1
|
Isik M, Okesola BO, Eylem CC, Kocak E, Nemutlu E, D'Este M, Mata A, Derkus B. Bioactive and chemically defined hydrogels with tunable stiffness guide cerebral organoid formation and modulate multi-omics plasticity in cerebral organoids. Acta Biomater 2023; 171:223-238. [PMID: 37793600 DOI: 10.1016/j.actbio.2023.09.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Organoids are an emerging technology with great potential in human disease modelling, drug development, diagnosis, tissue engineering, and regenerative medicine. Organoids as 3D-tissue culture systems have gained special attention in the past decades due to their ability to faithfully recapitulate the complexity of organ-specific tissues. Despite considerable successes in culturing physiologically relevant organoids, their real-life applications are currently limited by challenges such as scarcity of an appropriate biomimetic matrix. Peptide amphiphiles (PAs) due to their well-defined chemistry, tunable bioactivity, and extracellular matrix (ECM)-like nanofibrous architecture represent an attractive material scaffold for organoids development. Using cerebral organoids (COs) as exemplar, we demonstrate the possibility to create bio-instructive hydrogels with tunable stiffness ranging from 0.69 kPa to 2.24 kPa to culture and induce COs growth. We used orthogonal chemistry involving oxidative coupling and supramolecular interactions to create two-component hydrogels integrating the bio-instructive activity and ECM-like nanofibrous architecture of a laminin-mimetic PAs (IKVAV-PA) and tunable crosslinking density of hyaluronic acid functionalized with tyramine (HA-Try). Multi-omics technology including transcriptomics, proteomics, and metabolomics reveals the induction and growth of COs in soft HA-Tyr hydrogels containing PA-IKVAV such that the COs display morphology and biomolecular signatures similar to those grown in Matrigel scaffolds. Our materials hold great promise as a safe synthetic ECM for COs induction and growth. Our approach represents a well-defined alternative to animal-derived matrices for the culture of COs and might expand the applicability of organoids in basic and clinical research. STATEMENT OF SIGNIFICANCE: Synthetic bio-instructive materials which display tissue-specific functionality and nanoscale architecture of the native extracellular matrix are attractive matrices for organoids development. These synthetic matrices are chemically defined and animal-free compared to current gold standard matrices such as Matrigel. Here, we developed hydrogel matrices with tunable stiffness, which incorporate laminin-mimetic peptide amphiphiles to grow and expand cerebral organoids. Using multi-omics tools, the present study provides exciting data on the effects of neuro-inductive cues on the biomolecular profiles of brain organoids.
Collapse
Affiliation(s)
- Melis Isik
- Stem Cell Research Lab, Department of Chemistry, Faculty of Science, Ankara University, Ankara 06560, Turkey
| | - Babatunde O Okesola
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Cemil Can Eylem
- Analytical Chemistry Division, Faculty of Pharmacy, Hacettepe University, Ankara 06230, Turkey
| | - Engin Kocak
- Division of Analytical Chemistry, Faculty of Gulhane Pharmacy, Health Science University, Ankara 06018, Turkey
| | - Emirhan Nemutlu
- Analytical Chemistry Division, Faculty of Pharmacy, Hacettepe University, Ankara 06230, Turkey; Bioanalytic and Omics Laboratory, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Matteo D'Este
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz 7270, Switzerland
| | - Alvaro Mata
- School of Pharmacy University of Nottingham, University Park, Nottingham NG7 2RD, UK; Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Burak Derkus
- Stem Cell Research Lab, Department of Chemistry, Faculty of Science, Ankara University, Ankara 06560, Turkey.
| |
Collapse
|
2
|
Roussat M, Jungas T, Audouard C, Omerani S, Medevielle F, Agius E, Davy A, Pituello F, Bel-Vialar S. Control of G 2 Phase Duration by CDC25B Modulates the Switch from Direct to Indirect Neurogenesis in the Neocortex. J Neurosci 2023; 43:1154-1165. [PMID: 36596698 PMCID: PMC9962783 DOI: 10.1523/jneurosci.0825-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023] Open
Abstract
During development, cortical neurons are produced in a temporally regulated sequence from apical progenitors, directly or indirectly, through the production of intermediate basal progenitors. The balance between these major progenitor types is critical for the production of the proper number and types of neurons, and it is thus important to decipher the cellular and molecular cues controlling this equilibrium. Here we address the role of a cell cycle regulator, the CDC25B phosphatase, in this process. We show that, in the developing mouse neocortex of both sex, deleting CDC25B in apical progenitors leads to a transient increase in the production of TBR1+ neurons at the expense of TBR2+ basal progenitors. This phenotype is associated with lengthening of the G2 phase of the cell cycle, the total cell cycle length being unaffected. Using in utero electroporation and cortical slice cultures, we demonstrate that the defect in TBR2+ basal progenitor production requires interaction with CDK1 and is because of the G2 phase lengthening in CDC25B mutants. Together, this study identifies a new role for CDC25B and G2 phase length in direct versus indirect neurogenesis at early stages of cortical development.SIGNIFICANCE STATEMENT This study is the first analysis of the function of CDC25B, a G2/M regulator, in the developing neocortex. We show that removing CDC25B function leads to a transient increase in neuronal differentiation at early stages, occurring simultaneously with a decrease in basal intermediate progenitors (bIPs). Conversely, a CDC25B gain of function promotes production of bIPs, and this is directly related to CDC25B's ability to regulate CDK1 activity. This imbalance of neuron/progenitor production is linked to a G2 phase lengthening in apical progenitors; and using pharmacological treatments on cortical slice cultures, we show that shortening the G2 phase is sufficient to enhance bIP production. Our results reveal the importance of G2 phase length regulation for neural progenitor fate determination.
Collapse
Affiliation(s)
- Melanie Roussat
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Thomas Jungas
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Christophe Audouard
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Sofiane Omerani
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Francois Medevielle
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Eric Agius
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Alice Davy
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Fabienne Pituello
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Sophie Bel-Vialar
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| |
Collapse
|
3
|
Molina A, Bonnet F, Pignolet J, Lobjois V, Bel-Vialar S, Gautrais J, Pituello F, Agius E. Single-cell imaging of the cell cycle reveals CDC25B-induced heterogeneity of G1 phase length in neural progenitor cells. Development 2022; 149:275468. [DOI: 10.1242/dev.199660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/27/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Although lengthening of the cell cycle and G1 phase is a generic feature of tissue maturation during development, the underlying mechanism remains poorly understood. Here, we develop a time-lapse imaging strategy to measure the four cell cycle phases in single chick neural progenitor cells in their endogenous environment. We show that neural progenitors are widely heterogeneous with respect to cell cycle length. This variability in duration is distributed over all phases of the cell cycle, with the G1 phase contributing the most. Within one cell cycle, each phase duration appears stochastic and independent except for a correlation between S and M phase duration. Lineage analysis indicates that the majority of daughter cells may have a longer G1 phase than mother cells, suggesting that, at each cell cycle, a mechanism lengthens the G1 phase. We identify that the CDC25B phosphatase known to regulate the G2/M transition indirectly increases the duration of the G1 phase, partly through delaying passage through the restriction point. We propose that CDC25B increases the heterogeneity of G1 phase length, revealing a previously undescribed mechanism of G1 lengthening that is associated with tissue development.
Collapse
Affiliation(s)
- Angie Molina
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier 1 Unité de Biologie Moléculaire, Cellulaire et du Développement (MCD) , , Toulouse 31062 CEDEX 9 , France
| | - Frédéric Bonnet
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier 1 Unité de Biologie Moléculaire, Cellulaire et du Développement (MCD) , , Toulouse 31062 CEDEX 9 , France
| | - Julie Pignolet
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier 1 Unité de Biologie Moléculaire, Cellulaire et du Développement (MCD) , , Toulouse 31062 CEDEX 9 , France
| | - Valerie Lobjois
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier 1 Unité de Biologie Moléculaire, Cellulaire et du Développement (MCD) , , Toulouse 31062 CEDEX 9 , France
| | - Sophie Bel-Vialar
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier 1 Unité de Biologie Moléculaire, Cellulaire et du Développement (MCD) , , Toulouse 31062 CEDEX 9 , France
| | - Jacques Gautrais
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier 2 , Toulouse 31062 CEDEX 9 , France
| | - Fabienne Pituello
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier 1 Unité de Biologie Moléculaire, Cellulaire et du Développement (MCD) , , Toulouse 31062 CEDEX 9 , France
| | - Eric Agius
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier 1 Unité de Biologie Moléculaire, Cellulaire et du Développement (MCD) , , Toulouse 31062 CEDEX 9 , France
| |
Collapse
|
4
|
Kase Y, Sato T, Okano Y, Okano H. The GADD45G/p38 MAPK/CDC25B signaling pathway enhances neurite outgrowth by promoting microtubule polymerization. iScience 2022; 25:104089. [PMID: 35497000 PMCID: PMC9042895 DOI: 10.1016/j.isci.2022.104089] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/21/2021] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
GADD45G, one of the genes containing the human-specific conserved deletion enhancer-sequence (hCONDEL), has contributed to the evolution of the human cerebrum, but its function in human neurons has not been established. Here, we show that the GADD45G/p38 MAPK/CDC25B signaling pathway promotes neurite outgrowth in human neurons by facilitating microtubule polymerization. This pathway ultimately promotes dephosphorylation of phosphorylated CRMP2 which in turn promotes microtubule assembly. We also found that GADD45G was highly expressed in developing human cerebral specimens. In addition, RK-682, which is the inhibitor of a phosphatase of p38 MAPK and was found in Streptomyces sp., was shown to promote microtubule polymerization and neurite outgrowth by enhancing p38 MAPK/CDC25B signaling. These in vitro and in vivo results indicate that GADD45G/p38 MAPK/CDC25B enhances neurite outgrowth in human neurons.
Collapse
Affiliation(s)
- Yoshitaka Kase
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tsukika Sato
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuji Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Corresponding author
| |
Collapse
|
5
|
Anteroposterior elongation of the chicken anterior trunk neural tube is hindered by interaction with its surrounding tissues. Cells Dev 2021; 168:203723. [PMID: 34284169 DOI: 10.1016/j.cdev.2021.203723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/16/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
The neural tube is the precursor of the central nervous system. Its early formation and growth are known to be extremely biased along the anteroposterior (AP) axis. Several mechanisms including addition of cells from the tail bud, lateral pressure from surrounding tissues and oriented cell divisions have been proposed to contribute to this biased growth. Here we show that, contrary to what has been found in posterior regions encompassing the tail bud region, the growth of the anterior trunk neural tube is slower along the AP direction than in the other axes. We found that this is due to anchorage of the neural tube to the matrix which favors apicobasal elongation at the expense of AP growth. In addition, as the neural tube develops, we found a moderate slowdown of cell proliferation that could account for the overall reduction of the pace of 3D growth in the same time window. However, as we found no preferred orientation of cell division, changes in cell cycle pace are unlikely to directly contribute to the observed AP-hindered growth of neural tube. Overall, these data indicate that neural tube growth is not intrinsically positively biased along the AP axis. Rather it switches from AP-favored to AP-hindered regimes between the most posterior and anterior trunk neural tube regions.
Collapse
|
6
|
Fischer E, Morin X. Fate restrictions in embryonic neural progenitors. Curr Opin Neurobiol 2020; 66:178-185. [PMID: 33259983 DOI: 10.1016/j.conb.2020.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/21/2020] [Accepted: 10/20/2020] [Indexed: 01/08/2023]
Abstract
The vertebrate central nervous system (CNS) is a fantastically complex organ composed of dozens of cell types within the neural and glial lineages. Its organization is laid down during development, through the localized and sequential production of subsets of neurons with specific identities. The principles and mechanisms that underlie the timely production of adequate classes of cells are only partially understood. Recent advances in molecular profiling describe the developmental trajectories leading to this amazing cellular diversity and provide us with cell atlases of an unprecedented level of precision. Yet, some long-standing questions pertaining to lineage relationships between neural progenitor cells and their differentiated progeny remain unanswered. Here, we discuss questions related to proliferation potential, timing of fate choices and restriction of neuronal output potential of individual CNS progenitors through the lens of lineage relationship. Unlocking methodological barriers will be essential to accurately describe CNS development at a cellular resolution.
Collapse
Affiliation(s)
- Evelyne Fischer
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| | - Xavier Morin
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| |
Collapse
|
7
|
Enhanced recombinant C-terminal domain of gli2 gene expression can improve wound healing through promoting cdc25b and N-Myc genes expression. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Kuzmicz-Kowalska K, Kicheva A. Regulation of size and scale in vertebrate spinal cord development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e383. [PMID: 32391980 PMCID: PMC8244110 DOI: 10.1002/wdev.383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/25/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022]
Abstract
All vertebrates have a spinal cord with dimensions and shape specific to their species. Yet how species‐specific organ size and shape are achieved is a fundamental unresolved question in biology. The formation and sculpting of organs begins during embryonic development. As it develops, the spinal cord extends in anterior–posterior direction in synchrony with the overall growth of the body. The dorsoventral (DV) and apicobasal lengths of the spinal cord neuroepithelium also change, while at the same time a characteristic pattern of neural progenitor subtypes along the DV axis is established and elaborated. At the basis of these changes in tissue size and shape are biophysical determinants, such as the change in cell number, cell size and shape, and anisotropic tissue growth. These processes are controlled by global tissue‐scale regulators, such as morphogen signaling gradients as well as mechanical forces. Current challenges in the field are to uncover how these tissue‐scale regulatory mechanisms are translated to the cellular and molecular level, and how regulation of distinct cellular processes gives rise to an overall defined size. Addressing these questions will help not only to achieve a better understanding of how size is controlled, but also of how tissue size is coordinated with the specification of pattern. This article is categorized under:Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Signaling Pathways > Global Signaling Mechanisms Nervous System Development > Vertebrates: General Principles
Collapse
|
9
|
Locker M, Perron M. In Vivo Assessment of Neural Precursor Cell Cycle Kinetics in the Amphibian Retina. Cold Spring Harb Protoc 2019; 2019:pdb.prot105536. [PMID: 31147394 DOI: 10.1101/pdb.prot105536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cell cycle progression is intimately linked to cell fate commitment during development. In addition, adult stem cells show specific proliferative behaviors compared to progenitors. Exploring cell cycle dynamics and regulation is therefore of utmost importance, but constitutes a great challenge in vivo. Here we provide a protocol for evaluating in vivo the length of all cell cycle phases of neural stem and progenitor cells in the post-embryonic Xenopus retina. These cells are localized in the ciliary marginal zone (CMZ), a peripheral region of the retina that sustains continuous neurogenesis throughout the animal's life. The CMZ bears two tremendous advantages for cell cycle kinetics analyses. First, this region, where proliferative cells are sequestered, can be easily delineated. Second, the spatial organization of the CMZ mirrors the temporal sequence of retinal development, allowing for topological distinction between retinal stem cells (residing in the most peripheral margin), and amplifying progenitors (located more centrally). We describe herein how to determine CMZ cell cycle parameters using a combination of (i) a cumulative labeling assay, (ii) the percentage of labeled mitosis calculation, and (iii) the mitotic index measurement. Taken together, these techniques allow us to estimate total cell cycle length (TC) as well as the duration of all cell cycle phases (TS/G2/M/G1). Although the method presented here was adapted to the particular system of the CMZ, it should be applicable to other tissues and developmental stages as well.
Collapse
Affiliation(s)
- Morgane Locker
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Univ Paris-Sud, University Paris-Saclay, 91405 Orsay, France
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Univ Paris-Sud, University Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
10
|
Azaïs M, Agius E, Blanco S, Molina A, Pituello F, Tregan JM, Vallet A, Gautrais J. Timing the spinal cord development with neural progenitor cells losing their proliferative capacity: a theoretical analysis. Neural Dev 2019; 14:7. [PMID: 30867016 PMCID: PMC6417072 DOI: 10.1186/s13064-019-0131-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 02/20/2019] [Indexed: 01/28/2023] Open
Abstract
In the developing neural tube in chicken and mammals, neural stem cells proliferate and differentiate according to a stereotyped spatiotemporal pattern. Several actors have been identified in the control of this process, from tissue-scale morphogens patterning to intrinsic determinants in neural progenitor cells. In a previous study (Bonnet et al. eLife 7, 2018), we have shown that the CDC25B phosphatase promotes the transition from proliferation to differentiation by stimulating neurogenic divisions, suggesting that it acts as a maturating factor for neural progenitors. In this previous study, we set up a mathematical model linking fixed progenitor modes of division to the dynamics of progenitors and differentiated populations. Here, we extend this model over time to propose a complete dynamical picture of this process. We start from the standard paradigm that progenitors are homogeneous and can perform any type of divisions (proliferative division yielding two progenitors, asymmetric neurogenic divisions yielding one progenitor and one neuron, and terminal symmetric divisions yielding two neurons). We calibrate this model using data published by Saade et al. (Cell Reports 4, 2013) about mode of divisions and population dynamics of progenitors/neurons at different developmental stages. Next, we explore the scenarios in which the progenitor population is actually split into two different pools, one of which is composed of cells that have lost the capacity to perform proliferative divisions. The scenario in which asymmetric neurogenic division would induce such a loss of proliferative capacity appears very relevant.
Collapse
Affiliation(s)
- Manon Azaïs
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse, France
| | - Eric Agius
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse, France
| | - Stéphane Blanco
- LaPlaCE, Université de Toulouse; CNRS, UPS, Toulouse, France
| | - Angie Molina
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse, France
| | - Fabienne Pituello
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse, France
| | | | - Anaïs Vallet
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse, France
| | - Jacques Gautrais
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse, France.
| |
Collapse
|
11
|
Bonnet F, Molina A, Roussat M, Azais M, Bel-Vialar S, Gautrais J, Pituello F, Agius E. Neurogenic decisions require a cell cycle independent function of the CDC25B phosphatase. eLife 2018; 7:32937. [PMID: 29969095 PMCID: PMC6051746 DOI: 10.7554/elife.32937] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 06/08/2018] [Indexed: 01/06/2023] Open
Abstract
A fundamental issue in developmental biology and in organ homeostasis is understanding the molecular mechanisms governing the balance between stem cell maintenance and differentiation into a specific lineage. Accumulating data suggest that cell cycle dynamics play a major role in the regulation of this balance. Here we show that the G2/M cell cycle regulator CDC25B phosphatase is required in mammals to finely tune neuronal production in the neural tube. We show that in chick neural progenitors, CDC25B activity favors fast nuclei departure from the apical surface in early G1, stimulates neurogenic divisions and promotes neuronal differentiation. We design a mathematical model showing that within a limited period of time, cell cycle length modifications cannot account for changes in the ratio of the mode of division. Using a CDC25B point mutation that cannot interact with CDK, we show that part of CDC25B activity is independent of its action on the cell cycle.
Collapse
Affiliation(s)
- Frédéric Bonnet
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Angie Molina
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Mélanie Roussat
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Manon Azais
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative., Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sophie Bel-Vialar
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jacques Gautrais
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative., Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Fabienne Pituello
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Eric Agius
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
12
|
Molina A, Pituello F. Playing with the cell cycle to build the spinal cord. Dev Biol 2016; 432:14-23. [PMID: 28034699 DOI: 10.1016/j.ydbio.2016.12.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/14/2016] [Accepted: 12/20/2016] [Indexed: 12/31/2022]
Abstract
A fundamental issue in nervous system development and homeostasis is to understand the mechanisms governing the balance between the maintenance of proliferating progenitors versus their differentiation into post-mitotic neurons. Accumulating data suggest that the cell cycle and core regulators of the cell cycle machinery play a major role in regulating this fine balance. Here, we focus on the interplay between the cell cycle and cellular and molecular events governing spinal cord development. We describe the existing links between the cell cycle and interkinetic nuclear migration (INM). We show how the different morphogens patterning the neural tube also regulate the cell cycle machinery to coordinate proliferation and patterning. We give examples of how cell cycle core regulators regulate transcriptionally, or post-transcriptionally, genes involved in controlling the maintenance versus the differentiation of neural progenitors. Finally, we describe the changes in cell cycle kinetics occurring during neural tube patterning and at the time of neuronal differentiation, and we discuss future research directions to better understand the role of the cell cycle in cell fate decisions.
Collapse
Affiliation(s)
- Angie Molina
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France.
| | - Fabienne Pituello
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France.
| |
Collapse
|
13
|
Lin MJ, Lee SJ. Stathmin-like 4 is critical for the maintenance of neural progenitor cells in dorsal midbrain of zebrafish larvae. Sci Rep 2016; 6:36188. [PMID: 27819330 PMCID: PMC5098158 DOI: 10.1038/srep36188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/12/2016] [Indexed: 11/09/2022] Open
Abstract
A delicate balance between proliferating and differentiating signals is necessary to ensure proper growth and neuronal specification. By studying the developing zebrafish brain, we observed a specific and dynamic expression of a microtubule destabilizer gene, stathmin-like 4 (stmn4), in the dorsal midbrain region. The expression of stmn4 was mutually exclusive to a pan-neuronal marker, elavl3 that indicates its role in regulating neurogenesis. We showed the knockdown or overexpression of stmn4 resulted in premature neuronal differentiation in dorsal midbrain. We also generated stmn4 maternal-zygotic knockout zebrafish by the CRISPR/Cas9 system. Unexpectedly, only less than 10% of stmn4 mutants showed similar phenotypes observed in that of stmn4 morphants. It might be due to the complementation of the increased stmn1b expression observed in stmn4 mutants. In addition, time-lapse recordings revealed the changes in cellular proliferation and differentiation in stmn4 morphants. Stmn4 morphants displayed a longer G2 phase that could be rescued by Cdc25a. Furthermore, the inhibition of Wnt could reduce stmn4 transcripts. These results suggest that the Wnt-mediated Stmn4 homeostasis is crucial for preventing dorsal midbrain from premature differentiation via the G2 phase control during the neural keel stage.
Collapse
Affiliation(s)
- Meng-Ju Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shyh-Jye Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Center for Systems Biology, National Taiwan University, Taipei, Taiwan
- Center for Biotechnology, National Taiwan University, 1 Roosevelt Rd., Sec., 4, Taipei, Taiwan
| |
Collapse
|
14
|
CDK-1 Inhibition in G2 Stabilizes Kinetochore-Microtubules in the following Mitosis. PLoS One 2016; 11:e0157491. [PMID: 27281342 PMCID: PMC4900577 DOI: 10.1371/journal.pone.0157491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/30/2016] [Indexed: 11/18/2022] Open
Abstract
Cell proliferation is driven by cyclical activation of cyclin-dependent kinases (CDKs), which produce distinct biochemical cell cycle phases. Mitosis (M phase) is orchestrated by CDK-1, complexed with mitotic cyclins. During M phase, chromosomes are segregated by a bipolar array of microtubules called the mitotic spindle. The essential bipolarity of the mitotic spindle is established by the kinesin-5 Eg5, but factors influencing the maintenance of spindle bipolarity are not fully understood. Here, we describe an unexpected link between inhibiting CDK-1 before mitosis and bipolar spindle maintenance. Spindles in human RPE-1 cells normally collapse to monopolar structures when Eg5 is inhibited at metaphase. However, we found that inhibition of CDK-1 in the G2 phase of the cell cycle improved the ability of RPE-1 cells to maintain spindle bipolarity without Eg5 activity in the mitosis immediately after release from CDK-1 inhibition. This improved bipolarity maintenance correlated with an increase in the stability of kinetochore-microtubules, the subset of microtubules that link chromosomes to the spindle. The improvement in bipolarity maintenance after CDK-1 inhibition in G2 required both the kinesin-12 Kif15 and increased stability of kinetochore-microtubules. Consistent with increased kinetochore-microtubule stability, we find that inhibition of CDK-1 in G2 impairs mitotic fidelity by increasing the incidence of lagging chromosomes in anaphase. These results suggest that inhibition of CDK-1 in G2 causes unpredicted effects in mitosis, even after CDK-1 inhibition is relieved.
Collapse
|
15
|
Thuret R, Auger H, Papalopulu N. Analysis of neural progenitors from embryogenesis to juvenile adult in Xenopus laevis reveals biphasic neurogenesis and continuous lengthening of the cell cycle. Biol Open 2015; 4:1772-81. [PMID: 26621828 PMCID: PMC4736028 DOI: 10.1242/bio.013391] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Xenopus laevis is a prominent model system for studying neural development, but our understanding of the long-term temporal dynamics of neurogenesis remains incomplete. Here, we present the first continuous description of neurogenesis in X. laevis, covering the entire period of development from the specification of neural ectoderm during gastrulation to juvenile frog. We have used molecular markers to identify progenitors and neurons, short-term bromodeoxyuridine (BrdU) incorporation to map the generation of newborn neurons and dual pulse S-phase labelling to characterise changes in their cell cycle length. Our study revealed the persistence of Sox3-positive progenitor cells from the earliest stages of neural development through to the juvenile adult. Two periods of intense neuronal generation were observed, confirming the existence of primary and secondary waves of neurogenesis, punctuated by a period of quiescence before metamorphosis and culminating in another period of quiescence in the young adult. Analysis of multiple parameters indicates that neural progenitors alternate between global phases of differentiation and amplification and that, regardless of their behaviour, their cell cycle lengthens monotonically during development, at least at the population level.
Collapse
Affiliation(s)
- Raphaël Thuret
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Hélène Auger
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Nancy Papalopulu
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
16
|
Pfeuty B. Neuronal specification exploits the inherent flexibility of cell-cycle gap phases. NEUROGENESIS 2015; 2:e1095694. [PMID: 27606329 PMCID: PMC4973608 DOI: 10.1080/23262133.2015.1095694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/30/2015] [Accepted: 09/14/2015] [Indexed: 12/26/2022]
Abstract
Starting from pluripotent stem cells that virtually proliferate indefinitely, the orderly emergence during organogenesis of lineage-restricted cell types exhibiting a decreased proliferative capacity concurrently with an increasing range of differentiation traits implies the occurrence of a stringent spatiotemporal coupling between cell-cycle progression and cell differentiation. A recent computational modeling study has explored in the context of neurogenesis whether and how the peculiar pattern of connections among the proneural Neurog2 factor, the Hes1 Notch effector and antagonistically-acting G1-phase regulators would be instrumental in this event. This study highlighted that the strong opposition to G1/S transit imposed by accumulating Neurog2 and CKI enables a sensitive control of G1-phase lengthening and terminal differentiation to occur concomitantly with late-G1 exit. Contrastingly, Hes1 promotes early-G1 cell-cycle arrest and its cell-autonomous oscillations combined with a lateral inhibition mechanism help maintain a labile proliferation state in dynamic balance with diverse cell-fate outputs, thereby, offering cells the choice to either keep self-renewing or differentiate into distinct cell types. These results, discussed in connection with Ascl1-dependent neural differentiation, suggest that developmental fate decisions exploit the inherent flexibility of cell-cycle gap phases to generate diversity by selecting subtly-differing patterns of connections among components of the cell-cycle machinery and differentiation pathways.
Collapse
Affiliation(s)
- Benjamin Pfeuty
- Laboratoire de Physique des Lasers Atomes et Molécules; CNRS; Université de Lille ; Villeneuve d'Ascq, France
| |
Collapse
|
17
|
Míguez DG. A Branching Process to Characterize the Dynamics of Stem Cell Differentiation. Sci Rep 2015; 5:13265. [PMID: 26286123 PMCID: PMC4541069 DOI: 10.1038/srep13265] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/23/2015] [Indexed: 01/15/2023] Open
Abstract
The understanding of the regulatory processes that orchestrate stem cell maintenance is a cornerstone in developmental biology. Here, we present a mathematical model based on a branching process formalism that predicts average rates of proliferative and differentiative divisions in a given stem cell population. In the context of vertebrate neurogenesis, the model predicts complex non-monotonic variations in the rates of pp, pd and dd modes of division as well as in cell cycle length, in agreement with experimental results. Moreover, the model shows that the differentiation probability follows a binomial distribution, allowing us to develop equations to predict the rates of each mode of division. A phenomenological simulation of the developing spinal cord informed with the average cell cycle length and division rates predicted by the mathematical model reproduces the correct dynamics of proliferation and differentiation in terms of average numbers of progenitors and differentiated cells. Overall, the present mathematical framework represents a powerful tool to unveil the changes in the rate and mode of division of a given stem cell pool by simply quantifying numbers of cells at different times.
Collapse
Affiliation(s)
- David G Míguez
- Depto. de Física de la Materia Condensada, Instituto Nicolás Cabrera and IFIMAC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
18
|
Sabherwal N, Thuret R, Lea R, Stanley P, Papalopulu N. aPKC phosphorylates p27Xic1, providing a mechanistic link between apicobasal polarity and cell-cycle control. Dev Cell 2015; 31:559-71. [PMID: 25490266 PMCID: PMC4262734 DOI: 10.1016/j.devcel.2014.10.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 09/05/2014] [Accepted: 10/29/2014] [Indexed: 11/30/2022]
Abstract
During the development of the nervous system, apicobasally polarized stem cells are characterized by a shorter cell cycle than nonpolar progenitors, leading to a lower differentiation potential of these cells. However, how polarization might be directly linked to the kinetics of the cell cycle is not understood. Here, we report that apicobasally polarized neuroepithelial cells in Xenopus laevis have a shorter cell cycle than nonpolar progenitors, consistent with mammalian systems. We show that the apically localized serine/threonine kinase aPKC directly phosphorylates an N-terminal site of the cell-cycle inhibitor p27Xic1 and reduces its ability to inhibit the cyclin-dependent kinase 2 (Cdk2), leading to shortening of G1 and S phases. Overexpression of activated aPKC blocks the neuronal differentiation-promoting activity of p27Xic1. These findings provide a direct mechanistic link between apicobasal polarity and the cell cycle, which may explain how proliferation is favored over differentiation in polarized neural stem cells. aPKC shortens G1 and S phases of cell cycle by phosphorylating p27Xic1 Phosphorylated p27Xic1 exhibits weaker binding to and inhibition of Cdk2 p27Xic1 promotes neuronal differentiation and elongates cell cycle via G1 phase Effects of p27Xic1 on neuronal differentiation are rescued by activated aPKC
Collapse
Affiliation(s)
- Nitin Sabherwal
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| | - Raphael Thuret
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Robert Lea
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Peter Stanley
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Nancy Papalopulu
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
19
|
Agius E, Bel-Vialar S, Bonnet F, Pituello F. Cell cycle and cell fate in the developing nervous system: the role of CDC25B phosphatase. Cell Tissue Res 2014; 359:201-13. [PMID: 25260908 DOI: 10.1007/s00441-014-1998-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/04/2014] [Indexed: 12/20/2022]
Abstract
Deciphering the core machinery of the cell cycle and cell division has been primarily the focus of cell biologists, while developmental biologists have identified the signaling pathways and transcriptional programs controlling cell fate choices. As a result, until recently, the interplay between these two fundamental aspects of biology have remained largely unexplored. Increasing data show that the cell cycle and regulators of the core cell cycle machinery are important players in cell fate decisions during neurogenesis. Here, we summarize recent data describing how cell cycle dynamics affect the switch between proliferation and differentiation, with an emphasis on the roles played by the cell cycle regulators, the CDC25 phosphatases.
Collapse
Affiliation(s)
- Eric Agius
- Université Toulouse 3; Centre de Biologie du Développement (CBD), 118 route de Narbonne, 31062, Toulouse, France
| | | | | | | |
Collapse
|
20
|
Snail coordinately regulates downstream pathways to control multiple aspects of mammalian neural precursor development. J Neurosci 2014; 34:5164-75. [PMID: 24719096 DOI: 10.1523/jneurosci.0370-14.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Snail transcription factor plays a key role in regulating diverse developmental processes but is not thought to play a role in mammalian neural precursors. Here, we have examined radial glial precursor cells of the embryonic murine cortex and demonstrate that Snail regulates their survival, self-renewal, and differentiation into intermediate progenitors and neurons via two distinct and separable target pathways. First, Snail promotes cell survival by antagonizing a p53-dependent death pathway because coincident p53 knockdown rescues survival deficits caused by Snail knockdown. Second, we show that the cell cycle phosphatase Cdc25b is regulated by Snail in radial precursors and that Cdc25b coexpression is sufficient to rescue the decreased radial precursor proliferation and differentiation observed upon Snail knockdown. Thus, Snail acts via p53 and Cdc25b to coordinately regulate multiple aspects of mammalian embryonic neural precursor biology.
Collapse
|
21
|
Hardwick LJA, Ali FR, Azzarelli R, Philpott A. Cell cycle regulation of proliferation versus differentiation in the central nervous system. Cell Tissue Res 2014; 359:187-200. [PMID: 24859217 PMCID: PMC4284380 DOI: 10.1007/s00441-014-1895-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/10/2014] [Indexed: 01/07/2023]
Abstract
Formation of the central nervous system requires a period of extensive progenitor cell proliferation, accompanied or closely followed by differentiation; the balance between these two processes in various regions of the central nervous system gives rise to differential growth and cellular diversity. The correlation between cell cycle lengthening and differentiation has been reported across several types of cell lineage and from diverse model organisms, both in vivo and in vitro. Furthermore, different cell fates might be determined during different phases of the preceding cell cycle, indicating direct cell cycle influences on both early lineage commitment and terminal cell fate decisions. Significant advances have been made in the last decade and have revealed multi-directional interactions between the molecular machinery regulating the processes of cell proliferation and neuronal differentiation. Here, we first introduce the modes of proliferation in neural progenitor cells and summarise evidence linking cell cycle length and neuronal differentiation. Second, we describe the manner in which components of the cell cycle machinery can have additional and, sometimes, cell-cycle-independent roles in directly regulating neurogenesis. Finally, we discuss the way that differentiation factors, such as proneural bHLH proteins, can promote either progenitor maintenance or differentiation according to the cellular environment. These intricate connections contribute to precise coordination and the ultimate division versus differentiation decision.
Collapse
Affiliation(s)
- Laura J A Hardwick
- Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | | | | | | |
Collapse
|
22
|
Hardwick LJA, Philpott A. Nervous decision-making: to divide or differentiate. Trends Genet 2014; 30:254-61. [PMID: 24791612 PMCID: PMC4046230 DOI: 10.1016/j.tig.2014.04.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 01/07/2023]
Abstract
Multiple mechanisms coordinate the cell cycle and neuronal differentiation. Lengthening of G1 phase is functionally important for differentiation. Cell cycle components can directly and independently affect neurogenesis. Differentiation factors can directly affect the cell cycle structure and machinery.
The intricate balance between proliferation and differentiation is of fundamental importance in the development of the central nervous system (CNS). The division versus differentiation decision influences both the number and identity of daughter cells produced, thus critically shaping the overall microstructure and function of the CNS. During the past decade, significant advances have been made to characterise the changes in the cell cycle during differentiation, and to uncover the multiple bidirectional links that coordinate these two processes. Here, we explore the nature and mechanistic basis of these links in the context of the developing CNS, highlighting new insights into transcriptional, post-translational, and epigenetic levels of interaction.
Collapse
Affiliation(s)
- Laura J A Hardwick
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Anna Philpott
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK.
| |
Collapse
|
23
|
Le Dréau G, Saade M, Gutiérrez-Vallejo I, Martí E. The strength of SMAD1/5 activity determines the mode of stem cell division in the developing spinal cord. ACTA ACUST UNITED AC 2014; 204:591-605. [PMID: 24515346 PMCID: PMC3926951 DOI: 10.1083/jcb.201307031] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The activity level of the BMP effectors SMAD1/5 dictates whether stem cell divisions are self-expanding, self-renewing, or self-consuming during spinal interneuron generation. The different modes of stem cell division are tightly regulated to balance growth and differentiation during organ development and homeostasis. However, the mechanisms controlling such events are not fully understood. We have developed markers that provide the single cell resolution necessary to identify the three modes of division occurring in a developing nervous system: self-expanding, self-renewing, and self-consuming. Characterizing these three modes of division during interneuron generation in the developing chick spinal cord, we demonstrated that they correlate to different levels of activity of the canonical bone morphogenetic protein effectors SMAD1/5. Functional in vivo experiments showed that the premature neuronal differentiation and changes in cell cycle parameters caused by SMAD1/5 inhibition were preceded by a reduction of self-expanding divisions in favor of self-consuming divisions. Conversely, SMAD1/5 gain of function promoted self-expanding divisions. Together, these results lead us to propose that the strength of SMAD1/5 activity dictates the mode of stem cell division during spinal interneuron generation.
Collapse
Affiliation(s)
- Gwenvael Le Dréau
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, Barcelona 08028, Spain
| | | | | | | |
Collapse
|
24
|
van der Laan S, Tsanov N, Crozet C, Maiorano D. High Dub3 Expression in Mouse ESCs Couples the G1/S Checkpoint to Pluripotency. Mol Cell 2013; 52:366-79. [DOI: 10.1016/j.molcel.2013.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 06/01/2013] [Accepted: 09/18/2013] [Indexed: 01/25/2023]
|
25
|
Gaber ZB, Butler SJ, Novitch BG. PLZF regulates fibroblast growth factor responsiveness and maintenance of neural progenitors. PLoS Biol 2013; 11:e1001676. [PMID: 24115909 PMCID: PMC3792860 DOI: 10.1371/journal.pbio.1001676] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 08/29/2013] [Indexed: 12/31/2022] Open
Abstract
A transcription factor called Promyelocytic Leukemia Zinc Finger (PLZF) calibrates the balance between spinal cord progenitor maintenance and differentiation by enhancing their sensitivity to mitogens that are present in developing embryos. Distinct classes of neurons and glial cells in the developing spinal cord arise at specific times and in specific quantities from spatially discrete neural progenitor domains. Thus, adjacent domains can exhibit marked differences in their proliferative potential and timing of differentiation. However, remarkably little is known about the mechanisms that account for this regional control. Here, we show that the transcription factor Promyelocytic Leukemia Zinc Finger (PLZF) plays a critical role shaping patterns of neuronal differentiation by gating the expression of Fibroblast Growth Factor (FGF) Receptor 3 and responsiveness of progenitors to FGFs. PLZF elevation increases FGFR3 expression and STAT3 pathway activity, suppresses neurogenesis, and biases progenitors towards glial cell production. In contrast, PLZF loss reduces FGFR3 levels, leading to premature neuronal differentiation. Together, these findings reveal a novel transcriptional strategy for spatially tuning the responsiveness of distinct neural progenitor groups to broadly distributed mitogenic signals in the embryonic environment. The embryonic spinal cord is organized into an array of discrete neural progenitor domains along the dorsoventral axis. Most of these domains undergo two periods of differentiation, first producing specific classes of neurons and then generating distinct populations of glial cells at later times. In addition, each of these progenitors pools exhibit marked differences in their proliferative capacities and propensity to differentiate to produce the appropriate numbers and diversity of neurons and glia needed to form functional neural circuits. The mechanisms behind this regional control of neural progenitor behavior, however, remain unclear. In this study, we identify the transcription factor Promyelocytic Leukemia Zinc Finger (PLZF) as a critical regulator of this process in the chick spinal cord. We show that PLZF is initially expressed by all spinal cord progenitors and then becomes restricted to a central domain, where it helps to limit the rate of neuronal differentiation and to preserve the progenitor pool for subsequent glial production. We also demonstrate that PLZF acts by promoting the expression of Fibroblast Growth Factor (FGF) Receptor 3, thereby enhancing the proliferative response of neural progenitors to FGFs present in developing embryos. Together, these findings reveal a novel developmental strategy for spatially controlling neural progenitor behavior by tuning their responsiveness to broadly distributed growth-promoting signals in the embryonic environment.
Collapse
Affiliation(s)
- Zachary B. Gaber
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Molecular Biology Interdepartmental Graduate Program, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Samantha J. Butler
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Bennett G. Novitch
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Molecular Biology Interdepartmental Graduate Program, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Saade M, Gutiérrez-Vallejo I, Le Dréau G, Rabadán MA, Miguez DG, Buceta J, Martí E. Sonic hedgehog signaling switches the mode of division in the developing nervous system. Cell Rep 2013; 4:492-503. [PMID: 23891002 DOI: 10.1016/j.celrep.2013.06.038] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/28/2013] [Accepted: 06/25/2013] [Indexed: 01/05/2023] Open
Abstract
The different modes of stem cell division are tightly regulated to balance growth and differentiation during organ development and homeostasis, and these regulatory processes are subverted in tumor formation. Here, we developed markers that provided the single-cell resolution necessary to quantify the three modes of division taking place in the developing nervous system in vivo: self-expanding, PP; self-replacing, PN; and self-consuming, NN. Using these markers and a mathematical model that predicts the dynamics of motor neuron progenitor division, we identify a role for the morphogen Sonic hedgehog in the maintenance of stem cell identity in the developing spinal cord. Moreover, our study provides insight into the process linking lineage commitment to neurogenesis with changes in cell-cycle parameters. As a result, we propose a challenging model in which the external Sonic hedgehog signal dictates stem cell identity, reflected in the consequent readjustment of cell-cycle parameters.
Collapse
Affiliation(s)
- Murielle Saade
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, Baldiri Reixac 20, Barcelona 08028, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Cell proliferation during nervous system development is poorly understood outside the mouse neocortex. We measured cell cycle dynamics in the embryonic mouse sympathetic stellate ganglion, where neuroblasts continue to proliferate following neuronal differentiation. At embryonic day (E) 9.5, when neural crest-derived cells were migrating and coalescing into the ganglion primordium, all cells were cycling, cell cycle length was only 10.6 h, and S-phase comprised over 65% of the cell cycle; these values are similar to those previously reported for embryonic stem cells. At E10.5, Sox10(+) cells lengthened their cell cycle to 38 h and reduced the length of S-phase. As cells started to express the neuronal markers Tuj1 and tyrosine hydroxylase (TH) at E10.5, they exited the cell cycle. At E11.5, when >80% of cells in the ganglion were Tuj1(+)/TH(+) neuroblasts, all cells were again cycling. Neuroblast cell cycle length did not change significantly after E11.5, and 98% of Sox10(-)/TH(+) cells had exited the cell cycle by E18.5. The cell cycle length of Sox10(+)/TH(-) cells increased during late embryonic development, and ∼25% were still cycling at E18.5. Loss of Ret increased neuroblast cell cycle length at E16.5 and decreased the number of neuroblasts at E18.5. A mathematical model generated from our data successfully predicted the relative change in proportions of neuroblasts and non-neuroblasts in wild-type mice. Our results show that, like other neurons, sympathetic neuron differentiation is associated with exit from the cell cycle; sympathetic neurons are unusual in that they then re-enter the cell cycle before later permanently exiting.
Collapse
|
28
|
Reimer MM, Norris A, Ohnmacht J, Patani R, Zhong Z, Dias TB, Kuscha V, Scott AL, Chen YC, Rozov S, Frazer SL, Wyatt C, Higashijima SI, Patton EE, Panula P, Chandran S, Becker T, Becker CG. Dopamine from the brain promotes spinal motor neuron generation during development and adult regeneration. Dev Cell 2013; 25:478-91. [PMID: 23707737 DOI: 10.1016/j.devcel.2013.04.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 04/01/2013] [Accepted: 04/22/2013] [Indexed: 01/10/2023]
Abstract
Coordinated development of brain stem and spinal target neurons is pivotal for the emergence of a precisely functioning locomotor system. Signals that match the development of these far-apart regions of the central nervous system may be redeployed during spinal cord regeneration. Here we show that descending dopaminergic projections from the brain promote motor neuron generation at the expense of V2 interneurons in the developing zebrafish spinal cord by activating the D4a receptor, which acts on the hedgehog pathway. Inhibiting this essential signal during early neurogenesis leads to a long-lasting reduction of motor neuron numbers and impaired motor responses of free-swimming larvae. Importantly, during successful spinal cord regeneration in adult zebrafish, endogenous dopamine promotes generation of spinal motor neurons, and dopamine agonists augment this process. Hence, we describe a supraspinal control mechanism for the development and regeneration of specific spinal cell types that uses dopamine as a signal.
Collapse
Affiliation(s)
- Michell M Reimer
- Centre for Neuroregeneration, School of Biomedical Sciences, The Chancellor's Building, University of Edinburgh, Edinburgh EH16 4SB, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pacal M, Bremner R. Mapping differentiation kinetics in the mouse retina reveals an extensive period of cell cycle protein expression in post-mitotic newborn neurons. Dev Dyn 2012; 241:1525-44. [PMID: 22837015 DOI: 10.1002/dvdy.23840] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2012] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Knowledge of gene expression kinetics around neuronal cell birth is required to dissect mechanisms underlying progenitor fate. Here, we timed cell cycle and neuronal protein silencing/induction during cell birth in the developing murine retina. RESULTS The pan-cell cycle markers Pcna and Mcm6 were present in the post-mitotic ganglion cell layer. Although confined to the neuroblastic layer (NBL), 6-7% of Ki67(+) cells lacked six progenitor/cell cycle markers, and expressed neuronal markers. To define protein extinction/induction timing, we defined G2/M length throughout retinogenesis, which was typically 1-2 h, but <10% cells took double this time. BrdU-chase analyses revealed that at E12.5, Tubb3 (Tuj1) appeared at M-phase, followed by Calb2 and Dcx at ~2 h, Elavl2/3/4 at ~4 h, and Map2 at ~6 h after cell birth, and these times extended with embryonic age. Strikingly, Ki67 was not extinguished until up to a day after cell cycle exit, coinciding with exit from the NBL and induction of late markers such as Map1b/Uchl1/Rbfox3. CONCLUSIONS A minor population of progenitors transits slowly through G2/M and, most importantly, some cell cycle proteins are retained for an unexpectedly long period in post-mitotic neurons. The high-resolution map of cell birth kinetics reported here provides a framework to better define mechanisms that regulate neurogenesis.
Collapse
Affiliation(s)
- Marek Pacal
- Genetics and Development Division, Toronto Western Research Institute, University Health Network, Toronto, Canada
| | | |
Collapse
|
30
|
Peco E, Escude T, Agius E, Sabado V, Medevielle F, Ducommun B, Pituello F. The CDC25B phosphatase shortens the G2 phase of neural progenitors and promotes efficient neuron production. J Cell Sci 2012. [DOI: 10.1242/jcs.109454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|