1
|
Hunziker P, Greb T. Stem Cells and Differentiation in Vascular Tissues. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:399-425. [PMID: 38382908 DOI: 10.1146/annurev-arplant-070523-040525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Plant vascular tissues are crucial for the long-distance transport of water, nutrients, and a multitude of signal molecules throughout the plant body and, therefore, central to plant growth and development. The intricate development of vascular tissues is orchestrated by unique populations of dedicated stem cells integrating endogenous as well as environmental cues. This review summarizes our current understanding of vascular-related stem cell biology and of vascular tissue differentiation. We present an overview of the molecular and cellular mechanisms governing the maintenance and fate determination of vascular stem cells and highlight the interplay between intrinsic and external cues. In this context, we emphasize the role of transcription factors, hormonal signaling, and epigenetic modifications. We also discuss emerging technologies and the large repertoire of cell types associated with vascular tissues, which have the potential to provide unprecedented insights into cellular specialization and anatomical adaptations to distinct ecological niches.
Collapse
Affiliation(s)
- Pascal Hunziker
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany; ,
| | - Thomas Greb
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany; ,
| |
Collapse
|
2
|
Chen M, Dai Y, Liao J, Wu H, Lv Q, Huang Y, Liu L, Feng Y, Lv H, Zhou B, Peng D. TARGET OF MONOPTEROS: key transcription factors orchestrating plant development and environmental response. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2214-2234. [PMID: 38195092 DOI: 10.1093/jxb/erae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024]
Abstract
Plants have an incredible ability to sustain root and vascular growth after initiation of the embryonic root and the specification of vascular tissue in early embryos. Microarray assays have revealed that a group of transcription factors, TARGET OF MONOPTEROS (TMO), are important for embryonic root initiation in Arabidopsis. Despite the discovery of their auxin responsiveness early on, their function and mode of action remained unknown for many years. The advent of genome editing has accelerated the study of TMO transcription factors, revealing novel functions for biological processes such as vascular development, root system architecture, and response to environmental cues. This review covers recent achievements in understanding the developmental function and the genetic mode of action of TMO transcription factors in Arabidopsis and other plant species. We highlight the transcriptional and post-transcriptional regulation of TMO transcription factors in relation to their function, mainly in Arabidopsis. Finally, we provide suggestions for further research and potential applications in plant genetic engineering.
Collapse
Affiliation(s)
- Min Chen
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Yani Dai
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Jiamin Liao
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Huan Wu
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Qiang Lv
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Yu Huang
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Lichang Liu
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Yu Feng
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Hongxuan Lv
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Bo Zhou
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, 438107, Huaihua, Hunan, China
- National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China, 410004, Changsha, Hunan, China
- Forestry Biotechnology Hunan Key Laboratories, Hunan, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, 410004, Changsha, Hunan, China
| | - Dan Peng
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, 438107, Huaihua, Hunan, China
- Forestry Biotechnology Hunan Key Laboratories, Hunan, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, 410004, Changsha, Hunan, China
| |
Collapse
|
3
|
Zhang H, Mu Y, Zhang H, Yu C. Maintenance of stem cell activity in plant development and stress responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1302046. [PMID: 38155857 PMCID: PMC10754534 DOI: 10.3389/fpls.2023.1302046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
Stem cells residing in plant apical meristems play an important role during postembryonic development. These stem cells are the wellspring from which tissues and organs of the plant emerge. The shoot apical meristem (SAM) governs the aboveground portions of a plant, while the root apical meristem (RAM) orchestrates the subterranean root system. In their sessile existence, plants are inextricably bound to their environment and must adapt to various abiotic stresses, including osmotic stress, drought, temperature fluctuations, salinity, ultraviolet radiation, and exposure to heavy metal ions. These environmental challenges exert profound effects on stem cells, potentially causing severe DNA damage and disrupting the equilibrium of reactive oxygen species (ROS) and Ca2+ signaling in these vital cells, jeopardizing their integrity and survival. In response to these challenges, plants have evolved mechanisms to ensure the preservation, restoration, and adaptation of the meristematic stem cell niche. This enduring response allows plants to thrive in their habitats over extended periods. Here, we presented a comprehensive overview of the cellular and molecular intricacies surrounding the initiation and maintenance of the meristematic stem cell niche. We also delved into the mechanisms employed by stem cells to withstand and respond to abiotic stressors.
Collapse
Affiliation(s)
- Huankai Zhang
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Yangwei Mu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Hui Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Caiyu Yu
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| |
Collapse
|
4
|
Guo P, Yang Q, Wang Y, Yang Z, Xie Q, Chen G, Chen X, Hu Z. Overexpression of SlPRE3 alters the plant morphologies in Solanum lycopersicum. PLANT CELL REPORTS 2023; 42:1907-1925. [PMID: 37776371 DOI: 10.1007/s00299-023-03070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023]
Abstract
KEY MESSAGE Overexpression of SlPRE3 is detrimental to the photosynthesis and alters plant morphology and root development. SlPRE3 interacts with SlAIF1/SlAIF2/SlPAR1/SlIBH1 to regulate cell expansion. Basic helix-loop-helix (bHLH) transcription factors play crucial roles as regulators in plant growth and development. In this study, we isolated and characterized SlPRE3, an atypical bHLH transcription factor gene. SlPRE3 exhibited predominant expression in the root and moderate expression in the senescent leaves. Comparative analysis with the wild type revealed significant differences in plant morphology in the 35S:SlPRE3 lines. These differences included increased internode length, rolling leaves with reduced chlorophyll accumulation, and elongated yet fewer adventitious roots. Additionally, 35S:SlPRE3 lines displayed elevated levels of GA3 (gibberellin A3) and reduced starch accumulation. Furthermore, utilizing the Y2H (Yeast two-hybrid) and the BiFC (Bimolecular Fluorescent Complimentary) techniques, we identified physical interactions between SlPRE3 and SlAIF1 (ATBS1-interacting factor 1)/SlAIF2 (ATBS1-interacting factor 2)/SlPAR1 (PHYTOCHROME RAPIDLY REGULATED 1)/SlIBH1 (ILI1-binding bHLH 1). RNA-seq analysis of root tissues revealed significant alterations in transcript levels of genes involved in gibberellin metabolism and signal transduction, cell expansion, and root development. In summary, our study sheds light on the crucial regulatory role of SlPRE3 in determining plant morphology and root development.
Collapse
Affiliation(s)
- Pengyu Guo
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Qingling Yang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Yunshu Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Zhijie Yang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Xuqing Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, 11 Shuguanghuayuan Middle Road, Haidian, Beijing, 100097, People's Republic of China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
5
|
Du P, Wang Q, Yuan D, Chen S, Su Y, Li L, Chen S, He X. WRKY transcription factors and OBERON histone-binding proteins form complexes to balance plant growth and stress tolerance. EMBO J 2023; 42:e113639. [PMID: 37565504 PMCID: PMC10548177 DOI: 10.15252/embj.2023113639] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
WRKY transcription factors in plants are known to be able to mediate either transcriptional activation or repression, but the mechanism regulating their transcriptional activity is largely unclear. We found that group IId WRKY transcription factors interact with OBERON (OBE) proteins, forming redundant WRKY-OBE complexes in Arabidopsis thaliana. The coiled-coil domain of WRKY transcription factors binds to OBE proteins and is responsible for target gene selection and transcriptional repression. The PHD finger of OBE proteins binds to both histones and WRKY transcription factors. WRKY-OBE complexes repress the transcription of numerous stress-responsive genes and are required for maintaining normal plant growth. Several WRKY and OBE mutants show reduced plant size and increased drought tolerance, accompanied by increased expression of stress-responsive genes. Moreover, expression levels of most of these WRKY and OBE genes are reduced in response to drought stress, revealing a previously uncharacterized regulatory mechanism of the drought stress response. These results suggest that WRKY-OBE complexes repress transcription of stress-responsive genes, and thereby balance plant growth and stress tolerance.
Collapse
Affiliation(s)
- Ping Du
- College of Life SciencesBeijing Normal UniversityBeijingChina
- National Institute of Biological SciencesBeijingChina
| | - Qi Wang
- College of Life SciencesBeijing Normal UniversityBeijingChina
- National Institute of Biological SciencesBeijingChina
| | - Dan‐Yang Yuan
- National Institute of Biological SciencesBeijingChina
| | | | - Yin‐Na Su
- National Institute of Biological SciencesBeijingChina
| | - Lin Li
- National Institute of Biological SciencesBeijingChina
| | - She Chen
- National Institute of Biological SciencesBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical ResearchTsinghua UniversityBeijingChina
| | - Xin‐Jian He
- College of Life SciencesBeijing Normal UniversityBeijingChina
- National Institute of Biological SciencesBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical ResearchTsinghua UniversityBeijingChina
| |
Collapse
|
6
|
Wallner ES, Tonn N, Shi D, Luzzietti L, Wanke F, Hunziker P, Xu Y, Jung I, Lopéz-Salmerón V, Gebert M, Wenzl C, Lohmann JU, Harter K, Greb T. OBERON3 and SUPPRESSOR OF MAX2 1-LIKE proteins form a regulatory module driving phloem development. Nat Commun 2023; 14:2128. [PMID: 37059727 PMCID: PMC10104830 DOI: 10.1038/s41467-023-37790-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/31/2023] [Indexed: 04/16/2023] Open
Abstract
Spatial specificity of cell fate decisions is central for organismal development. The phloem tissue mediates long-distance transport of energy metabolites along plant bodies and is characterized by an exceptional degree of cellular specialization. How a phloem-specific developmental program is implemented is, however, unknown. Here we reveal that the ubiquitously expressed PHD-finger protein OBE3 forms a central module with the phloem-specific SMXL5 protein for establishing the phloem developmental program in Arabidopsis thaliana. By protein interaction studies and phloem-specific ATAC-seq analyses, we show that OBE3 and SMXL5 proteins form a complex in nuclei of phloem stem cells where they promote a phloem-specific chromatin profile. This profile allows expression of OPS, BRX, BAM3, and CVP2 genes acting as mediators of phloem differentiation. Our findings demonstrate that OBE3/SMXL5 protein complexes establish nuclear features essential for determining phloem cell fate and highlight how a combination of ubiquitous and local regulators generate specificity of developmental decisions in plants.
Collapse
Affiliation(s)
- Eva-Sophie Wallner
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
- Gilbert Biological Sciences, Stanford University, Stanford, CA, 94305-5020, USA
| | - Nina Tonn
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Dongbo Shi
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
- Japan RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
- Institute for Biochemistry and Biology (IBB), University of Potsdam, Potsdam, 14476, Germany
- Japan Science and Technology Agency (JST), Saitama, Kawaguchi, Japan
| | - Laura Luzzietti
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Friederike Wanke
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Pascal Hunziker
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Yingqiang Xu
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Ilona Jung
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Vadir Lopéz-Salmerón
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
- BD Bioscience, 69126, Heidelberg, Germany
| | - Michael Gebert
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Christian Wenzl
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Jan U Lohmann
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Klaus Harter
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Thomas Greb
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
7
|
Franco-Echevarría E, Rutherford TJ, Fiedler M, Dean C, Bienz M. Plant vernalization proteins contain unusual PHD superdomains without histone H3 binding activity. J Biol Chem 2022; 298:102540. [PMID: 36174674 PMCID: PMC9640981 DOI: 10.1016/j.jbc.2022.102540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
PHD fingers are modular domains in chromatin-associated proteins that decode the methylation status of histone H3 tails. A PHD finger signature is found in plant vernalization (VEL) proteins, which function as accessory factors of the Polycomb system to control flowering in Arabidopsis through an epigenetic silencing mechanism. It has been proposed that VEL PHD fingers bind to methylated histone H3 tails to facilitate association of the Polycomb silencing machinery with target genes. Here, we use structural analysis by X-ray crystallography to show that the VEL PHD finger forms the central module of a larger compact tripartite superdomain that also contains a zinc finger and a four-helix bundle. This PHD superdomain fold is only found in one other family, the OBERON proteins, which have multiple functions in Arabidopsis meristems to control plant growth. The putative histone-binding surface of OBERON proteins exhibits the characteristic three-pronged pocket of histone-binding PHD fingers and binds to methylated histone H3 tails. However, that of VEL PHD fingers lacks this architecture and exhibits unusually high positive surface charge. This VEL PHD superdomain neither binds to unmodified nor variously modified histone H3 tails, as demonstrated by isothermal calorimetry and NMR spectroscopy. Instead, the VEL PHD superdomain interacts with negatively charged polymers. Our evidence argues for evolution of a divergent function for the PHD superdomain in vernalization that does not involve histone tail decoding.
Collapse
Affiliation(s)
| | | | - Marc Fiedler
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Caroline Dean
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom; John Innes Centre, Norwich Research Park, Norwich, United Kingdom.
| | - Mariann Bienz
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.
| |
Collapse
|
8
|
Zhang Y, Yu J, Xu X, Wang R, Liu Y, Huang S, Wei H, Wei Z. Molecular Mechanisms of Diverse Auxin Responses during Plant Growth and Development. Int J Mol Sci 2022; 23:12495. [PMID: 36293351 PMCID: PMC9604407 DOI: 10.3390/ijms232012495] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
The plant hormone auxin acts as a signaling molecule to regulate numerous developmental processes throughout all stages of plant growth. Understanding how auxin regulates various physiological and developmental processes has been a hot topic and an intriguing field. Recent studies have unveiled more molecular details into how diverse auxin responses function in every aspect of plant growth and development. In this review, we systematically summarized and classified the molecular mechanisms of diverse auxin responses, and comprehensively elaborated the characteristics and multilevel regulation mechanisms of the canonical transcriptional auxin response. On this basis, we described the characteristics and differences between different auxin responses. We also presented some auxin response genes that have been genetically modified in plant species and how their changes impact various traits of interest. Finally, we summarized some important aspects and unsolved questions of auxin responses that need to be focused on or addressed in future research. This review will help to gain an overall understanding of and some insights into the diverse molecular mechanisms of auxin responses in plant growth and development that are instrumental in harnessing genetic resources in molecular breeding of extant plant species.
Collapse
Affiliation(s)
- Yang Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiajie Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xiuyue Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ruiqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shan Huang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Zhigang Wei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
9
|
Sai CB, Chidambaranathan P. In-silico evolutionary analysis of plant-OBERON proteins during compatible MYMV infection in respect of improving host resistance. JOURNAL OF PLANT RESEARCH 2022; 135:405-422. [PMID: 35201523 DOI: 10.1007/s10265-022-01372-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Yellow mosaic disease (YMD) of pulses caused by mungbean yellow mosaic virus is a major threat to crop production. An infection that is compatible with regulating and interacting host proteins and the virus causes YMD. Oberon families of proteins OBE1-4 and VIN1-4 are imperative for plants, functions in meristem and vascular development, and were also regulated during compatible disease infection. Furthermore, in-silico expression results suggested the involvement of OBE1 and OBE2 proteins during virus infection of Vigna, Arabidopsis and soybean. Moreover, a common ancestor for the meristem and virus movement related Oberons was inferred through phylogenetic analysis. Protein interaction studies showed three amino acids (Aspartate, glutamate and lysine) in the plant homeodomain (PHD), involved in interaction with the N-terminal region of the virus movement protein and were also conserved in both monocot and dicots. Additionally, major differences in the nuclear localization signal (NLS) showing clade specific conservation and significant variation between dicots and monocots were ascertained in meristem and virus movement related Oberons. Consequently, a combination of PHD, CCD and their interactions with the VPg viral domain increases the susceptibility to YMD. Further, modification in the NLS regions of the viral movement clade Oberons, to knock out allele generation in the OBE1 and OBE2 homologs through genome-editing approaches could be established as alternate strategies for the improvement of host resistance and control yellow mosaic disease in plants, especially in pulse crops.
Collapse
Affiliation(s)
- Cayalvizhi B Sai
- ICAR-National Rice Research Institute (ICAR-NRRI), Cuttack, 753006, India.
| | | |
Collapse
|
10
|
Yamoune A, Cuyacot AR, Zdarska M, Hejatko J. Hormonal orchestration of root apical meristem formation and maintenance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6768-6788. [PMID: 34343283 DOI: 10.1093/jxb/erab360] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Plant hormones are key regulators of a number of developmental and adaptive responses in plants, integrating the control of intrinsic developmental regulatory circuits with environmental inputs. Here we provide an overview of the molecular mechanisms underlying hormonal regulation of root development. We focus on key events during both embryonic and post-embryonic development, including specification of the hypophysis as a future organizer of the root apical meristem (RAM), hypophysis asymmetric division, specification of the quiescent centre (QC) and the stem cell niche (SCN), RAM maturation and maintenance of QC/SCN activity, and RAM size. We address both well-established and newly proposed concepts, highlight potential ambiguities in recent terminology and classification criteria of longitudinal root zonation, and point to contrasting results and alternative scenarios for recent models. In the concluding remarks, we summarize the common principles of hormonal control during root development and the mechanisms potentially explaining often antagonistic outputs of hormone action, and propose possible future research directions on hormones in the root.
Collapse
Affiliation(s)
- Amel Yamoune
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Abigail Rubiato Cuyacot
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Marketa Zdarska
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Jan Hejatko
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| |
Collapse
|
11
|
Wang J, Su Y, Kong X, Ding Z, Zhang XS. Initiation and maintenance of plant stem cells in root and shoot apical meristems. ABIOTECH 2020; 1:194-204. [PMID: 36303567 PMCID: PMC9590467 DOI: 10.1007/s42994-020-00020-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/07/2020] [Indexed: 11/27/2022]
Abstract
Plant stem cells are a small group of cells with a self-renewal capacity and serve as a steady supply of precursor cells to form new differentiated tissues and organs in plants. Root stem cells and shoot stem cells, which are located in the root apical meristem and in the shoot apical meristem, respectively, play a critical role in plant longitudinal growth. These stem cells in shoot and root apical meristems remain as pluripotent state throughout the lifespan of the plant and control the growth and development of plants. The molecular mechanisms of initiation and maintenance of plant stem cells have been extensively investigated. In this review, we mainly discuss how the plant phytohormones, such as auxin and cytokinin, coordinate with the key transcription factors to regulate plant stem cell initiation and maintenance in root and shoot apical meristems. In addition, we highlight the common regulatory mechanisms of both root and shoot apical meristems.
Collapse
Affiliation(s)
- Junxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237 Shandong China
| | - Yinghua Su
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Xiangpei Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237 Shandong China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237 Shandong China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 Shandong China
| |
Collapse
|
12
|
Nguyen CT, Tran GB, Nguyen NH. Homeostasis of histone acetylation is critical for auxin signaling and root morphogenesis. PLANT MOLECULAR BIOLOGY 2020; 103:1-7. [PMID: 32088831 DOI: 10.1007/s11103-020-00985-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/20/2020] [Indexed: 05/24/2023]
Abstract
The auxin signaling and root morphogenesis are harmoniously controlled by two counteracted teams including (1) auxin/indole-3-acetic acid (AUX/IAA)-histone deacetylase (HDA) and (2) auxin response factor (ARF)-histone acetyltransferase (HAT). The involvement of histone acetylation in the regulation of transcription was firstly reported a few decades ago. In planta, auxin is the first hormone group that was discovered and it is also the most studied phytohormone. Current studies have elucidated the functions of histone acetylation in the modulation of auxin signaling as well as in the regulation of root morphogenesis under both normal and stress conditions. Based on the recent outcomes, this review is to provide a hierarchical view about the functions of histone acetylation in auxin signaling and root morphogenesis. In this report, we suggest that the auxin signaling must be controlled harmoniously by two counteracted teams including (1) auxin/indole-3-acetic acid (AUX/IAA)-histone deacetylase (HDA) and (2) auxin response factor (ARF)-histone acetyltransferase (HAT). Moreover, the balance in auxin signaling is very critical to contribute to normal root morphogenesis.
Collapse
Affiliation(s)
- Cuong Thach Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Gia-Buu Tran
- Department of Biotechnology, Institute of Biotechnology and Food-Technology, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao Street, Ward 4, Go Vap District, Ho Chi Minh City, Vietnam
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, 97 Vo Van Tan Street, District 3, Ho Chi Minh City, Vietnam.
| |
Collapse
|
13
|
Tanaka N, Uraguchi S, Kajikawa M, Saito A, Ohmori Y, Fujiwara T. A rice PHD-finger protein OsTITANIA, is a growth regulator that functions through elevating expression of transporter genes for multiple metals. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:997-1006. [PMID: 30194869 DOI: 10.1111/tpj.14085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Essential metal absorption for plant growth is mediated predominantly by metal-specific transporters, with expression that responds to the environmental or cellular conditions of specific metals. Differing from metal-specific regulation, we describe a constitutively expressed transcription factor that regulates the transport of several metals in rice. We characterized the rice mutant LOW CADMIUM 5 (LC5), which exhibited reduced growth and accumulation of essential metals (e.g., copper [Cu], zinc [Zn] and manganese [Mn]) in shoots. LC5 was dwarf and developed less tillers than the wild type, but the structure of vasculature was apparently normal. Molecular genetic analysis revealed that the causal gene of LC5 is an ortholog of the transcriptional regulator Arabidopsis thaliana TITANIA (TTA), known as a transcriptional regulator. Expression analyses demonstrated that the OsTTA gene encodes a nucleus-localized protein containing a plant homeodomain-finger (PHD-finger) domain and is expressed ubiquitously in rice plants. RNA sequencing and quantitative PCR analyses revealed that the mRNA accumulation of transporter genes for essential metals, including iron (Fe), Zn, or Mn, were substantially lower in LC5 roots than in the wild type. Unlike known transcription factors of metal transport regulation, OsTTA transcript accumulation was not affected by metal availability. In addition, the growth defect of LC5 was partially rescued by Fe, Zn, or Mn supplementation, respectively. Taken together, OsTTA is a constitutively expressed regulator of multiple metal transporter genes responsible for essential metals delivery to shoots for their normal growth.
Collapse
Affiliation(s)
- Nobuhiro Tanaka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shimpei Uraguchi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masataka Kajikawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Akihiro Saito
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Ohmori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
de Bossoreille S, Morel P, Trehin C, Negrutiu I. REBELOTE, a regulator of floral determinacy in Arabidopsis thaliana, interacts with both nucleolar and nucleoplasmic proteins. FEBS Open Bio 2018; 8:1636-1648. [PMID: 30338215 PMCID: PMC6168688 DOI: 10.1002/2211-5463.12504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 11/10/2022] Open
Abstract
The nucleoplasm and nucleolus are the two main territories of the nucleus. While specific functions are associated with each of these territories (such as mRNA synthesis in the nucleoplasm and ribosomal rRNA synthesis in the nucleolus), some proteins are known to be located in both. Here, we investigated the molecular function of REBELOTE (RBL), an Arabidopsis thaliana protein previously characterized as a regulator of floral meristem termination. We show that RBL displays a dual localization, in the nucleolus and nucleoplasm. Moreover, we used direct and global approaches to demonstrate that RBL interacts with nucleic acid-binding proteins. It binds to the NOC proteins SWA2, AtNOC2 and AtNOC3 in both the nucleolus and nucleoplasm, and also to OBE1 and VFP3/ENAP1. Taking into account the identities of these RBL interactors, we hypothesize that RBL acts both in ribosomal biogenesis and in the regulation of gene expression.
Collapse
Affiliation(s)
- Stève de Bossoreille
- Laboratoire Reproduction et Développement des Plantes Univ Lyon ENS de Lyon UCB Lyon 1 CNRS, INRA Lyon France
| | - Patrice Morel
- Laboratoire Reproduction et Développement des Plantes Univ Lyon ENS de Lyon UCB Lyon 1 CNRS, INRA Lyon France
| | - Christophe Trehin
- Laboratoire Reproduction et Développement des Plantes Univ Lyon ENS de Lyon UCB Lyon 1 CNRS, INRA Lyon France
| | - Ioan Negrutiu
- Laboratoire Reproduction et Développement des Plantes Univ Lyon ENS de Lyon UCB Lyon 1 CNRS, INRA Lyon France
| |
Collapse
|
15
|
Kim DH, Sung S. Accelerated vernalization response by an altered PHD-finger protein in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2017; 12:e1308619. [PMID: 28498016 PMCID: PMC5501235 DOI: 10.1080/15592324.2017.1308619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 05/23/2023]
Abstract
Vernalization is a response to the winter cold to acquire the competence to flower in next spring. VERNALIZATION INSENSITIVE 3 (VIN3) is a PHD-finger protein that binds to modified histones in vitro. VIN3 is induced by long-term cold and is necessary for Polycomb Repression Complex 2 (PRC2)-mediated tri-methylation of Histone H3 Lysine 27 (H3K27me3) at the FLC locus in Arabidopsis. An alteration in the PHD-finger domain of VIN3 changes the binding specificity of the PHD-finger domain of VIN3 in vitro and results in an accelerated vernalization response in vivo. The acceleration in vernalization response is achieved by increased enrichments of VIN3 and tri-methylation of Histone H3 Lysine 27 (H3K27me3) at the FLC locus without invoking the increased enrichment of Polycomb Repressive Complex 2. This result indicates that the binding specificity of the PHD-finger domain of VIN3 plays a role in mediating a proper vernalization response in Arabidopsis. Furthermore, this work shows a potential that the alteration of PHD-finger domains could be applied to alter various developmental processes in plants.
Collapse
Affiliation(s)
- Dong-Hwan Kim
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, TX, USA
| | - Sibum Sung
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, TX, USA
| |
Collapse
|
16
|
Wendrich JR, Boeren S, Möller BK, Weijers D, De Rybel B. In Vivo Identification of Plant Protein Complexes Using IP-MS/MS. Methods Mol Biol 2017; 1497:147-158. [PMID: 27864765 DOI: 10.1007/978-1-4939-6469-7_14] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Individual proteins often function as part of a protein complex. The identification of interacting proteins is therefore vital to understand the biological role and function of the studied protein. Here we describe a method for the in vivo identification of nuclear, cytoplasmic, and membrane-associated protein complexes from plant tissues using a strategy of immunoprecipitation followed by tandem mass spectrometry. By performing quantitative mass spectrometry measurements on biological triplicates, relative abundance of proteins in GFP-tagged complexes compared to background controls can be statistically evaluated to identify high-confidence interactors. We detail the entire workflow of this approach.
Collapse
Affiliation(s)
- Jos R Wendrich
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA, Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA, Wageningen, The Netherlands
| | - Barbara K Möller
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA, Wageningen, The Netherlands.,Department of Plant Systems Biology, VIB Ghent University, 9052, Ghent, Belgium
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA, Wageningen, The Netherlands.
| | - Bert De Rybel
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA, Wageningen, The Netherlands.,Department of Plant Systems Biology, Flemish Institute of Biotechnology, VIB Ghent University, 9052, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| |
Collapse
|
17
|
Palovaara J, de Zeeuw T, Weijers D. Tissue and Organ Initiation in the Plant Embryo: A First Time for Everything. Annu Rev Cell Dev Biol 2016; 32:47-75. [PMID: 27576120 DOI: 10.1146/annurev-cellbio-111315-124929] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Land plants can grow to tremendous body sizes, yet even the most complex architectures are the result of iterations of the same developmental processes: organ initiation, growth, and pattern formation. A central question in plant biology is how these processes are regulated and coordinated to allow for the formation of ordered, 3D structures. All these elementary processes first occur in early embryogenesis, during which, from a fertilized egg cell, precursors for all major tissues and stem cells are initiated, followed by tissue growth and patterning. Here we discuss recent progress in our understanding of this phase of plant life. We consider the cellular basis for multicellular development in 3D and focus on the genetic regulatory mechanisms that direct specific steps during early embryogenesis.
Collapse
Affiliation(s)
- Joakim Palovaara
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands;
| | - Thijs de Zeeuw
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands;
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands;
| |
Collapse
|
18
|
Lin TF, Saiga S, Abe M, Laux T. OBE3 and WUS Interaction in Shoot Meristem Stem Cell Regulation. PLoS One 2016; 11:e0155657. [PMID: 27196372 PMCID: PMC4873020 DOI: 10.1371/journal.pone.0155657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/02/2016] [Indexed: 11/18/2022] Open
Abstract
The stem cells in the shoot apical meristem (SAM) are the origin of all above ground tissues in plants. In Arabidopsis thaliana, shoot meristem stem cells are maintained by the homeobox transcription factor gene WUS (WUSCHEL) that is expressed in cells of the organizing center underneath the stem cells. In order to identify factors that operate together with WUS in stem cell maintenance, we performed an EMS mutant screen for modifiers of the hypomorphic wus-6 allele. We isolated the oberon3-2 (obe3-2) mutant that enhances stem cell defects in wus-6, but does not affect the putative null allele wus-1. The OBE3 gene encodes a PHD (Plant Homeo Domain) protein that is thought to function in chromatin regulation. Single mutants of OBE3 or its closest homolog OBE4 do not display any defects, whereas the obe3-2 obe4-2 double mutant displays broad growth defects and developmental arrest of seedlings. Transcript levels of WUS and its target gene in the stem cells, CLAVATA3, are reduced in obe3-2. On the other hand, OBE3 and OBE4 transcripts are both indirectly upregulated by ectopic WUS expression. Our results suggest a positive feedback regulation between WUS and OBE3 that contributes to shoot meristem homeostasis.
Collapse
Affiliation(s)
- Ta-Fang Lin
- BIOSS Centre for Biological Signalling Studies, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Shunsuke Saiga
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA, Wageningen, The Netherlands
| | - Mitsutomo Abe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113–0033, Japan
| | - Thomas Laux
- BIOSS Centre for Biological Signalling Studies, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
- * E-mail:
| |
Collapse
|
19
|
Chandler JW. Auxin response factors. PLANT, CELL & ENVIRONMENT 2016; 39:1014-28. [PMID: 26487015 DOI: 10.1111/pce.12662] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/22/2015] [Accepted: 10/05/2015] [Indexed: 05/03/2023]
Abstract
Auxin signalling involves the activation or repression of gene expression by a class of auxin response factor (ARF) proteins that bind to auxin response elements in auxin-responsive gene promoters. The release of ARF repression in the presence of auxin by the degradation of their cognate auxin/indole-3-acetic acid repressors forms a paradigm of transcriptional response to auxin. However, this mechanism only applies to activating ARFs, and further layers of complexity of ARF function and regulation are being revealed, which partly reflect their highly modular domain structure. This review summarizes our knowledge concerning ARF binding site specificity, homodimer and heterodimer multimeric ARF association and cooperative function and how activator ARFs activate target genes via chromatin remodelling and evolutionary information derived from phylogenetic comparisons from ARFs from diverse species. ARFs are regulated in diverse ways, and their importance in non-auxin-regulated pathways is becoming evident. They are also embedded within higher-order transcription factor complexes that integrate signalling pathways from other hormones and in response to the environment. The ways in which new information concerning ARFs on many levels is causing a revision of existing paradigms of auxin response are discussed.
Collapse
Affiliation(s)
- John William Chandler
- Institute of Developmental Biology, University of Cologne, Cologne Biocenter, Zuelpicher Strasse 47b, Cologne, D-50674, Germany
| |
Collapse
|
20
|
Abstract
Auxin is arguably the most important signaling molecule in plants, and the last few decades have seen remarkable breakthroughs in understanding its production, transport, and perception. Recent investigations have focused on transcriptional responses to auxin, providing novel insight into the functions of the domains of key transcription regulators in responses to the hormonal cue and prominently implicating chromatin regulation in these responses. In addition, studies are beginning to identify direct targets of the auxin-responsive transcription factors that underlie auxin modulation of development. Mechanisms to tune the response to different auxin levels are emerging, as are first insights into how this single hormone can trigger diverse responses. Key unanswered questions center on the mechanism for auxin-directed transcriptional repression and the identity of additional determinants of auxin response specificity. Much of what has been learned in model plants holds true in other species, including the earliest land plants.
Collapse
Affiliation(s)
- Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands;
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
21
|
Robert HS, Crhak Khaitova L, Mroue S, Benková E. The importance of localized auxin production for morphogenesis of reproductive organs and embryos in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5029-42. [PMID: 26019252 DOI: 10.1093/jxb/erv256] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plant sexual reproduction involves highly structured and specialized organs: stamens (male) and gynoecia (female, containing ovules). These organs synchronously develop within protective flower buds, until anthesis, via tightly coordinated mechanisms that are essential for effective fertilization and production of viable seeds. The phytohormone auxin is one of the key endogenous signalling molecules controlling initiation and development of these, and other, plant organs. In particular, its uneven distribution, resulting from tightly controlled production, metabolism and directional transport, is an important morphogenic factor. In this review we discuss how developmentally controlled and localized auxin biosynthesis and transport contribute to the coordinated development of plants' reproductive organs, and their fertilized derivatives (embryos) via the regulation of auxin levels and distribution within and around them. Current understanding of the links between de novo local auxin biosynthesis, auxin transport and/or signalling is presented to highlight the importance of the non-cell autonomous action of auxin production on development and morphogenesis of reproductive organs and embryos. An overview of transcription factor families, which spatiotemporally define local auxin production by controlling key auxin biosynthetic enzymes, is also presented.
Collapse
Affiliation(s)
- Hélène S Robert
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Lucie Crhak Khaitova
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Souad Mroue
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Eva Benková
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| |
Collapse
|
22
|
Jouannet V, Brackmann K, Greb T. (Pro)cambium formation and proliferation: two sides of the same coin? CURRENT OPINION IN PLANT BIOLOGY 2015; 23:54-60. [PMID: 25449727 PMCID: PMC4353845 DOI: 10.1016/j.pbi.2014.10.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 05/17/2023]
Abstract
The body of higher plants is usually pervaded by the (pro)cambium, a reticulate system of meristematic cells harboring the potential for producing vascular tissues at critical times and places. The (pro)cambium thereby provides the basis for the differential modulation of long-distance transport capacities and plant body stability. Distinct regulatory networks responsible for the initiation and proliferation of (pro)cambium cells have been identified. However, although a tight interaction between these networks can be expected, connections have been established only sporadically. Here we highlight recent discoveries of how (pro)cambium development is regulated and discuss possible interfaces between networks regulating two processes: (pro)cambium formation and cambium proliferation.
Collapse
Affiliation(s)
- Virginie Jouannet
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria; Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Klaus Brackmann
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Thomas Greb
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria; Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.
| |
Collapse
|
23
|
Mouriz A, López-González L, Jarillo JA, Piñeiro M. PHDs govern plant development. PLANT SIGNALING & BEHAVIOR 2015; 10:e993253. [PMID: 26156103 PMCID: PMC4622442 DOI: 10.4161/15592324.2014.993253] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 11/18/2014] [Indexed: 05/22/2023]
Abstract
Posttranslational modifications present in the amino-terminal tails of histones play a pivotal role in the chromatin-mediated regulation of gene expression patterns that control plant developmental transitions. Therefore, the function of protein domains that specifically recognize these histone covalent modifications and recruit chromatin remodeling complexes and the transcriptional machinery to modulate gene expression is essential for a proper control of plant development. Plant HomeoDomain (PHD) motifs act as effectors that can specifically bind a number of histone modifications and mediate the activation or repression of underlying genes. In this review we summarize recent findings that emphasize the crucial role of this versatile family of chromatin "reader" domains in the transcriptional regulation of plant developmental processes such as meiosis and postmeiotic events during pollen maturation, embryo meristem initiation and root development, germination as well as flowering time.
Collapse
Affiliation(s)
- Alfonso Mouriz
- Centro de Biotecnología y Genómica de Plantas; Instituto Nacional de Investigaciones Agrarias-Universidad Politécnica de Madrid; Madrid, Spain
| | - Leticia López-González
- Centro de Biotecnología y Genómica de Plantas; Instituto Nacional de Investigaciones Agrarias-Universidad Politécnica de Madrid; Madrid, Spain
| | - Jose A Jarillo
- Centro de Biotecnología y Genómica de Plantas; Instituto Nacional de Investigaciones Agrarias-Universidad Politécnica de Madrid; Madrid, Spain
| | | |
Collapse
|
24
|
Ivanov KI, Eskelin K, Lõhmus A, Mäkinen K. Molecular and cellular mechanisms underlying potyvirus infection. J Gen Virol 2014; 95:1415-1429. [DOI: 10.1099/vir.0.064220-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Potyviruses represent one of the most economically important and widely distributed groups of plant viruses. Despite considerable progress towards understanding the cellular and molecular basis of their pathogenicity, many questions remain about the mechanisms by which potyviruses suppress host defences and create an optimal intracellular environment for viral translation, replication, assembly and spread. The review focuses on the multifunctional roles of potyviral proteins and their interplay with various host factors in different compartments of the infected cell. We place special emphasis on the recently discovered and currently putative mechanisms by which potyviruses subvert the normal functions of different cellular organelles in order to establish an efficient and productive infection.
Collapse
Affiliation(s)
- K. I. Ivanov
- Department of Food and Environmental Sciences, PO Box 56, 00014 University of Helsinki, Finland
| | - K. Eskelin
- Department of Food and Environmental Sciences, PO Box 56, 00014 University of Helsinki, Finland
| | - A. Lõhmus
- Department of Food and Environmental Sciences, PO Box 56, 00014 University of Helsinki, Finland
| | - K. Mäkinen
- Department of Food and Environmental Sciences, PO Box 56, 00014 University of Helsinki, Finland
| |
Collapse
|
25
|
Auxin and Cell Wall Invertase Related Signaling during Rice Grain Development. PLANTS 2014; 3:95-112. [PMID: 27135493 PMCID: PMC4844310 DOI: 10.3390/plants3010095] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 12/31/2022]
Abstract
Indole-3-acetic acid (IAA) synthesis is required for grain-fill in maize and appears to be regulated by cell-wall invertase (CWIN) activity. OsYUC12 is one of three IAA biosynthesis genes we previously reported as expressed during early rice grain development, correlating with a large increase in IAA content of the grain. This work aimed to investigate further the role of OsYUC12 and its relationship to CWIN activity and invertase inhibitors (INVINH). The analysis shows a brief peak of OsYUC12 expression early in endosperm development. Meta-analysis of microarray data, confirmed by quantitative expression analysis, revealed that OsYUC12 is coexpressed with OsIAA29, which encodes an unusual AUX/IAA transcription factor previously reported as poorly expressed. Maximum expression of OsYUC12 and OsIAA29 coincided with maximum CWIN activity, but also with a peak in INVINH expression. Unlike ZmYUC1, OsYUC12 expression is not reduced in the rice CWIN mutant, gif1. Several reports have investigated CWIN expression in rice grains but none has reported on expression of INVINH in this species. We show that rice has 54 genes encoding putative invertase/pectin methylesterase inhibitors, seven of which are expressed exclusively during grain development. Our results suggest a more complex relationship between IAA, CWIN, and INVINH than previously proposed.
Collapse
|
26
|
Cuéllar Pérez A, Nagels Durand A, Vanden Bossche R, De Clercq R, Persiau G, Van Wees SCM, Pieterse CMJ, Gevaert K, De Jaeger G, Goossens A, Pauwels L. The non-JAZ TIFY protein TIFY8 from Arabidopsis thaliana is a transcriptional repressor. PLoS One 2014; 9:e84891. [PMID: 24416306 PMCID: PMC3885651 DOI: 10.1371/journal.pone.0084891] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/20/2013] [Indexed: 12/21/2022] Open
Abstract
Jasmonate (JA) signalling is mediated by the JASMONATE-ZIM DOMAIN (JAZ) repressor proteins, which are degraded upon JA perception to release downstream responses. The ZIM protein domain is characteristic of the larger TIFY protein family. It is currently unknown if the atypical member TIFY8 is involved in JA signalling. Here we show that the TIFY8 ZIM domain is functional and mediated interaction with PEAPOD proteins and NINJA. TIFY8 interacted with TOPLESS through NINJA and accordingly acted as a transcriptional repressor. TIFY8 expression was inversely correlated with JAZ expression during development and after infection with Pseudomonas syringae. Nevertheless, transgenic lines with altered TIFY8 expression did not show changes in JA sensitivity. Despite the functional ZIM domain, no interaction with JAZ proteins could be found. In contrast, TIFY8 was found in protein complexes involved in regulation of dephosphorylation, deubiquitination and O-linked N-acetylglucosamine modification suggesting an important role in nuclear signal transduction.
Collapse
Affiliation(s)
- Amparo Cuéllar Pérez
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Astrid Nagels Durand
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Robin Vanden Bossche
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Rebecca De Clercq
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Geert Persiau
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Saskia C. M. Van Wees
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Corné M. J. Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, Gent, Belgium
- Department of Biochemistry, Ghent University, Gent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Laurens Pauwels
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| |
Collapse
|
27
|
Wang S, Hagen G, Guilfoyle TJ. ARF-Aux/IAA interactions through domain III/IV are not strictly required for auxin-responsive gene expression. PLANT SIGNALING & BEHAVIOR 2013; 8:e24526. [PMID: 23603958 PMCID: PMC3909085 DOI: 10.4161/psb.24526] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Auxin response factors (ARFs), together with auxin/indole acetic acid proteins (Aux/IAAs), are transcription factors that play key roles in regulating auxin-responsive transcription in plants. Current models for auxin signaling predict that auxin response is dependent on ARF-Aux/IAA interactions mediated by the related protein-protein interaction domain (i.e., referred to as the CTD) found in the ARF and Aux/IAA C-terminal regions. When auxin concentrations in a cell are low, ARF activators residing on the promoters of auxin response genes are thought to be inactive because of the association with dominant Aux/IAA repressors. When auxin concentrations are elevated, the Aux/IAA repressors are recruited to auxin receptors and degraded via the ubiquitin-proteasome pathway. Destruction of the Aux/IAA repressors allows the ARF activators to function in derepressing/activating auxin response genes. While this auxin signaling pathway is simple and attractive, it is unclear whether auxin-regulated gene expression is solely dependent on ARF-Aux/IAA interactions. Here we show that auxin can affect the expression of auxin response genes in a manner that is independent of the ARF activator CTD.
Collapse
Affiliation(s)
- Shucai Wang
- Current affiliation: Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology; Northeast Normal University; Changchun, PR China
- Correspondence to: Shucai Wang,
| | - Gretchen Hagen
- Department of Biochemistry; University of Missouri; Columbia, MO USA
| | - Tom J. Guilfoyle
- Department of Biochemistry; University of Missouri; Columbia, MO USA
| |
Collapse
|
28
|
Akazawa T, Yasui K, Gen Y, Yamada N, Tomie A, Dohi O, Mitsuyoshi H, Yagi N, Itoh Y, Naito Y, Yoshikawa T. Aberrant expression of the PHF14 gene in biliary tract cancer cells. Oncol Lett 2013; 5:1849-1853. [PMID: 23833654 PMCID: PMC3700892 DOI: 10.3892/ol.2013.1278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/05/2013] [Indexed: 02/03/2023] Open
Abstract
DNA copy number aberrations in human biliary tract cancer (BTC) cell lines were investigated using a high-density oligonucleotide microarray. A novel homozygous deletion was detected at chromosomal region 7p21.3 in the OZ cell line. Further validation experiments using genomic PCR revealed a homozygous deletion of a single gene, plant homeodomain (PHD) finger protein 14 (PHF14). No PHF14 mRNA or protein expression was detected, thus demonstrating the absence of PHF14 expression in the OZ cell line. Although the PHD finger protein is considered to be involved in chromatin-mediated transcriptional regulation, little is known about the function of PHF14 in cancer. The present study observed that the knock down of PHF14 using small interfering RNA (siRNA) enhanced the growth of the BTC cells. These observations suggest that aberrant PHF14 expression may have a role in the tumorigenesis of BTC.
Collapse
Affiliation(s)
- Takako Akazawa
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Machida Y, Fukaki H, Araki T. Plant meristems and organogenesis: the new era of plant developmental research. PLANT & CELL PHYSIOLOGY 2013; 54:295-301. [PMID: 23468554 DOI: 10.1093/pcp/pct034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
30
|
Yoshida S, Saiga S, Weijers D. Auxin regulation of embryonic root formation. PLANT & CELL PHYSIOLOGY 2013; 54:325-32. [PMID: 23220820 DOI: 10.1093/pcp/pcs170] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The plant hormone auxin was initially identified as the bioactive substance that induces roots in plant tissue culture. In the past decades, mechanisms for auxin action, including its transport and response, have been described in detail. However, a molecular and cellular description of its role in root initiation is far from complete. In this review, we discuss recent advances in our understanding of auxin-dependent embryonic root formation. During this process, a root meristem is initiated in a precise and predictable position, and at a stage when the organism consists of relatively few cells. Recent studies have revealed mechanisms for local control of auxin transport, for cellular differences in auxin response components and cell type-specific chromatin regulation. The recent identification of biologically relevant target genes for auxin regulation during embryonic root initiation now also allows dissection of auxin-activated cellular processes. Finally, we discuss the potential for hormonal cross-regulation in embryonic root formation.
Collapse
Affiliation(s)
- Saiko Yoshida
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | |
Collapse
|