1
|
Copley RR, Buttin J, Arguel MJ, Williaume G, Lebrigand K, Barbry P, Hudson C, Yasuo H. Early transcriptional similarities between two distinct neural lineages during ascidian embryogenesis. Dev Biol 2024; 514:1-11. [PMID: 38878991 DOI: 10.1016/j.ydbio.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
In chordates, the central nervous system arises from precursors that have distinct developmental and transcriptional trajectories. Anterior nervous systems are ontogenically associated with ectodermal lineages while posterior nervous systems are associated with mesoderm. Taking advantage of the well-documented cell lineage of ascidian embryos, we asked to what extent the transcriptional states of the different neural lineages become similar during the course of progressive lineage restriction. We performed single-cell RNA sequencing (scRNA-seq) analyses on hand-dissected neural precursor cells of the two distinct lineages, together with those of their sister cell lineages, with a high temporal resolution covering five successive cell cycles from the 16-cell to neural plate stages. A transcription factor binding site enrichment analysis of neural specific genes at the neural plate stage revealed limited evidence for shared transcriptional control between the two neural lineages, consistent with their different ontogenies. Nevertheless, PCA analysis and hierarchical clustering showed that, by neural plate stages, the two neural lineages cluster together. Consistent with this, we identified a set of genes enriched in both neural lineages at the neural plate stage, including miR-124, Celf3.a, Zic.r-b, and Ets1/2. Altogether, the current study has revealed genome-wide transcriptional dynamics of neural progenitor cells of two distinct developmental origins. Our scRNA-seq dataset is unique and provides a valuable resource for future analyses, enabling a precise temporal resolution of cell types not previously described from dissociated embryos.
Collapse
Affiliation(s)
- Richard R Copley
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS UMR7009, 06230, Villefranche-sur-mer, France.
| | - Julia Buttin
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS UMR7009, 06230, Villefranche-sur-mer, France
| | - Marie-Jeanne Arguel
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, CNRS UMR 7275, 06560, Sophia Antipolis, France
| | - Géraldine Williaume
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS UMR7009, 06230, Villefranche-sur-mer, France
| | - Kevin Lebrigand
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, CNRS UMR 7275, 06560, Sophia Antipolis, France
| | - Pascal Barbry
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, CNRS UMR 7275, 06560, Sophia Antipolis, France
| | - Clare Hudson
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS UMR7009, 06230, Villefranche-sur-mer, France
| | - Hitoyoshi Yasuo
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS UMR7009, 06230, Villefranche-sur-mer, France.
| |
Collapse
|
2
|
Stein WD. Orthologs at the Base of the Olfactores Clade. Genes (Basel) 2024; 15:657. [PMID: 38927593 PMCID: PMC11203038 DOI: 10.3390/genes15060657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Tunicate orthologs in the human genome comprise just 84 genes of the 19,872 protein-coding genes and 23 of the 16,528 non-coding genes, yet they stand at the base of the Olfactores clade, which radiated to generate thousands of tunicate and vertebrate species. What were the powerful drivers among these genes that enabled this process? Many of these orthologs are present in gene families. We discuss the biological role of each family and the orthologs' quantitative contribution to the family. Most important was the evolution of a second type of cadherin. This, a Type II cadherin, had the property of detaching the cell containing that cadherin from cells that expressed the Type I class. The set of such Type II cadherins could now detach and move away from their Type I neighbours, a process which would eventually evolve into the formation of the neural crest, "the fourth germ layer", providing a wide range of possibilities for further evolutionary invention. A second important contribution were key additions to the broad development of the muscle and nerve protein and visual perception toolkits. These developments in mobility and vision provided the basis for the development of the efficient predatory capabilities of the Vertebrata.
Collapse
Affiliation(s)
- Wilfred D Stein
- Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
3
|
Anselmi C, Fuller GK, Stolfi A, Groves AK, Manni L. Sensory cells in tunicates: insights into mechanoreceptor evolution. Front Cell Dev Biol 2024; 12:1359207. [PMID: 38550380 PMCID: PMC10973136 DOI: 10.3389/fcell.2024.1359207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Tunicates, the sister group of vertebrates, offer a unique perspective for evolutionary developmental studies (Evo-Devo) due to their simple anatomical organization. Moreover, the separation of tunicates from vertebrates predated the vertebrate-specific genome duplications. As adults, they include both sessile and pelagic species, with very limited mobility requirements related mainly to water filtration. In sessile species, larvae exhibit simple swimming behaviors that are required for the selection of a suitable substrate on which to metamorphose. Despite their apparent simplicity, tunicates display a variety of mechanoreceptor structures involving both primary and secondary sensory cells (i.e., coronal sensory cells). This review encapsulates two decades of research on tunicate mechanoreception focusing on the coronal organ's sensory cells as prime candidates for understanding the evolution of vertebrate hair cells of the inner ear and the lateral line organ. The review spans anatomical, cellular and molecular levels emphasizing both similarity and differences between tunicate and vertebrate mechanoreception strategies. The evolutionary significance of mechanoreception is discussed within the broader context of Evo-Devo studies, shedding light on the intricate pathways that have shaped the sensory system in chordates.
Collapse
Affiliation(s)
- Chiara Anselmi
- Hopkins Marine Station, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Pacific Grove, CA, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States
| | - Gwynna K. Fuller
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Andrew K. Groves
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Lucia Manni
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| |
Collapse
|
4
|
Johnson CJ, Razy-Krajka F, Zeng F, Piekarz KM, Biliya S, Rothbächer U, Stolfi A. Specification of distinct cell types in a sensory-adhesive organ important for metamorphosis in tunicate larvae. PLoS Biol 2024; 22:e3002555. [PMID: 38478577 PMCID: PMC10962819 DOI: 10.1371/journal.pbio.3002555] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 03/25/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
The papillae of tunicate larvae contribute sensory, adhesive, and metamorphosis-regulating functions that are crucial for the biphasic lifestyle of these marine, non-vertebrate chordates. We have identified additional molecular markers for at least 5 distinct cell types in the papillae of the model tunicate Ciona, allowing us to further study the development of these organs. Using tissue-specific CRISPR/Cas9-mediated mutagenesis and other molecular perturbations, we reveal the roles of key transcription factors and signaling pathways that are important for patterning the papilla territory into a highly organized array of different cell types and shapes. We further test the contributions of different transcription factors and cell types to the production of the adhesive glue that allows for larval attachment during settlement, and to the processes of tail retraction and body rotation during metamorphosis. With this study, we continue working towards connecting gene regulation to cellular functions that control the developmental transition between the motile larva and sessile adult of Ciona.
Collapse
Affiliation(s)
- Christopher J Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Florian Razy-Krajka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Fan Zeng
- Department of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Katarzyna M Piekarz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Shweta Biliya
- Molecular Evolution Core, Petit H. Parker Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Ute Rothbächer
- Department of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
5
|
Konrad KD, Arnott M, Testa M, Suarez S, Song JL. microRNA-124 directly suppresses Nodal and Notch to regulate mesodermal development. Dev Biol 2023; 502:50-62. [PMID: 37419400 PMCID: PMC10719910 DOI: 10.1016/j.ydbio.2023.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/27/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023]
Abstract
MicroRNAs regulate gene expression post-transcriptionally by destabilizing and/or inhibiting translation of target mRNAs in animal cells. MicroRNA-124 (miR-124) has been examined mostly in the context of neurogenesis. This study discovers a novel role of miR-124 in regulating mesodermal cell differentiation in the sea urchin embryo. The expression of miR-124 is first detectable at 12hours post fertilization at the early blastula stage, during endomesodermal specification. Mesodermally-derived immune cells come from the same progenitor cells that give rise to blastocoelar cells (BCs) and pigment cells (PCs) that must make a binary fate decision. We determined that miR-124 directly represses Nodal and Notch to regulate BC and PC differentiation. miR-124 inhibition does not impact the dorsal-ventral axis formation, but result in a significant increase in number of cells expressing BC-specific transcription factors (TFs) and a concurrent reduction of differentiated PCs. In general, removing miR-124's suppression of Nodal phenocopies miR124 inhibition. Interestingly, removing miR-124's suppression of Notch leads to an increased number of both BCs and PCs, with a subset of hybrid cells that express both BC- and PC-specific TFs in the larvae. Removal of miR-124's suppression of Notch not only affects differentiation of both BCs and PCs, but also induces cell proliferation of these cells during the first wave of Notch signaling. This study demonstrates that post-transcriptional regulation by miR-124 impacts differentiation of BCs and PCs by regulating the Nodal and Notch signaling pathways.
Collapse
Affiliation(s)
- Kalin D Konrad
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Malcolm Arnott
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Michael Testa
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Santiago Suarez
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
6
|
Zhang WH, Jiang L, Li M, Liu J. MicroRNA‑124: an emerging therapeutic target in central nervous system disorders. Exp Brain Res 2023; 241:1215-1226. [PMID: 36961552 PMCID: PMC10129929 DOI: 10.1007/s00221-022-06524-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/31/2022] [Indexed: 03/25/2023]
Abstract
The central nervous system (CNS) consists of neuron and non-neuron cells including neural stem/precursor cells (NSPCs), neuroblasts, glia cells (mainly astrocyte, oligodendroglia and microglia), which thereby form a precise and complicated network and exert diverse functions through interactions of numerous bioactive ingredients. MicroRNAs (miRNAs), with small size approximately ~ 21nt and as well-documented post-transcriptional key regulators of gene expression, are a cluster of evolutionarily conserved endogenous non-coding RNAs. More than 2000 different miRNAs has been discovered till now. MicroRNA-124(miR-124), the most brain-rich microRNA, has been validated to possess important functions in the central nervous system, including neural stem cell proliferation and differentiation, cell fate determination, neuron migration, synapse plasticity and cognition, cell apoptosis etc. According to recent studies, herein, we provide a review of this conversant miR-124 to further understand the potential functions and therapeutic and clinical value in brain diseases.
Collapse
Affiliation(s)
- Wen-Hao Zhang
- Department of Pediatrics, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100095, China
- Department of Pediatrics, The 4th Hospital of Hebei Medical University, Shijiazhuang, 050010, China
| | - Lian Jiang
- Department of Pediatrics, The 4th Hospital of Hebei Medical University, Shijiazhuang, 050010, China
| | - Mei Li
- Department of Pediatrics, The 4th Hospital of Hebei Medical University, Shijiazhuang, 050010, China
| | - Jing Liu
- Department of Pediatrics, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100095, China.
- Department of Neonatology, Maternal and Child Health Hospital of Chaoyang District, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
7
|
Konrad KD, Song JL. microRNA-124 regulates Notch and NeuroD1 to mediate transition states of neuronal development. Dev Neurobiol 2023; 83:3-27. [PMID: 36336988 PMCID: PMC10440801 DOI: 10.1002/dneu.22902] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 09/12/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
MicroRNAs regulate gene expression by destabilizing target mRNA and/or inhibiting translation in animal cells. The ability to mechanistically dissect miR-124's function during specification, differentiation, and maturation of neurons during development within a single system has not been accomplished. Using the sea urchin embryo, we take advantage of the manipulability of the embryo and its well-documented gene regulatory networks (GRNs). We incorporated NeuroD1 as part of the sea urchin neuronal GRN and determined that miR-124 inhibition resulted in aberrant gut contractions, swimming velocity, and neuronal development. Inhibition of miR-124 resulted in an increased number of cells expressing transcription factors (TFs) associated with progenitor neurons and a concurrent decrease of mature and functional neurons. Results revealed that in the early blastula/gastrula stages, miR-124 regulates undefined factors during neuronal specification and differentiation. In the late gastrula/larval stages, miR-124 regulates Notch and NeuroD1 during the transition between neuronal differentiation and maturation. Overall, we have improved the neuronal GRN and identified miR-124 to play a prolific role in regulating various transitions of neuronal development.
Collapse
Affiliation(s)
- Kalin D Konrad
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
8
|
Wang Z, Sun X, Zhang X, Dong B, Yu H. Development of a miRNA Sensor by an Inducible CRISPR-Cas9 Construct in Ciona Embryogenesis. Mol Biotechnol 2021; 63:613-620. [PMID: 33880702 DOI: 10.1007/s12033-021-00324-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/29/2021] [Indexed: 11/28/2022]
Abstract
MicroRNAs (miRNAs) regulate multicellular processes and diverse signaling pathways in organisms. The detection of the spatiotemporal expression of miRNA in vivo is crucial for uncovering the function of miRNA. However, most of the current detecting techniques cannot reflect the dynamics of miRNA sensitively in vivo. Here, we constructed a miRNA-induced CRISPR-Cas9 platform (MICR) used in marine chordate Ciona. The key component of MICR is a pre-single guide RNA (sgRNA) flanked by miRNA-binding sites that can be released by RNA-induced silencing complex (RISC) cleavage to form functional sgRNA in the presence of complementary miRNA. By using the miRNA-inducible CRISPR-on system (MICR-ON), we successfully detected the dynamic expression of a miRNA csa-miR-4018a during development of Ciona embryo. The detected patterns were validated to be consistent with the results by in situ hybridization. It is worth noting that the expression of csa-miR-4018a was examined by MICR-ON to be present in additional tissues, where no obvious signaling was detected by in situ hybridization, suggesting that the MICR-ON might be a more sensitive approach to detect miRNA signal in living animal. Thus, MICR-ON was demonstrated to be a sensitive and highly efficient approach for monitoring the dynamics of expression of miRNA in vivo and will facilitate the exploration of miRNA functions in biological systems.
Collapse
Affiliation(s)
- Zhuqing Wang
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xueping Sun
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoming Zhang
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Bo Dong
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Haiyan Yu
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| |
Collapse
|
9
|
Coulcher JF, Roure A, Chowdhury R, Robert M, Lescat L, Bouin A, Carvajal Cadavid J, Nishida H, Darras S. Conservation of peripheral nervous system formation mechanisms in divergent ascidian embryos. eLife 2020; 9:e59157. [PMID: 33191918 PMCID: PMC7710358 DOI: 10.7554/elife.59157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/13/2020] [Indexed: 01/23/2023] Open
Abstract
Ascidians with very similar embryos but highly divergent genomes are thought to have undergone extensive developmental system drift. We compared, in four species (Ciona and Phallusia for Phlebobranchia, Molgula and Halocynthia for Stolidobranchia), gene expression and gene regulation for a network of six transcription factors regulating peripheral nervous system (PNS) formation in Ciona. All genes, but one in Molgula, were expressed in the PNS with some differences correlating with phylogenetic distance. Cross-species transgenesis indicated strong levels of conservation, except in Molgula, in gene regulation despite lack of sequence conservation of the enhancers. Developmental system drift in ascidians is thus higher for gene regulation than for gene expression and is impacted not only by phylogenetic distance, but also in a clade-specific manner and unevenly within a network. Finally, considering that Molgula is divergent in our analyses, this suggests deep conservation of developmental mechanisms in ascidians after 390 My of separate evolution.
Collapse
Affiliation(s)
- Joshua F Coulcher
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM)Banyuls-sur-MerFrance
| | - Agnès Roure
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM)Banyuls-sur-MerFrance
| | - Rafath Chowdhury
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM)Banyuls-sur-MerFrance
| | - Méryl Robert
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM)Banyuls-sur-MerFrance
| | - Laury Lescat
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM)Banyuls-sur-MerFrance
| | - Aurélie Bouin
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM)Banyuls-sur-MerFrance
| | - Juliana Carvajal Cadavid
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM)Banyuls-sur-MerFrance
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka UniversityToyonakaJapan
| | - Sébastien Darras
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM)Banyuls-sur-MerFrance
| |
Collapse
|
10
|
Mercurio S, Cauteruccio S, Manenti R, Candiani S, Scarì G, Licandro E, Pennati R. Exploring miR-9 Involvement in Ciona intestinalis Neural Development Using Peptide Nucleic Acids. Int J Mol Sci 2020; 21:ijms21062001. [PMID: 32183450 PMCID: PMC7139483 DOI: 10.3390/ijms21062001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/16/2022] Open
Abstract
The microRNAs are small RNAs that regulate gene expression at the post-transcriptional level and can be involved in the onset of neurodegenerative diseases and cancer. They are emerging as possible targets for antisense-based therapy, even though the in vivo stability of miRNA analogues is still questioned. We tested the ability of peptide nucleic acids, a novel class of nucleic acid mimics, to downregulate miR-9 in vivo in an invertebrate model organism, the ascidian Ciona intestinalis, by microinjection of antisense molecules in the eggs. It is known that miR-9 is a well-conserved microRNA in bilaterians and we found that it is expressed in epidermal sensory neurons of the tail in the larva of C. intestinalis. Larvae developed from injected eggs showed a reduced differentiation of tail neurons, confirming the possibility to use peptide nucleic acid PNA to downregulate miRNA in a whole organism. By identifying putative targets of miR-9, we discuss the role of this miRNA in the development of the peripheral nervous system of ascidians.
Collapse
Affiliation(s)
- Silvia Mercurio
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milano, Italy; (S.M.); (R.M.); (R.P.)
| | - Silvia Cauteruccio
- Department of Chemistry, Università degli Studi di Milano, 20133 Milano, Italy;
- Correspondence: (S.C.); (S.C.); Tel.: +39-0250314147 (S.C.); +39-0103538051 (S.C.)
| | - Raoul Manenti
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milano, Italy; (S.M.); (R.M.); (R.P.)
| | - Simona Candiani
- Department of Earth Science, Environment and Life, Università degli Studi di Genova, 16132 Genova, Italy
- Correspondence: (S.C.); (S.C.); Tel.: +39-0250314147 (S.C.); +39-0103538051 (S.C.)
| | - Giorgio Scarì
- Department of Biosciences, Università degli Studi di Milano, 20133 Milano, Italy;
| | - Emanuela Licandro
- Department of Chemistry, Università degli Studi di Milano, 20133 Milano, Italy;
| | - Roberta Pennati
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milano, Italy; (S.M.); (R.M.); (R.P.)
| |
Collapse
|
11
|
Di Gregorio A. The notochord gene regulatory network in chordate evolution: Conservation and divergence from Ciona to vertebrates. Curr Top Dev Biol 2020; 139:325-374. [PMID: 32450965 DOI: 10.1016/bs.ctdb.2020.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The notochord is a structure required for support and patterning of all chordate embryos, from sea squirts to humans. An increasing amount of information on notochord development and on the molecular strategies that ensure its proper morphogenesis has been gleaned through studies in the sea squirt Ciona. This invertebrate chordate offers a fortunate combination of experimental advantages, ranging from translucent, fast-developing embryos to a compact genome and impressive biomolecular resources. These assets have enabled the rapid identification of numerous notochord genes and cis-regulatory regions, and provide a rather unique opportunity to reconstruct the gene regulatory network that controls the formation of this developmental and evolutionary chordate landmark. This chapter summarizes the morphogenetic milestones that punctuate notochord formation in Ciona, their molecular effectors, and the current knowledge of the gene regulatory network that ensures the accurate spatial and temporal orchestration of these processes.
Collapse
Affiliation(s)
- Anna Di Gregorio
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States.
| |
Collapse
|
12
|
Mercurio S, Cauteruccio S, Manenti R, Candiani S, Scarì G, Licandro E, Pennati R. miR-7 Knockdown by Peptide Nucleic Acids in the Ascidian Ciona intestinalis. Int J Mol Sci 2019; 20:ijms20205127. [PMID: 31623150 PMCID: PMC6829576 DOI: 10.3390/ijms20205127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022] Open
Abstract
Peptide Nucleic Acids (PNAs) are synthetic mimics of natural oligonucleotides, which bind complementary DNA/RNA strands with high sequence specificity. They display numerous advantages, but in vivo applications are still rare. One of the main drawbacks of PNAs application is the poor cellular uptake that could be overcome by using experimental models, in which microinjection techniques allow direct delivery of molecules into eggs. Thus, in this communication, we investigated PNAs efficiency in miR-7 downregulation and compared its effects with those obtained with the commercially available antisense molecule, Antagomir (Dharmacon) in the ascidian Ciona intestinalis. Ascidians are marine invertebrates closely related to vertebrates, in which PNA techniques have not been applied yet. Our results suggested that anti-miR-7 PNAs were able to reach their specific targets in the developing ascidian embryos with high efficiency, as the same effects were obtained with both PNA and Antagomir. To the best of our knowledge, this is the first evidence that unmodified PNAs can be applied in in vivo knockdown strategies when directly injected into eggs.
Collapse
Affiliation(s)
- Silvia Mercurio
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Silvia Cauteruccio
- Department of Chemistry, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Raoul Manenti
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Simona Candiani
- Department of Earth Science, Environment and Life, Università degli Studi di Genova, 16126 Genova, Italy.
| | - Giorgio Scarì
- Department of Biosciences, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Emanuela Licandro
- Department of Chemistry, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Roberta Pennati
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milano, Italy.
| |
Collapse
|
13
|
Mercurio S, Gattoni G, Messinetti S, Sugni M, Pennati R. Nervous system characterization during the development of a basal echinoderm, the feather star Antedon mediterranea. J Comp Neurol 2019; 527:1127-1139. [PMID: 30520044 DOI: 10.1002/cne.24596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022]
Abstract
Neural development of echinoderms has always been difficult to interpret, as larval neurons degenerate at metamorphosis and a tripartite nervous system differentiates in the adult. Despite their key phylogenetic position as basal echinoderms, crinoids have been scarcely studied in developmental research. However, since they are the only extant echinoderms retaining the ancestral body plan of the group, crinoids are extremely valuable models to clarify neural evolution in deuterostomes. Antedon mediterranea is a feather star, endemic to the Mediterranean Sea. Its development includes a swimming lecithotrophic larva, the doliolaria, with basiepithelial nerve plexus, and a sessile filter-feeding juvenile, the pentacrinoid, whose nervous system has never been described in detail. Thus, we characterized the nervous system of both these developmental stages by means of immunohistochemistry and, for the first time, in situ hybridization techniques. The results confirmed previous descriptions of doliolaria morphology and revealed that the larval apical organ contains two bilateral clusters of serotonergic cells while GABAergic neurons are localized under the adhesive pit. This suggested that different larval activities (e.g., attachment and metamorphosis) are under the control of different neural populations. In pentacrinoids, the analysis showed the presence of a cholinergic entoneural system while the ectoneural plexus appeared more composite, displaying different neural populations. The expression of three neural-related microRNAs was described for the first time, suggesting that these are evolutionarily conserved also in basal echinoderms. Overall, our results set the stage for future investigations that will reveal new information on echinoderm evo-devo neurobiology.
Collapse
Affiliation(s)
- Silvia Mercurio
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Giacomo Gattoni
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Silvia Messinetti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy.,Center for Complexity and Biosystems, Università degli Studi di Milano, Milan, Italy
| | - Roberta Pennati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
14
|
Antero-posterior ectoderm patterning by canonical Wnt signaling during ascidian development. PLoS Genet 2019; 15:e1008054. [PMID: 30925162 PMCID: PMC6457572 DOI: 10.1371/journal.pgen.1008054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/10/2019] [Accepted: 02/28/2019] [Indexed: 01/21/2023] Open
Abstract
Wnt/β-catenin signaling is an ancient pathway in metazoans and controls various developmental processes, in particular the establishment and patterning of the embryonic primary axis. In vertebrates, a graded Wnt activity from posterior to anterior endows cells with positional information in the central nervous system. Recent studies in hemichordates support a conserved role for Wnt/β-catenin in ectoderm antero-posterior patterning at the base of the deuterostomes. Ascidians are marine invertebrates and the closest relatives of vertebrates. By combining gain- and loss-of-function approaches, we have determined the role of Wnt/β-catenin in patterning the three ectoderm derivatives of the ascidian Ciona intestinalis, central nervous system, peripheral nervous system and epidermis. Activating Wnt/β-catenin signaling from gastrulation led to a dramatic transformation of the ectoderm with a loss of anterior identities and a reciprocal anterior extension of posterior identities, consistent with studies in other metazoans. Surprisingly, inhibiting Wnt signaling did not produce a reciprocal anteriorization of the embryo with a loss of more posterior identities like in vertebrates and hemichordate. Epidermis patterning was overall unchanged. Only the identity of two discrete regions of the central nervous system, the anteriormost and the posteriormost regions, were under the control of Wnt. Finally, the caudal peripheral nervous system, while being initially Wnt dependent, formed normally. Our results show that the Ciona embryonic ectoderm responds to Wnt activation in a manner that is compatible with the proposed function for this pathway at the base of the deuterostomes. However, possibly because of its fast and divergent mode of development that includes extensive use of maternal determinants, the overall antero-posterior patterning of the Ciona ectoderm is Wnt independent, and Wnt/β-catenin signaling controls the formation of some sub-domains. Our results thus indicate that there has likely been a drift in the developmental systems controlling ectoderm patterning in the lineage leading to ascidians. The Wnt/β-catenin pathway is a system of cell-cell communication. It has an ancient origin in animals and plays multiple roles during embryogenesis and adult life. In particular, it is involved in determining, in the vertebrate embryo, the identity of the different parts of the body and their relative positions along the antero-posterior axis. We have investigated in an ascidian (or sea squirt) species, a marine invertebrate that is closely related to vertebrates, whether this pathway had a similar role. Like in vertebrates, activating Wnt/β-catenin led to a posteriorization of the embryo with a loss of anterior structures. By contrast, unlike vertebrates, ascidian embryos formed rather normally following Wnt/β-catenin inactivation. Since hemichordates (or acorn worms), earlier divergent invertebrates, use Wnt/β-catenin in a manner comparable to vertebrates, it is in the ascidian lineage that changes have occurred. Consequently, ascidians build an antero-posterior axis, very similarly organized to that of vertebrates, but in a different way.
Collapse
|
15
|
Zhang X, Liu X, Liu C, Wei J, Yu H, Dong B. Identification and characterization of microRNAs involved in ascidian larval metamorphosis. BMC Genomics 2018; 19:168. [PMID: 29490613 PMCID: PMC5831862 DOI: 10.1186/s12864-018-4566-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 02/22/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Metamorphosis takes place within the life cycle of most marine invertebrates. The marine ascidian is a classical model to study complex cellular processes and underlying molecular mechanisms involved in its larval metamorphosis. The detailed molecular signaling pathways remain elusive, though extracellular signal-regulated kinases (ERKs) and c-Jun N-terminal kinase (JNK) have been revealed to regulate cell migration, differentiation, and apoptosis in ascidian larval organ regression and juvenile organ development. MicroRNAs (miRNAs) are small non-coding RNAs that modulate gene expression at the post-transcriptional level. Large numbers of miRNAs have been demonstrated to be involved in many developmental and metamorphic processes. However, the identification of miRNAs in ascidian larval metamorphosis has not yet been investigated. RESULTS Totally, 106 known and 59 novel miRNAs were screened out through RNA-sequencing of three small RNA libraries from 18 to 21-h post-fertilization (hpf) tailbud embryos as well as from 42 hpf larvae (after tail regression) in Ciona savignyi. Expression profiling of miRNAs was confirmed by quantitative real-time PCR, showing that the expression levels of csa-miR-4040, csa-miR-4086, csa-miR-4055, csa-miR-4060, csa-miR-216a, csa-miR-216b, csa-miR-217, csa-miR-183, and csa-miR-92c were significantly higher in 42 hpf larvae, whereas those of csa-miR-4018a, csa-miR-4018b, and csa-miR-4000f were higher in 18 and 21 hpf embryos; then, their expression in 42 hpf larvae became significantly low. For these 12 miRNAs, whose expression levels significantly changed, we predicted their target genes through the combination of miRanda and TargetScan. This prediction analysis revealed 332 miRNA-target gene pairs that were associated with the ERK, JNK, and transforming growth factor beta signaling pathways, suggesting that the identified miRNAs are involved in the regulation of C. savignyi larval metamorphosis via controlling the expression of their target genes. Furthermore, we validated the expression of five selected miRNAs by northern blotting. Among the selected miRNAs, the expression patterns of csa-miR-4018a, csa-miR-4018b, and csa-miR-4000f were further examined by whole-mount in situ hybridization. The results showed that all three miRNAs were specifically expressed in a cell population resembling mesenchymal cells at the head and trunk part in swimming larvae but not in metamorphic larvae. Utilizing the luciferase assay, we also confirmed that miR-4000f targeted Mapk1, suggesting that the csa-miR-4018a/csa-miR-4018b/csa-miR-4000f cluster regulates larval metamorphosis through the Mapk1-mediated signaling pathway. CONCLUSIONS Totally, 165 miRNAs, including 59 novel ones, were identified from the embryos and larvae of C. savignyi. Twelve of them showed significant changes in expression before and during metamorphosis. In situ hybridization and northern blotting results revealed that three miRNAs are potentially involved in the signaling regulatory network for the migration and differentiation of mesenchymal cells in larval metamorphosis. Furthermore, the luciferase reporter assay revealed that Mapk1 is a target of csa-miR-4000f. Our results not only present a list and profile of miRNAs involved in Ciona metamorphosis but also provide informative cues to further understand their function in ascidian larval metamorphosis.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Xiaozhuo Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Chengzhang Liu
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Jiankai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Haiyan Yu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Bo Dong
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003 People’s Republic of China
| |
Collapse
|
16
|
Zeller RW. Electroporation in Ascidians: History, Theory and Protocols. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 29542079 DOI: 10.1007/978-981-10-7545-2_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Embryonic development depends on the orchestration of hundreds of regulatory and structural genes to initiate expression at the proper time, in the correct spatial domain(s), and in the amounts required for cells and tissues to become specified, determined, and ultimately to differentiate into a multicellular embryo. One of the key approaches to studying embryonic development is the generation of transgenic animals in which recombinant DNA molecules are transiently or stably introduced into embryos to alter gene expression, to manipulate gene function or to serve as reporters for specific cell types or subcellular compartments. In some model systems, such as the mouse, well-defined approaches for generating transgenic animals have been developed. In other systems, particularly non-model systems, a key challenge is to find a way of introducing molecules or other reagents into cells that produces large numbers of embryos with a minimal effect on normal development. A variety of methods have been developed, including the use of viral vectors, microinjection, and electroporation. Here, I describe how electroporation was adapted to generate transgenic embryos in the ascidian, a nontraditional invertebrate chordate model that is particularly well-suited for studying gene regulatory activity during development. I present a review of the electroporation process, describe how electroporation was first implemented in the ascidian, and provide a series of protocols describing the electroporation process, as implemented in our laboratory.
Collapse
Affiliation(s)
- Robert W Zeller
- Center for Applied and Experimental Genomics, Department of Biology, San Diego State University, San Diego, CA, USA.
| |
Collapse
|
17
|
Velandia-Huerto CA, Brown FD, Gittenberger A, Stadler PF, Bermúdez-Santana CI. Nonprotein-Coding RNAs as Regulators of Development in Tunicates. Results Probl Cell Differ 2018; 65:197-225. [PMID: 30083922 DOI: 10.1007/978-3-319-92486-1_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tunicates, or urochordates, are a group of small marine organisms that are found widely throughout the seas of the world. As most plausible sister group of the vertebrates, they are of utmost importance for a comprehensive understanding of chordate evolution; hence, they have served as model organisms for many aspects of the developmental biology. Current genomic analysis of tunicates indicates that their genomes evolved with a fast rate not only at the level of nucleotide substitutions but also in terms of genomic organization. The latter involves genome reduction, rearrangements, as well as the loss of some important coding and noncoding RNA (ncRNAs) elements and even entire genomic regions that are otherwise well conserved. These observations are largely based on evidence from comparative genomics resulting from the analysis of well-studied gene families such as the Hox genes and their noncoding elements. In this chapter, the focus lies on the ncRNA complement of tunicates, with a particular emphasis on microRNAs, which have already been studied extensively for other animal clades. MicroRNAs are known as important regulators of key genes in animal development, and they are intimately related to the increase morphological complexity in higher metazoans. Here we review the discovery, evolution, and genome organization of the miRNA repertoire, which has been drastically reduced and restructured in tunicates compared to the chordate ancestor. Known functions of microRNAs as regulators of development in tunicates are a central topic. For instance, we consider the role of miRNAs as regulators of the muscle development and their importance in the regulation of the differential expression during the oral siphon regeneration. Beyond microRNAs, we touch upon the functions of some other ncRNAs such as yellow crescent RNA, moRNAs, RMST lncRNAs, or spliced-leader (SL) RNAs, which have diverse functions associated with the embryonic development, neurogenesis, and mediation of mRNA stability in general.
Collapse
Affiliation(s)
- Cristian A Velandia-Huerto
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Leipzig, Germany.
- Biology Department, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Federico D Brown
- Departamento de Zoologia, Instituto Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
- Laboratorio de Biología del Desarrollo Evolutiva, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Adriaan Gittenberger
- Institute of Biology, Leiden University, Leiden, Netherlands
- GiMaRIS, BioScience Park Leiden, Leiden, Netherlands
- Naturalis Biodiversity Center, Leiden, Netherlands
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Leipzig, Germany
| | | |
Collapse
|
18
|
Xiao HJ, Ji Q, Yang L, Li RT, Zhang C, Hou JM. In vivo and in vitro effects of microRNA-124 on human gastric cancer by targeting JAG1 through the Notch signaling pathway. J Cell Biochem 2017; 119:2520-2534. [PMID: 28941308 DOI: 10.1002/jcb.26413] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/22/2017] [Indexed: 12/11/2022]
Abstract
In this study, we aim to determine the function of miR-124 on gastric cancer (GC) cells and the underlying mechanism that involves jaddeg1 (JAG1) and the Notch signaling pathway. GC tissues and adjacent tissues from 100 patients suffering from GC were selected. GC SGC-7901 and AGS cells were selected and grouped into control, mimic-NC, miR-124 mimic, inhibitor-NC, miR-124 inhibitor, and miR-124 inhibitor + si-JAG1 groups. RT-qPCR and a Western blotting assay were conducted to detect the expression of miR-124, JAG1, and Notch signaling pathway-related proteins (NICD, HES1, and HES5). MTS, wound-healing, transwell assay and flow cytometry were performed to detect cell proliferation, migration, invasion, cell cycle distribution, and apoptosis, respectively. Compared with adjacent tissues, a lower miR-124 expression and higher JAG1 expression were found in GC tissues. JAG1 is a direct target gene of miR-124. Compared with the control group, the expression of JAG1, NICD, HES1, and HES5, cell invasion, migration, and proliferation in the miR-124 mimic group were decreased, while the apoptosis rate was increased and cells were arrested at the G0/G1 phase. Compared with the miR-124 inhibitor group, the expression of JAG1, NICD, HES1, and HES5, cell invasion, migration, and proliferation in the miR-124 inhibitor + si-JAG1 group were decreased, while the apoptosis rate and cell ratio at the G0/G1 phase were increased. The demonstration that miR-124 inhibits GC cell growth supports the concept that miR-124 functions as a tumor suppressor by a mechanism that involves translational repression of the JAG1 and the inhibition of Notch signaling pathway.
Collapse
Affiliation(s)
- Hai-Juan Xiao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, P.R. China.,Department of Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, P.R. China
| | - Qing Ji
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Lin Yang
- Department of Hepatobiliary Surgery, Xianyang Central Hospital, Xianyang, P.R. China
| | - Ren-Ting Li
- Department of Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, P.R. China
| | - Cheng Zhang
- Department of Hepatobiliary Surgery, Xianyang Central Hospital, Xianyang, P.R. China
| | - Jun-Ming Hou
- Department of Surgical Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, P.R. China
| |
Collapse
|
19
|
Sasidharan V, Marepally S, Elliott SA, Baid S, Lakshmanan V, Nayyar N, Bansal D, Sánchez Alvarado A, Vemula PK, Palakodeti D. The miR-124 family of microRNAs is crucial for regeneration of the brain and visual system in the planarian Schmidtea mediterranea. Development 2017; 144:3211-3223. [PMID: 28807895 PMCID: PMC5612250 DOI: 10.1242/dev.144758] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 08/01/2017] [Indexed: 01/15/2023]
Abstract
Brain regeneration in planarians is mediated by precise spatiotemporal control of gene expression and is crucial for multiple aspects of neurogenesis. However, the mechanisms underpinning the gene regulation essential for brain regeneration are largely unknown. Here, we investigated the role of the miR-124 family of microRNAs in planarian brain regeneration. The miR-124 family (miR-124) is highly conserved in animals and regulates neurogenesis by facilitating neural differentiation, yet its role in neural wiring and brain organization is not known. We developed a novel method for delivering anti-miRs using liposomes for the functional knockdown of microRNAs. Smed-miR-124 knockdown revealed a key role for these microRNAs in neuronal organization during planarian brain regeneration. Our results also demonstrated an essential role for miR-124 in the generation of eye progenitors. Additionally, miR-124 regulates Smed-slit-1, which encodes an axon guidance protein, either by targeting slit-1 mRNA or, potentially, by modulating the canonical Notch pathway. Together, our results reveal a role for miR-124 in regulating the regeneration of a functional brain and visual system. Summary:miR-124 is required during de novo regeneration of the cephalic ganglion and visual system in planarians, as well as in slit-1 expression in the midline of anterior regenerating tissue via canonical Notch signaling.
Collapse
Affiliation(s)
- Vidyanand Sasidharan
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK campus, Bangalore, Karnataka 560065, India.,Manipal University, Manipal, Karnataka 576104, India
| | - Srujan Marepally
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK campus, Bangalore, Karnataka 560065, India
| | - Sarah A Elliott
- Stowers Institute for Medical Research and Howard Hughes Medical Institute, Kansas City, MO 64110, USA.,Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Srishti Baid
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK campus, Bangalore, Karnataka 560065, India
| | - Vairavan Lakshmanan
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK campus, Bangalore, Karnataka 560065, India
| | - Nishtha Nayyar
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK campus, Bangalore, Karnataka 560065, India
| | - Dhiru Bansal
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK campus, Bangalore, Karnataka 560065, India.,Manipal University, Manipal, Karnataka 576104, India
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research and Howard Hughes Medical Institute, Kansas City, MO 64110, USA.,Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Praveen Kumar Vemula
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK campus, Bangalore, Karnataka 560065, India
| | - Dasaradhi Palakodeti
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK campus, Bangalore, Karnataka 560065, India
| |
Collapse
|
20
|
Spina EJ, Guzman E, Zhou H, Kosik KS, Smith WC. A microRNA-mRNA expression network during oral siphon regeneration in Ciona. Development 2017; 144:1787-1797. [PMID: 28432214 DOI: 10.1242/dev.144097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 04/10/2017] [Indexed: 12/14/2022]
Abstract
Here we present a parallel study of mRNA and microRNA expression during oral siphon (OS) regeneration in Ciona robusta, and the derived network of their interactions. In the process of identifying 248 mRNAs and 15 microRNAs as differentially expressed, we also identified 57 novel microRNAs, several of which are among the most highly differentially expressed. Analysis of functional categories identified enriched transcripts related to stress responses and apoptosis at the wound healing stage, signaling pathways including Wnt and TGFβ during early regrowth, and negative regulation of extracellular proteases in late stage regeneration. Consistent with the expression results, we found that inhibition of TGFβ signaling blocked OS regeneration. A correlation network was subsequently inferred for all predicted microRNA-mRNA target pairs expressed during regeneration. Network-based clustering associated transcripts into 22 non-overlapping groups, the functional analysis of which showed enrichment of stress response, signaling pathway and extracellular protease categories that could be related to specific microRNAs. Predicted targets of the miR-9 cluster suggest a role in regulating differentiation and the proliferative state of neural progenitors through regulation of the cytoskeleton and cell cycle.
Collapse
Affiliation(s)
- Elijah J Spina
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Elmer Guzman
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Hongjun Zhou
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Kenneth S Kosik
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - William C Smith
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA .,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
21
|
Wang K, Dantec C, Lemaire P, Onuma TA, Nishida H. Genome-wide survey of miRNAs and their evolutionary history in the ascidian, Halocynthia roretzi. BMC Genomics 2017; 18:314. [PMID: 28427349 PMCID: PMC5399378 DOI: 10.1186/s12864-017-3707-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/12/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND miRNAs play essential roles in the modulation of cellular functions via degradation and/or translation attenuation of target mRNAs. They have been surveyed in a single ascidian genus, Ciona. Recently, an annotated draft genome sequence for a distantly related ascidian, Halocynthia roretzi, has become available, but miRNAs in H. roretzi have not been previously studied. RESULTS We report the prediction of 319 candidate H. roretzi miRNAs, obtained through three complementary methods. Experimental validation suggests that more than half of these candidate miRNAs are expressed during embryogenesis. The majority of predicted H. roretzi miRNAs appear specific to ascidians or tunicates, and only 32 candidates, belonging to 25 families, are widely conserved across metazoans. CONCLUSION Our study presents a comprehensive identification of candidate H. roretzi miRNAs. This resource will facilitate the study of the mechanisms for miRNA-controlled gene regulatory networks during ascidian development. Further, our analysis suggests that the majority of Halocynthia miRNAs are specific to ascidian or tunicates, with only a small number of widely conserved miRNAs. This result is consistent with the general notion that animal miRNAs are less conserved between taxa than plant ones.
Collapse
Affiliation(s)
- Kai Wang
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan. .,Present address: Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Science, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, People's Republic of China.
| | - Christelle Dantec
- Centre de Recherches de Biologie cellulaire de Montpellier (CRBM), UMR5237, CNRS-Université de Montpellier, 1919 route de Mende, F-34090, Montpellier, France
| | - Patrick Lemaire
- Centre de Recherches de Biologie cellulaire de Montpellier (CRBM), UMR5237, CNRS-Université de Montpellier, 1919 route de Mende, F-34090, Montpellier, France
| | - Takeshi A Onuma
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
22
|
Jiang L, Lin T, Xu C, Hu S, Pan Y, Jin R. miR-124 interacts with the Notch1 signalling pathway and has therapeutic potential against gastric cancer. J Cell Mol Med 2016; 20:313-322. [PMID: 26612211 PMCID: PMC4727557 DOI: 10.1111/jcmm.12724] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/28/2015] [Indexed: 12/11/2022] Open
Abstract
Aberrant Notch signalling plays an important role in cancer progression. However, little is known about the interaction between miRNA and the Notch signalling pathway and its role in gastric cancer (GC). In this study, we found that miR-124 was down-regulated in GC compared with adjacent normal tissue. Forced expression of miR-124 inhibited GC cell growth, migration and invasion, and induced cell cycle arrest. miR-124 negatively regulated Notch1 signalling by targeting JAG1. miR-124 levels were also shown to be inversely correlated with JAG1 expression in GC. Furthermore, we found that the overexpression of the intracellular domain of Notch1 repressed miR-124 expression, promoted GC cell growth, migration and invasion. Conversely, blocking Notch1 using a γ-secretase inhibitor up-regulated miR-124 expression, inhibited GC cell growth, migration and invasion. In conclusion, our data demonstrates a regulatory feedback loop between miR-124 and Notch1 signalling in GC cells, suggesting that the miR-124/Notch axis may be a potential therapeutic target against GC.
Collapse
Affiliation(s)
- Lei Jiang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tiesu Lin
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chaochao Xu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sunkuan Hu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yangyang Pan
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rong Jin
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Epidemiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
23
|
Roure A, Darras S. Msxb is a core component of the genetic circuitry specifying the dorsal and ventral neurogenic midlines in the ascidian embryo. Dev Biol 2015; 409:277-287. [PMID: 26592100 DOI: 10.1016/j.ydbio.2015.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 01/09/2023]
Abstract
The tail ascidian larval peripheral nervous system is made up of epidermal sensory neurons distributed more or less regularly in ventral and dorsal midlines. Their formation occurs in two-steps: the ventral and dorsal midlines are induced as neurogenic territories by Fgf9/16/20 and Admp respectively. The Delta2/Notch interaction then controls the number of neurons that form. The genetic machinery acting between the inductive processes taking place before gastrulation and neuron specification at tailbud stages are largely unknown. The analysis of seven transcription factors expressed in the forming midlines revealed an unexpected complexity and dynamic of gene expression. Their systematic overexpression confirmed that these genes do not interact following a linear cascade of activation. However, the integration of our data revealed the distinct key roles of the two upstream factors Msxb and Nkx-C that are the earliest expressed genes and the only ones able to induce neurogenic midline and ESN formation. Our data suggest that Msxb would be the primary midline gene integrating inputs from the ventral and dorsal inducers and launching a pan-midline transcriptional program. Nkx-C would be involved in tail tip specification, in maintenance of the pan-midline network and in a posterior to anterior wave controlling differentiation.
Collapse
Affiliation(s)
- Agnès Roure
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls/Mer, France
| | - Sébastien Darras
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls/Mer, France.
| |
Collapse
|
24
|
Hamada M, Goricki S, Byerly MS, Satoh N, Jeffery WR. Evolution of the chordate regeneration blastema: Differential gene expression and conserved role of notch signaling during siphon regeneration in the ascidian Ciona. Dev Biol 2015. [PMID: 26206613 DOI: 10.1016/j.ydbio.2015.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The regeneration of the oral siphon (OS) and other distal structures in the ascidian Ciona intestinalis occurs by epimorphosis involving the formation of a blastema of proliferating cells. Despite the longstanding use of Ciona as a model in molecular developmental biology, regeneration in this system has not been previously explored by molecular analysis. Here we have employed microarray analysis and quantitative real time RT-PCR to identify genes with differential expression profiles during OS regeneration. The majority of differentially expressed genes were downregulated during OS regeneration, suggesting roles in normal growth and homeostasis. However, a subset of differentially expressed genes was upregulated in the regenerating OS, suggesting functional roles during regeneration. Among the upregulated genes were key members of the Notch signaling pathway, including those encoding the delta and jagged ligands, two fringe modulators, and to a lesser extent the notch receptor. In situ hybridization showed a complementary pattern of delta1 and notch gene expression in the blastema of the regenerating OS. Chemical inhibition of the Notch signaling pathway reduced the levels of cell proliferation in the branchial sac, a stem cell niche that contributes progenitor cells to the regenerating OS, and in the OS regeneration blastema, where siphon muscle fibers eventually re-differentiate. Chemical inhibition also prevented the replacement of oral siphon pigment organs, sensory receptors rimming the entrance of the OS, and siphon muscle fibers, but had no effects on the formation of the wound epidermis. Since Notch signaling is involved in the maintenance of proliferative activity in both the Ciona and vertebrate regeneration blastema, the results suggest a conserved evolutionary role of this signaling pathway in chordate regeneration. The genes identified in this investigation provide the foundation for future molecular analysis of OS regeneration.
Collapse
Affiliation(s)
- Mayuko Hamada
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Spela Goricki
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Mardi S Byerly
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - William R Jeffery
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
25
|
Zhao Y, Jiang H, Liu XW, Xiang LB, Zhou DP, Chen JT. MiR-124 promotes bone marrow mesenchymal stem cells differentiation into neurogenic cells for accelerating recovery in the spinal cord injury. Tissue Cell 2015; 47:140-6. [DOI: 10.1016/j.tice.2015.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/23/2015] [Accepted: 01/23/2015] [Indexed: 12/16/2022]
|
26
|
Detection of mRNA and microRNA Expression in Basal Chordates, Amphioxus and Ascidians. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-1-4939-2303-8_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
27
|
Chen JS, Gumbayan AM, Zeller RW, Mahaffy JM. An expanded Notch-Delta model exhibiting long-range patterning and incorporating MicroRNA regulation. PLoS Comput Biol 2014; 10:e1003655. [PMID: 24945987 PMCID: PMC4063677 DOI: 10.1371/journal.pcbi.1003655] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/23/2014] [Indexed: 12/26/2022] Open
Abstract
Notch-Delta signaling is a fundamental cell-cell communication mechanism that governs the differentiation of many cell types. Most existing mathematical models of Notch-Delta signaling are based on a feedback loop between Notch and Delta leading to lateral inhibition of neighboring cells. These models result in a checkerboard spatial pattern whereby adjacent cells express opposing levels of Notch and Delta, leading to alternate cell fates. However, a growing body of biological evidence suggests that Notch-Delta signaling produces other patterns that are not checkerboard, and therefore a new model is needed. Here, we present an expanded Notch-Delta model that builds upon previous models, adding a local Notch activity gradient, which affects long-range patterning, and the activity of a regulatory microRNA. This model is motivated by our experiments in the ascidian Ciona intestinalis showing that the peripheral sensory neurons, whose specification is in part regulated by the coordinate activity of Notch-Delta signaling and the microRNA miR-124, exhibit a sparse spatial pattern whereby consecutive neurons may be spaced over a dozen cells apart. We perform rigorous stability and bifurcation analyses, and demonstrate that our model is able to accurately explain and reproduce the neuronal pattern in Ciona. Using Monte Carlo simulations of our model along with miR-124 transgene over-expression assays, we demonstrate that the activity of miR-124 can be incorporated into the Notch decay rate parameter of our model. Finally, we motivate the general applicability of our model to Notch-Delta signaling in other animals by providing evidence that microRNAs regulate Notch-Delta signaling in analogous cell types in other organisms, and by discussing evidence in other organisms of sparse spatial patterns in tissues where Notch-Delta signaling is active.
Collapse
Affiliation(s)
- Jerry S. Chen
- Computational Science Research Center, San Diego State University, San Diego, California, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Abygail M. Gumbayan
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Robert W. Zeller
- Computational Science Research Center, San Diego State University, San Diego, California, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Joseph M. Mahaffy
- Computational Science Research Center, San Diego State University, San Diego, California, United States of America
- Department of Mathematics and Statistics, San Diego State University, San Diego, California, United States of America
| |
Collapse
|
28
|
Kato Y, Kusakabe R, Inoue K, Tochinai S. MiR-124 is Involved in Post-Transcriptional Regulation of Polypyrimidine Tract Binding Protein 1 (PTBP1) During Neural Development in the Medaka, Oryzias latipes. Zoolog Sci 2013; 30:891-900. [DOI: 10.2108/zsj.30.891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Yumiko Kato
- Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Rie Kusakabe
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| | - Kunio Inoue
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| | - Shin Tochinai
- Department of Natural History Sciences, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
29
|
Joyce Tang W, Chen JS, Zeller RW. Transcriptional regulation of the peripheral nervous system in Ciona intestinalis. Dev Biol 2013; 378:183-93. [PMID: 23545329 DOI: 10.1016/j.ydbio.2013.03.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/16/2013] [Accepted: 03/18/2013] [Indexed: 12/11/2022]
Abstract
The formation of the sensory organs and cells that make up the peripheral nervous system (PNS) relies on the activity of transcription factors encoded by proneural genes (PNGs). Although PNGs have been identified in the nervous systems of both vertebrates and invertebrates, the complexity of their interactions has complicated efforts to understand their function in the context of their underlying regulatory networks. To gain insight into the regulatory network of PNG activity in chordates, we investigated the roles played by PNG homologs in regulating PNS development of the invertebrate chordate Ciona intestinalis. We discovered that in Ciona, MyT1, Pou4, Atonal, and NeuroD-like are expressed in a sequential regulatory cascade in the developing epidermal sensory neurons (ESNs) of the PNS and act downstream of Notch signaling, which negatively regulates these genes and the number of ESNs along the tail midlines. Transgenic embryos mis-expressing any of these proneural genes in the epidermis produced ectopic midline ESNs. In transgenic embryos mis-expressing Pou4, and MyT1 to a lesser extent, numerous ESNs were produced outside of the embryonic midlines. In addition we found that the microRNA miR-124, which inhibits Notch signaling in ESNs, is activated downstream of all the proneural factors we tested, suggesting that these genes operate collectively in a regulatory network. Interestingly, these factors are encoded by the same genes that have recently been demonstrated to convert fibroblasts into neurons. Our findings suggest the ascidian PNS can serve as an in vivo model to study the underlying regulatory mechanisms that enable the conversion of cells into sensory neurons.
Collapse
Affiliation(s)
- W Joyce Tang
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | | | | |
Collapse
|
30
|
Abstract
The importance of the involvement of non-protein coding RNAs in biological processes has become evident in recent years along with the identification of the transcriptional regulatory mechanisms that allow them to exert their roles. MicroRNAs (miRNAs) are a novel class of small non-coding RNA that regulates messenger RNA abundance. The capacity of each miRNA to target several transcripts suggests an ability to build a complex regulatory network for fine tuning gene expression; a mechanism by which they are thought to regulate cell fate, proliferation and identity. The brain expresses more distinct miRNAs than any other tissue in vertebrates and it presents an impressive variety of cell types, including many different classes of neurons. Here we review more than 10 years of miRNA research, and discuss the most important findings that have established miRNAs as key regulators of neuronal development.
Collapse
Affiliation(s)
- Dario Motti
- Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA,Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - John L. Bixby
- Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA,Miller School of Medicine, University of Miami, Miami, Florida, USA,Department of Pharmacology, University of Miami, Miami, Florida, USA,Corresponding authors. Address: Miami Project to Cure Paralysis, University of Miami School of Medicine, Lois Pope LIFE Center, Room 4-16, 1095 NW 14th Terrace, Miami, FL 33136, USA. Tel.: +1 (305) 243-6793; fax: +1 (305) 243-3921. (V.P. Lemmon); (J.L. Bixby)
| | - Vance P. Lemmon
- Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA,Miller School of Medicine, University of Miami, Miami, Florida, USA,Department of Neurological Surgery, University of Miami, Miami, Florida, USA,Corresponding authors. Address: Miami Project to Cure Paralysis, University of Miami School of Medicine, Lois Pope LIFE Center, Room 4-16, 1095 NW 14th Terrace, Miami, FL 33136, USA. Tel.: +1 (305) 243-6793; fax: +1 (305) 243-3921. (V.P. Lemmon); (J.L. Bixby)
| |
Collapse
|
31
|
Capturing microRNA targets using an RNA-induced silencing complex (RISC)-trap approach. Proc Natl Acad Sci U S A 2012. [PMID: 23184980 DOI: 10.1073/pnas.1218887109] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Identifying targets is critical for understanding the biological effects of microRNA (miRNA) expression. The challenge lies in characterizing the cohort of targets for a specific miRNA, especially when targets are being actively down-regulated in miRNA- RNA-induced silencing complex (RISC)-messengerRNA (mRNA) complexes. We have developed a robust and versatile strategy called RISCtrap to stabilize and purify targets from this transient interaction. Its utility was demonstrated by determining specific high-confidence target datasets for miR-124, miR-132, and miR-181 that contained known and previously unknown transcripts. Two previously unknown miR-132 targets identified with RISCtrap, adaptor protein CT10 regulator of kinase 1 (CRK1) and tight junction-associated protein 1 (TJAP1), were shown to be endogenously regulated by miR-132 in adult mouse forebrain. The datasets, moreover, differed in the number of targets and in the types and frequency of microRNA recognition element (MRE) motifs, thus revealing a previously underappreciated level of specificity in the target sets regulated by individual miRNAs.
Collapse
|
32
|
Stolfi A, Christiaen L. Genetic and genomic toolbox of the chordate Ciona intestinalis. Genetics 2012; 192:55-66. [PMID: 22964837 PMCID: PMC3430545 DOI: 10.1534/genetics.112.140590] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 04/30/2012] [Indexed: 02/01/2023] Open
Abstract
The experimental malleability and unique phylogenetic position of the sea squirt Ciona intestinalis as part of the sister group to the vertebrates have helped establish these marine chordates as model organisms for the study of developmental genetics and evolution. Here we summarize the tools, techniques, and resources available to the Ciona geneticist, citing examples of studies that employed such strategies in the elucidation of gene function in Ciona. Genetic screens, germline transgenesis, electroporation of plasmid DNA, and microinjection of morpholinos are all routinely employed, and in the near future we expect these to be complemented by targeted mutagenesis, homologous recombination, and RNAi. The genomic resources available will continue to support the design and interpretation of genetic experiments and allow for increasingly sophisticated approaches on a high-throughput, whole-genome scale.
Collapse
Affiliation(s)
- Alberto Stolfi
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA.
| | | |
Collapse
|
33
|
Abstract
The nervous system equips us with capability to adapt to many conditions and circumstances. We rely on an armamentarium of intricately formed neural circuits for many of our adaptive strategies. However, this capability also depends on a well-conserved toolkit of different molecular mechanisms that offer not only compensatory responses to a changing world, but also provide plasticity to achieve changes in cellular state that underlie a broad range of processes from early developmental transitions to life-long memory. Among the molecular tools that mediate changes in cellular state, our understanding of posttranscriptional regulation of gene expression is expanding rapidly. Part of the "epigenetic landscape" that shapes the deployment and robust regulation of gene networks during the construction and the remodeling of the brain is the microRNA system controlling both levels and translation of messenger RNA. Here we consider recent advances in the study of microRNA-mediated regulation of synaptic form and function.
Collapse
Affiliation(s)
- Elizabeth McNeill
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
34
|
Sun J, Gong X, Purow B, Zhao Z. Uncovering MicroRNA and Transcription Factor Mediated Regulatory Networks in Glioblastoma. PLoS Comput Biol 2012; 8:e1002488. [PMID: 22829753 PMCID: PMC3400583 DOI: 10.1371/journal.pcbi.1002488] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 03/05/2012] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal brain tumor in humans. Recent studies revealed that patterns of microRNA (miRNA) expression in GBM tissue samples are different from those in normal brain tissues, suggesting that a number of miRNAs play critical roles in the pathogenesis of GBM. However, little is yet known about which miRNAs play central roles in the pathology of GBM and their regulatory mechanisms of action. To address this issue, in this study, we systematically explored the main regulation format (feed-forward loops, FFLs) consisting of miRNAs, transcription factors (TFs) and their impacting GBM-related genes, and developed a computational approach to construct a miRNA-TF regulatory network. First, we compiled GBM-related miRNAs, GBM-related genes, and known human TFs. We then identified 1,128 3-node FFLs and 805 4-node FFLs with statistical significance. By merging these FFLs together, we constructed a comprehensive GBM-specific miRNA-TF mediated regulatory network. Then, from the network, we extracted a composite GBM-specific regulatory network. To illustrate the GBM-specific regulatory network is promising for identification of critical miRNA components, we specifically examined a Notch signaling pathway subnetwork. Our follow up topological and functional analyses of the subnetwork revealed that six miRNAs (miR-124, miR-137, miR-219-5p, miR-34a, miR-9, and miR-92b) might play important roles in GBM, including some results that are supported by previous studies. In this study, we have developed a computational framework to construct a miRNA-TF regulatory network and generated the first miRNA-TF regulatory network for GBM, providing a valuable resource for further understanding the complex regulatory mechanisms in GBM. The observation of critical miRNAs in the Notch signaling pathway, with partial verification from previous studies, demonstrates that our network-based approach is promising for the identification of new and important miRNAs in GBM and, potentially, other cancers. Several recent studies have implicated the critical role of microRNAs (miRNAs) in the pathogenesis of glioblastoma (GBM), the most common and lethal brain tumor in humans, suggesting that miRNAs may be clinically useful as biomarkers for brain tumors and other cancers. However, to date, the regulatory mechanisms of miRNAs in GBM are unclear. In this study, we have systematically constructed miRNA and transcription factor (TF) mediated regulatory networks specific to GBM. To demonstrate that the GBM-specific regulatory network contains functional modules that may composite of critical miRNA components, we extracted a subnetwork including GBM-related genes involved in the Notch signaling pathway. Through network topological and functional analyses of the Notch signaling pathway subnetwork, several critical miRNAs have been identified, some of which have been reinforced by previous studies. This study not only provides novel miRNAs for further experimental design but also develops a novel computational framework to construct a miRNA-TF combinatory regulatory network for a specific disease.
Collapse
Affiliation(s)
- Jingchun Sun
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Xue Gong
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Benjamin Purow
- Division of Neuro-Oncology, Neurology Department, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Zhongming Zhao
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
35
|
Cross Talk Between the Notch Signaling and Noncoding RNA on the Fate of Stem Cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 111:175-93. [DOI: 10.1016/b978-0-12-398459-3.00008-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|