse
|
9
|
Cardozo V, Vaamonde L, Parodi-Talice A, Zuluaga MJ, Agrati D, Portela M, Lima A, Blasina F, Dajas F, Bedó G. Multitarget neuroprotection by quercetin: Changes in gene expression in two perinatal asphyxia models. Neurochem Int 2021; 147:105064. [PMID: 33951501 DOI: 10.1016/j.neuint.2021.105064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE) causes mortality and long-term neurologic morbidities in newborns, affecting pathways related to energy failure, excitotoxicity and oxidative stress that often lead to cell death. The whole process of HIE injury is coupled to changes in the expression of a great array of proteins. A nanoliposomal preparation of the flavonoid quercetin has been shown to exert neuroprotective effects in perinatal asphyxia models. This study aimed to identify neonatal HIE markers and explore the effect of quercetin administration in two perinatal asphyxia models: newborn rats and piglets. In the rat model, nanoliposomal quercetin administration reduced mortality after asphyxia. In the piglet model, quercetin partially overrode the reduction of HIF-1α mRNA levels in the cortex induced by asphyxia. Quercetin administration also reduced increased level of HO-1 mRNA in asphyctic piglets. These results suggest that quercetin neuroprotection might be involved in the regulation of HIF-1α, HO-1 and their targets. A proteomic approach revealed that the glycolytic pathway is strongly regulated by quercetin in both species. We also identified a set of proteins differentially expressed that could be further considered as markers. In piglets, this set includes Acidic Leucine-rich nuclear phosphoprotein 32 (ANP32A), associated with nervous system differentiation, proteins related with death pathways and alpha-enolase which can be converted to neuron-specific enolase, a glycolytic enzyme that may promote neuroprotection. In newborn rats, other promising proteins associated with neurogenesis and neuroprotection emerged, such as dihydropyrimidinase-related proteins, catalytic and regulatory subunits of phosphatases and heterogeneous nuclear ribonucleoprotein K (hnRNPK). Our results show that a nanoliposomal preparation of quercetin, with protective effect in two HIE mammal models, modulates the expression of proteins involved in energy metabolism and other putative neuroprotective signals in the cortex. Identification of these signals could reveal potential molecular pathways involved in disease onset and the novel quercetin neuroprotective strategy.
Collapse
Affiliation(s)
- V Cardozo
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República (Udelar), Montevideo, Uruguay
| | - L Vaamonde
- Dept. Neonatología, Facultad de Medicina, Universidad de la República (Udelar), Montevideo, Uruguay
| | - A Parodi-Talice
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República (Udelar), Montevideo, Uruguay; Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - M J Zuluaga
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República (Udelar), Montevideo, Uruguay
| | - D Agrati
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República (Udelar), Montevideo, Uruguay
| | - M Portela
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo; Facultad de Ciencias, Universidad de la República (Udelar), Montevideo, Uruguay
| | - A Lima
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo; Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - F Blasina
- Dept. Neonatología, Facultad de Medicina, Universidad de la República (Udelar), Montevideo, Uruguay.
| | - F Dajas
- Dept. Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - G Bedó
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República (Udelar), Montevideo, Uruguay.
| |
Collapse
|
10
|
Canet-Pons J, Sen NE, Arsović A, Almaguer-Mederos LE, Halbach MV, Key J, Döring C, Kerksiek A, Picchiarelli G, Cassel R, René F, Dieterlé S, Fuchs NV, König R, Dupuis L, Lütjohann D, Gispert S, Auburger G. Atxn2-CAG100-KnockIn mouse spinal cord shows progressive TDP43 pathology associated with cholesterol biosynthesis suppression. Neurobiol Dis 2021; 152:105289. [PMID: 33577922 DOI: 10.1016/j.nbd.2021.105289] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Large polyglutamine expansions in Ataxin-2 (ATXN2) cause multi-system nervous atrophy in Spinocerebellar Ataxia type 2 (SCA2). Intermediate size expansions carry a risk for selective motor neuron degeneration, known as Amyotrophic Lateral Sclerosis (ALS). Conversely, the depletion of ATXN2 prevents disease progression in ALS. Although ATXN2 interacts directly with RNA, and in ALS pathogenesis there is a crucial role of RNA toxicity, the affected functional pathways remain ill defined. Here, we examined an authentic SCA2 mouse model with Atxn2-CAG100-KnockIn for a first definition of molecular mechanisms in spinal cord pathology. Neurophysiology of lower limbs detected sensory neuropathy rather than motor denervation. Triple immunofluorescence demonstrated cytosolic ATXN2 aggregates sequestrating TDP43 and TIA1 from the nucleus. In immunoblots, this was accompanied by elevated CASP3, RIPK1 and PQBP1 abundance. RT-qPCR showed increase of Grn, Tlr7 and Rnaset2 mRNA versus Eif5a2, Dcp2, Uhmk1 and Kif5a decrease. These SCA2 findings overlap well with known ALS features. Similar to other ataxias and dystonias, decreased mRNA levels for Unc80, Tacr1, Gnal, Ano3, Kcna2, Elovl5 and Cdr1 contrasted with Gpnmb increase. Preterminal stage tissue showed strongly activated microglia containing ATXN2 aggregates, with parallel astrogliosis. Global transcriptome profiles from stages of incipient motor deficit versus preterminal age identified molecules with progressive downregulation, where a cluster of cholesterol biosynthesis enzymes including Dhcr24, Msmo1, Idi1 and Hmgcs1 was prominent. Gas chromatography demonstrated a massive loss of crucial cholesterol precursor metabolites. Overall, the ATXN2 protein aggregation process affects diverse subcellular compartments, in particular stress granules, endoplasmic reticulum and receptor tyrosine kinase signaling. These findings identify new targets and potential biomarkers for neuroprotective therapies.
Collapse
Affiliation(s)
- Júlia Canet-Pons
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Nesli-Ece Sen
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; Faculty of Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Aleksandar Arsović
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Luis-Enrique Almaguer-Mederos
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; Center for Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | - Melanie V Halbach
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Jana Key
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; Faculty of Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Nordrhein-Westfalen, Germany
| | - Gina Picchiarelli
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Raphaelle Cassel
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Frédérique René
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Stéphane Dieterlé
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Nina V Fuchs
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Luc Dupuis
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Nordrhein-Westfalen, Germany
| | - Suzana Gispert
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Georg Auburger
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Low YH, Asi Y, Foti SC, Lashley T. Heterogeneous Nuclear Ribonucleoproteins: Implications in Neurological Diseases. Mol Neurobiol 2021; 58:631-646. [PMID: 33000450 PMCID: PMC7843550 DOI: 10.1007/s12035-020-02137-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022]
Abstract
Heterogenous nuclear ribonucleoproteins (hnRNPs) are a complex and functionally diverse family of RNA binding proteins with multifarious roles. They are involved, directly or indirectly, in alternative splicing, transcriptional and translational regulation, stress granule formation, cell cycle regulation, and axonal transport. It is unsurprising, given their heavy involvement in maintaining functional integrity of the cell, that their dysfunction has neurological implications. However, compared to their more established roles in cancer, the evidence of hnRNP implication in neurological diseases is still in its infancy. This review aims to consolidate the evidences for hnRNP involvement in neurological diseases, with a focus on spinal muscular atrophy (SMA), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), multiple sclerosis (MS), congenital myasthenic syndrome (CMS), and fragile X-associated tremor/ataxia syndrome (FXTAS). Understanding more about hnRNP involvement in neurological diseases can further elucidate the pathomechanisms involved in these diseases and perhaps guide future therapeutic advances.
Collapse
Affiliation(s)
- Yi-Hua Low
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Duke-NUS Medical School, Singapore, Singapore
| | - Yasmine Asi
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Sandrine C Foti
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
12
|
Sha N, Wang HW, Sun B, Gong M, Miao P, Jiang XL, Yang XF, Li M, Xu LX, Feng CX, Yang YY, Zhang J, Zhu WJ, Gao YY, Feng X, Ding X. The role of pineal microRNA-325 in regulating circadian rhythms after neonatal hypoxic-ischemic brain damage. Neural Regen Res 2021; 16:2071-2077. [PMID: 33642396 PMCID: PMC8343300 DOI: 10.4103/1673-5374.308101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Circadian rhythm disorder is a common, but often neglected, consequence of neonatal hypoxic-ischemic brain damage (HIBD). However, the underlying molecular mechanisms remain largely unknown. We previously showed that, in a rat model of HIBD, up-regulation of microRNA-325 (miR-325) in the pineal gland is responsible for the suppression of Aanat, a key enzyme involved in melatonin synthesis and circadian rhythm regulation. To better understand the mechanism by which miR-325 affects circadian rhythms in neonates with HIBD, we compared clinical samples from neonates with HIBD and samples from healthy neonates recruited from the First Affiliated Hospital of Soochow University (Dushuhu Branch) in 2019. We found that circulating miR-325 levels correlated positively with the severity of sleep and circadian rhythm disorders in neonates with HIBD. Furthermore, a luciferase reporter gene assay revealed that LIM homeobox 3 (LHX3) is a novel downstream target of miR-325. In addition, in miR-325 knock-down mice, the transcription factor LHX3 exhibited an miR-325-dependent circadian pattern of expression in the pineal gland. We established a neonatal mouse model of HIBD by performing double-layer ligation of the left common carotid artery and exposing the pups to a low-oxygen environment for 2 hours. Lhx3 mRNA expression was significantly down-regulated in these mice and partially rescued in miR-325 knockout mice subjected to the same conditions. Finally, we showed that improvement in circadian rhythm-related behaviors in animals with HIBD was dependent on both miR-325 and LHX3. Taken together, our findings suggest that the miR-325-LHX3 axis is responsible for regulating circadian rhythms and provide novel insights into the identification of potential therapeutic targets for circadian rhythm disorders in patients with neonatal HIBD. The clinical trial was approved by Institutional Review Board of Children's Hospital of Soochow University (approval No. 2015028) on July 20, 2015. Animal experiments were approved by Animal Care and Use Committee, School of Medicine, Soochow University, China (approval No. XD-2016-1) on January 15, 2016.
Collapse
Affiliation(s)
- Ning Sha
- Soochow Key Laboratory of Prevention and Treatment of Child Brain injury, Children's Hospital of Soochow University, Suzhou; Department of Pediatrics, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu Province, China
| | - Hua-Wei Wang
- Soochow Key Laboratory of Prevention and Treatment of Child Brain injury, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Bin Sun
- Soochow Key Laboratory of Prevention and Treatment of Child Brain injury, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Min Gong
- Soochow Key Laboratory of Prevention and Treatment of Child Brain injury, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Po Miao
- Soochow Key Laboratory of Prevention and Treatment of Child Brain injury, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiao-Lu Jiang
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiao-Feng Yang
- Soochow Key Laboratory of Prevention and Treatment of Child Brain injury, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Mei Li
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Li-Xiao Xu
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Chen-Xi Feng
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yuan-Yuan Yang
- Department of Pediatrics, The First Affiliated Hospital of Soochow University (Dushuhu Branch), Suzhou, Jiangsu Province, China
| | - Jie Zhang
- Cambridge-SU Genomic Resource Center, Soochow University, Suzhou, Jiangsu Province, China
| | - Wen-Jing Zhu
- Cambridge-SU Genomic Resource Center, Soochow University, Suzhou, Jiangsu Province, China
| | - Yuan-Yuan Gao
- Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xing Feng
- Soochow Key Laboratory of Prevention and Treatment of Child Brain injury, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xin Ding
- Soochow Key Laboratory of Prevention and Treatment of Child Brain injury, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
13
|
The role of hnRNPs in frontotemporal dementia and amyotrophic lateral sclerosis. Acta Neuropathol 2020; 140:599-623. [PMID: 32748079 PMCID: PMC7547044 DOI: 10.1007/s00401-020-02203-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Dysregulated RNA metabolism is emerging as a crucially important mechanism underpinning the pathogenesis of frontotemporal dementia (FTD) and the clinically, genetically and pathologically overlapping disorder of amyotrophic lateral sclerosis (ALS). Heterogeneous nuclear ribonucleoproteins (hnRNPs) comprise a family of RNA-binding proteins with diverse, multi-functional roles across all aspects of mRNA processing. The role of these proteins in neurodegeneration is far from understood. Here, we review some of the unifying mechanisms by which hnRNPs have been directly or indirectly linked with FTD/ALS pathogenesis, including their incorporation into pathological inclusions and their best-known roles in pre-mRNA splicing regulation. We also discuss the broader functionalities of hnRNPs including their roles in cryptic exon repression, stress granule assembly and in co-ordinating the DNA damage response, which are all emerging pathogenic themes in both diseases. We then present an integrated model that depicts how a broad-ranging network of pathogenic events can arise from declining levels of functional hnRNPs that are inadequately compensated for by autoregulatory means. Finally, we provide a comprehensive overview of the most functionally relevant cellular roles, in the context of FTD/ALS pathogenesis, for hnRNPs A1-U.
Collapse
|
14
|
Santos AI, Lourenço AS, Simão S, Marques da Silva D, Santos DF, Onofre de Carvalho AP, Pereira AC, Izquierdo-Álvarez A, Ramos E, Morato E, Marina A, Martínez-Ruiz A, Araújo IM. Identification of new targets of S-nitrosylation in neural stem cells by thiol redox proteomics. Redox Biol 2020; 32:101457. [PMID: 32088623 PMCID: PMC7038503 DOI: 10.1016/j.redox.2020.101457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 01/09/2023] Open
Abstract
Nitric oxide (NO) is well established as a regulator of neurogenesis. NO increases the proliferation of neural stem cells (NSC), and is essential for hippocampal injury-induced neurogenesis following an excitotoxic lesion. One of the mechanisms underlying non-classical NO cell signaling is protein S-nitrosylation. This post-translational modification consists in the formation of a nitrosothiol group (R-SNO) in cysteine residues, which can promote formation of other oxidative modifications in those cysteine residues. S-nitrosylation can regulate many physiological processes, including neuronal plasticity and neurogenesis. In this work, we aimed to identify S-nitrosylation targets of NO that could participate in neurogenesis. In NSC, we identified a group of proteins oxidatively modified using complementary techniques of thiol redox proteomics. S-nitrosylation of some of these proteins was confirmed and validated in a seizure mouse model of hippocampal injury and in cultured hippocampal stem cells. The identified S-nitrosylated proteins are involved in the ERK/MAPK pathway and may be important targets of NO to enhance the proliferation of NSC.
Collapse
Affiliation(s)
- Ana Isabel Santos
- Centre for Biomedical Research, CBMR, University of Algarve, 8005-139, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal; Algarve Biomedical Center, University of Algarve, 8005-139, Faro, Portugal; Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-527, Coimbra, Portugal
| | - Ana Sofia Lourenço
- Centre for Biomedical Research, CBMR, University of Algarve, 8005-139, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal; Algarve Biomedical Center, University of Algarve, 8005-139, Faro, Portugal; Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-527, Coimbra, Portugal
| | - Sónia Simão
- Centre for Biomedical Research, CBMR, University of Algarve, 8005-139, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal; Algarve Biomedical Center, University of Algarve, 8005-139, Faro, Portugal
| | - Dorinda Marques da Silva
- Centre for Biomedical Research, CBMR, University of Algarve, 8005-139, Faro, Portugal; Algarve Biomedical Center, University of Algarve, 8005-139, Faro, Portugal
| | - Daniela Filipa Santos
- Centre for Biomedical Research, CBMR, University of Algarve, 8005-139, Faro, Portugal; Algarve Biomedical Center, University of Algarve, 8005-139, Faro, Portugal
| | | | - Ana Catarina Pereira
- Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal
| | - Alicia Izquierdo-Álvarez
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain
| | - Elena Ramos
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain
| | - Esperanza Morato
- Servicio de Proteómica, Centro de Biología Molecular Severo Ochoa (CBMSO), Universidad Autónoma de Madrid (UAM) & Consejo Superior de Investigaciones Científicas (CSIC), 28049, Madrid, Spain
| | - Anabel Marina
- Servicio de Proteómica, Centro de Biología Molecular Severo Ochoa (CBMSO), Universidad Autónoma de Madrid (UAM) & Consejo Superior de Investigaciones Científicas (CSIC), 28049, Madrid, Spain
| | - Antonio Martínez-Ruiz
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain; Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), 28009, Madrid, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain.
| | - Inês Maria Araújo
- Centre for Biomedical Research, CBMR, University of Algarve, 8005-139, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal; Algarve Biomedical Center, University of Algarve, 8005-139, Faro, Portugal.
| |
Collapse
|
15
|
Lopez Soto EJ, Gandal MJ, Gonatopoulos-Pournatzis T, Heller EA, Luo D, Zheng S. Mechanisms of Neuronal Alternative Splicing and Strategies for Therapeutic Interventions. J Neurosci 2019; 39:8193-8199. [PMID: 31619487 PMCID: PMC6794923 DOI: 10.1523/jneurosci.1149-19.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 01/15/2023] Open
Abstract
Many cellular and physiological processes are coordinated by regulatory networks that produce a remarkable complexity of transcript isoforms. In the mammalian nervous system, alternative pre-mRNA splicing generates functionally distinct isoforms that play key roles in normal physiology, supporting development, plasticity, complex behaviors, and cognition. Neuronal splicing programs controlled by RNA-binding proteins, are influenced by chromatin modifications and can exhibit neuronal subtype specificity. As highlighted in recent publications, aberrant alternative splicing is a major contributor to disease phenotypes. Therefore, understanding the underlying mechanisms of alternative splicing regulation and identifying functional splicing isoforms with critical phenotypic roles are expected to provide a comprehensive resource for therapeutic development, as illuminated by recent successful interventions of spinal muscular atrophy. Here, we discuss the latest progress in the study of the emerging complexity of alternative splicing mechanisms in neurons, and how these findings inform new therapies to correct and control splicing defects.
Collapse
Affiliation(s)
| | - Michael J Gandal
- Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095
| | | | - Elizabeth A Heller
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5158
| | - Diou Luo
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, and
| | - Sika Zheng
- Division of Biomedical Sciences, University of California at Riverside, Riverside, California 92521
| |
Collapse
|
16
|
Hale MA, Johnson NE, Berglund JA. Repeat-associated RNA structure and aberrant splicing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194405. [PMID: 31323433 DOI: 10.1016/j.bbagrm.2019.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
Over 30 hereditary disorders attributed to the expansion of microsatellite repeats have been identified. Despite variant nucleotide content, number of consecutive repeats, and different locations in the genome, many of these diseases have pathogenic RNA gain-of-function mechanisms. The repeat-containing RNAs can form structures in vitro predicted to contribute to the disease through assembly of intracellular RNA aggregates termed foci. The expanded repeat RNAs within these foci sequester RNA binding proteins (RBPs) with important roles in the regulation of RNA metabolism, most notably alternative splicing (AS). These deleterious interactions lead to downstream alterations in transcriptome-wide AS directly linked with disease symptoms. This review summarizes existing knowledge about the association between the repeat RNA structures and RBPs as well as the resulting aberrant AS patterns, specifically in the context of myotonic dystrophy. The connection between toxic, structured RNAs and dysregulation of AS in other repeat expansion diseases is also discussed. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Melissa A Hale
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nicholas E Johnson
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - J Andrew Berglund
- The RNA Institute, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA.
| |
Collapse
|
17
|
The RNA-Binding Protein hnRNP K Mediates the Effect of BDNF on Dendritic mRNA Metabolism and Regulates Synaptic NMDA Receptors in Hippocampal Neurons. eNeuro 2017; 4:eN-NWR-0268-17. [PMID: 29255796 PMCID: PMC5732018 DOI: 10.1523/eneuro.0268-17.2017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/25/2017] [Accepted: 11/09/2017] [Indexed: 11/21/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is an important mediator of long-term synaptic potentiation (LTP) in the hippocampus. The local effects of BDNF depend on the activation of translation activity, which requires the delivery of transcripts to the synapse. In this work, we found that neuronal activity regulates the dendritic localization of the RNA-binding protein heterogeneous nuclear ribonucleoprotein K (hnRNP K) in cultured rat hippocampal neurons by stimulating BDNF-Trk signaling. Microarray experiments identified a large number of transcripts that are coimmunoprecipitated with hnRNP K, and about 60% of these transcripts are dissociated from the protein upon stimulation of rat hippocampal neurons with BDNF. In vivo studies also showed a role for TrkB signaling in the dissociation of transcripts from hnRNP K upon high-frequency stimulation (HFS) of medial perforant path-granule cell synapses of male rat dentate gyrus (DG). Furthermore, treatment of rat hippocampal synaptoneurosomes with BDNF decreased the coimmunoprecipitation of hnRNP K with mRNAs coding for glutamate receptor subunits, Ca2+- and calmodulin-dependent protein kinase IIβ (CaMKIIβ) and BDNF. Downregulation of hnRNP K impaired the BDNF-induced enhancement of NMDA receptor (NMDAR)-mediated mEPSC, and similar results were obtained upon inhibition of protein synthesis with cycloheximide. The results demonstrate that BDNF regulates specific populations of hnRNP-associated mRNAs in neuronal dendrites and suggests an important role of hnRNP K in BDNF-dependent forms of synaptic plasticity.
Collapse
|
18
|
Moujalled D, Grubman A, Acevedo K, Yang S, Ke YD, Moujalled DM, Duncan C, Caragounis A, Perera ND, Turner BJ, Prudencio M, Petrucelli L, Blair I, Ittner LM, Crouch PJ, Liddell JR, White AR. TDP-43 mutations causing amyotrophic lateral sclerosis are associated with altered expression of RNA-binding protein hnRNP K and affect the Nrf2 antioxidant pathway. Hum Mol Genet 2017; 26:1732-1746. [PMID: 28334913 DOI: 10.1093/hmg/ddx093] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
TAR DNA binding protein 43 (TDP-43) is a major disease-associated protein involved in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). Our previous studies found a direct association between TDP-43 and heterogeneous nuclear ribonucleoprotein K (hnRNP K). In this study, utilizing ALS patient fibroblasts harboring a TDP-43M337V mutation and NSC-34 motor neuronal cell line expressing TDP-43Q331K mutation, we show that hnRNP K expression is impaired in urea soluble extracts from mutant TDP-43 cell models. This was confirmed in vivo using TDP-43Q331K and inducible TDP-43A315T murine ALS models. We further investigated the potential pathological effects of mutant TDP-43-mediated changes to hnRNP K metabolism by RNA binding immunoprecipitation analysis. hnRNP K protein was bound to antioxidant NFE2L2 transcripts encoding Nrf2 antioxidant transcription factor, with greater enrichment in TDP-43M337V patient fibroblasts compared to healthy controls. Subsequent gene expression profiling revealed an increase in downstream antioxidant transcript expression of Nrf2 signaling in the spinal cord of TDP-43Q331K mice compared to control counterparts, yet the corresponding protein expression was not up-regulated in transgenic mice. Despite the elevated expression of antioxidant transcripts, we observed impaired levels of glutathione (downstream Nrf2 antioxidant) in TDP-43M337V patient fibroblasts and astrocyte cultures from TDP-43Q331K mice, indicative of elevated oxidative stress and failure of some upregulated antioxidant genes to be translated into protein. Our findings indicate that further exploration of the interplay between hnRNP K (or other hnRNPs) and Nrf2-mediated antioxidant signaling is warranted and may be an important driver for motor neuron degeneration in ALS.
Collapse
Affiliation(s)
- Diane Moujalled
- Department of Pathology, The University of Melbourne, Victoria 3010, Australia
| | - Alexandra Grubman
- Department of Pathology, The University of Melbourne, Victoria 3010, Australia
| | - Karla Acevedo
- Department of Pathology, The University of Melbourne, Victoria 3010, Australia
| | - Shu Yang
- The Australian School of Advanced Medicine, Macquarie University, NSW 2109, Australia
| | - Yazi D Ke
- Dementia Research Unit, Department of Anatomy, Faculty of Medicine, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Donia M Moujalled
- Australian Centre for Blood Diseases (ACBD), The Alfred Centre, Victoria 3004, Australia
| | - Clare Duncan
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia
| | | | - Nirma D Perera
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia
| | - Bradley J Turner
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia
| | | | | | - Ian Blair
- The Australian School of Advanced Medicine, Macquarie University, NSW 2109, Australia
| | - Lars M Ittner
- Dementia Research Unit, Department of Anatomy, Faculty of Medicine, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Peter J Crouch
- Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia
| | - Jeffrey R Liddell
- Department of Pathology, The University of Melbourne, Victoria 3010, Australia
| | - Anthony R White
- Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia
- Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| |
Collapse
|
19
|
Zhou JY, Chen M, Ma L, Wang X, Chen YG, Liu SL. Role of CD44(high)/CD133(high) HCT-116 cells in the tumorigenesis of colon cancer. Oncotarget 2016; 7:7657-66. [PMID: 26840024 PMCID: PMC4884945 DOI: 10.18632/oncotarget.7084] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/13/2016] [Indexed: 12/21/2022] Open
Abstract
This study aimed to explore cell surface biomarkers related to cancer stem cells (CSCs) and their role in the tumorigenesis of colon cancer. Various colon cancer cell lines were screened for CD133 and CD44 expression. CD44high/CD133high and CD44low/CD133low cells were separately isolated by Fluorescence-Activated Cell Sorting (FACS). The cell proliferation, colony formation, cell cycle characteristics, and tumorigenic properties in CD44high/CD133high and CD44low/CD133low cells were investigated through in vitro experiments and in vivo tumor xenograft models. The expression profiles of stem cell-related genes were examined by RT-PCR. With HCT-116 cells, flow cytometry analysis revealed that CD44high/CD133high cells had higher proliferation potency than CD44low/CD133low cells. Compared to CD44low/CD133low cells, CD44high/CD133high cells had more stem cell-related genes, and displayed increased tumorigenic ability. In summary, CD44high/CD133high cells isolated from HCT-116 cells harbor CSC properties that may be related to the tumor growth of colon cancer. These results suggest that CD44 and CD133 could be strong markers of colorectal cancer stem cells.
Collapse
Affiliation(s)
- Jin-Yong Zhou
- Central Laboratory, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Min Chen
- Department of Internal Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Long Ma
- Department of Urology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Xiaoxiao Wang
- Department of Medical Science Research, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Yu-Gen Chen
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Shen-Lin Liu
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
20
|
Bryant CD, Yazdani N. RNA-binding proteins, neural development and the addictions. GENES BRAIN AND BEHAVIOR 2016; 15:169-86. [PMID: 26643147 DOI: 10.1111/gbb.12273] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/30/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022]
Abstract
Transcriptional and post-transcriptional regulation of gene expression defines the neurobiological mechanisms that bridge genetic and environmental risk factors with neurobehavioral dysfunction underlying the addictions. More than 1000 genes in the eukaryotic genome code for multifunctional RNA-binding proteins (RBPs) that can regulate all levels of RNA biogenesis. More than 50% of these RBPs are expressed in the brain where they regulate alternative splicing, transport, localization, stability and translation of RNAs during development and adulthood. Dysfunction of RBPs can exert global effects on their targetomes that underlie neurodegenerative disorders such as Alzheimer's and Parkinson's diseases as well as neurodevelopmental disorders, including autism and schizophrenia. Here, we consider the evidence that RBPs influence key molecular targets, neurodevelopment, synaptic plasticity and neurobehavioral dysfunction underlying the addictions. Increasingly well-powered genome-wide association studies in humans and mammalian model organisms combined with ever more precise transcriptomic and proteomic approaches will continue to uncover novel and possibly selective roles for RBPs in the addictions. Key challenges include identifying the biological functions of the dynamic RBP targetomes from specific cell types throughout subcellular space (e.g. the nuclear spliceome vs. the synaptic translatome) and time and manipulating RBP programs through post-transcriptional modifications to prevent or reverse aberrant neurodevelopment and plasticity underlying the addictions.
Collapse
Affiliation(s)
- C D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - N Yazdani
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
21
|
Hutchins EJ, Belrose JL, Szaro BG. A novel role for the nuclear localization signal in regulating hnRNP K protein stability in vivo. Biochem Biophys Res Commun 2016; 478:772-6. [DOI: 10.1016/j.bbrc.2016.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/04/2016] [Indexed: 01/12/2023]
|
22
|
Song KY, Choi HS, Law PY, Wei LN, Loh HH. Post-Transcriptional Regulation of the Human Mu-Opioid Receptor (MOR) by Morphine-Induced RNA Binding Proteins hnRNP K and PCBP1. J Cell Physiol 2016; 232:576-584. [PMID: 27292014 DOI: 10.1002/jcp.25455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/10/2016] [Indexed: 01/18/2023]
Abstract
Expression of the mu-opioid receptor (MOR) protein is controlled by extensive transcriptional and post-transcriptional processing. MOR gene expression has previously been shown to be altered by a post-transcriptional mechanism involving the MOR mRNA untranslated region (UTR). Here, we demonstrate for the first time the role of heterogeneous nuclear ribonucleic acids (hnRNA)-binding protein (hnRNP) K and poly(C)-binding protein 1 (PCBP1) as post-transcriptional inducers in MOR gene regulation. In the absence of morphine, a significant level of MOR mRNA is sustained in its resting state and partitions in the translationally inactive polysomal fraction. Morphine stimulation activates the downstream targets hnRNP K and PCPB1 and induces partitioning of the MOR mRNA to the translationally active fraction. Using reporter and ligand binding assays, as well as RNA EMSA, we reveal potential RNP binding sites located in the 5'-untranslated region of human MOR mRNA. In addition, we also found that morphine-induced RNPs could regulate MOR expression. Our results establish the role of hnRNP K and PCPB1 in the translational control of morphine-induced MOR expression in human neuroblastoma (NMB) cells as well as cells stably expressing MOR (NMB1). J. Cell. Physiol. 232: 576-584, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kyu Young Song
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Hack Sun Choi
- Subtropical Horticulture Research Institute, College of Applied Life Science, Jeju National University, Jeju, Jeju, Republic of Korea
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
23
|
Geuens T, Bouhy D, Timmerman V. The hnRNP family: insights into their role in health and disease. Hum Genet 2016; 135:851-67. [PMID: 27215579 PMCID: PMC4947485 DOI: 10.1007/s00439-016-1683-5] [Citation(s) in RCA: 740] [Impact Index Per Article: 82.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/09/2016] [Indexed: 12/14/2022]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) represent a large family of RNA-binding proteins (RBPs) that contribute to multiple aspects of nucleic acid metabolism including alternative splicing, mRNA stabilization, and transcriptional and translational regulation. Many hnRNPs share general features, but differ in domain composition and functional properties. This review will discuss the current knowledge about the different hnRNP family members, focusing on their structural and functional divergence. Additionally, we will highlight their involvement in neurodegenerative diseases and cancer, and the potential to develop RNA-based therapies.
Collapse
Affiliation(s)
- Thomas Geuens
- Peripheral Neuropathy Group, VIB Molecular Genetics Department, University of Antwerp-CDE, Parking P4, Building V, Room 1.30, Universiteitsplein 1, 2610, Antwerp, Belgium
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Delphine Bouhy
- Peripheral Neuropathy Group, VIB Molecular Genetics Department, University of Antwerp-CDE, Parking P4, Building V, Room 1.30, Universiteitsplein 1, 2610, Antwerp, Belgium
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Group, VIB Molecular Genetics Department, University of Antwerp-CDE, Parking P4, Building V, Room 1.30, Universiteitsplein 1, 2610, Antwerp, Belgium.
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
24
|
Wang C, Szaro BG. Post-transcriptional regulation mediated by specific neurofilament introns in vivo. J Cell Sci 2016; 129:1500-11. [PMID: 26906423 DOI: 10.1242/jcs.185199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/17/2016] [Indexed: 11/20/2022] Open
Abstract
Neurons regulate genes post-transcriptionally to coordinate the supply of cytoskeletal proteins, such as the medium neurofilament (NEFM), with demand for structural materials in response to extracellular cues encountered by developing axons. By using a method for evaluating functionality of cis-regulatory gene elements in vivo through plasmid injection into Xenopus embryos, we discovered that splicing of a specific nefm intron was required for robust transgene expression, regardless of promoter or cell type. Transgenes utilizing the nefm 3'-UTR but substituting other nefm introns expressed little or no protein owing to defects in handling of the messenger (m)RNA as opposed to transcription or splicing. Post-transcriptional events at multiple steps, but mainly during nucleocytoplasmic export, contributed to these varied levels of protein expression. An intron of the β-globin gene was also able to promote expression in a manner identical to that of the nefm intron, implying a more general preference for certain introns in controlling nefm expression. These results expand our knowledge of intron-mediated gene expression to encompass neurofilaments, indicating an additional layer of complexity in the control of a cytoskeletal gene needed for developing and maintaining healthy axons.
Collapse
Affiliation(s)
- Chen Wang
- Department of Biological Sciences and the Center for Neuroscience Research, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Ben G Szaro
- Department of Biological Sciences and the Center for Neuroscience Research, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| |
Collapse
|
25
|
Gallardo M, Lee HJ, Zhang X, Bueso-Ramos C, Pageon LR, McArthur M, Multani A, Nazha A, Manshouri T, Parker-Thornburg J, Rapado I, Quintas-Cardama A, Kornblau SM, Martinez-Lopez J, Post SM. hnRNP K Is a Haploinsufficient Tumor Suppressor that Regulates Proliferation and Differentiation Programs in Hematologic Malignancies. Cancer Cell 2015; 28:486-499. [PMID: 26412324 PMCID: PMC4652598 DOI: 10.1016/j.ccell.2015.09.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 04/14/2015] [Accepted: 09/01/2015] [Indexed: 12/20/2022]
Abstract
hnRNP K regulates cellular programs, and changes in its expression and mutational status have been implicated in neoplastic malignancies. To directly examine its role in tumorigenesis, we generated a mouse model harboring an Hnrnpk knockout allele (Hnrnpk(+/-)). Hnrnpk haploinsufficiency resulted in reduced survival, increased tumor formation, genomic instability, and the development of transplantable hematopoietic neoplasms with myeloproliferation. Reduced hnRNP K expression attenuated p21 activation, downregulated C/EBP levels, and activated STAT3 signaling. Additionally, analysis of samples from primary acute myeloid leukemia patients harboring a partial deletion of chromosome 9 revealed a significant decrease in HNRNPK expression. Together, these data implicate hnRNP K in the development of hematological disorders and suggest hnRNP K acts as a tumor suppressor.
Collapse
Affiliation(s)
- Miguel Gallardo
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hun Ju Lee
- Department of Lymphoma & Myeloma, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaorui Zhang
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carlos Bueso-Ramos
- Department of Histopathology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Laura R Pageon
- Department of Veterinary Medicine & Surgery, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mark McArthur
- Department of Veterinary Medicine & Surgery, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Asha Multani
- Department of Genetics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aziz Nazha
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Taghi Manshouri
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jan Parker-Thornburg
- Department of Genetics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Inmaculada Rapado
- Department of Hematology, Hospital Universitario 12 de Octubre and CNIO, Madrid 28041, Spain
| | - Alfonso Quintas-Cardama
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Steven M Kornblau
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joaquin Martinez-Lopez
- Department of Hematology, Hospital Universitario 12 de Octubre and CNIO, Madrid 28041, Spain
| | - Sean M Post
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
26
|
Hutchins EJ, Belrose JL, Szaro BG. Phosphorylation of heterogeneous nuclear ribonucleoprotein K at an extracellular signal-regulated kinase phosphorylation site promotes neurofilament-medium protein expression and axon outgrowth in Xenopus. Neurosci Lett 2015; 607:59-65. [DOI: 10.1016/j.neulet.2015.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/27/2015] [Accepted: 09/22/2015] [Indexed: 12/18/2022]
|
27
|
Fan B, Sutandy FXR, Syu GD, Middleton S, Yi G, Lu KY, Chen CS, Kao CC. Heterogeneous Ribonucleoprotein K (hnRNP K) Binds miR-122, a Mature Liver-Specific MicroRNA Required for Hepatitis C Virus Replication. Mol Cell Proteomics 2015; 14:2878-86. [PMID: 26330540 DOI: 10.1074/mcp.m115.050344] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Indexed: 12/12/2022] Open
Abstract
Heterogeneous ribonucleoprotein K (hnRNP K) binds to the 5' untranslated region of the hepatitis C virus (HCV) and is required for HCV RNA replication. The hnRNP K binding site on HCV RNA overlaps with the sequence recognized by the liver-specific microRNA, miR-122. A proteome chip containing ∼17,000 unique human proteins probed with miR-122 identified hnRNP K as one of the strong binding proteins. In vitro kinetic study showed hnRNP K binds miR-122 with a nanomolar dissociation constant, in which the short pyrimidine-rich residues in the central and 3' portion of the miR-122 were required for hnRNP K binding. In liver hepatocytes, miR-122 formed a coprecipitable complex with hnRNP K. High throughput Illumina DNA sequencing of the RNAs precipitated with hnRNP K was enriched for mature miR-122. SiRNA knockdown of hnRNP K in human hepatocytes reduced the levels of miR-122. These results show that hnRNP K is a cellular protein that binds and affects the accumulation of miR-122. Its ability to also bind HCV RNA near the miR-122 binding site suggests a role for miR-122 recognition of HCV RNA.
Collapse
Affiliation(s)
- Baochang Fan
- From the ‡Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - F X Reymond Sutandy
- §Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli 32001, Taiwan
| | - Guan-Da Syu
- §Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli 32001, Taiwan
| | - Stefani Middleton
- From the ‡Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Guanghui Yi
- From the ‡Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Kuan-Yi Lu
- §Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli 32001, Taiwan
| | - Chien-Sheng Chen
- §Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli 32001, Taiwan
| | - C Cheng Kao
- From the ‡Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA;
| |
Collapse
|
28
|
Wang J, Hu B, Cao F, Sun S, Zhang Y, Zhu Q. Down regulation of lncSCIR1 after spinal cord contusion injury in rat. Brain Res 2015; 1624:314-320. [PMID: 26254726 DOI: 10.1016/j.brainres.2015.07.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 12/19/2022]
Abstract
Extensive changes occur at transcriptional level after traumatic spinal cord injury (SCI). In this study, we performed a large scale screening of expression changes of long (>200 nt) RNA transcripts including both coding and non-coding RNA species in a rat contusion SCI model. We validated significant down-regulation of one long non-coding RNA (lncSCIR1) at 1, 4, and 7 days postinjury. lncSCIR1 knockdown promoted astrocyte proliferation and migration in vitro. We further validated the strong association between lncSCIR1 knock down and the expression changes of four mRNAs after injury. Our data indicated that lncSCIR1 down-regulation might play a detrimental role in the pathophysiology of traumatic SCI and thereby provided new insights into the studies of potential therapeutic targets for traumatic central nervous system (CNS) injuries.
Collapse
Affiliation(s)
- Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Bo Hu
- Deparment of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Fei Cao
- Deparment of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Shenggang Sun
- Deparment of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Yunjian Zhang
- Deparment of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Qing Zhu
- Deparment of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China.
| |
Collapse
|
29
|
Chung BM, Arutyunov A, Ilagan E, Yao N, Wills-Karp M, Coulombe PA. Regulation of C-X-C chemokine gene expression by keratin 17 and hnRNP K in skin tumor keratinocytes. ACTA ACUST UNITED AC 2015; 208:613-27. [PMID: 25713416 PMCID: PMC4347647 DOI: 10.1083/jcb.201408026] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Interaction between K17 and hnRNP K regulates CXCR3 signaling in an RSK-dependent fashion to promote epithelial tumor cell growth and invasion. High levels of the intermediate filament keratin 17 (K17) correlate with a poor prognosis for several types of epithelial tumors. However, the causal relationship and underlying mechanisms remain undefined. A recent study suggested that K17 promotes skin tumorigenesis by fostering a specific type of inflammation. We report here that K17 interacts with the RNA-binding protein hnRNP K, which has also been implicated in cancer. K17 is required for the cytoplasmic localization of hnRNP K and for its role in regulating the expression of multiple pro-inflammatory mRNAs. Among these are the CXCR3 ligands CXCL9, CXCL10, and CXCL11, which together form a signaling axis with an established role in tumorigenesis. The K17–hnRNP K partnership is regulated by the ser/thr kinase RSK and required for CXCR3-dependent tumor cell growth and invasion. These findings functionally integrate K17, hnRNP K, and gene expression along with RSK and CXCR3 signaling in a keratinocyte-autonomous axis and provide a potential basis for their implication in tumorigenesis.
Collapse
Affiliation(s)
- Byung Min Chung
- Department of Biochemistry and Molecular Biology and Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health; and Department of Biological Chemistry, Department of Dermatology, and Department of Oncology, School of Medicine, Johns Hopkins University, MD 21205
| | - Artem Arutyunov
- Department of Biochemistry and Molecular Biology and Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health; and Department of Biological Chemistry, Department of Dermatology, and Department of Oncology, School of Medicine, Johns Hopkins University, MD 21205
| | - Erika Ilagan
- Department of Biochemistry and Molecular Biology and Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health; and Department of Biological Chemistry, Department of Dermatology, and Department of Oncology, School of Medicine, Johns Hopkins University, MD 21205
| | - Nu Yao
- Department of Biochemistry and Molecular Biology and Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health; and Department of Biological Chemistry, Department of Dermatology, and Department of Oncology, School of Medicine, Johns Hopkins University, MD 21205
| | - Marsha Wills-Karp
- Department of Biochemistry and Molecular Biology and Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health; and Department of Biological Chemistry, Department of Dermatology, and Department of Oncology, School of Medicine, Johns Hopkins University, MD 21205
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology and Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health; and Department of Biological Chemistry, Department of Dermatology, and Department of Oncology, School of Medicine, Johns Hopkins University, MD 21205 Department of Biochemistry and Molecular Biology and Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health; and Department of Biological Chemistry, Department of Dermatology, and Department of Oncology, School of Medicine, Johns Hopkins University, MD 21205 Department of Biochemistry and Molecular Biology and Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health; and Department of Biological Chemistry, Department of Dermatology, and Department of Oncology, School of Medicine, Johns Hopkins University, MD 21205 Department of Biochemistry and Molecular Biology and Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health; and Department of Biological Chemistry, Department of Dermatology, and Department of Oncology, School of Medicine, Johns Hopkins University, MD 21205
| |
Collapse
|
30
|
Ding X, Sun B, Huang J, Xu L, Pan J, Fang C, Tao Y, Hu S, Li R, Han X, Miao P, Wang Y, Yu J, Feng X. The role of miR-182 in regulating pineal CLOCK expression after hypoxia-ischemia brain injury in neonatal rats. Neurosci Lett 2015; 591:75-80. [PMID: 25684245 DOI: 10.1016/j.neulet.2015.02.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/14/2015] [Accepted: 02/11/2015] [Indexed: 11/18/2022]
Abstract
Circadian rhythm disorder is a common neurological deficit caused by neonatal hypoxic-ischemic brain damage (HIBD). However, little is known about its underlying mechanisms. Our previous studies revealed a significant elevation of clock genes at the protein, but not mRNA, levels in the pineal gland after neonatal HIBD. To investigate the mechanisms of post-transcriptional regulation on clock genes, we screened changes of miRNA levels in the pineal gland after neonatal HIBD using high-throughput arrays. Within the miRNAs whose expression was significantly down-regulated, we identified one miRNA (miR182) that targeted the 3'-untranslated region (3'-UTR) of Clock, a key component of clock genes, and played a crucial role in regulating CLOCK expression after oxygen-glucose deprivation in primarily cultured pinealocytes. Our findings therefore provide new insight on studies of therapeutic targets for circadian rhythm disturbance after neonatal HIBD.
Collapse
Affiliation(s)
- Xin Ding
- Division of Neonatology, Affiliated Children's Hospital of Soochow University, Suzhou 215003, PR China
| | - Bin Sun
- Division of Neonatology, Affiliated Children's Hospital of Soochow University, Suzhou 215003, PR China
| | - Jian Huang
- Center for Circadian Clocks, Medical College, Soochow University, Suzhou 215003, PR China
| | - Lixiao Xu
- Department of Hematology and Oncology, Affiliated Children's Hospital of Soochow University, Suzhou 215003, PR China
| | - Jian Pan
- Department of Hematology and Oncology, Affiliated Children's Hospital of Soochow University, Suzhou 215003, PR China
| | - Chen Fang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou 225003, PR China
| | - Yanfang Tao
- Department of Hematology and Oncology, Affiliated Children's Hospital of Soochow University, Suzhou 215003, PR China
| | - Shukun Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Ronghu Li
- Division of Neonatology, Affiliated Children's Hospital of Soochow University, Suzhou 215003, PR China
| | - Xing Han
- Division of Neonatology, Affiliated Children's Hospital of Soochow University, Suzhou 215003, PR China
| | - Po Miao
- Division of Neonatology, Affiliated Children's Hospital of Soochow University, Suzhou 215003, PR China
| | - Ying Wang
- Division of Neonatology, Affiliated Children's Hospital of Soochow University, Suzhou 215003, PR China
| | - Jian Yu
- Division of Neonatology, Affiliated Children's Hospital of Soochow University, Suzhou 215003, PR China
| | - Xing Feng
- Division of Neonatology, Affiliated Children's Hospital of Soochow University, Suzhou 215003, PR China.
| |
Collapse
|
31
|
Liu Y, Wang C, Destin G, Szaro BG. Microtubule-associated protein tau promotes neuronal class II β-tubulin microtubule formation and axon elongation in embryonic Xenopus laevis. Eur J Neurosci 2015; 41:1263-75. [PMID: 25656701 DOI: 10.1111/ejn.12848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/13/2014] [Accepted: 01/07/2015] [Indexed: 01/06/2023]
Abstract
Compared with its roles in neurodegeneration, much less is known about microtubule-associated protein tau's normal functions in vivo, especially during development. The external development and ease of manipulating gene expression of Xenopus laevis embryos make them especially useful for studying gene function during early development. To study tau's functions in axon outgrowth, we characterized the most prominent tau isoforms of Xenopus embryos and manipulated their expression. None of these four isoforms were strictly analogous to those commonly studied in mammals, as all constitutively contained exon 10, which is preferentially removed from mammalian fetal tau isoforms, as well as exon 8, which in mammals is rare. Nonetheless, like mammalian tau, Xenopus tau exhibited alternative splicing of exon 4a, which in mammals distinguishes 'big' tau of peripheral neurons, and exon 6. Strongly suppressing tau expression with antisense morpholino oligonucleotides only modestly compromised peripheral nerve outgrowth of intact tadpoles, but severely disrupted neuronal microtubules containing class II β-tubulins while leaving other microtubules largely unperturbed. Thus, the relatively mild dependence of axon development on tau likely resulted from having only a single class of microtubules disrupted by its loss. Also, consistent with its greater expression in long peripheral axons, boosting expression of 'big' tau increased neurite outgrowth significantly and enhanced tubulin acetylation more so than did the smaller isoform. These data demonstrate the utility of Xenopus as a tool to gain new insights into tau's functions in vivo.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Biological Sciences and the Center for Neuroscience Research, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Chen Wang
- Department of Biological Sciences and the Center for Neuroscience Research, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Giovanny Destin
- Department of Biological Sciences and the Center for Neuroscience Research, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Ben G Szaro
- Department of Biological Sciences and the Center for Neuroscience Research, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| |
Collapse
|
32
|
Ishida YI, Takeshita M, Kataoka H. Functional foods effective for hepatitis C: Identification of oligomeric proanthocyanidin and its action mechanism. World J Hepatol 2014; 6:870-879. [PMID: 25544874 PMCID: PMC4269906 DOI: 10.4254/wjh.v6.i12.870] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/03/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of viral hepatitis and currently infects approximately 170 million people worldwide. An infection by HCV causes high rates of chronic hepatitis (> 75%) and progresses to liver cirrhosis and hepatocellular carcinoma ultimately. HCV can be eliminated by a combination of pegylated α-interferon and the broad-spectrum antiviral drug ribavirin; however, this treatment is still associated with poor efficacy and tolerability and is often accompanied by serious side-effects. While some novel direct-acting antivirals against HCV have been developed recently, high medical costs limit the access to the therapy in cost-sensitive countries. To search for new natural anti-HCV agents, we screened local agricultural products for their suppressive activities against HCV replication using the HCV replicon cell system in vitro. We found a potent inhibitor of HCV RNA expression in the extracts of blueberry leaves and then identified oligomeric proanthocyanidin as the active ingredient. Further investigations into the action mechanism of oligomeric proanthocyanidin suggested that it is an inhibitor of heterogeneous nuclear ribonucleoproteins (hnRNPs) such as hnRNP A2/B1. In this review, we presented an overview of functional foods and ingredients efficient for HCV infection, the chemical structural characteristics of oligomeric proanthocyanidin, and its action mechanism.
Collapse
|
33
|
He L, Xue X, Wang Z, Hou E, Liu Y, Liang M, Zhang Y, Tian Z. Transcriptional regulation of heterogeneous nuclear ribonucleoprotein K gene expression. Biochimie 2014; 109:27-35. [PMID: 25497182 DOI: 10.1016/j.biochi.2014.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/03/2014] [Indexed: 01/05/2023]
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is importantly involved in the regulation of development, DNA damage response, and several human diseases. The molecular mechanisms that control the expression of hnRNP K are largely unknown. In the present study, we investigated the detailed mechanism of the transcriptional regulation of human hnRNP K gene. Two activating and one repressive elements located in the proximal segment of the transcriptional initiation site were identified in hnRNP K gene. A 19 bp-region was responsible for the inhibitory activities of the repressor element. Twenty proteins were identified by DNA-affinity purification and mass spectrometry analyses as binding partners of the primary activating element in the hnRNP K promoter. Chromatin immunoprecipitation and EMSA analysis confirmed the binding of Sp1 with hnRNP K promoter. Sp1 enhanced the promoter activity, increased the expression of hnRNP K, and reduced the mRNA level of angiotensinogen, a gene known to be negatively regulated by hnRNP K. In summary, the current study characterized the promoter elements that regulate the transcription of human hnRNP K gene, identified 20 proteins that bind to the primary activating element of hnRNP K promoter, and demonstrated a functional effect of Sp1 on hnRNP K transcription.
Collapse
Affiliation(s)
- Liqing He
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaochang Xue
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Zhengjun Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Entai Hou
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yong Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yingqi Zhang
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| | - Zhongmin Tian
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
34
|
Moujalled D, James JL, Yang S, Zhang K, Duncan C, Moujalled DM, Parker SJ, Caragounis A, Lidgerwood G, Turner BJ, Atkin JD, Grubman A, Liddell JR, Proepper C, Boeckers TM, Kanninen KM, Blair I, Crouch PJ, White AR. Phosphorylation of hnRNP K by cyclin-dependent kinase 2 controls cytosolic accumulation of TDP-43. Hum Mol Genet 2014; 24:1655-69. [PMID: 25410660 DOI: 10.1093/hmg/ddu578] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cytosolic accumulation of TAR DNA binding protein 43 (TDP-43) is a major neuropathological feature of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). However, the mechanisms involved in TDP-43 accumulation remain largely unknown. Previously, we reported that inhibitors of cyclin-dependent kinases (CDKs) prevented cytosolic stress granule accumulation of TDP-43, correlating with depletion of heterogeneous ribonucleoprotein (hnRNP) K from stress granules. In the present study, we further investigated the relationship between TDP-43 and hnRNP K and their control by CDKs. Inhibition of CDK2 abrogated the accumulation of TDP-43 into stress granules. Phosphorylated CDK2 co-localized with accumulated TDP-43 and phosphorylated hnRNP K in stress granules. Inhibition of CDK2 phosphorylation blocked phosphorylation of hnRNP K, preventing its incorporation into stress granules. Due to interaction between hnRNP K with TDP-43, the loss of hnRNP K from stress granules prevented accumulation of TDP-43. Mutation of Ser216 and Ser284 phosphorylation sites on hnRNP K inhibited hnRNP K- and TDP-43-positive stress granule formation in transfected cells. The interaction between hnRNP K and TDP-43 was further confirmed by the loss of TDP-43 accumulation following siRNA-mediated inhibition of hnRNP K expression. A substantial decrease of CDK2 and hnRNP K expression in spinal cord motor neurons in ALS patients demonstrates a potential key role for these proteins in ALS and TDP-43 accumulation, indicating that further investigation of the association between hnRNP K and TDP-43 is warranted. Understanding how kinase activity modulates TDP-43 accumulation may provide new pharmacological targets for disease intervention.
Collapse
Affiliation(s)
| | | | - Shu Yang
- The Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | - Katharine Zhang
- The Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | | | - Donia M Moujalled
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC 3052, Australia
| | | | | | | | - Bradley J Turner
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia
| | - Julie D Atkin
- The Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | | | | | - Christian Proepper
- Anatomy and Cell Biology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Tobias M Boeckers
- Anatomy and Cell Biology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, Laboratory of Molecular Brain Research, University of Eastern Finland, Kuopio, Finland
| | - Ian Blair
- The Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | | | | |
Collapse
|
35
|
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is an RNA-binding protein implicated in RNA metabolism. Here, we investigated the role of hnRNP K in synapse function. We demonstrated that hnRNP K regulates dendritic spine density and long-term potentiation (LTP) in cultured hippocampal neurons from embryonic rats. LTP requires the extracellular signal-regulated kinase (ERK)1/2-mediated phosphorylation and cytoplasmic accumulation of hnRNP K. Moreover, hnRNP K knockdown prevents ERK cascade activation and GluA1-S845 phosphorylation and surface delivery, which are essential steps for LTP. These findings establish hnRNP K as a new critical regulator of synaptic transmission and plasticity in hippocampal neurons.
Collapse
|
36
|
c-Jun N-terminal kinase phosphorylation of heterogeneous nuclear ribonucleoprotein K regulates vertebrate axon outgrowth via a posttranscriptional mechanism. J Neurosci 2013; 33:14666-80. [PMID: 24027268 DOI: 10.1523/jneurosci.4821-12.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
c-Jun N-terminal kinase (JNK) mediates cell signaling essential for axon outgrowth, but the associated substrates and underlying mechanisms are poorly understood. We identified in Xenopus laevis embryos a novel posttranscriptional mechanism whereby JNK regulates axonogenesis by phosphorylating a specific site on heterogeneous nuclear ribonucleoprotein K (hnRNP K). Both JNK inhibition and hnRNP K knockdown inhibited axon outgrowth and translation of hnRNP K-regulated cytoskeletal RNAs (tau and neurofilament medium), effects that were alleviated by expressing phosphomimetic, but not phosphodeficient, forms of hnRNP K. Immunohistochemical and biochemical analyses indicated that JNK phosphorylation of hnRNP K occurred within the cytoplasm and was necessary for the translational initiation of hnRNP K-targeted RNAs but not for hnRNP K intracellular localization or RNA binding. Thus, in addition to its known roles in transcription and cytoskeletal organization, JNK acts posttranscriptionally through hnRNP K to regulate translation of proteins crucial for axonogenesis.
Collapse
|
37
|
Liu CH, Chien CL. Molecular cloning and characterization of chicken neuronal intermediate filament protein α-internexin. J Comp Neurol 2013; 521:2147-64. [PMID: 23224860 DOI: 10.1002/cne.23278] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/19/2012] [Accepted: 11/28/2012] [Indexed: 01/20/2023]
Abstract
α-Internexin is one of the neuronal intermediate filament (IF) proteins, which also include low-, middle-, and high-molecular-weight neurofilament (NF) triplet proteins, designated NFL, NFM, and NFH, respectively. The expression of α-internexin occurs in most neurons as they begin differentiation and precedes the expression of the NF triplet proteins in mammals. However, little is known about the gene sequence and physiological function of α-internexin in avians. In this study we describe the molecular cloning of the mRNA sequence encoding the chicken α-internexin (chkINA) protein from embryonic brains. The gene structure and predicted amino acid sequence of chkINA exhibited high similarity to those of its zebrafish, mouse, rat, bovine, and human homologs. Data from transient-transfection experiments show that the filamentous pattern of chkINA was found in transfected cells and colocalized with other endogenous IFs, as demonstrated via immunocytochemistry using a chicken-specific antibody. The expression of chkINA was detected at the early stage of development and increased during the developmental process of the chicken. chkINA was expressed widely in chicken brains and colocalized with NF triplet proteins in neuronal processes, as assessed using immunohistochemistry. We also found that chkINA was expressed abundantly in the developing cerebellum and was the major IF protein in the parallel processes of granule neurons. Thus, we suggest that chkINA is a neuron-specific IF protein that may be a useful marker for studies of chicken brain development.
Collapse
Affiliation(s)
- Chi-Hsiu Liu
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan ROC
| | | |
Collapse
|
38
|
Neuronal intermediate filament α-internexin is expressed by neuronal lineages in the developing chicken retina. Exp Eye Res 2013; 110:18-25. [DOI: 10.1016/j.exer.2013.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/09/2013] [Accepted: 02/19/2013] [Indexed: 11/23/2022]
|
39
|
van Domselaar R, de Poot SAH, Remmerswaal EBM, Lai KW, ten Berge IJM, Bovenschen N. Granzyme M targets host cell hnRNP K that is essential for human cytomegalovirus replication. Cell Death Differ 2013; 20:419-29. [PMID: 23099853 PMCID: PMC3569982 DOI: 10.1038/cdd.2012.132] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 09/03/2012] [Accepted: 09/14/2012] [Indexed: 11/08/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the most frequent viral cause of congenital defects and HCMV infection in immunocompromised patients may trigger devastating disease. Cytotoxic lymphocytes control HCMV by releasing granzymes towards virus-infected cells. In mice, granzyme M (GrM) has a physiological role in controlling murine CMV infection. However, the underlying mechanism remains poorly understood. In this study, we showed that human GrM was expressed by HCMV-specific CD8(+) T cells both in latently infected healthy individuals and in transplant patients during primary HCMV infection. We identified host cell heterogeneous nuclear ribonucleoprotein K (hnRNP K) as a physiological GrM substrate. GrM most efficiently cleaved hnRNP K in the presence of RNA at multiple sites, thereby likely destroying hnRNP K function. Host cell hnRNP K was essential for HCMV replication not only by promoting viability of HCMV-infected cells but predominantly by regulating viral immediate-early 2 (IE2) protein levels. Furthermore, hnRNP K interacted with IE2 mRNA. Finally, GrM decreased IE2 protein expression in HCMV-infected cells. Our data suggest that targeting of hnRNP K by GrM contributes to the mechanism by which cytotoxic lymphocytes inhibit HCMV replication. This is the first evidence that cytotoxic lymphocytes target host cell proteins to control HCMV infections.
Collapse
Affiliation(s)
- R van Domselaar
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S A H de Poot
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E B M Remmerswaal
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
- Renal Transplant Unit, Department of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - K W Lai
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - I J M ten Berge
- Renal Transplant Unit, Department of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - N Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
40
|
In vivo quantitative proteomics of somatosensory cortical synapses shows which protein levels are modulated by sensory deprivation. Proc Natl Acad Sci U S A 2013; 110:E726-35. [PMID: 23382246 DOI: 10.1073/pnas.1300424110] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Postnatal bilateral whisker trimming was used as a model system to test how synaptic proteomes are altered in barrel cortex by sensory deprivation during synaptogenesis. Using quantitative mass spectrometry, we quantified more than 7,000 synaptic proteins and identified 89 significantly reduced and 161 significantly elevated proteins in sensory-deprived synapses, 22 of which were validated by immunoblotting. More than 95% of quantified proteins, including abundant synaptic proteins such as PSD-95 and gephyrin, exhibited no significant difference under high- and low-activity rearing conditions, suggesting no tissue-wide changes in excitatory or inhibitory synaptic density. In contrast, several proteins that promote mature spine morphology and synaptic strength, such as excitatory glutamate receptors and known accessory factors, were reduced significantly in deprived synapses. Immunohistochemistry revealed that the reduction in SynGAP1, a postsynaptic scaffolding protein, was restricted largely to layer I of barrel cortex in sensory-deprived rats. In addition, protein-degradation machinery such as proteasome subunits, E2 ligases, and E3 ligases, accumulated significantly in deprived synapses, suggesting targeted synaptic protein degradation under sensory deprivation. Importantly, this screen identified synaptic proteins whose levels were affected by sensory deprivation but whose synaptic roles have not yet been characterized in mammalian neurons. These data demonstrate the feasibility of defining synaptic proteomes under different sensory rearing conditions and could be applied to elucidate further molecular mechanisms of sensory development.
Collapse
|
41
|
Identification in the rat brain of a set of nuclear proteins interacting with H1° mRNA. Neuroscience 2012; 229:71-6. [PMID: 23159318 DOI: 10.1016/j.neuroscience.2012.10.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/12/2012] [Accepted: 10/23/2012] [Indexed: 12/19/2022]
Abstract
Synthesis of H1° histone, in the developing rat brain, is also regulated at post-transcriptional level. Regulation of RNA metabolism depends on a series of RNA-binding proteins (RBPs); therefore, we searched for H1° mRNA-interacting proteins. With this aim, we used in vitro transcribed, biotinylated H1° RNA as bait to isolate, by a chromatographic approach, proteins which interact with this mRNA, in the nuclei of brain cells. Abundant RBPs, such as heterogeneous nuclear ribonucleoprotein (hnRNP) K and hnRNP A1, and molecular chaperones (heat shock cognate 70, Hsc70) were identified by mass spectrometry. Western blot analysis also revealed the presence of cold shock domain-containing protein 2 (CSD-C2, also known as PIPPin), a brain-enriched RBP previously described in our laboratory. Co-immunoprecipitation assays were performed to investigate the possibility that identified proteins interact with each other and with other nuclear proteins. We found that hnRNP K interacts with both hnRNP A1 and Hsc70 whereas there is no interaction between hnRNP A1 and Hsc70. Moreover, CSD-C2 interacts with hnRNP A1, Y box-binding protein 1 (YB-1), and hnRNP K. We also have indications that CSD-C2 interacts with Hsc70. Overall, we have contributed to the molecular characterization of a ribonucleoprotein particle possibly controlling H1° histone expression in the brain.
Collapse
|
42
|
Cao W, Razanau A, Feng D, Lobo VG, Xie J. Control of alternative splicing by forskolin through hnRNP K during neuronal differentiation. Nucleic Acids Res 2012; 40:8059-71. [PMID: 22684629 PMCID: PMC3439897 DOI: 10.1093/nar/gks504] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The molecular basis of cell signal-regulated alternative splicing at the 3′ splice site remains largely unknown. We isolated a protein kinase A-responsive ribonucleic acid (RNA) element from a 3′ splice site of the synaptosomal-associated protein 25 (Snap25) gene for forskolin-inhibited splicing during neuronal differentiation of rat pheochromocytoma PC12 cells. The element binds specifically to heterogeneous nuclear ribonucleo protein (hnRNP) K in a phosphatase-sensitive way, which directly competes with the U2 auxiliary factor U2AF65, an essential component of early spliceosomes. Transcripts with similarly localized hnRNP K target motifs upstream of alternative exons are enriched in genes often associated with neurological diseases. We show that such motifs upstream of the Runx1 exon 6 also bind hnRNP K, and importantly, hnRNP K is required for forskolin-induced repression of the exon. Interestingly, this exon encodes the peptide domain that determines the switch of the transcriptional repressor/activator activity of Runx1, a change known to be critical in specifying neuron lineages. Consistent with an important role of the target genes in neurons, knocking down hnRNP K severely disrupts forskolin-induced neurite growth. Thus, through hnRNP K, the neuronal differentiation stimulus forskolin targets a critical 3′ splice site component of the splicing machinery to control alternative splicing of crucial genes. This also provides a regulated direct competitor of U2AF65 for cell signal control of 3′ splice site usage.
Collapse
Affiliation(s)
- Wenguang Cao
- Department of Physiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | | | | | | | | |
Collapse
|
43
|
Heterogeneous nuclear ribonucleoprotein K, an RNA-binding protein, is required for optic axon regeneration in Xenopus laevis. J Neurosci 2012; 32:3563-74. [PMID: 22399778 DOI: 10.1523/jneurosci.5197-11.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axotomized optic axons of Xenopus laevis, in contrast to those of mammals, retain their ability to regenerate throughout life. To better understand the molecular basis for this successful regeneration, we focused on the role of an RNA-binding protein, heterogeneous nuclear ribonucleoprotein (hnRNP) K, because it is required for axonogenesis during development and because several of its RNA targets are under strong post-transcriptional control during regeneration. At 11 d after optic nerve crush, hnRNP K underwent significant translocation into the nucleus of retinal ganglion cells (RGCs), indicating that the protein became activated during regeneration. To suppress its expression, we intravitreously injected an antisense Vivo-Morpholino oligonucleotide targeting hnRNP K. In uninjured eyes, it efficiently knocked down hnRNP K expression in only the RGCs, without inducing either an axotomy response or axon degeneration. After optic nerve crush, staining for multiple markers of regenerating axons showed no regrowth of axons beyond the lesion site with hnRNP K knockdown. RGCs nonetheless responded to the injury by increasing expression of multiple growth-associated RNAs and experienced no additional neurodegeneration above that normally seen with optic nerve injury. At the molecular level, hnRNP K knockdown during regeneration inhibited protein, but not mRNA, expression of several known hnRNP K RNA targets (NF-M, GAP-43) by compromising their efficient nuclear transport and disrupting their loading onto polysomes for translation. Our study therefore provides evidence of a novel post-transcriptional regulatory pathway orchestrated by hnRNP K that is essential for successful CNS axon regeneration.
Collapse
|
44
|
Abstract
The RNA-binding protein hnRNP Q has been implicated in neuronal mRNA metabolism. Here, we show that knockdown of hnRNP Q increased neurite complexity in cultured rat cortical neurons and induced filopodium formation in mouse neuroblastoma cells. Reexpression of hnRNP Q1 in hnRNP Q-depleted cells abrogated the morphological changes of neurites, indicating a specific role for hnRNP Q1 in neuronal morphogenesis. A search for mRNA targets of hnRNP Q1 identified functionally coherent sets of mRNAs encoding factors involved in cellular signaling or cytoskeletal regulation and determined its preferred binding sequences. We demonstrated that hnRNP Q1 bound to a set of identified mRNAs encoding the components of the actin nucleation-promoting Cdc42/N-WASP/Arp2/3 complex and was in part colocalized with Cdc42 mRNA in granules. Using subcellular fractionation and immunofluorescence, we showed that knockdown of hnRNP Q reduced the level of some of those mRNAs in neurites and redistributed their encoded proteins from neurite tips to soma to different extents. Overexpression of dominant negative mutants of Cdc42 or N-WASP compromised hnRNP Q depletion-induced neurite complexity. Together, our results suggest that hnRNP Q1 may participate in localization of mRNAs encoding Cdc42 signaling factors in neurites, and thereby may regulate actin dynamics and control neuronal morphogenesis.
Collapse
|
45
|
Wang J, Sun S, Cao X, Deng X, Zhang Y, Zhu Q. Retracted: Overexpression of αCP2, a translational repressor of GAP-43, inhibited axon outgrowth during development in Xenopus laevis. Biochem Biophys Res Commun 2012; 419:262-7. [PMID: 22342981 DOI: 10.1016/j.bbrc.2012.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 11/28/2022]
Abstract
The 3'-untranslated regions (3'-UTRs) of growth-associated protein 43 (GAP-43), which is crucial for neural development and axonal regeneration, are highly conserved among vertebrates. Previous studies in mammals have identified one U-rich cis element within GAP-43 3'-UTR and several trans factors that regulate its mRNA stability. However, much less is known in lower vertebrates. The Xenopus GAP-43 3'-UTR, despite its high similarity with those in higher vertebrates, contains unique CU-rich sequences, suggesting the existence of novel cis elements and trans factors. In current study, we isolated four proteins bound to GAP-43 3'-UTR from juvenile frog brain using affinity purification. Mass spectrometry identified Hu antigen D (HuD) and poly(C) binding protein 2 (αCP2) as the proteins forming 48- and 44-kDa ribonucleoprotein complexes, respectively. We validated the association between αCP2 and GAP-43 3'-UTR in vivo. After confirming the post-transcriptional effects of αCP2 on GAP-43 expression, we demonstrated that αCP2 directly inhibited the translation of GAP-43 gene, without affecting its mRNA stability. αCP2 overexpression led to decreased level of GAP-43 protein and significantly inhibited axonal outgrowth in primarily cultured neurons. Our study therefore provided insights on novel functions of αCP2 in vertebrate nervous system during development and new mechanisms of post-transcriptional regulation for GAP-43 gene.
Collapse
Affiliation(s)
- Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | | | | | | | | | | |
Collapse
|