1
|
Miranda-Alban J, Sanchez-Luege N, Valbuena FM, Rangel C, Rebay I. The Abelson kinase and the Nedd4 family E3 ligases co-regulate Notch trafficking to limit signaling. J Cell Biol 2025; 224:e202407066. [PMID: 40183942 PMCID: PMC11970431 DOI: 10.1083/jcb.202407066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/25/2025] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Precise output from the conserved Notch signaling pathway governs a plethora of cellular processes and developmental transitions. Unlike other pathways that use a cytoplasmic relay, the Notch cell surface receptor transduces signaling directly to the nucleus, with endocytic trafficking providing critical regulatory nodes. Here we report that the cytoplasmic tyrosine kinase Abelson (Abl) facilitates Notch internalization into late endosomes/multivesicular bodies (LEs), thereby limiting signaling output in both ligand-dependent and -independent contexts. Abl phosphorylates the PPxY motif within Notch, a molecular target for its degradation via Nedd4 family ubiquitin ligases. We show that Su(dx), a family member, mediates the Abl-directed LE regulation of Notch via the PPxY, while another family member, Nedd4Lo, contributes to Notch internalization into LEs through both PPxY-dependent and -independent mechanisms. Our findings demonstrate how a network of posttranslational modifiers converging at LEs cooperatively modulates Notch signaling to ensure the precision and robustness of its cellular and developmental functions.
Collapse
Affiliation(s)
- Julio Miranda-Alban
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA
| | - Nicelio Sanchez-Luege
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA
| | - Fernando M. Valbuena
- Cell and Molecular Biology Graduate Program, University of Chicago, Chicago, IL, USA
| | - Chyan Rangel
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Ilaria Rebay
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA
- Cell and Molecular Biology Graduate Program, University of Chicago, Chicago, IL, USA
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Karampelias C, Liu KC, Tengholm A, Andersson O. Mechanistic insights and approaches for beta cell regeneration. Nat Chem Biol 2025:10.1038/s41589-024-01822-y. [PMID: 39881214 DOI: 10.1038/s41589-024-01822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 12/09/2024] [Indexed: 01/31/2025]
Abstract
Diabetes is characterized by variable loss of insulin-producing beta cells, and new regenerative approaches to increasing the functional beta cell mass of patients hold promise for reversing disease progression. In this Review, we summarize recent chemical biology breakthroughs advancing our knowledge of beta cell regeneration. We present current chemical-based tools, sensors and mechanistic insights into pathways that can be targeted to enhance beta cell regeneration in model organisms. We group the pathways according to the cellular processes they affect, that is, proliferation, conversion of other mature cell types to beta cells and beta cell differentiation from progenitor-like populations. We also suggest assays for assessing the functionality of the regenerated beta cells. Although regeneration processes differ between animal models, such as zebrafish, mice and pigs, regenerative mechanisms identified in any one animal model may be translatable to humans. Overall, chemical biology-based approaches in beta cell regeneration give hope that specific molecular pathways can be targeted to enhance beta cell regeneration.
Collapse
Affiliation(s)
- Christos Karampelias
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Ka-Cheuk Liu
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Olov Andersson
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden.
| |
Collapse
|
3
|
Gjorcheska S, Paudel S, McLeod S, Paulding D, Snape L, Sosa KC, Duan C, Kelsh R, Barske L. Sox10 is required for systemic initiation of bone mineralization. Development 2025; 152:dev204357. [PMID: 39791977 PMCID: PMC11833171 DOI: 10.1242/dev.204357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025]
Abstract
Heterozygous variants in SOX10 cause congenital syndromes affecting pigmentation, digestion, hearing, and neural development, primarily attributable to failed differentiation or loss of non-skeletal neural crest derivatives. We report here an additional, previously undescribed requirement for Sox10 in bone mineralization. Neither crest- nor mesoderm-derived bones initiate mineralization on time in zebrafish sox10 mutants, despite normal osteoblast differentiation and matrix production. Mutants are deficient in the Trpv6+ ionocytes that take up calcium from the environment, resulting in severe calcium deficiency. As these ionocytes derive from ectoderm, not crest, we hypothesized that the primary defect resides in a separate organ that systemically regulates ionocyte numbers. RNA sequencing revealed significantly elevated stanniocalcin (Stc1a), an anti-hypercalcemic hormone, in sox10 mutants. Stc1a inhibits calcium uptake in fish by repressing trpv6 expression and Trpv6+ ionocyte proliferation. Epistasis assays confirm excess Stc1a as the proximate cause of the calcium deficit. The pronephros-derived glands that synthesize Stc1a interact with sox10+ cells, but these cells are missing in mutants. We conclude that sox10+ crest-derived cells non-autonomously limit Stc1a production to allow the inaugural wave of calcium uptake necessary to initiate bone mineralization.
Collapse
Affiliation(s)
- Stefani Gjorcheska
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sandhya Paudel
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sarah McLeod
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - David Paulding
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Louisa Snape
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | | | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert Kelsh
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Lindsey Barske
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
4
|
Farahani RM. Neural differentiation in perspective: mitochondria as early programmers. Front Neurosci 2025; 18:1529855. [PMID: 39844856 PMCID: PMC11751005 DOI: 10.3389/fnins.2024.1529855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Neural differentiation during development of the nervous system has been extensively studied for decades. These efforts have culminated in the generation of a detailed map of developmental events that appear to be associated with emergence of committed cells in the nervous system. In this review the landscape of neural differentiation is revisited by focusing on abiotic signals that play a role in induction of neural differentiation. Evidence is presented regarding a chimeric landscape whereby abiotic signals generated by mitochondria orchestrate early events during neural differentiation. This early stage, characterised by mitochondrial hyperactivity, in turn triggers a late stage of differentiation by reprogramming the activity of biotic signals.
Collapse
Affiliation(s)
- Ramin M. Farahani
- IDR/Research and Education Network, Westmead, NSW, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Kuintzle R, Santat LA, Elowitz MB. Diversity in Notch ligand-receptor signaling interactions. eLife 2025; 12:RP91422. [PMID: 39751380 PMCID: PMC11698495 DOI: 10.7554/elife.91422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
The Notch signaling pathway uses families of ligands and receptors to transmit signals to nearby cells. These components are expressed in diverse combinations in different cell types, interact in a many-to-many fashion, both within the same cell (in cis) and between cells (in trans), and their interactions are modulated by Fringe glycosyltransferases. A fundamental question is how the strength of Notch signaling depends on which pathway components are expressed, at what levels, and in which cells. Here, we used a quantitative, bottom-up, cell-based approach to systematically characterize trans-activation, cis-inhibition, and cis-activation signaling efficiencies across a range of ligand and Fringe expression levels in Chinese hamster and mouse cell lines. Each ligand (Dll1, Dll4, Jag1, and Jag2) and receptor variant (Notch1 and Notch2) analyzed here exhibited a unique profile of interactions, Fringe dependence, and signaling outcomes. All four ligands were able to bind receptors in cis and in trans, and all ligands trans-activated both receptors, although Jag1-Notch1 signaling was substantially weaker than other ligand-receptor combinations. Cis-interactions were predominantly inhibitory, with the exception of the Dll1- and Dll4-Notch2 pairs, which exhibited cis-activation stronger than trans-activation. Lfng strengthened Delta-mediated trans-activation and weakened Jagged-mediated trans-activation for both receptors. Finally, cis-ligands showed diverse cis-inhibition strengths, which depended on the identity of the trans-ligand as well as the receptor. The map of receptor-ligand-Fringe interaction outcomes revealed here should help guide rational perturbation and control of the Notch pathway.
Collapse
Affiliation(s)
- Rachael Kuintzle
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Leah A Santat
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Howard Hughes Medical Institute, California Institute of TechnologyPasadenaUnited States
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Howard Hughes Medical Institute, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
6
|
Kothurkar AA, Patient GS, Noel NCL, Krzywańska AM, Carr BJ, Chu CJ, MacDonald RB. 'Iterative Bleaching Extends Multiplexity' facilitates simultaneous identification of all major retinal cell types. J Cell Sci 2024; 137:jcs263407. [PMID: 39540305 PMCID: PMC11827602 DOI: 10.1242/jcs.263407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
To understand the multicellular composition of tissues, and how it is altered during development, ageing and/or disease, we must visualise the complete cellular landscape. Currently, this is hindered by our limited ability to combine multiple cellular markers. To overcome this, we adapted a highly multiplexed immunofluorescence (IF) technique called 'Iterative Bleaching Extends Multiplexity' (IBEX) to the zebrafish retina. We optimised fluorescent antibody micro-conjugation to perform sequential rounds of labelling on a single tissue to simultaneously visualise all major retinal cell types with 11 cell-specific antibodies. We further adapted IBEX to be compatible with fluorescent transgenic reporter lines, in situ hybridisation chain reaction (HCR), and whole-mount immunofluorescence (WMIF). We applied IBEX at multiple stages to study the spatial and temporal relationships between glia and neurons during retinal development. Finally, we demonstrate the utility of IBEX across species by testing it on the turquoise killifish (Nothobranchius furzeri) and African clawed frog (Xenopus laevis) to glean large amounts of information from precious tissues. These techniques will revolutionise our ability to visualise multiple cell types in any organism where antibodies are readily available.
Collapse
Affiliation(s)
| | - Gregory S. Patient
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Nicole C. L. Noel
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | | | - Brittany J. Carr
- Department of Ophthalmology & Visual Sciences, University of Alberta, Edmonton, AB T5H 3V9, Canada
| | - Colin J. Chu
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Ryan B. MacDonald
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| |
Collapse
|
7
|
Massoz L, Bergemann D, Lavergne A, Reynders C, Désiront C, Goossens C, Flasse L, Peers B, Voz MM, Manfroid I. Negative cell cycle regulation by calcineurin is necessary for proper beta cell regeneration in zebrafish. eLife 2024; 12:RP88813. [PMID: 39383064 PMCID: PMC11464004 DOI: 10.7554/elife.88813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024] Open
Abstract
Stimulation of pancreatic beta cell regeneration could be a therapeutic lead to treat diabetes. Unlike humans, the zebrafish can efficiently regenerate beta cells, notably from ductal pancreatic progenitors. To gain insight into the molecular pathways involved in this process, we established the transcriptomic profile of the ductal cells after beta cell ablation in the adult zebrafish. These data highlighted the protein phosphatase calcineurin (CaN) as a new potential modulator of beta cell regeneration. We showed that CaN overexpression abolished the regenerative response, leading to glycemia dysregulation. On the opposite, CaN inhibition increased ductal cell proliferation and subsequent beta cell regeneration. Interestingly, the enhanced proliferation of the progenitors was paradoxically coupled with their exhaustion. This suggests that the proliferating progenitors are next entering in differentiation. CaN appears as a guardian which prevents an excessive progenitor proliferation to preserve the pool of progenitors. Altogether, our findings reveal CaN as a key player in the balance between proliferation and differentiation to enable a proper beta cell regeneration.
Collapse
Affiliation(s)
- Laura Massoz
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - David Bergemann
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Arnaud Lavergne
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
- GIGA-Genomics Core Facility, GIGA, University of LiègLiègeBelgium
| | - Célia Reynders
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Caroline Désiront
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Chiara Goossens
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Lydie Flasse
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Bernard Peers
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Marianne M Voz
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Isabelle Manfroid
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| |
Collapse
|
8
|
Mi J, Ren L, Andersson O. Leveraging zebrafish to investigate pancreatic development, regeneration, and diabetes. Trends Mol Med 2024; 30:932-949. [PMID: 38825440 DOI: 10.1016/j.molmed.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024]
Abstract
The zebrafish has become an outstanding model for studying organ development and tissue regeneration, which is prominently leveraged for studies of pancreatic development, insulin-producing β-cells, and diabetes. Although studied for more than two decades, many aspects remain elusive and it has only recently been possible to investigate these due to technical advances in transcriptomics, chemical-genetics, genome editing, drug screening, and in vivo imaging. Here, we review recent findings on zebrafish pancreas development, β-cell regeneration, and how zebrafish can be used to provide novel insights into gene functions, disease mechanisms, and therapeutic targets in diabetes, inspiring further use of zebrafish for the development of novel therapies for diabetes.
Collapse
Affiliation(s)
- Jiarui Mi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China.
| | - Lipeng Ren
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden.
| |
Collapse
|
9
|
Foran G, Hallam RD, Megaly M, Turgambayeva A, Antfolk D, Li Y, Luca VC, Necakov A. Notch1 Phase Separation Coupled Percolation facilitates target gene expression and enhancer looping. Sci Rep 2024; 14:21912. [PMID: 39300145 PMCID: PMC11413390 DOI: 10.1038/s41598-024-71634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
The Notch receptor is a pleiotropic signaling protein that translates intercellular ligand interactions into changes in gene expression via the nuclear localization of the Notch intracellular Domain (NICD). Using a combination of immunohistochemistry, RNA in situ, Optogenetics and super-resolution live imaging of transcription in human cells, we show that the N1ICD can form condensates that positively facilitate Notch target gene expression. We determined that N1ICD undergoes Phase Separation Coupled Percolation (PSCP) into transcriptional condensates, which recruit, enrich, and encapsulate a broad set of core transcriptional proteins. We show that the capacity for condensation is due to the intrinsically disordered transcriptional activation domain of the N1ICD. In addition, the formation of such transcriptional condensates acts to promote Notch-mediated super enhancer-looping and concomitant activation of the MYC protooncogene expression. Overall, we introduce a novel mechanism of Notch1 activity in which discrete changes in nuclear N1ICD abundance are translated into the assembly of transcriptional condensates that facilitate gene expression by enriching essential transcriptional machineries at target genomic loci.
Collapse
Affiliation(s)
- Gregory Foran
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Ryan Douglas Hallam
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Marvel Megaly
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Anel Turgambayeva
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Daniel Antfolk
- Department of Immunology, Moffitt Cancer Centre, Tampa, FL, USA
| | - Yifeng Li
- Department of Computer Science, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Vincent C Luca
- Department of Immunology, Moffitt Cancer Centre, Tampa, FL, USA
| | - Aleksandar Necakov
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
10
|
Albu M, Affolter E, Gentile A, Xu Y, Kikhi K, Howard S, Kuenne C, Priya R, Gunawan F, Stainier DYR. Distinct mechanisms regulate ventricular and atrial chamber wall formation. Nat Commun 2024; 15:8159. [PMID: 39289341 PMCID: PMC11408654 DOI: 10.1038/s41467-024-52340-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Tissues undergo distinct morphogenetic processes to achieve similarly shaped structures. In the heart, cardiomyocytes in both the ventricle and atrium build internal structures for efficient contraction. Ventricular wall formation (trabeculation) is initiated by cardiomyocyte delamination. How cardiomyocytes build the atrial wall is poorly understood. Using longitudinal imaging in zebrafish, we found that at least 25% of the atrial cardiomyocytes elongate along the long axis of the heart. These cell shape changes result in cell intercalation and convergent thickening, leading to the formation of the internal muscle network. We tested factors important for ventricular trabeculation including Nrg/ErbB and Notch signaling and found no evidence for their role in atrial muscle network formation. Instead, our data suggest that atrial cardiomyocyte elongation is regulated by Yap, which has not been implicated in trabeculation. Altogether, these data indicate that distinct cellular and molecular mechanisms build the internal muscle structures in the atrium and ventricle.
Collapse
Affiliation(s)
- Marga Albu
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Eileen Affolter
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Alessandra Gentile
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- MRC Centre for Neurodevelopmental Disorders, King's College, London, UK
| | - Yanli Xu
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Khrievono Kikhi
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Flow Cytometry Service Group, Max Planck for Heart and Lung Research, Bad Nauheim, Germany
| | - Sarah Howard
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Carsten Kuenne
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rashmi Priya
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Francis Crick Institute, London, UK
| | - Felix Gunawan
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute of Cell Biology, University of Münster, Münster, Germany
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
11
|
Foran G, Hallam RD, Megaly M, Turgambayeva A, Antfolk D, Li Y, Luca VC, Necakov A. Notch1 Phase Separation Coupled Percolation facilitates target gene expression and enhancer looping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.17.533124. [PMID: 39131356 PMCID: PMC11312450 DOI: 10.1101/2023.03.17.533124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The Notch receptor is a pleiotropic signaling protein that translates intercellular ligand interactions into changes in gene expression via the nuclear localization of the Notch intracellular Domain (NICD). Using a combination of immunohistochemistry, RNA in situ, Optogenetics and super-resolution live imaging of transcription in human cells, we show that the N1ICD can form condensates that positively facilitate Notch target gene expression. We determined that N1ICD undergoes Phase Separation Coupled Percolation (PSCP) into transcriptional condensates, which recruit, enrich, and encapsulate a broad set of core transcriptional proteins. We show that the capacity for condensation is due to the intrinsically disordered transcriptional activation domain of the N1ICD. In addition, the formation of such transcriptional condensates acts to promote Notch-mediated super enhancer-looping and concomitant activation of the MYC protooncogene expression. Overall, we introduce a novel mechanism of Notch1 activity in which discrete changes in nuclear N1ICD abundance are translated into the assembly of transcriptional condensates that facilitate gene expression by enriching essential transcriptional machineries at target genomic loci.
Collapse
Affiliation(s)
- Gregory Foran
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| | - Ryan Douglas Hallam
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| | - Marvel Megaly
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| | - Anel Turgambayeva
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| | - Daniel Antfolk
- Department of Immunology, Moffitt Cancer Centre, Tampa, FL, USA
| | - Yifeng Li
- Department of Computer Science, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| | - Vincent C. Luca
- Department of Immunology, Moffitt Cancer Centre, Tampa, FL, USA
| | - Aleksandar Necakov
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| |
Collapse
|
12
|
Kuintzle R, Santat LA, Elowitz MB. Diversity in Notch ligand-receptor signaling interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.24.554677. [PMID: 37662208 PMCID: PMC10473737 DOI: 10.1101/2023.08.24.554677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The Notch signaling pathway uses families of ligands and receptors to transmit signals to nearby cells. These components are expressed in diverse combinations in different cell types, interact in a many-to-many fashion, both within the same cell (in cis) and between cells (in trans), and their interactions are modulated by Fringe glycosyltransferases. A fundamental question is how the strength of Notch signaling depends on which pathway components are expressed, at what levels, and in which cells. Here, we used a quantitative, bottom-up, cell-based approach to systematically characterize trans-activation, cis-inhibition, and cis-activation signaling efficiencies across a range of ligand and Fringe expression levels in two mammalian cell types. Each ligand (Dll1, Dll4, Jag1, and Jag2) and receptor variant (Notch1 and Notch2) analyzed here exhibited a unique profile of interactions, Fringe-dependence, and signaling outcomes. All four ligands were able to bind receptors in cis and in trans, and all ligands trans-activated both receptors, although Jag1-Notch1 signaling was substantially weaker than other ligand-receptor combinations. Cis-interactions were predominantly inhibitory, with the exception of the Dll1- and Dll4-Notch2 pairs, which exhibited cis-activation stronger than trans-activation. Lfng strengthened Delta-mediated trans-activation and weakened Jagged-mediated trans-activation for both receptors. Finally, cis-ligands showed diverse cis-inhibition strengths, which depended on the identity of the trans-ligand as well as the receptor. The map of receptor-ligand-Fringe interaction outcomes revealed here should help guide rational perturbation and control of the Notch pathway.
Collapse
|
13
|
Wopat S, Adhyapok P, Daga B, Crawford JM, Norman J, Bagwell J, Peskin B, Magre I, Fogerson SM, Levic DS, Di Talia S, Kiehart DP, Charbonneau P, Bagnat M. Notochord segmentation in zebrafish controlled by iterative mechanical signaling. Dev Cell 2024; 59:1860-1875.e5. [PMID: 38697108 PMCID: PMC11265980 DOI: 10.1016/j.devcel.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/25/2024] [Accepted: 04/12/2024] [Indexed: 05/04/2024]
Abstract
In bony fishes, patterning of the vertebral column, or spine, is guided by a metameric blueprint established in the notochord sheath. Notochord segmentation begins days after somitogenesis concludes and can occur in its absence. However, somite patterning defects lead to imprecise notochord segmentation, suggesting that these processes are linked. Here, we identify that interactions between the notochord and the axial musculature ensure precise spatiotemporal segmentation of the zebrafish spine. We demonstrate that myoseptum-notochord linkages drive notochord segment initiation by locally deforming the notochord extracellular matrix and recruiting focal adhesion machinery at these contact points. Irregular somite patterning alters this mechanical signaling, causing non-sequential and dysmorphic notochord segmentation, leading to altered spine development. Using a model that captures myoseptum-notochord interactions, we find that a fixed spatial interval is critical for driving sequential segment initiation. Thus, mechanical coupling of axial tissues facilitates spatiotemporal spine patterning.
Collapse
Affiliation(s)
- Susan Wopat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Priyom Adhyapok
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Bijoy Daga
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | | | - James Norman
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Jennifer Bagwell
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Brianna Peskin
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Indrasen Magre
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | | | - Daniel S Levic
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Stefano Di Talia
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | | | - Patrick Charbonneau
- Department of Chemistry, Duke University, Durham, NC 27708, USA; Department of Physics, Duke University, Durham, NC 27708, USA.
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
14
|
Doostdar P, Hawley J, Chopra K, Marinopoulou E, Lea R, Arashvand K, Biga V, Papalopulu N, Soto X. Cell coupling compensates for changes in single-cell Her6 dynamics and provides phenotypic robustness. Development 2024; 151:dev202640. [PMID: 38682303 PMCID: PMC11190438 DOI: 10.1242/dev.202640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
This paper investigates the effect of altering the protein expression dynamics of the bHLH transcription factor Her6 at the single-cell level in the embryonic zebrafish telencephalon. Using a homozygote endogenous Her6:Venus reporter and 4D single-cell tracking, we show that Her6 oscillates in neural telencephalic progenitors and that the fusion of protein destabilisation (PEST) domain alters its expression dynamics, causing most cells to downregulate Her6 prematurely. However, counterintuitively, oscillatory cells increase, with some expressing Her6 at high levels, resulting in increased heterogeneity of Her6 expression in the population. These tissue-level changes appear to be an emergent property of coupling between single-cells, as revealed by experimentally disrupting Notch signalling and by computationally modelling alterations in Her6 protein stability. Despite the profound differences in the single-cell Her6 dynamics, the size of the telencephalon is only transiently altered and differentiation markers do not exhibit significant differences early on; however, a small increase is observed at later developmental stages. Our study suggests that cell coupling provides a compensation strategy, whereby an almost normal phenotype is maintained even though single-cell gene expression dynamics are abnormal, granting phenotypic robustness.
Collapse
Affiliation(s)
- Parnian Doostdar
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Joshua Hawley
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Kunal Chopra
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Elli Marinopoulou
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Robert Lea
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Kiana Arashvand
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Veronica Biga
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Nancy Papalopulu
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Ximena Soto
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
15
|
Xu Y, Mao S, Fan H, Wan J, Wang L, Zhang M, Zhu S, Yuan J, Lu Y, Wang Z, Yu B, Jiang Z, Huang Y. LINC MIR503HG Controls SC-β Cell Differentiation and Insulin Production by Targeting CDH1 and HES1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305631. [PMID: 38243869 PMCID: PMC10987150 DOI: 10.1002/advs.202305631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/03/2024] [Indexed: 01/22/2024]
Abstract
Stem cell-derived pancreatic progenitors (SC-PPs), as an unlimited source of SC-derived β (SC-β) cells, offers a robust tool for diabetes treatment in stem cell-based transplantation, disease modeling, and drug screening. Whereas, PDX1+/NKX6.1+ PPs enhances the subsequent endocrine lineage specification and gives rise to glucose-responsive SC-β cells in vivo and in vitro. To identify the regulators that promote induction efficiency and cellular function maturation, single-cell RNA-sequencing is performed to decipher the transcriptional landscape during PPs differentiation. The comprehensive evaluation of functionality demonstrated that manipulating LINC MIR503HG using CRISPR in PP cell fate decision can improve insulin synthesis and secretion in mature SC-β cells, without effects on liver lineage specification. Importantly, transplantation of MIR503HG-/- SC-β cells in recipients significantly restored blood glucose homeostasis, accompanied by serum C-peptide release and an increase in body weight. Mechanistically, by releasing CtBP1 occupying the CDH1 and HES1 promoters, the decrease in MIR503HG expression levels provided an excellent extracellular niche and appropriate Notch signaling activation for PPs following differentiation. Furthermore, this exhibited higher crucial transcription factors and mature epithelial markers in CDH1High expressed clusters. Altogether, these findings highlighted MIR503HG as an essential and exclusive PP cell fate specification regulator with promising therapeutic potential for patients with diabetes.
Collapse
Affiliation(s)
- Yang Xu
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
- Center of Gallbladder DiseaseShanghai East HospitalInstitute of Gallstone DiseaseSchool of MedicineTongji UniversityShanghai200092China
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Susu Mao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationNMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsCo‐innovation Center of NeuroregenerationNantong UniversityNantong226001China
| | - Haowen Fan
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Jian Wan
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Lin Wang
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
- Department of Graduate SchoolDalian Medical UniversityDalianLiaoning116000China
| | - Mingyu Zhang
- Department of Nuclear MedicineBeijing Friendship HospitalAffiliated to Capital Medical UniversityBeijing100050China
| | - Shajun Zhu
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Jin Yuan
- Department of Endocrinology and MetabolismAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Yuhua Lu
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Zhiwei Wang
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationNMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsCo‐innovation Center of NeuroregenerationNantong UniversityNantong226001China
| | - Zhaoyan Jiang
- Center of Gallbladder DiseaseShanghai East HospitalInstitute of Gallstone DiseaseSchool of MedicineTongji UniversityShanghai200092China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationNMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsCo‐innovation Center of NeuroregenerationNantong UniversityNantong226001China
| |
Collapse
|
16
|
Koparir A, Lekszas C, Keseroglu K, Rose T, Rappl L, Rad A, Maroofian R, Narendran N, Hasanzadeh A, Karimiani EG, Boschann F, Kornak U, Klopocki E, Özbudak EM, Vona B, Haaf T, Liedtke D. Zebrafish as a model to investigate a biallelic gain-of-function variant in MSGN1, associated with a novel skeletal dysplasia syndrome. Hum Genomics 2024; 18:23. [PMID: 38448978 PMCID: PMC10916241 DOI: 10.1186/s40246-024-00593-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND/OBJECTIVES Rare genetic disorders causing specific congenital developmental abnormalities often manifest in single families. Investigation of disease-causing molecular features are most times lacking, although these investigations may open novel therapeutic options for patients. In this study, we aimed to identify the genetic cause in an Iranian patient with severe skeletal dysplasia and to model its molecular function in zebrafish embryos. RESULTS The proband displays short stature and multiple skeletal abnormalities, including mesomelic dysplasia of the arms with complete humero-radio-ulna synostosis, arched clavicles, pelvic dysplasia, short and thin fibulae, proportionally short vertebrae, hyperlordosis and mild kyphosis. Exome sequencing of the patient revealed a novel homozygous c.374G > T, p.(Arg125Leu) missense variant in MSGN1 (NM_001105569). MSGN1, a basic-Helix-Loop-Helix transcription factor, plays a crucial role in formation of presomitic mesoderm progenitor cells/mesodermal stem cells during early developmental processes in vertebrates. Initial in vitro experiments show protein stability and correct intracellular localization of the novel variant in the nucleus and imply retained transcription factor function. To test the pathogenicity of the detected variant, we overexpressed wild-type and mutant msgn1 mRNA in zebrafish embryos and analyzed tbxta (T/brachyury/ntl). Overexpression of wild-type or mutant msgn1 mRNA significantly reduces tbxta expression in the tailbud compared to control embryos. Mutant msgn1 mRNA injected embryos depict a more severe effect, implying a gain-of-function mechanism. In vivo analysis on embryonic development was performed by clonal msgn1 overexpression in zebrafish embryos further demonstrated altered cell compartments in the presomitic mesoderm, notochord and pectoral fin buds. Detection of ectopic tbx6 and bmp2 expression in these embryos hint to affected downstream signals due to Msgn1 gain-of-function. CONCLUSION In contrast to loss-of-function effects described in animal knockdown models, gain-of-function of MSGN1 explains the only mildly affected axial skeleton of the proband and rather normal vertebrae. In this context we observed notochord bending and potentially disruption of pectoral fin buds/upper extremity after overexpression of msgn1 in zebrafish embryos. The latter might result from Msgn1 function on mesenchymal stem cells or on chondrogenesis in these regions. In addition, we detected ectopic tbx6 and bmp2a expression after gain of Msgn1 function in zebrafish, which are interconnected to short stature, congenital scoliosis, limb shortening and prominent skeletal malformations in patients. Our findings highlight a rare, so far undescribed skeletal dysplasia syndrome associated with a gain-of-function mutation in MSGN1 and hint to its molecular downstream effectors.
Collapse
Affiliation(s)
- Asuman Koparir
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Caroline Lekszas
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Kemal Keseroglu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Thalia Rose
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Lena Rappl
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Aboulfazl Rad
- Cellular and Molecular Research Centre, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Nakul Narendran
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Atefeh Hasanzadeh
- Cellular and Molecular Research Centre, Sabzevar University of Medical Sciences, Sabzevar, 009851, Iran
| | | | - Felix Boschann
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Kornak
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Eva Klopocki
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Ertuğrul M Özbudak
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Daniel Liedtke
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
17
|
Ambrosio EMG, Bailey CSL, Unterweger IA, Christensen JB, Bruchez MP, Lundegaard PR, Ober EA. LiverZap: a chemoptogenetic tool for global and locally restricted hepatocyte ablation to study cellular behaviours in liver regeneration. Development 2024; 151:dev202217. [PMID: 38381702 DOI: 10.1242/dev.202217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/04/2024] [Indexed: 02/23/2024]
Abstract
The liver restores its mass and architecture after injury. Yet, investigating morphogenetic cell behaviours and signals that repair tissue architecture at high spatiotemporal resolution remains challenging. We developed LiverZap, a tuneable chemoptogenetic liver injury model in zebrafish. LiverZap employs the formation of a binary FAP-TAP photosensitiser followed by brief near-infrared illumination inducing hepatocyte-specific death and recapitulating mammalian liver injury types. The tool enables local hepatocyte ablation and extended live imaging capturing regenerative cell behaviours, which is crucial for studying cellular interactions at the interface of healthy and damaged tissue. Applying LiverZap, we show that targeted hepatocyte ablation in a small region of interest is sufficient to trigger local liver progenitor-like cell (LPC)-mediated regeneration, challenging the current understanding of liver regeneration. Surprisingly, the LPC response is also elicited in adjacent uninjured tissue, at up to 100 µm distance to the injury. Moreover, dynamic biliary network rearrangement suggests active cell movements from uninjured tissue in response to substantial hepatocyte loss as an integral step of LPC-mediated liver regeneration. This precisely targetable liver cell ablation tool will enable the discovery of key molecular and morphogenetic regeneration paradigms.
Collapse
Affiliation(s)
- Elizabeth M G Ambrosio
- Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- University of Copenhagen, Department of Biomedical Sciences, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Charlotte S L Bailey
- Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Iris A Unterweger
- Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- University of Copenhagen, Department of Biomedical Sciences, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Jens B Christensen
- Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge University, Cambridge CB2 1NQ, UK
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge CB2 3DY, UK
| | - Marcel P Bruchez
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15217, USA
| | - Pia R Lundegaard
- University of Copenhagen, Department of Biomedical Sciences, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Elke A Ober
- Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- University of Copenhagen, Department of Biomedical Sciences, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
18
|
Lee S, Memon A, Chae SC, Shin D, Choi TY. Epcam regulates intrahepatic bile duct reconstruction in zebrafish, providing a potential model for primary cholangitis model. Biochem Biophys Res Commun 2024; 696:149512. [PMID: 38224664 DOI: 10.1016/j.bbrc.2024.149512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Epithelial cell adhesion molecules (EpCAMs) have been identified as surface markers of proliferating ductal cells, which are referred to as liver progenitor cells (LPCs), during liver regeneration and correspond to malignancies. These cells can differentiate into hepatocytes and biliary epithelial cells (BECs) in vitro. EpCAM-positive LPCs are involved in liver regeneration following severe liver injury; however, the in vivo function of EpCAMs in the regenerating liver remains unclear. In the present study, we used a zebrafish model of LPC-driven liver regeneration to elucidate the function of EpCAMs in the regenerating liver in vivo. Proliferating ductal cells were observed after severe hepatocyte loss in the zebrafish model. Analyses of the liver size as well as hepatocyte and BEC markers revealed successful conversion of LPCs to hepatocytes and BECs in epcam mutants. Notably, epcam mutants exhibited severe defects in intrahepatic duct maturation and bile acid secretion in regenerating hepatocytes, suggesting that epcam plays a critical role in intrahepatic duct reconstruction during LPC-driven liver regeneration. Our findings provide insights into human diseases involving non-parenchymal cells, such as primary biliary cholangitis, by highlighting the regulatory effect of epcam on intrahepatic duct reconstruction.
Collapse
Affiliation(s)
- Siyeo Lee
- Department of Pathology, Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea; Department of Biomedical Science, Graduate School Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Azra Memon
- Department of Pathology, Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea
| | - Soo-Cheon Chae
- Department of Pathology, Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea
| | - Donghun Shin
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Tae-Young Choi
- Department of Pathology, Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea; Department of Biomedical Science, Graduate School Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea.
| |
Collapse
|
19
|
Unterweger IA, Klepstad J, Hannezo E, Lundegaard PR, Trusina A, Ober EA. Lineage tracing identifies heterogeneous hepatoblast contribution to cell lineages and postembryonic organ growth dynamics. PLoS Biol 2023; 21:e3002315. [PMID: 37792696 PMCID: PMC10550115 DOI: 10.1371/journal.pbio.3002315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/29/2023] [Indexed: 10/06/2023] Open
Abstract
To meet the physiological demands of the body, organs need to establish a functional tissue architecture and adequate size as the embryo develops to adulthood. In the liver, uni- and bipotent progenitor differentiation into hepatocytes and biliary epithelial cells (BECs), and their relative proportions, comprise the functional architecture. Yet, the contribution of individual liver progenitors at the organ level to both fates, and their specific proportion, is unresolved. Combining mathematical modelling with organ-wide, multispectral FRaeppli-NLS lineage tracing in zebrafish, we demonstrate that a precise BEC-to-hepatocyte ratio is established (i) fast, (ii) solely by heterogeneous lineage decisions from uni- and bipotent progenitors, and (iii) independent of subsequent cell type-specific proliferation. Extending lineage tracing to adulthood determined that embryonic cells undergo spatially heterogeneous three-dimensional growth associated with distinct environments. Strikingly, giant clusters comprising almost half a ventral lobe suggest lobe-specific dominant-like growth behaviours. We show substantial hepatocyte polyploidy in juveniles representing another hallmark of postembryonic liver growth. Our findings uncover heterogeneous progenitor contributions to tissue architecture-defining cell type proportions and postembryonic organ growth as key mechanisms forming the adult liver.
Collapse
Affiliation(s)
- Iris. A. Unterweger
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem), Copenhagen N, Denmark
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen N, Denmark
| | - Julie Klepstad
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- Andalusian Center for Developmental Biology, CSIC, University Pablo de Olavide, Seville, Spain
| | - Edouard Hannezo
- Institute of Science and Technology, Klosterneuburg, Austria
| | - Pia R. Lundegaard
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen N, Denmark
| | - Ala Trusina
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Elke A. Ober
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem), Copenhagen N, Denmark
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen N, Denmark
| |
Collapse
|
20
|
Matsuda H, Kubota Y. Zebrafish pancreatic β cell clusters undergo stepwise regeneration using Neurod1-expressing cells from different cell lineages. Cell Tissue Res 2023; 394:131-144. [PMID: 37474621 DOI: 10.1007/s00441-023-03805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/30/2023] [Indexed: 07/22/2023]
Abstract
Pancreatic β cell clusters produce insulin and play a central role in glucose homeostasis. The regenerative capacity of mammalian β cells is limited and the loss of β cells causes diabetes. In contrast, zebrafish β cell clusters have a high regenerative capacity, making them an attractive model to study β cell cluster regeneration. How zebrafish β cell clusters regenerate, when the regeneration process is complete, and the identification of the cellular source of regeneration are fundamental questions that require investigation. Here, using larval and adult zebrafish, we demonstrate that pancreatic β cell clusters undergo a two-step regeneration process, regenerating functionality and then β cell numbers. Additionally, we found that all regenerating pancreatic β cells arose from Neurod1-expressing cells and that cells from different lineages contribute to both functional and β cell number recovery throughout their life. Furthermore, we found that during development and neogenesis, as well as regeneration, all β cells undergo Neurod1expression in zebrafish. Together, these results shed light on the fundamental cellular mechanisms underlying β cell cluster development, neogenesis, and regeneration.
Collapse
Affiliation(s)
- Hiroki Matsuda
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan.
- R&D division, Repli-tech Co., Ltd., Shibuya-ku, 150-0012, Japan.
| | - Yukihiko Kubota
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| |
Collapse
|
21
|
Ruijmbeek CW, Housley F, Idrees H, Housley MP, Pestel J, Keller L, Lai JK, van der Linde HC, Willemsen R, Piesker J, Al-Hassnan ZN, Almesned A, Dalinghaus M, van den Bersselaar LM, van Slegtenhorst MA, Tessadori F, Bakkers J, van Ham TJ, Stainier DY, Verhagen JM, Reischauer S. Biallelic variants in FLII cause pediatric cardiomyopathy by disrupting cardiomyocyte cell adhesion and myofibril organization. JCI Insight 2023; 8:e168247. [PMID: 37561591 PMCID: PMC10544232 DOI: 10.1172/jci.insight.168247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/20/2023] [Indexed: 08/12/2023] Open
Abstract
Pediatric cardiomyopathy (CM) represents a group of rare, severe disorders that affect the myocardium. To date, the etiology and mechanisms underlying pediatric CM are incompletely understood, hampering accurate diagnosis and individualized therapy development. Here, we identified biallelic variants in the highly conserved flightless-I (FLII) gene in 3 families with idiopathic, early-onset dilated CM. We demonstrated that patient-specific FLII variants, when brought into the zebrafish genome using CRISPR/Cas9 genome editing, resulted in the manifestation of key aspects of morphological and functional abnormalities of the heart, as observed in our patients. Importantly, using these genetic animal models, complemented with in-depth loss-of-function studies, we provided insights into the function of Flii during ventricular chamber morphogenesis in vivo, including myofibril organization and cardiomyocyte cell adhesion, as well as trabeculation. In addition, we identified Flii function to be important for the regulation of Notch and Hippo signaling, crucial pathways associated with cardiac morphogenesis and function. Taken together, our data provide experimental evidence for a role for FLII in the pathogenesis of pediatric CM and report biallelic variants as a genetic cause of pediatric CM.
Collapse
Affiliation(s)
- Claudine W.B. Ruijmbeek
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Filomena Housley
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hafiza Idrees
- Medical Clinic I (Cardiology/Angiology) and Campus Kerckhoff, Justus-Liebig-University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen/Bad Nauheim, Germany
| | - Michael P. Housley
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jenny Pestel
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Leonie Keller
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jason K.H. Lai
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Herma C. van der Linde
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Janett Piesker
- Scientific Service Group Microscopy, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Zuhair N. Al-Hassnan
- Department of Medical Genetics, and
- Cardiovascular Genetics Program, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | | | - Michiel Dalinghaus
- Department of Pediatric Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Lisa M. van den Bersselaar
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marjon A. van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Federico Tessadori
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
- Department of Pediatric Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Tjakko J. van Ham
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Didier Y.R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen/Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), RheinMain partner site, Bad Nauheim, Germany
| | - Judith M.A. Verhagen
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sven Reischauer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Medical Clinic I (Cardiology/Angiology) and Campus Kerckhoff, Justus-Liebig-University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen/Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), RheinMain partner site, Bad Nauheim, Germany
| |
Collapse
|
22
|
Mi J, Liu KC, Andersson O. Decoding pancreatic endocrine cell differentiation and β cell regeneration in zebrafish. SCIENCE ADVANCES 2023; 9:eadf5142. [PMID: 37595046 PMCID: PMC10438462 DOI: 10.1126/sciadv.adf5142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/20/2023] [Indexed: 08/20/2023]
Abstract
In contrast to mice, zebrafish have an exceptional yet elusive ability to replenish lost β cells in adulthood. Understanding this framework would provide mechanistic insights for β cell regeneration, which may be extrapolated to humans. Here, we characterize a krt4-expressing ductal cell type, which is distinct from the putative Notch-responsive cells, showing neogenic competence and giving rise to the majority of endocrine cells during postembryonic development. Furthermore, we demonstrate a marked ductal remodeling process featuring a Notch-responsive to krt4+ luminal duct transformation during late development, indicating several origins of krt4+ ductal cells displaying similar transcriptional patterns. Single-cell transcriptomics upon a series of time points during β cell regeneration unveil a previously unrecognized dlb+ transitional endocrine precursor cell, distinct regulons, and a differentiation trajectory involving cellular shuffling through differentiation and dedifferentiation dynamics. These results establish a model of zebrafish pancreatic endocrinogenesis and highlight key values of zebrafish for translational studies of β cell regeneration.
Collapse
Affiliation(s)
| | - Ka-Cheuk Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | | |
Collapse
|
23
|
Giardoglou P, Deloukas P, Dedoussis G, Beis D. Cfdp1 Is Essential for Cardiac Development and Function. Cells 2023; 12:1994. [PMID: 37566073 PMCID: PMC10417793 DOI: 10.3390/cells12151994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the prevalent cause of mortality worldwide. A combination of environmental and genetic effectors modulates the risk of developing them. Thus, it is vital to identify candidate genes and elucidate their role in the manifestation of the disease. Large-scale human studies have revealed the implication of Craniofacial Development Protein 1 (CFDP1) in Coronary Artery Disease (CAD). CFDP1 belongs to the evolutionary conserved Bucentaur (BCNT) family, and to date, its function and mechanism of action in Cardiovascular Development are still unclear. We utilized zebrafish to investigate the role of cfdp1 in the developing heart due to the high genomic homology, similarity in heart physiology, and ease of experimental manipulations. We showed that cfdp1 was expressed during development, and we tested two morpholinos and generated a cfdp1 mutant line. The cfdp1-/- embryos developed arrhythmic hearts and exhibited defective cardiac performance, which led to a lethal phenotype. Findings from both knockdown and knockout experiments showed that abrogation of cfdp1 leads to downregulation of Wnt signaling in embryonic hearts during valve development but without affecting Notch activation in this process. The cfdp1 zebrafish mutant line provides a valuable tool for unveiling the novel mechanism of regulating cardiac physiology and function. cfdp1 is essential for cardiac development, a previously unreported phenotype most likely due to early lethality in mice. The detected phenotype of bradycardia and arrhythmias is an observation with potential clinical relevance for humans carrying heterozygous CFDP1 mutations and their risk of developing CAD.
Collapse
Affiliation(s)
- Panagiota Giardoglou
- Zebrafish Disease Model Laboratory, Center for Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 17676 Athens, Greece;
| | - Panos Deloukas
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London Medical School, Queen Mary University of London, London E1 4NS, UK;
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 17676 Athens, Greece;
| | - Dimitris Beis
- Zebrafish Disease Model Laboratory, Center for Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
- Laboratory of Biological Chemistry, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
24
|
Basile G, Vetere A, Hu J, Ijaduola O, Zhang Y, Liu KC, Eltony AM, De Jesus DF, Fukuda K, Doherty G, Leech CA, Chepurny OG, Holz GG, Yun SH, Andersson O, Choudhary A, Wagner BK, Kulkarni RN. Excess pancreatic elastase alters acinar-β cell communication by impairing the mechano-signaling and the PAR2 pathways. Cell Metab 2023; 35:1242-1260.e9. [PMID: 37339634 PMCID: PMC10834355 DOI: 10.1016/j.cmet.2023.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/21/2023] [Accepted: 05/17/2023] [Indexed: 06/22/2023]
Abstract
Type 1 (T1D) or type 2 diabetes (T2D) are caused by a deficit of functional insulin-producing β cells. Thus, the identification of β cell trophic agents could allow the development of therapeutic strategies to counteract diabetes. The discovery of SerpinB1, an elastase inhibitor that promotes human β cell growth, prompted us to hypothesize that pancreatic elastase (PE) regulates β cell viability. Here, we report that PE is up-regulated in acinar cells and in islets from T2D patients, and negatively impacts β cell viability. Using high-throughput screening assays, we identified telaprevir as a potent PE inhibitor that can increase human and rodent β cell viability in vitro and in vivo and improve glucose tolerance in insulin-resistant mice. Phospho-antibody microarrays and single-cell RNA sequencing analysis identified PAR2 and mechano-signaling pathways as potential mediators of PE. Taken together, our work highlights PE as a potential regulator of acinar-β cell crosstalk that acts to limit β cell viability, leading to T2D.
Collapse
Affiliation(s)
- Giorgio Basile
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Amedeo Vetere
- Chemical Biology and Therapeutics Science Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jiang Hu
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Oluwaseun Ijaduola
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Yi Zhang
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Ka-Cheuk Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Amira M Eltony
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dario F De Jesus
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Kazuki Fukuda
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Grace Doherty
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Colin A Leech
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, NY 13210, USA
| | - Oleg G Chepurny
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, NY 13210, USA
| | - George G Holz
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, NY 13210, USA; Department of Pharmacology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY 13210, USA
| | - Seok-Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Bridget K Wagner
- Chemical Biology and Therapeutics Science Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Rohit N Kulkarni
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA.
| |
Collapse
|
25
|
Ma J, Yang Z, Huang Z, Li L, Huang J, Chen J, Ni R, Luo L, He J. Rngtt governs biliary-derived liver regeneration initiation by transcriptional regulation of mTORC1 and Dnmt1 in zebrafish. Hepatology 2023; 78:167-178. [PMID: 36724876 DOI: 10.1097/hep.0000000000000186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/23/2022] [Indexed: 02/03/2023]
Abstract
In cases of end-stage liver diseases, the proliferation of existing hepatocytes is compromised, a feature of human chronic liver disease, in which most hepatocytes are dysfunctional. So far, liver transplantation represents the only curative therapeutic solution for advanced liver diseases, and the shortage of donor organs leads to high morbidity and mortality worldwide. The promising treatment is to prompt the biliary epithelial cells (BECs) transdifferentiation. However, the critical factors governing the initiation of BEC-derived liver regeneration are largely unknown. The zebrafish has advantages in large-scale genetic screens to identify the critical factors involved in liver regeneration. Here, we combined N-ethyl-N-nitrosourea screen, positional cloning, transgenic lines, antibody staining, and in situ hybridization methods and identified a liver regeneration defect mutant ( lrd ) using the zebrafish extensive liver injury model. Through positional cloning and genomic sequencing, we mapped the mutation site to rngtt . Loss of rngtt leads to the defects of BEC dedifferentiation, bipotential progenitor cell activation, and cell proliferation in the initiation stage of liver regeneration. The transdifferentiation from BECs to hepatocytes did not occur even at the late stage of liver regeneration. Mechanically, Rngtt transcriptionally regulates the attachment of mRNA cap to mTOR complex 1 (mTORC1) components and dnmt1 to maintain the activation of mTORC1 and DNA methylation in BECs after severe liver injury and prompt BEC to hepatocyte conversion. Furthermore, rptor and dnmt1 mutants displayed the same liver regeneration defects as rngtt mutation. In conclusion, our results suggest Rngtt is a new factor that initiates BEC-derived liver regeneration.
Collapse
Affiliation(s)
- Jianlong Ma
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Zhuolin Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Zhuofu Huang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Linke Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Jingliang Huang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Jingying Chen
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
- University of Chinese Academy of Sciences (Chongqing), Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Beibei, Chongqing, China
| | - Rui Ni
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| |
Collapse
|
26
|
Peskin B, Norman J, Bagwell J, Lin A, Adhyapok P, Di Talia S, Bagnat M. Dynamic BMP signaling mediates notochord segmentation in zebrafish. Curr Biol 2023; 33:2574-2581.e3. [PMID: 37285843 PMCID: PMC11455448 DOI: 10.1016/j.cub.2023.05.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/12/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023]
Abstract
The vertebrate spine is a metameric structure composed of alternating vertebral bodies (centra) and intervertebral discs.1 Recent studies in zebrafish have shown that the epithelial sheath surrounding the notochord differentiates into alternating cartilage-like (col2a1/col9a2+) and mineralizing (entpd5a+) segments which serve as a blueprint for centra formation.2,3,4,5 This process also defines the trajectories of migrating sclerotomal cells that form the mature vertebral bodies.4 Previous work demonstrated that notochord segmentation is typically sequential and involves the segmented activation of Notch signaling.2 However, it is unclear how Notch is activated in an alternating and sequential fashion. Furthermore, the molecular components that define segment size, regulate segment growth, and produce sharp segment boundaries have not been identified. In this study, we uncover that a BMP signaling wave acts upstream of Notch during zebrafish notochord segmentation. Using genetically encoded reporters of BMP activity and signaling pathway components, we show that BMP signaling is dynamic as axial patterning progresses, leading to the sequential formation of mineralizing domains in the notochord sheath. Genetic manipulations reveal that type I BMP receptor activation is sufficient to ectopically trigger Notch signaling. Moreover, loss of Bmpr1ba and Bmpr1aa or Bmp3 function disrupts ordered segment formation and growth, which is recapitulated by notochord-specific overexpression of the BMP antagonist, Noggin3. Our data suggest that BMP signaling in the notochord sheath precedes Notch activation and instructs segment growth, facilitating proper spine morphogenesis.
Collapse
Affiliation(s)
- Brianna Peskin
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - James Norman
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jennifer Bagwell
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Adam Lin
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Priyom Adhyapok
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Stefano Di Talia
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
27
|
Mi J, Andersson O. Efficient knock-in method enabling lineage tracing in zebrafish. Life Sci Alliance 2023; 6:e202301944. [PMID: 36878640 PMCID: PMC9990459 DOI: 10.26508/lsa.202301944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Here, we devised a cloning-free 3' knock-in strategy for zebrafish using PCR amplified dsDNA donors that avoids disrupting the targeted genes. The dsDNA donors carry genetic cassettes coding for fluorescent proteins and Cre recombinase in frame with the endogenous gene but separated from it by self-cleavable peptides. Primers with 5' AmC6 end-protections generated PCR amplicons with increased integration efficiency that were coinjected with preassembled Cas9/gRNA ribonucleoprotein complexes for early integration. We targeted four genetic loci (krt92, nkx6.1, krt4, and id2a) and generated 10 knock-in lines, which function as reporters for the endogenous gene expression. The knocked-in iCre or CreERT2 lines were used for lineage tracing, which suggested that nkx6.1 + cells are multipotent pancreatic progenitors that gradually restrict to the bipotent duct, whereas id2a + cells are multipotent in both liver and pancreas and gradually restrict to ductal cells. In addition, the hepatic id2a + duct show progenitor properties upon extreme hepatocyte loss. Thus, we present an efficient and straightforward knock-in technique with widespread use for cellular labelling and lineage tracing.
Collapse
Affiliation(s)
- Jiarui Mi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
28
|
Leonard EV, Hasan SS, Siekmann AF. Temporally and regionally distinct morphogenetic processes govern zebrafish caudal fin blood vessel network expansion. Development 2023; 150:dev201030. [PMID: 36938965 PMCID: PMC10113958 DOI: 10.1242/dev.201030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/10/2023] [Indexed: 03/21/2023]
Abstract
Blood vessels form elaborate networks that depend on tissue-specific signalling pathways and anatomical structures to guide their growth. However, it is not clear which morphogenetic principles organize the stepwise assembly of the vasculature. We therefore performed a longitudinal analysis of zebrafish caudal fin vascular assembly, revealing the existence of temporally and spatially distinct morphogenetic processes. Initially, vein-derived endothelial cells (ECs) generated arteries in a reiterative process requiring vascular endothelial growth factor (Vegf), Notch and cxcr4a signalling. Subsequently, veins produced veins in more proximal fin regions, transforming pre-existing artery-vein loops into a three-vessel pattern consisting of an artery and two veins. A distinct set of vascular plexuses formed at the base of the fin. They differed in their diameter, flow magnitude and marker gene expression. At later stages, intussusceptive angiogenesis occurred from veins in distal fin regions. In proximal fin regions, we observed new vein sprouts crossing the inter-ray tissue through sprouting angiogenesis. Together, our results reveal a surprising diversity among the mechanisms generating the mature fin vasculature and suggest that these might be driven by separate local cues.
Collapse
Affiliation(s)
- Elvin V. Leonard
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Sana Safatul Hasan
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany
| | - Arndt F. Siekmann
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Wopat S, Adhyapok P, Daga B, Crawford JM, Peskin B, Norman J, Bagwell J, Fogerson SM, Di Talia S, Kiehart DP, Charbonneau P, Bagnat M. Axial segmentation by iterative mechanical signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534101. [PMID: 37034817 PMCID: PMC10081202 DOI: 10.1101/2023.03.27.534101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In bony fishes, formation of the vertebral column, or spine, is guided by a metameric blueprint established in the epithelial sheath of the notochord. Generation of the notochord template begins days after somitogenesis and even occurs in the absence of somite segmentation. However, patterning defects in the somites lead to imprecise notochord segmentation, suggesting these processes are linked. Here, we reveal that spatial coordination between the notochord and the axial musculature is necessary to ensure segmentation of the zebrafish spine both in time and space. We find that the connective tissues that anchor the axial skeletal musculature, known as the myosepta in zebrafish, transmit spatial patterning cues necessary to initiate notochord segment formation, a critical pre-patterning step in spine morphogenesis. When an irregular pattern of muscle segments and myosepta interact with the notochord sheath, segments form non-sequentially, initiate at atypical locations, and eventually display altered morphology later in development. We determine that locations of myoseptum-notochord connections are hubs for mechanical signal transmission, which are characterized by localized sites of deformation of the extracellular matrix (ECM) layer encasing the notochord. The notochord sheath responds to the external mechanical changes by locally augmenting focal adhesion machinery to define the initiation site for segmentation. Using a coarse-grained mathematical model that captures the spatial patterns of myoseptum-notochord interactions, we find that a fixed-length scale of external cues is critical for driving sequential segment patterning in the notochord. Together, this work identifies a robust segmentation mechanism that hinges upon mechanical coupling of adjacent tissues to control patterning dynamics.
Collapse
Affiliation(s)
- Susan Wopat
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, USA
- Present address: Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
- Authors contributed equally to this work
| | - Priyom Adhyapok
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, USA
- Authors contributed equally to this work
| | - Bijoy Daga
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, USA
- Present address: Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Authors contributed equally to this work
| | - Janice M. Crawford
- Department of Biology, Duke University, Durham, North Carolina 27710, USA
| | - Brianna Peskin
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, USA
| | - James Norman
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, USA
| | - Jennifer Bagwell
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, USA
| | | | - Stefano Di Talia
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, USA
| | - Daniel P. Kiehart
- Department of Biology, Duke University, Durham, North Carolina 27710, USA
| | - Patrick Charbonneau
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, USA
- Lead contact
| |
Collapse
|
30
|
Kugler E, Bravo I, Durmishi X, Marcotti S, Beqiri S, Carrington A, Stramer B, Mattar P, MacDonald RB. GliaMorph: a modular image analysis toolkit to quantify Müller glial cell morphology. Development 2023; 150:dev201008. [PMID: 36625162 PMCID: PMC10110500 DOI: 10.1242/dev.201008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Cell morphology is crucial for all cell functions. This is particularly true for glial cells as they rely on complex shape to contact and support neurons. However, methods to quantify complex glial cell shape accurately and reproducibly are lacking. To address this, we developed the image analysis pipeline 'GliaMorph'. GliaMorph is a modular analysis toolkit developed to perform (1) image pre-processing, (2) semi-automatic region-of-interest selection, (3) apicobasal texture analysis, (4) glia segmentation, and (5) cell feature quantification. Müller glia (MG) have a stereotypic shape linked to their maturation and physiological status. Here, we characterized MG on three levels: (1) global image-level, (2) apicobasal texture, and (3) regional apicobasal vertical-to-horizontal alignment. Using GliaMorph, we quantified MG development on a global and single-cell level, showing increased feature elaboration and subcellular morphological rearrangement in the zebrafish retina. As proof of principle, we analysed expression changes in a mouse glaucoma model, identifying subcellular protein localization changes in MG. Together, these data demonstrate that GliaMorph enables an in-depth understanding of MG morphology in the developing and diseased retina.
Collapse
Affiliation(s)
- Elisabeth Kugler
- Institute of Ophthalmology, University College London, 11-43 Bath St, Greater London EC1V 9EL, UK
| | - Isabel Bravo
- Institute of Ophthalmology, University College London, 11-43 Bath St, Greater London EC1V 9EL, UK
| | - Xhuljana Durmishi
- Institute of Ophthalmology, University College London, 11-43 Bath St, Greater London EC1V 9EL, UK
| | - Stefania Marcotti
- Randall Centre for Cell & Molecular Biophysics, King's College London, New Hunt's House, London SE1 1UL, UK
| | - Sara Beqiri
- Institute of Ophthalmology, University College London, 11-43 Bath St, Greater London EC1V 9EL, UK
| | - Alicia Carrington
- Institute of Ophthalmology, University College London, 11-43 Bath St, Greater London EC1V 9EL, UK
| | - Brian Stramer
- Randall Centre for Cell & Molecular Biophysics, King's College London, New Hunt's House, London SE1 1UL, UK
| | - Pierre Mattar
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Ottawa Hospital Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada
| | - Ryan B. MacDonald
- Institute of Ophthalmology, University College London, 11-43 Bath St, Greater London EC1V 9EL, UK
| |
Collapse
|
31
|
Kugler E, Breitenbach EM, MacDonald R. Glia Cell Morphology Analysis Using the Fiji GliaMorph Toolkit. Curr Protoc 2023; 3:e654. [PMID: 36688682 PMCID: PMC10108223 DOI: 10.1002/cpz1.654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Glial cells are the support cells of the nervous system. Glial cells typically have elaborate morphologies that facilitate close contacts with neighboring neurons, synapses, and the vasculature. In the retina, Müller glia (MG) are the principal glial cell type that supports neuronal function by providing a myriad of supportive functions via intricate cell morphologies and precise contacts. Thus, complex glial morphology is critical for glial function, but remains challenging to resolve at a sub-cellular level or reproducibly quantify in complex tissues. To address this issue, we developed GliaMorph as a Fiji-based macro toolkit that allows 3D glial cell morphology analysis in the developing and mature retina. As GliaMorph is implemented in a modular fashion, here we present guides to (a) setup of GliaMorph, (b) data understanding in 3D, including z-axis intensity decay and signal-to-noise ratio, (c) pre-processing data to enhance image quality, (d) performing and examining image segmentation, and (e) 3D quantification of MG features, including apicobasal texture analysis. To allow easier application, GliaMorph tools are supported with graphical user interfaces where appropriate, and example data are publicly available to facilitate adoption. Further, GliaMorph can be modified to meet users' morphological analysis needs for other glial or neuronal shapes. Finally, this article provides users with an in-depth understanding of data requirements and the workflow of GliaMorph. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Download and installation of GliaMorph components including example data Basic Protocol 2: Understanding data properties and quality 3D-essential for subsequent analysis and capturing data property issues early Basic Protocol 3: Pre-processing AiryScan microscopy data for analysis Alternate Protocol: Pre-processing confocal microscopy data for analysis Basic Protocol 4: Segmentation of glial cells Basic Protocol 5: 3D quantification of glial cell morphology.
Collapse
Affiliation(s)
- Elisabeth Kugler
- Institute of Ophthalmology, University College London, Greater London, UK
| | | | - Ryan MacDonald
- Institute of Ophthalmology, University College London, Greater London, UK
| |
Collapse
|
32
|
Ellis JL, Evason KJ, Zhang C, Fourman MN, Liu J, Ninov N, Delous M, Vanhollebeke B, Fiddes I, Otis JP, Houvras Y, Farber SA, Xu X, Lin X, Stainier DYR, Yin C. A missense mutation in the proprotein convertase gene furinb causes hepatic cystogenesis during liver development in zebrafish. Hepatol Commun 2022; 6:3083-3097. [PMID: 36017776 PMCID: PMC9592797 DOI: 10.1002/hep4.2038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/28/2022] [Accepted: 06/17/2022] [Indexed: 12/14/2022] Open
Abstract
Hepatic cysts are fluid-filled lesions in the liver that are estimated to occur in 5% of the population. They may cause hepatomegaly and abdominal pain. Progression to secondary fibrosis, cirrhosis, or cholangiocarcinoma can lead to morbidity and mortality. Previous studies of patients and rodent models have associated hepatic cyst formation with increased proliferation and fluid secretion in cholangiocytes, which are partially due to impaired primary cilia. Congenital hepatic cysts are thought to originate from faulty bile duct development, but the underlying mechanisms are not fully understood. In a forward genetic screen, we identified a zebrafish mutant that developed hepatic cysts during larval stages. The cyst formation was not due to changes in biliary cell proliferation, bile secretion, or impairment of primary cilia. Instead, time-lapse live imaging data showed that the mutant biliary cells failed to form interconnecting bile ducts because of defects in motility and protrusive activity. Accordingly, immunostaining revealed a disorganized actin and microtubule cytoskeleton in the mutant biliary cells. By whole-genome sequencing, we determined that the cystic phenotype in the mutant was caused by a missense mutation in the furinb gene, which encodes a proprotein convertase. The mutation altered Furinb localization and caused endoplasmic reticulum (ER) stress. The cystic phenotype could be suppressed by treatment with the ER stress inhibitor 4-phenylbutyric acid and exacerbated by treatment with the ER stress inducer tunicamycin. The mutant liver also exhibited increased mammalian target of rapamycin (mTOR) signaling. Treatment with mTOR inhibitors halted cyst formation at least partially through reducing ER stress. Conclusion: Our study has established a vertebrate model for studying hepatic cystogenesis and illustrated the contribution of ER stress in the disease pathogenesis.
Collapse
Affiliation(s)
- Jillian L. Ellis
- Division of Gastroenterology, Hepatology, and NutritionCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Kimberley J. Evason
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Huntsman Cancer Institute and Department of PathologyUniversity of UtahSalt Lake CityUtahUSA
| | - Changwen Zhang
- Division of Gastroenterology, Hepatology, and NutritionCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Makenzie N. Fourman
- Division of Gastroenterology, Hepatology, and NutritionCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Jiandong Liu
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- McAllister Heart InstituteDepartment of Pathology and Laboratory MedicineSchool of MedicineThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Nikolay Ninov
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Center for Regenerative Therapies TU DresdenDresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus of TU DresdenGerman Center for Diabetes ResearchDresdenGermany
| | - Marion Delous
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Equipe GENDEVCentre de Recherche en Neurosciences de LyonInserm U1028CNRS UMR5292Universite Lyon 1Universite St EtienneLyonFrance
| | - Benoit Vanhollebeke
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Laboratory of Neurovascular SignalingDepartment of Molecular BiologyULB Neuroscience InstituteUniversite Libre de BruxellesGosseliesBelgium
| | - Ian Fiddes
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Jessica P. Otis
- Department of EmbryologyCarnegie Institution for ScienceBaltimoreMarylandUSA
- Department of BiologyJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Molecular and Cellular Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | - Yariv Houvras
- Weill Cornell Medical College and New York Presbyterian HospitalNew YorkNew YorkUSA
| | - Steven A. Farber
- Department of EmbryologyCarnegie Institution for ScienceBaltimoreMarylandUSA
- Department of BiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular BiologyDepartment of Cardiovascular MedicineMayo ClinicRochesterMinnesotaUSA
| | - Xueying Lin
- Department of Biochemistry and Molecular BiologyDepartment of Cardiovascular MedicineMayo ClinicRochesterMinnesotaUSA
| | - Didier Y. R. Stainier
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology, and NutritionCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Division of Developmental BiologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| |
Collapse
|
33
|
Jin M, Zhang H, Xu B, Li Y, Qin H, Yu S, He J. Jag2b-Notch3/1b-mediated neuron-to-glia crosstalk controls retinal gliogenesis. EMBO Rep 2022; 23:e54922. [PMID: 36047082 PMCID: PMC9535768 DOI: 10.15252/embr.202254922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/03/2022] [Accepted: 08/18/2022] [Indexed: 11/09/2022] Open
Abstract
In the developing central nervous systems (CNS), neural progenitor cells generate neurons and glia in sequential order. However, the influence of neurons on glia generation remains elusive. Here, we report that photoreceptor cell-derived Jag2b is required for Notch-dependent Müller glia (MG) generation in the developing zebrafish retina. In jab2b-/- mutants, differentiating MGs are re-specified into lineage-related bipolar neuron fate at the expense of mature MG. Single-cell transcriptome analysis and knock-in animals reveal that jab2b is specifically expressed in crx+ -photoreceptor cells during MG generation. Crx promoter-driven jag2b, but not other Notch ligands, is sufficient to rescue the loss of MGs observed in jag2b-/- mutants. Furthermore, we observe a severe and moderate decrease in the number of MGs in notch3-/- and notch1b-/- mutants, respectively, and the activation of Notch3 or Notch1b rescues the MG loss in jag2b-/- mutants. Together, our findings reveal that the interaction of Jag2b and Notch3/Notch1b mediates the crosstalk between neurons and glial cells to ensure the irreversible differentiation of MG, providing novel mechanistic insights into the temporal specification of glial cell fate in a developing vertebrate CNS structure.
Collapse
Affiliation(s)
- Mengmeng Jin
- State Key Laboratory of NeuroscienceInstitute of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hui Zhang
- State Key Laboratory of NeuroscienceInstitute of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Baijie Xu
- State Key Laboratory of NeuroscienceInstitute of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yanan Li
- State Key Laboratory of NeuroscienceInstitute of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Huiwen Qin
- State Key Laboratory of NeuroscienceInstitute of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shuguang Yu
- State Key Laboratory of NeuroscienceInstitute of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jie He
- State Key Laboratory of NeuroscienceInstitute of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina
- Shanghai Center for Brain Science and Brain‐Inspired Intelligence TechnologyShanghaiChina
| |
Collapse
|
34
|
Rashid A, Tevlin M, Lu Y, Shaham S. A developmental pathway for epithelial-to-motoneuron transformation in C. elegans. Cell Rep 2022; 40:111414. [PMID: 36170838 PMCID: PMC9579992 DOI: 10.1016/j.celrep.2022.111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/18/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022] Open
Abstract
Motoneurons and motoneuron-like pancreatic β cells arise from radial glia and ductal cells, respectively, both tube-lining progenitors that share molecular regulators. To uncover programs underlying motoneuron formation, we studied a similar, cell-division-independent transformation of the C. elegans tube-lining Y cell into the PDA motoneuron. We find that lin-12/Notch acts through ngn-1/Ngn and its regulator hlh-16/Olig to control transformation timing. lin-12 loss blocks transformation, while lin-12(gf) promotes precocious PDA formation. Early basal expression of ngn-1/Ngn and hlh-16/Olig depends on sem-4/Sall and egl-5/Hox. Later, coincident with Y cell morphological changes, ngn-1/Ngn expression is upregulated in a sem-4/Sall and egl-5/Hox-dependent but hlh-16/Olig-independent manner. Subsequently, Y cell retrograde extension forms an anchored process priming PDA axon extension. Extension requires ngn-1-dependent expression of the cytoskeleton organizers UNC-119, UNC-44/ANK, and UNC-33/CRMP, which also activate PDA terminal-gene expression. Our findings uncover cell-division-independent regulatory events leading to motoneuron generation, suggesting a conserved pathway for epithelial-to-motoneuron/motoneuron-like cell differentiation. Rashid et al. report on a conserved epithelial-to-motoneuron transformation pathway in C. elegans requiring ngn-1/Ngn and hlh-16/Olig. lin-12/Notch regulates transformation timing through these genes, while ngn-1/Ngn and hlh-16/Olig expression levels are regulated by sem-4/Sall and egl-5/Hox. Unexpectedly, the cytoskeleton organizers UNC-119, UNC-44, and UNC-33, which are ngn-1/Ngn targets, promote motoneuron terminal identity.
Collapse
Affiliation(s)
- Alina Rashid
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Maya Tevlin
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Yun Lu
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
35
|
Bruton FA, Kaveh A, Ross-Stewart KM, Matrone G, Oremek MEM, Solomonidis EG, Tucker CS, Mullins JJ, Lucas CD, Brittan M, Taylor JM, Rossi AG, Denvir MA. Macrophages trigger cardiomyocyte proliferation by increasing epicardial vegfaa expression during larval zebrafish heart regeneration. Dev Cell 2022; 57:1512-1528.e5. [PMID: 35688158 PMCID: PMC9616726 DOI: 10.1016/j.devcel.2022.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/11/2022] [Accepted: 05/18/2022] [Indexed: 12/01/2022]
Abstract
Cardiac injury leads to the loss of cardiomyocytes, which are rapidly replaced by the proliferation of the surviving cells in zebrafish, but not in mammals. In both the regenerative zebrafish and non-regenerative mammals, cardiac injury induces a sustained macrophage response. Macrophages are required for cardiomyocyte proliferation during zebrafish cardiac regeneration, but the mechanisms whereby macrophages facilitate this crucial process are fundamentally unknown. Using heartbeat-synchronized live imaging, RNA sequencing, and macrophage-null genotypes in the larval zebrafish cardiac injury model, we characterize macrophage function and reveal that these cells activate the epicardium, inducing cardiomyocyte proliferation. Mechanistically, macrophages are specifically recruited to the epicardial-myocardial niche, triggering the expansion of the epicardium, which upregulates vegfaa expression to induce cardiomyocyte proliferation. Our data suggest that epicardial Vegfaa augments a developmental cardiac growth pathway via increased endocardial notch signaling. The identification of this macrophage-dependent mechanism of cardiac regeneration highlights immunomodulation as a potential strategy for enhancing mammalian cardiac repair. Heart regeneration in larval zebrafish is characterized in detail Macrophage ablation blocks cardiomyocyte proliferation after cardiac injury Macrophages synapse with epicardial cells and promote their proliferation Epicardial Vegfaa drives cardiomyocyte proliferation during cardiac regeneration
Collapse
Affiliation(s)
- Finnius A Bruton
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| | - Aryan Kaveh
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine M Ross-Stewart
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Gianfranco Matrone
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Magdalena E M Oremek
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Emmanouil G Solomonidis
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Carl S Tucker
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - John J Mullins
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Christopher D Lucas
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Mairi Brittan
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | | - Adriano G Rossi
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Martin A Denvir
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
36
|
Leonard EV, Figueroa RJ, Bussmann J, Lawson ND, Amigo JD, Siekmann AF. Regenerating vascular mural cells in zebrafish fin blood vessels are not derived from pre-existing mural cells and differentially require Pdgfrb signalling for their development. Development 2022; 149:274745. [PMID: 35297968 PMCID: PMC9058498 DOI: 10.1242/dev.199640] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 02/24/2022] [Indexed: 12/20/2022]
Abstract
ABSTRACT
Vascular networks comprise endothelial cells and mural cells, which include pericytes and smooth muscle cells. To elucidate the mechanisms controlling mural cell recruitment during development and tissue regeneration, we studied zebrafish caudal fin arteries. Mural cells colonizing arteries proximal to the body wrapped around them, whereas those in more distal regions extended protrusions along the proximo-distal vascular axis. Both cell populations expressed platelet-derived growth factor receptor β (pdgfrb) and the smooth muscle cell marker myosin heavy chain 11a (myh11a). Most wrapping cells in proximal locations additionally expressed actin alpha2, smooth muscle (acta2). Loss of Pdgfrb signalling specifically decreased mural cell numbers at the vascular front. Using lineage tracing, we demonstrate that precursor cells located in periarterial regions and expressing Pgdfrb can give rise to mural cells. Studying tissue regeneration, we did not find evidence that newly formed mural cells were derived from pre-existing cells. Together, our findings reveal conserved roles for Pdgfrb signalling in development and regeneration, and suggest a limited capacity of mural cells to self-renew or contribute to other cell types during tissue regeneration.
Collapse
Affiliation(s)
- Elvin V. Leonard
- Max Planck Institute for Molecular Biomedicine, Roentgenstr. 20, 48149 Münster, Germany
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Ricardo J. Figueroa
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jeroen Bussmann
- Max Planck Institute for Molecular Biomedicine, Roentgenstr. 20, 48149 Münster, Germany
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Nathan D. Lawson
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Julio D. Amigo
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Arndt F. Siekmann
- Max Planck Institute for Molecular Biomedicine, Roentgenstr. 20, 48149 Münster, Germany
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
37
|
Vignes H, Vagena-Pantoula C, Prakash M, Fukui H, Norden C, Mochizuki N, Jug F, Vermot J. Extracellular mechanical forces drive endocardial cell volume decrease during zebrafish cardiac valve morphogenesis. Dev Cell 2022; 57:598-609.e5. [PMID: 35245444 DOI: 10.1016/j.devcel.2022.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/09/2021] [Accepted: 02/08/2022] [Indexed: 01/11/2023]
Abstract
Organ morphogenesis involves dynamic changes of tissue properties while cells adapt to their mechanical environment through mechanosensitive pathways. How mechanical cues influence cell behaviors during morphogenesis remains unclear. Here, we studied the formation of the zebrafish atrioventricular canal (AVC) where cardiac valves develop. We show that the AVC forms within a zone of tissue convergence associated with the increased activation of the actomyosin meshwork and cell-orientation changes. We demonstrate that tissue convergence occurs with a reduction of cell volume triggered by mechanical forces and the mechanosensitive channel TRPP2/TRPV4. Finally, we show that the extracellular matrix component hyaluronic acid controls cell volume changes. Together, our data suggest that multiple force-sensitive signaling pathways converge to modulate cell volume. We conclude that cell volume reduction is a key cellular feature activated by mechanotransduction during cardiovascular morphogenesis. This work further identifies how mechanical forces and extracellular matrix influence tissue remodeling in developing organs.
Collapse
Affiliation(s)
- Hélène Vignes
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U1258 and Université de Strasbourg, Strasbourg, Illkirch, France
| | | | - Mangal Prakash
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany
| | - Hajime Fukui
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Florian Jug
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany; Fondazione Human Technopole, Milan, Italy
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U1258 and Université de Strasbourg, Strasbourg, Illkirch, France; Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
38
|
Kapuria S, Bai H, Fierros J, Huang Y, Ma F, Yoshida T, Aguayo A, Kok F, Wiens KM, Yip JK, McCain ML, Pellegrini M, Nagashima M, Hitchcock PF, Mochizuki N, Lawson ND, Harrison MMR, Lien CL. Heterogeneous pdgfrb+ cells regulate coronary vessel development and revascularization during heart regeneration. Development 2022; 149:274137. [PMID: 35088848 PMCID: PMC8918812 DOI: 10.1242/dev.199752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
Endothelial cells emerge from the atrioventricular canal to form coronary blood vessels in juvenile zebrafish hearts. We find that pdgfrb is first expressed in the epicardium around the atrioventricular canal and later becomes localized mainly in the mural cells. pdgfrb mutant fish show severe defects in mural cell recruitment and coronary vessel development. Single-cell RNA sequencing analyses identified pdgfrb+ cells as epicardium-derived cells (EPDCs) and mural cells. Mural cells associated with coronary arteries also express cxcl12b and smooth muscle cell markers. Interestingly, these mural cells remain associated with coronary arteries even in the absence of Pdgfrβ, although smooth muscle gene expression is downregulated. We find that pdgfrb expression dynamically changes in EPDCs of regenerating hearts. Differential gene expression analyses of pdgfrb+ EPDCs and mural cells suggest that they express genes that are important for regeneration after heart injuries. mdka was identified as a highly upregulated gene in pdgfrb+ cells during heart regeneration. However, pdgfrb but not mdka mutants show defects in heart regeneration after amputation. Our results demonstrate that heterogeneous pdgfrb+ cells are essential for coronary development and heart regeneration.
Collapse
Affiliation(s)
- Subir Kapuria
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA,Authors for correspondence (; ; )
| | - Haipeng Bai
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA,Laboratory of Chemical Genomics, School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
| | - Juancarlos Fierros
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA,Department of Biology, California State University, San Bernardino, San Bernardino, CA 92407, USA
| | - Ying Huang
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Tyler Yoshida
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA,Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90007, USA
| | - Antonio Aguayo
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Fatma Kok
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Katie M. Wiens
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA,Science Department, Bay Path University, Longmeadow, MA 01106, USA
| | - Joycelyn K. Yip
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Megan L. McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Mikiko Nagashima
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Peter F. Hitchcock
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, 564-8565, Japan
| | - Nathan D. Lawson
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael M. R. Harrison
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA,Authors for correspondence (; ; )
| | - Ching-Ling Lien
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA,Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA,Authors for correspondence (; ; )
| |
Collapse
|
39
|
Lin T, Wang S, Munker S, Jung K, Macías-Rodríguez RU, Ruiz-Margáin A, Schierwagen R, Liu H, Shao C, Fan C, Feng R, Yuan X, Wang S, Wandrer F, Meyer C, Wimmer R, Liebe R, Kroll J, Zhang L, Schiergens T, Ten Dijke P, Teufel A, Marx A, Mertens PR, Wang H, Ebert MPA, Bantel H, N De Toni E, Trebicka J, Dooley S, Shin D, Ding H, Weng HL. Follistatin-controlled activin-HNF4α-coagulation factor axis in liver progenitor cells determines outcome of acute liver failure. Hepatology 2022; 75:322-337. [PMID: 34435364 DOI: 10.1002/hep.32119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/01/2021] [Accepted: 08/15/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS In patients with acute liver failure (ALF) who suffer from massive hepatocyte loss, liver progenitor cells (LPCs) take over key hepatocyte functions, which ultimately determines survival. This study investigated how the expression of hepatocyte nuclear factor 4α (HNF4α), its regulators, and targets in LPCs determines clinical outcome of patients with ALF. APPROACH AND RESULTS Clinicopathological associations were scrutinized in 19 patients with ALF (9 recovered and 10 receiving liver transplantation). Regulatory mechanisms between follistatin, activin, HNF4α, and coagulation factor expression in LPC were investigated in vitro and in metronidazole-treated zebrafish. A prospective clinical study followed up 186 patients with cirrhosis for 80 months to observe the relevance of follistatin levels in prevalence and mortality of acute-on-chronic liver failure. Recovered patients with ALF robustly express HNF4α in either LPCs or remaining hepatocytes. As in hepatocytes, HNF4α controls the expression of coagulation factors by binding to their promoters in LPC. HNF4α expression in LPCs requires the forkhead box protein H1-Sma and Mad homolog 2/3/4 transcription factor complex, which is promoted by the TGF-β superfamily member activin. Activin signaling in LPCs is negatively regulated by follistatin, a hepatocyte-derived hormone controlled by insulin and glucagon. In contrast to patients requiring liver transplantation, recovered patients demonstrate a normal activin/follistatin ratio, robust abundance of the activin effectors phosphorylated Sma and Mad homolog 2 and HNF4α in LPCs, leading to significantly improved coagulation function. A follow-up study indicated that serum follistatin levels could predict the incidence and mortality of acute-on-chronic liver failure. CONCLUSIONS These results highlight a crucial role of the follistatin-controlled activin-HNF4α-coagulation axis in determining the clinical outcome of massive hepatocyte loss-induced ALF. The effects of insulin and glucagon on follistatin suggest a key role of the systemic metabolic state in ALF.
Collapse
Affiliation(s)
- Tao Lin
- Department of Medicine II, Section Molecular Hepatology, University Medical Center Mannheim, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Shanshan Wang
- Department of Medicine II, Section Molecular Hepatology, University Medical Center Mannheim, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Beijing Institute of HepatologyBeijing You'an HospitalCapital Medical UniversityBeijingChina
| | - Stefan Munker
- Department of Medicine IIUniversity Hospital, Campus Großhadern, LMU MunichMunichGermany
| | - Kyounghwa Jung
- Department of Developmental BiologyMcGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Ricardo U Macías-Rodríguez
- Department of GastroenterologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico cityMexico
| | - Astrid Ruiz-Margáin
- Department of GastroenterologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico cityMexico
| | - Robert Schierwagen
- Translational Hepatology, Medical Department IFrankfurt University HospitalFrankfurtGermany
| | - Hui Liu
- Department of PathologyBeijing You'an HospitalAffiliated with Capital Medical UniversityBeijingChina
| | - Chen Shao
- Department of PathologyBeijing You'an HospitalAffiliated with Capital Medical UniversityBeijingChina
| | - Chunlei Fan
- Department of Gastroenterology and HepatologyBeijing You'an HospitalAffiliated with Capital Medical UniversityBeijingChina
| | - Rilu Feng
- Department of Medicine II, Section Molecular Hepatology, University Medical Center Mannheim, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Xiaodong Yuan
- Department of Medicine II, Section Molecular Hepatology, University Medical Center Mannheim, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Sai Wang
- Department of Medicine II, Section Molecular Hepatology, University Medical Center Mannheim, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Franziska Wandrer
- Department of Gastroenterology, Hepatology and EndocrinologyHannover Medical SchoolHannoverGermany
| | - Christoph Meyer
- Department of Medicine II, Section Molecular Hepatology, University Medical Center Mannheim, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Ralf Wimmer
- Department of Medicine IIUniversity Hospital, Campus Großhadern, LMU MunichMunichGermany
| | - Roman Liebe
- Clinic of Gastroenterology, Hepatology and Infectious DiseasesHeinrich Heine UniversityDüsseldorfGermany
- Department of Medicine IISaarland University Medical CenterSaarland UniversityHomburgGermany
| | - Jens Kroll
- Vascular Biology and Tumor AngiogenesisEuropean Center for AngioscienceMedical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Long Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling NetworkHangzhouChina
| | - Tobias Schiergens
- Department of General, Visceral, Transplantation, Vascular and Thoracic SurgeryUniversity HospitalLMU MunichMunichGermany
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Andreas Teufel
- Division of Hepatology, Division of Clinical Bioinformatics, Department of Medicine II, University Medical Center Mannheim, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Clinical Cooperation Unit Healthy MetabolismCenter for Preventive Medicine and Digital Health Baden-WürttembergMedical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Alexander Marx
- Institute of PathologyUniversity Medical Center MannheimHeidelberg UniversityMannheimGermany
| | - Peter R Mertens
- Clinic of Nephrology and Hypertension, Diabetes and EndocrinologyOtto-von-Guericke-UniversityMagdeburgGermany
| | - Hua Wang
- Department of Oncologythe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Disease Laboratory of Anhui ProvinceHefeiChina
| | - Matthias P A Ebert
- Mannheim Institute for Innate ImmunoscienceMannheimGermany
- Clinical Cooperation Unit Healthy MetabolismCenter of Preventive Medicine and Digital HealthMedical Faculty MannheimHeidelberg UniversityMannheimGermany
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Heike Bantel
- Department of Gastroenterology, Hepatology and EndocrinologyHannover Medical SchoolHannoverGermany
| | - Enrico N De Toni
- Department of Medicine IIUniversity Hospital, Campus Großhadern, LMU MunichMunichGermany
| | - Jonel Trebicka
- Translational Hepatology, Medical Department IFrankfurt University HospitalFrankfurtGermany
- European Foundation for Study of Chronic Liver FailureBarcelonaSpain
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, University Medical Center Mannheim, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Donghun Shin
- Department of Developmental BiologyMcGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Huiguo Ding
- Department of Gastroenterology and HepatologyBeijing You'an HospitalAffiliated with Capital Medical UniversityBeijingChina
| | - Hong-Lei Weng
- Department of Medicine II, Section Molecular Hepatology, University Medical Center Mannheim, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| |
Collapse
|
40
|
Schiavo RK, Tamplin OJ. Vascular endothelial growth factor c regulates hematopoietic stem cell fate in the dorsal aorta. Development 2022; 149:dev199498. [PMID: 34919128 PMCID: PMC8917412 DOI: 10.1242/dev.199498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 12/06/2021] [Indexed: 01/21/2023]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are multipotent cells that self-renew or differentiate to establish the entire blood hierarchy. HSPCs arise from the hemogenic endothelium of the dorsal aorta (DA) during development in a process called endothelial-to-hematopoietic transition. The factors and signals that control HSPC fate decisions from the hemogenic endothelium are not fully understood. We found that Vegfc has a role in HSPC emergence from the zebrafish DA. Using time-lapse live imaging, we show that some HSPCs in the DA of vegfc loss-of-function embryos display altered cellular behavior. Instead of typical budding from the DA, emergent HSPCs exhibit crawling behavior similar to myeloid cells. This was confirmed by increased myeloid cell marker expression in the ventral wall of the DA and the caudal hematopoietic tissue. This increase in myeloid cells corresponded with a decrease in HSPCs that persisted into larval stages. Together, our data suggest that Vegfc regulates HSPC emergence in the hemogenic endothelium, in part by suppressing a myeloid cell fate. Our study provides a potential signal for modulation of HSPC fate in stem cell differentiation protocols.
Collapse
|
41
|
Singh SP, Chawla P, Hnatiuk A, Kamel M, Silva LD, Spanjaard B, Eski SE, Janjuha S, Olivares-Chauvet P, Kayisoglu O, Rost F, Bläsche J, Kränkel A, Petzold A, Kurth T, Reinhardt S, Junker JP, Ninov N. A single-cell atlas of de novo β-cell regeneration reveals the contribution of hybrid β/δ-cells to diabetes recovery in zebrafish. Development 2022; 149:274140. [PMID: 35088828 DOI: 10.1242/dev.199853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Regeneration-competent species possess the ability to reverse the progression of severe diseases by restoring the function of the damaged tissue. However, the cellular dynamics underlying this capability remain unexplored. Here, we have used single-cell transcriptomics to map de novo β-cell regeneration during induction and recovery from diabetes in zebrafish. We show that the zebrafish has evolved two distinct types of somatostatin-producing δ-cells, which we term δ1- and δ2-cells. Moreover, we characterize a small population of glucose-responsive islet cells, which share the hormones and fate-determinants of both β- and δ1-cells. The transcriptomic analysis of β-cell regeneration reveals that β/δ hybrid cells provide a prominent source of insulin expression during diabetes recovery. Using in vivo calcium imaging and cell tracking, we further show that the hybrid cells form de novo and acquire glucose-responsiveness in the course of regeneration. The overexpression of dkk3, a gene enriched in hybrid cells, increases their formation in the absence of β-cell injury. Finally, interspecies comparison shows that plastic δ1-cells are partially related to PP cells in the human pancreas. Our work provides an atlas of β-cell regeneration and indicates that the rapid formation of glucose-responsive hybrid cells contributes to the resolution of diabetes in zebrafish.
Collapse
Affiliation(s)
- Sumeet Pal Singh
- IRIBHM, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Prateek Chawla
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Alisa Hnatiuk
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Margrit Kamel
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Luis Delgadillo Silva
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Bastiaan Spanjaard
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Sema Elif Eski
- IRIBHM, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Sharan Janjuha
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Pedro Olivares-Chauvet
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Oezge Kayisoglu
- The Julius Maximilian University of Wurzburg, 97070 Wurzburg, Germany
| | - Fabian Rost
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany.,DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Juliane Bläsche
- DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Annekathrin Kränkel
- DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Andreas Petzold
- DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Thomas Kurth
- TUD, Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, EM-Facility, Technische Universitaät Dresden, 01307 Dresden, Germany
| | - Susanne Reinhardt
- DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Jan Philipp Junker
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Nikolay Ninov
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany.,Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital and Faculty of Medicine Carl Gustav Carus of Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
42
|
Webb AM, Francis CR, Judson RJ, Kincross H, Lundy KM, Westhoff DE, Meadows SM, Kushner EJ. EHD2 modulates Dll4 endocytosis during blood vessel development. Microcirculation 2022; 29:e12740. [PMID: 34820962 PMCID: PMC9286817 DOI: 10.1111/micc.12740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/28/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Despite the absolute requirement of Delta/Notch signaling to activate lateral inhibition during early blood vessel development, many mechanisms remain unclear about how this system is regulated. Our objective was to determine the involvement of Epsin 15 Homology Domain Containing 2 (EHD2) in delta-like ligand 4 (Dll4) endocytosis during Notch activation. APPROACH AND RESULTS Using both in vivo and in vitro models, we demonstrate that EHD2 is a novel modulator of Notch activation in endothelial cells through controlling endocytosis of Dll4. In vitro, EHD2 localized to plasma membrane-bound Dll4 and caveolae. Chemical disruption of caveolae complexes resulted in EHD2 failing to organize around Dll4 as well as loss of Dll4 internalization. Reduced Dll4 internalization blunted Notch activation in endothelial cells. In vivo, EHD2 is primarily expressed in the vasculature, colocalizing with junctional marker VE-cadherin and Dll4. Knockout of EHD2 in zebrafish produced a significant increase in dysmorphic sprouts in zebrafish intersomitic vessels during development and a reduction in downstream Notch signaling. CONCLUSIONS Overall, we demonstrate that EHD2 is necessary for Dll4 transcytosis and downstream Notch activation.
Collapse
Affiliation(s)
- Amelia M. Webb
- Department of Biological SciencesUniversity of DenverDenverColoradoUSA
| | | | - Rachael J. Judson
- Department of Biological SciencesUniversity of DenverDenverColoradoUSA
| | - Hayle Kincross
- Department of Biological SciencesUniversity of DenverDenverColoradoUSA
| | - Keanna M. Lundy
- Department of Biological SciencesUniversity of DenverDenverColoradoUSA
| | - Dawn E. Westhoff
- Cell and Molecular Biology DepartmentTulane UniversityNew OrleansLouisinaUSA
| | - Stryder M. Meadows
- Cell and Molecular Biology DepartmentTulane UniversityNew OrleansLouisinaUSA
| | - Erich J. Kushner
- Department of Biological SciencesUniversity of DenverDenverColoradoUSA
| |
Collapse
|
43
|
Cai P, Mao X, Zhao J, Nie L, Jiang Y, Yang Q, Ni R, He J, Luo L. Farnesoid X Receptor Is Required for the Redifferentiation of Bipotential Progenitor Cells During Biliary-Mediated Zebrafish Liver Regeneration. Hepatology 2021; 74:3345-3361. [PMID: 34320243 DOI: 10.1002/hep.32076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Liver regeneration after extreme hepatocyte loss occurs through transdifferentiation of biliary epithelial cells (BECs), which includes dedifferentiation of BECs into bipotential progenitor cells (BPPCs) and subsequent redifferentiation into nascent hepatocytes and BECs. Although multiple molecules and signaling pathways have been implicated to play roles in the BEC-mediated liver regeneration, mechanisms underlying the dedifferentiation-redifferentiation transition and the early phase of BPPC redifferentiation that is pivotal for both hepatocyte and BEC directions remain largely unknown. APPROACH AND RESULTS The zebrafish extreme liver damage model, genetic mutation, pharmacological inhibition, transgenic lines, whole-mount and fluorescent in situ hybridizations and antibody staining, single-cell RNA sequencing, quantitative real-time PCR, and heat shock-inducible overexpression were used to investigate roles and mechanisms of farnesoid X receptor (FXR; encoded by nuclear receptor subfamily 1, group H, member 4 [nr1h4]) in regulating BPPC redifferentiation. The nr1h4 expression was significantly up-regulated in response to extreme liver injury. Genetic mutation or pharmacological inhibition of FXR was ineffective to BEC-to-BPPC dedifferentiation but blocked the redifferentiation of BPPCs to both hepatocytes and BECs, leading to accumulation of undifferentiated or less-differentiated BPPCs. Mechanistically, induced overexpression of extracellular signal-related kinase (ERK) 1 (encoded by mitogen-activated protein kinase 3) rescued the defective BPPC-to-hepatocyte redifferentiation in the nr1h4 mutant, and ERK1 itself was necessary for the BPPC-to-hepatocyte redifferentiation. The Notch activities in the regenerating liver of nr1h4 mutant attenuated, and induced Notch activation rescued the defective BPPC-to-BEC redifferentiation in the nr1h4 mutant. CONCLUSIONS FXR regulates BPPC-to-hepatocyte and BPPC-to-BEC redifferentiations through ERK1 and Notch, respectively. Given recent applications of FXR agonists in the clinical trials for liver diseases, this study proposes potential underpinning mechanisms by characterizing roles of FXR in the stimulation of dedifferentiation-redifferentiation transition and BPPC redifferentiation.
Collapse
Affiliation(s)
- Pengcheng Cai
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Xiaoyu Mao
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Jieqiong Zhao
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Li Nie
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Yan Jiang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Qifen Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Rui Ni
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| |
Collapse
|
44
|
Schmitner N, Recheis C, Thönig J, Kimmel RA. Differential Responses of Neural Retina Progenitor Populations to Chronic Hyperglycemia. Cells 2021; 10:cells10113265. [PMID: 34831487 PMCID: PMC8622914 DOI: 10.3390/cells10113265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022] Open
Abstract
Diabetic retinopathy is a frequent complication of longstanding diabetes, which comprises a complex interplay of microvascular abnormalities and neurodegeneration. Zebrafish harboring a homozygous mutation in the pancreatic transcription factor pdx1 display a diabetic phenotype with survival into adulthood, and are therefore uniquely suitable among zebrafish models for studying pathologies associated with persistent diabetic conditions. We have previously shown that, starting at three months of age, pdx1 mutants exhibit not only vascular but also neuro-retinal pathologies manifesting as photoreceptor dysfunction and loss, similar to human diabetic retinopathy. Here, we further characterize injury and regenerative responses and examine the effects on progenitor cell populations. Consistent with a negative impact of hyperglycemia on neurogenesis, stem cells of the ciliary marginal zone show an exacerbation of aging-related proliferative decline. In contrast to the robust Müller glial cell proliferation seen following acute retinal injury, the pdx1 mutant shows replenishment of both rod and cone photoreceptors from slow-cycling, neurod-expressing progenitors which first accumulate in the inner nuclear layer. Overall, we demonstrate a diabetic retinopathy model which shows pathological features of the human disease evolving alongside an ongoing restorative process that replaces lost photoreceptors, at the same time suggesting an unappreciated phenotypic continuum between multipotent and photoreceptor-committed progenitors.
Collapse
|
45
|
Engerer P, Petridou E, Williams PR, Suzuki SC, Yoshimatsu T, Portugues R, Misgeld T, Godinho L. Notch-mediated re-specification of neuronal identity during central nervous system development. Curr Biol 2021; 31:4870-4878.e5. [PMID: 34534440 DOI: 10.1016/j.cub.2021.08.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 06/27/2021] [Accepted: 08/18/2021] [Indexed: 11/27/2022]
Abstract
Neuronal identity has long been thought of as immutable, so that once a cell acquires a specific fate, it is maintained for life.1 Studies using the overexpression of potent transcription factors to experimentally reprogram neuronal fate in the mouse neocortex2,3 and retina4,5 have challenged this notion by revealing that post-mitotic neurons can switch their identity. Whether fate reprogramming is part of normal development in the central nervous system (CNS) is unclear. While there are some reports of physiological cell fate reprogramming in invertebrates,6,7 and in the vertebrate peripheral nervous system,8 endogenous fate reprogramming in the vertebrate CNS has not been documented. Here, we demonstrate spontaneous fate re-specification in an interneuron lineage in the zebrafish retina. We show that the visual system homeobox 1 (vsx1)-expressing lineage, which has been associated exclusively with excitatory bipolar cell (BC) interneurons,9-12 also generates inhibitory amacrine cells (ACs). We identify a role for Notch signaling in conferring plasticity to nascent vsx1 BCs, allowing suitable transcription factor programs to re-specify them to an AC fate. Overstimulating Notch signaling enhances this physiological phenotype so that both daughters of a vsx1 progenitor differentiate into ACs and partially differentiated vsx1 BCs can be converted into ACs. Furthermore, this physiological re-specification can be mimicked to allow experimental induction of an entirely distinct fate, that of retinal projection neurons, from the vsx1 lineage. Our observations reveal unanticipated plasticity of cell fate during retinal development.
Collapse
Affiliation(s)
- Peter Engerer
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Strasse 29, 80802 Munich, Germany
| | - Eleni Petridou
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Strasse 29, 80802 Munich, Germany; Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilian University of Munich, Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Philip R Williams
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Strasse 29, 80802 Munich, Germany
| | - Sachihiro C Suzuki
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Takeshi Yoshimatsu
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Ruben Portugues
- Institute of Neuroscience, Technische Universität München, Biedersteiner Strasse 29, 80802 Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Strasse 29, 80802 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, 81377 Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Leanne Godinho
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Strasse 29, 80802 Munich, Germany.
| |
Collapse
|
46
|
Zhou Q, Lei L, Zhang H, Chiu SC, Gao L, Yang R, Wei W, Peng G, Zhu X, Xiong JW. Proprotein convertase furina is required for heart development in zebrafish. J Cell Sci 2021; 134:272418. [PMID: 34622921 DOI: 10.1242/jcs.258432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022] Open
Abstract
Cardiac looping and trabeculation are key processes during cardiac chamber maturation. However, the underlying mechanisms remain incompletely understood. Here, we report the isolation, cloning and characterization of the proprotein convertase furina from the cardiovascular mutant loft in zebrafish. loft is an ethylnitrosourea-induced mutant and has evident defects in the cardiac outflow tract, heart looping and trabeculation, the craniofacial region and pharyngeal arch arteries. Positional cloning revealed that furina mRNA was barely detectable in loft mutants, and loft failed to complement the TALEN-induced furina mutant pku338, confirming that furina is responsible for the loft mutant phenotypes. Mechanistic studies demonstrated that Notch reporter Tg(tp1:mCherry) signals were largely eliminated in mutant hearts, and overexpression of the Notch intracellular domain partially rescued the mutant phenotypes, probably due to the lack of Furina-mediated cleavage processing of Notch1b proteins, the only Notch receptor expressed in the heart. Together, our data suggest a potential post-translational modification of Notch1b proteins via the proprotein convertase Furina in the heart, and unveil the function of the Furina-Notch1b axis in cardiac looping and trabeculation in zebrafish, and possibly in other organisms.
Collapse
Affiliation(s)
- Qinchao Zhou
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Lei Lei
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Hefei Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Shih-Ching Chiu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Lu Gao
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Ran Yang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Wensheng Wei
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Gang Peng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Xiaojun Zhu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Jing-Wei Xiong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| |
Collapse
|
47
|
Paolini A, Fontana F, Pham VC, Rödel CJ, Abdelilah-Seyfried S. Mechanosensitive Notch-Dll4 and Klf2-Wnt9 signaling pathways intersect in guiding valvulogenesis in zebrafish. Cell Rep 2021; 37:109782. [PMID: 34610316 PMCID: PMC8511505 DOI: 10.1016/j.celrep.2021.109782] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 08/11/2021] [Accepted: 09/10/2021] [Indexed: 12/27/2022] Open
Abstract
In the zebrafish embryo, the onset of blood flow generates fluid shear stress on endocardial cells, which are specialized endothelial cells that line the interior of the heart. High levels of fluid shear stress activate both Notch and Klf2 signaling, which play crucial roles in atrioventricular valvulogenesis. However, it remains unclear why only individual endocardial cells ingress into the cardiac jelly and initiate valvulogenesis. Here, we show that lateral inhibition between endocardial cells, mediated by Notch, singles out Delta-like-4-positive endocardial cells. These cells ingress into the cardiac jelly, where they form an abluminal cell population. Delta-like-4-positive cells ingress in response to Wnt9a, which is produced in parallel through an Erk5-Klf2-Wnt9a signaling cascade also activated by blood flow. Hence, mechanical stimulation activates parallel mechanosensitive signaling pathways that produce binary effects by driving endocardial cells toward either luminal or abluminal fates. Ultimately, these cell fate decisions sculpt cardiac valve leaflets.
Collapse
Affiliation(s)
- Alessio Paolini
- Institute of Biochemistry and Biology, Potsdam University, 14476 Potsdam, Germany
| | - Federica Fontana
- Institute of Biochemistry and Biology, Potsdam University, 14476 Potsdam, Germany
| | - Van-Cuong Pham
- Institute of Biochemistry and Biology, Potsdam University, 14476 Potsdam, Germany
| | - Claudia Jasmin Rödel
- Institute of Biochemistry and Biology, Potsdam University, 14476 Potsdam, Germany
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, Potsdam University, 14476 Potsdam, Germany; Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
48
|
Zhang X, Tao J, Yu J, Hu N, Zhang X, Wang G, Feng J, Xiong X, Li M, Chai D, Li H, Rong Y, Tang Z, Wang W, Peng Z, Shi Q. Inhibition of Notch activity promotes pancreatic cytokeratin 5-positive cell differentiation to beta cells and improves glucose homeostasis following acute pancreatitis. Cell Death Dis 2021; 12:867. [PMID: 34556631 PMCID: PMC8460737 DOI: 10.1038/s41419-021-04160-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/17/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022]
Abstract
Some individuals develop prediabetes and/or diabetes following acute pancreatitis (AP). AP-induced beta-cell injury and the limited regenerative capacity of beta cells might account for pancreatic endocrine insufficiency. Previously, we found that only a few pancreatic cytokeratin 5 positive (Krt5+) cells differentiated into beta cells in the murine AP model, which was insufficient to maintain glucose homeostasis. Notch signaling determines pancreatic progenitor differentiation in pancreas development. This study aimed to examine whether Notch signaling inhibition could promote pancreatic Krt5+ cell differentiation into beta cells and improve glucose homeostasis following AP. Pancreatic tissues from patients with acute necrotizing pancreatitis (ANP) were used to evaluate beta-cell injury, Krt5+ cell activation and differentiation, and Notch activity. The murine AP model was induced by cerulein, and the effect of Notch inhibition on Krt5+ cell differentiation was evaluated both in vivo and in vitro. The results demonstrated beta-cell loss in ANP patients and AP mice. Krt5+ cells were activated in ANP pancreases along with persistently elevated Notch activity, which resulted in the formation of massive duct-like structures. AP mice that received Notch inhibitor showed that impaired glucose tolerance was reversed 7 and 15 days following AP, and increased numbers of newborn small islets due to increased differentiation of Krt5+ cells to beta cells to some extent. In addition, Krt5+ cells isolated from AP mice showed increased differentiation to beta cells by Notch inhibition. Collectively, these findings suggest that beta-cell loss contributes to pancreatic endocrine insufficiency following AP, and inhibition of Notch activity promotes pancreatic Krt5+ cell differentiation to beta cells and improves glucose homeostasis. The findings from this study may shed light on the potential treatment of prediabetes/diabetes following AP.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Tao
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jia Yu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning Hu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuanzhe Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guirong Wang
- Department of Surgery, SUNY Upstate Medical University, Syracuse, USA
| | - Jiarui Feng
- Department of Medical Management, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xingcheng Xiong
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Man Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongqi Chai
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hanjun Li
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuping Rong
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhigang Tang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Qiao Shi
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
49
|
Chen J, Li X, Ni R, Chen Q, Yang Q, He J, Luo L. Acute brain vascular regeneration occurs via lymphatic transdifferentiation. Dev Cell 2021; 56:3115-3127.e6. [PMID: 34562378 DOI: 10.1016/j.devcel.2021.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/08/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022]
Abstract
Acute ischemic stroke damages the regional brain blood vessel (BV) network. Acute recovery of basic blood flows, which is carried out by the earliest regenerated BVs, are critical to improve clinical outcomes and minimize lethality. Although the late-regenerated BVs form via growing along the meninge-derived ingrown lymphatic vessels (iLVs), mechanisms underlying the early, acute BV regeneration remain elusive. Using zebrafish cerebrovascular injury models, we show that the earliest regenerated BVs come from lymphatic transdifferentiation, a hitherto unappreciated process in vertebrates. Mechanistically, the LV-to-BV transdifferentiation occurs exclusively in the stand-alone iLVs through Notch activation. In the track iLVs adhered by late-regenerated BVs, transdifferentiation never occurs because the BV-expressing EphrinB2a paracellularly activates the iLV-expressing EphB4a to inhibit Notch activation. Suppression of LV-to-BV transdifferentiation blocks acute BV regeneration and becomes lethal. These results demonstrate that acute BV regeneration occurs via lymphatic transdifferentiation, suggesting this process and key regulatory molecules EphrinB2a/EphB4a/Notch as new postischemic therapeutic targets.
Collapse
Affiliation(s)
- Jingying Chen
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei 400715, Chongqing, China; University of Chinese Academy of Sciences (Chongqing), Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Beibei 400714, Chongqing, China
| | - Xiuhua Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei 400715, Chongqing, China
| | - Rui Ni
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei 400715, Chongqing, China
| | - Qi Chen
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei 400715, Chongqing, China
| | - Qifen Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei 400715, Chongqing, China
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei 400715, Chongqing, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei 400715, Chongqing, China; University of Chinese Academy of Sciences (Chongqing), Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Beibei 400714, Chongqing, China.
| |
Collapse
|
50
|
Abstract
Genetically encoded fluorescent tags such as green fluorescent protein fused to protein have revolutionized cell biology as they permit high-resolution protein imaging in live systems. Split fluorescent proteins, with a small fragment of 16 amino acids, can be inserted in the coding sequence to label proteins. We demonstrate successful integration of two bright and fast maturing split fluorescent proteins, mNeon green and sfCherry2, in zebrafish, and show that they are suitable for live imaging, including time-lapse series, and that they have a high signal-to-noise ratio. Furthermore, we show that CRISPR/Cas9 can be used to generate fluorescently tagged proteins in vivo.
Collapse
Affiliation(s)
- Gokul Kesavan
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Dresden, Germany
| | - Anja Machate
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|