1
|
Aldowigh F, Matus R, Agneessens J, Gao H, Wei W, Topping J, Lindsey K. MDF Regulates a Network of Auxin-Dependent and Auxin-Independent Pathways of Adventitious Root Regeneration in Arabidopsis. PLANT DIRECT 2025; 9:e70050. [PMID: 40275872 PMCID: PMC12018534 DOI: 10.1002/pld3.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/16/2025] [Accepted: 01/28/2025] [Indexed: 04/26/2025]
Abstract
Plants exhibit strong plasticity in growth and development, seen clearly in lateral and adventitious root development from differentiated tissues in response to environmental stresses. Previous studies have demonstrated the role of both auxin-dependent and auxin-independent signaling pathways in regulating the de novo formation of adventitious roots (ARs) from differentiated tissues, such as leaf petiole in Arabidopsis. One important question is how the auxin-dependent and auxin-independent pathways are coordinated. To investigate this question, we used a combined approach of inducible gene expression, mutant, and signaling reporter gene analysis during AR regeneration in the Arabidopsis petiole to understand regulatory relationships. Auxin signaling components AXR1 and AXR3 are each required for both AR and subsequent lateral root (LR) initiation, as is the ethylene signaling repressor POLARIS, but not EIN2. The PIN trafficking SNARE protein VAMP714 is required for LR rather than AR formation, through effects on auxin-induced gene expression. We identify the RNA splicing regulator MDF and the transcription factor RAP2.7 as new positive regulators of both the auxin-independent and auxin-dependent pathways, and show that MDF regulates RAP2.7, WOX5, and NAC1 while RAP2.7 regulates WOX5 but not NAC1 or YUC1. NAC1 is required for de novo root formation in a pathway independent of YUC1, WOX5, or RAP2.7. We propose a model in which MDF represents a point of molecular crosstalk between auxin-dependent and auxin-independent regeneration processes.
Collapse
Affiliation(s)
| | | | | | - Haozhan Gao
- Department of BiosciencesDurham UniversityDurhamUK
| | - Wenbin Wei
- Department of BiosciencesDurham UniversityDurhamUK
| | | | | |
Collapse
|
2
|
Fu R, Zhang M, Wei F, Lin M, Fang J, Wang R, Li Y, Chen J, Sun L, Qi X. RNA-Seq Analysis Reveals Potential Genes Involved in Plant Growth Regulator-Induced Ovary Development in Male Kiwifruit ( Actinidia eriantha). PLANTS (BASEL, SWITZERLAND) 2025; 14:703. [PMID: 40099584 PMCID: PMC11902103 DOI: 10.3390/plants14050703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
Kiwifruit is a dioecious woody liana fruit tree, and the non-fruitfulness of male plants leads to a great deal of blindness in the selection of male plants in crossbreeding. In this study, we induced the development of male plant ovary by externally applying plant growth regulators (PGRs) and performed histological observation, phytohormone content determination and transcriptome analysis on the abortive ovary of the male kiwifruit (Con), the ovary of the female kiwifruit (Fem) and the PGR-induced developing ovary of the male kiwifruit (PT). Histological analysis showed that the Con ovary was devoid of ovules and the carpels were atrophied, the Fem ovary had ovules and the PT ovary was devoid of ovules, but the carpels developed normally and were not atrophied. Endogenous phytohormone content measurements displayed higher levels of trans-zeatin (tZT) in PT and Fem than Con, and lower levels of gibberellin (GA3) and abscisic acid (ABA) than Con. Transcriptome analysis revealed significant differences in many key genes in the cytokinin and auxin pathways, which were consistent with the results of phytohormone content measurements. Meanwhile, the genes related to carpel development, SPT (DTZ79_04g03580) and SK41 (DTZ79_19g04340), were highly expressed in PT, suggesting that they may play a key role in PGR-induced development of the ovary in male kiwifruit. These results provide information for elucidating the potential regulatory network of PGR-induced ovary development in male flowers and contribute to further identification of valuable target genes.
Collapse
Affiliation(s)
- Rong Fu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (R.F.); (F.W.)
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.Z.); (M.L.); (J.F.); (R.W.); (Y.L.); (J.C.)
| | - Min Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.Z.); (M.L.); (J.F.); (R.W.); (Y.L.); (J.C.)
| | - Feng Wei
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (R.F.); (F.W.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Miaomiao Lin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.Z.); (M.L.); (J.F.); (R.W.); (Y.L.); (J.C.)
| | - Jinbao Fang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.Z.); (M.L.); (J.F.); (R.W.); (Y.L.); (J.C.)
| | - Ran Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.Z.); (M.L.); (J.F.); (R.W.); (Y.L.); (J.C.)
| | - Yukuo Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.Z.); (M.L.); (J.F.); (R.W.); (Y.L.); (J.C.)
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Jinyong Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.Z.); (M.L.); (J.F.); (R.W.); (Y.L.); (J.C.)
| | - Leiming Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.Z.); (M.L.); (J.F.); (R.W.); (Y.L.); (J.C.)
- Chuxiong Yunguo Agriculture Technology Research Institute, Chuxiong 675000, China
| | - Xiujuan Qi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.Z.); (M.L.); (J.F.); (R.W.); (Y.L.); (J.C.)
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| |
Collapse
|
3
|
Yu S, Li L, Liu T, Li J, Yang Q, Cui X. The effects of different hormone combinations on the growth of Panax notoginseng anther callus based on metabolome analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1503931. [PMID: 39719933 PMCID: PMC11667561 DOI: 10.3389/fpls.2024.1503931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024]
Abstract
Panax notoginseng saponins (PNS), the primary active components of Panax notoginseng (Burk.) F.H.Chen, a traditional and precious Chinese medicinal herb, are mainly derived from the roots of the plant. However, due to the long cultivation period and specific environmental requirements, the PNS supply is often limited. And, callus cultures of P. notoginseng, which grow rapidly, have short production cycles, and can be cultured under controlled conditions, provide a more efficient source for the quick acquisition of saponins. In this study, anthers of P. notoginseng were used as explants, and twelve hormone combinations were tested to induce callus formation. Eight kinds of hormone combinations successfully induced P. notoginseng anther callus. Among these, callus induced by combinations 5 and 7 had the highest saponin content, while those induced by combinations 1 and 3 exhibited the highest relative growth rates. Metabolomic analysis of these four callus types revealed that there were a total of 99 differential metabolites between combinations 5 and 7, 30 between combinations 1 and 3, 123 between combinations 3 and 7, and 116 between combinations 1 and 5. Further analysis showed that the tricarboxylic acid (TCA) cycle metabolites in callus induced by combinations 1 and 3 were significantly upregulated, with corresponding genes showing high expression levels, increased ATP accumulation, and low responses of the auxin response factor PnARF-3 and cytokinin response factor PnCRF-3. The abundance of metabolites in the PNS biosynthesis pathway in callus induced by combinations 5 and 7 increased significantly, with related genes showing high expression levels, increased IPP accumulation, and high responses of PnARF-3 and PnCRF-3. Overexpression of PnARF-3 and PnCRF-3 in callus induced by combination 3 promoted the production of IPP and saponins while reducing ATP production. In conclusion, different hormone combinations affect the distribution of Acetyl-CoA through PnARF-3 and PnCRF-3, resulting in the relative growth rate and saponin of P. notoginseng anther callus differences.
Collapse
Affiliation(s)
- Saiying Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
| | - Leilin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
| | - Tiantai Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
| | - Jianbin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
| | - Qian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
- Sanqi Research Institute of Yunnan Province, Kunming, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
- Sanqi Research Institute of Yunnan Province, Kunming, China
| |
Collapse
|
4
|
Tezuka T, Sato R, Itoh JI, Kobayashi T, Watanabe T, Chiba K, Shimizu H, Nabeta T, Sunohara H, Wabiko H, Nagasawa N, Satoh-Nagasawa N. Adaxial-abaxial bipolar leaf genes encode a putative cytokinin receptor and HD-Zip III, and control the formation of ectopic shoot meristems in rice. Development 2024; 151:dev202607. [PMID: 39206939 DOI: 10.1242/dev.202607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
Shoot apical meristems (SAMs) continuously initiate organ formation and maintain pluripotency through dynamic genetic regulations and cell-to-cell communications. The activity of meristems directly affects the plant's structure by determining the number and arrangement of organs and tissues. We have taken a forward genetic approach to dissect the genetic pathway that controls cell differentiation around the SAM. The rice mutants, adaxial-abaxial bipolar leaf 1 and 2 (abl1 and abl2), produce an ectopic leaf that is fused back-to-back with the fourth leaf, the first leaf produced after embryogenesis. The abaxial-abaxial fusion is associated with the formation of an ectopic shoot meristem at the adaxial base of the fourth leaf primordium. We cloned the ABL1 and ABL2 genes of rice by mapping their chromosomal positions. ABL1 encodes OsHK6, a histidine kinase, and ABL2 encodes a transcription factor, OSHB3 (Class III homeodomain leucine zipper). Expression analyses of these mutant genes as well as OSH1, a rice ortholog of the Arabidopsis STM gene, unveiled a regulatory circuit that controls the formation of an ectopic meristem near the SAM at germination.
Collapse
Affiliation(s)
- Takumi Tezuka
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan
- National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Rie Sato
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan
| | - Jun-Ichi Itoh
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Toshiki Kobayashi
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan
| | - Tomokazu Watanabe
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan
| | - Kaito Chiba
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan
| | - Haruki Shimizu
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan
| | - Takuma Nabeta
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan
| | - Hidehiko Sunohara
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Hiroetsu Wabiko
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan
| | - Nobuhiro Nagasawa
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan
| | - Namiko Satoh-Nagasawa
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan
| |
Collapse
|
5
|
Yan Z, Hou J, Leng B, Yao G, Ma C, Sun Y, Zhang F, Mu C, Liu X. Genome-Wide Investigation of the CRF Gene Family in Maize and Functional Analysis of ZmCRF9 in Response to Multiple Abiotic Stresses. Int J Mol Sci 2024; 25:7650. [PMID: 39062894 PMCID: PMC11276700 DOI: 10.3390/ijms25147650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The cytokinin response factors (CRFs) are pivotal players in regulating plant growth, development, and responses to diverse stresses. Despite their significance, comprehensive information on CRF genes in the primary food crop, maize, remains scarce. In this study, a genome-wide analysis of CRF genes in maize was conducted, resulting in the identification of 12 members. Subsequently, we assessed the chromosomal locations, gene duplication events, evolutionary relationships, conserved motifs, and gene structures of all ZmCRF members. Analysis of ZmCRF promoter regions indicated the presence of cis-regulatory elements associated with plant growth regulation, hormone response, and various abiotic stress responses. The expression patterns of maize CRF genes, presented in heatmaps, exhibited distinctive patterns of tissue specificity and responsiveness to multiple abiotic stresses. qRT-PCR experiments were conducted on six selected genes and confirmed the involvement of ZmCRF genes in the plant's adaptive responses to diverse environmental challenges. In addition, ZmCRF9 was demonstrated to positively regulate cold and salt tolerance. Ultimately, we explored the putative interaction partners of ZmCRF proteins. In summary, this systematic overview and deep investigation of ZmCRF9 provides a solid foundation for further exploration into how these genes contribute to the complex interplay of plant growth, development, and responses to stress.
Collapse
Affiliation(s)
- Zhenwei Yan
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| | - Jing Hou
- School of Agriculture, Ludong University, Yantai 264001, China;
| | - Bingying Leng
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| | - Guoqi Yao
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan 250300, China;
| | - Yue Sun
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China;
| | - Fajun Zhang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| | - Chunhua Mu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| | - Xia Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| |
Collapse
|
6
|
Cerbantez-Bueno VE, Serwatowska J, Rodríguez-Ramos C, Cruz-Valderrama JE, de Folter S. The role of D3-type cyclins is related to cytokinin and the bHLH transcription factor SPATULA in Arabidopsis gynoecium development. PLANTA 2024; 260:48. [PMID: 38980389 PMCID: PMC11233295 DOI: 10.1007/s00425-024-04481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
MAIN CONCLUSION We studied the D3-type cyclin function during gynoecium development in Arabidopsis and how they are related to the hormone cytokinin and the transcription factor SPATULA. Growth throughout the life of plants is sustained by cell division and differentiation processes in meristematic tissues. In Arabidopsis, gynoecium development implies a multiphasic process where the tissues required for pollination, fertilization, and seed development form. The Carpel Margin Meristem (CMM) is a mass of undifferentiated cells that gives rise to the gynoecium internal tissues, such as septum, ovules, placenta, funiculus, transmitting tract, style, and stigma. Different genetic and hormonal factors, including cytokinin, control the CMM function. Cytokinin regulates the cell cycle transitions through the activation of cell cycle regulators as cyclin genes. D3-type cyclins are expressed in proliferative tissues, favoring the mitotic cell cycle over the endoreduplication. Though the role of cytokinin in CMM and gynoecium development is highly studied, its specific role in regulating the cell cycle in this tissue remains unclear. Additionally, despite extensive research on the relationship between CYCD3 genes and cytokinin, the regulatory mechanism that connects them remains elusive. Here, we found that D3-type cyclins are expressed in proliferative medial and lateral tissues. Conversely, the depletion of the three CYCD3 genes showed that they are not essential for gynoecium development. However, the addition of exogenous cytokinin showed that they could control the division/differentiation balance in gynoecium internal tissues and outgrowths. Finally, we found that SPATULA can be a mechanistic link between cytokinin and the D3-type cyclins. The data suggest that the role of D3-type cyclins in gynoecium development is related to the cytokinin response, and they might be activated by the transcription factor SPATULA.
Collapse
Affiliation(s)
- Vincent E Cerbantez-Bueno
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Joanna Serwatowska
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
| | - Carolina Rodríguez-Ramos
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
| | - J Erik Cruz-Valderrama
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México.
| |
Collapse
|
7
|
Moore S, Jervis G, Topping JF, Chen C, Liu J, Lindsey K. A predictive model for ethylene-mediated auxin and cytokinin patterning in the Arabidopsis root. PLANT COMMUNICATIONS 2024; 5:100886. [PMID: 38504522 PMCID: PMC11287175 DOI: 10.1016/j.xplc.2024.100886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/25/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024]
Abstract
The interaction between auxin and cytokinin is important in many aspects of plant development. Experimental measurements of both auxin and cytokinin concentration and reporter gene expression clearly show the coexistence of auxin and cytokinin concentration patterning in Arabidopsis root development. However, in the context of crosstalk among auxin, cytokinin, and ethylene, little is known about how auxin and cytokinin concentration patterns simultaneously emerge and how they regulate each other in the Arabidopsis root. This work utilizes a wide range of experimental observations to propose a mechanism for simultaneous patterning of auxin and cytokinin concentrations. In addition to revealing the regulatory relationships between auxin and cytokinin, this mechanism shows that ethylene signaling is an important factor in achieving simultaneous auxin and cytokinin patterning, while also predicting other experimental observations. Combining the mechanism with a realistic in silico root model reproduces experimental observations of both auxin and cytokinin patterning. Predictions made by the mechanism can be compared with a variety of experimental observations, including those obtained by our group and other independent experiments reported by other groups. Examples of these predictions include patterning of auxin biosynthesis rate, changes in PIN1 and PIN2 patterns in pin3,4,7 mutants, changes in cytokinin patterning in the pls mutant, PLS patterning, and various trends in different mutants. This research reveals a plausible mechanism for simultaneous patterning of auxin and cytokinin concentrations in Arabidopsis root development and suggests a key role for ethylene pattern integration.
Collapse
Affiliation(s)
- Simon Moore
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - George Jervis
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Jennifer F Topping
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Chunli Chen
- Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Junli Liu
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| | - Keith Lindsey
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
8
|
Gentile D, Serino G, Frugis G. CRF transcription factors in the trade-off between abiotic stress response and plant developmental processes. Front Genet 2024; 15:1377204. [PMID: 38694876 PMCID: PMC11062136 DOI: 10.3389/fgene.2024.1377204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/04/2024] [Indexed: 05/04/2024] Open
Abstract
Climate change-induced environmental stress significantly affects crop yield and quality. In response to environmental stressors, plants use defence mechanisms and growth suppression, creating a resource trade-off between the stress response and development. Although stress-responsive genes have been widely engineered to enhance crop stress tolerance, there is still limited understanding of the interplay between stress signalling and plant growth, a research topic that can provide promising targets for crop genetic improvement. This review focuses on Cytokinin Response Factors (CRFs) transcription factor's role in the balance between abiotic stress adaptation and sustained growth. CRFs, known for their involvement in cytokinin signalling and abiotic stress responses, emerge as potential targets for delaying senescence and mitigating yield penalties under abiotic stress conditions. Understanding the molecular mechanisms regulated by CRFs paves the way for decoupling stress responses from growth inhibition, thus allowing the development of crops that can adapt to abiotic stress without compromising development. This review highlights the importance of unravelling CRF-mediated pathways to address the growing need for resilient crops in the face of evolving climatic conditions.
Collapse
Affiliation(s)
- Davide Gentile
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Rome, Italy
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Rome, Italy
| | - Giovanna Serino
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Rome, Italy
| | - Giovanna Frugis
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Rome, Italy
| |
Collapse
|
9
|
Abasi F, Raja NI, Mashwani ZUR, Ehsan M, Ali H, Shahbaz M. Heat and Wheat: Adaptation strategies with respect to heat shock proteins and antioxidant potential; an era of climate change. Int J Biol Macromol 2024; 256:128379. [PMID: 38000583 DOI: 10.1016/j.ijbiomac.2023.128379] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Extreme changes in weather including heat-wave and high-temperature fluctuations are predicted to increase in intensity and duration due to climate change. Wheat being a major staple crop is under severe threat of heat stress especially during the grain-filling stage. Widespread food insecurity underscores the critical need to comprehend crop responses to forthcoming climatic shifts, pivotal for devising adaptive strategies ensuring sustainable crop productivity. This review addresses insights concerning antioxidant, physiological, molecular impacts, tolerance mechanisms, and nanotechnology-based strategies and how wheat copes with heat stress at the reproductive stage. In this study stress resilience strategies were documented for sustainable grain production under heat stress at reproductive stage. Additionally, the mechanisms of heat resilience including gene expression, nanomaterials that trigger transcription factors, (HSPs) during stress, and physiological and antioxidant traits were explored. The most reliable method to improve plant resilience to heat stress must include nano-biotechnology-based strategies, such as the adoption of nano-fertilizers in climate-smart practices and the use of advanced molecular approaches. Notably, the novel resistance genes through advanced molecular approach and nanomaterials exhibit promise for incorporation into wheat cultivars, conferring resilience against imminent adverse environmental conditions. This review will help scientific communities in thermo-tolerance wheat cultivars and new emerging strategies to mitigate the deleterious impact of heat stress.
Collapse
Affiliation(s)
- Fozia Abasi
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan.
| | - Naveed Iqbal Raja
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan.
| | | | - Maria Ehsan
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Habib Ali
- Department of Agronomy, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Muhammad Shahbaz
- Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah, 88400 Kota Kinabalu, Malaysia
| |
Collapse
|
10
|
Sun M, Shen Y. Integrating the multiple functions of CHLH into chloroplast-derived signaling fundamental to plant development and adaptation as well as fruit ripening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111892. [PMID: 37821024 DOI: 10.1016/j.plantsci.2023.111892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Chlorophyll (Chl)-mediated oxygenic photosynthesis sustains life on Earth. Greening leaves play fundamental roles in plant growth and crop yield, correlating with the idea that more Chls lead to better adaptation. However, they face significant challenges from various unfavorable environments. Chl biosynthesis hinges on the first committed step, which involves inserting Mg2+ into protoporphyrin. This step is facilitated by the H subunit of magnesium chelatase (CHLH) and features a conserved mechanism from cyanobacteria to plants. For better adaptation to fluctuating land environments, especially drought, CHLH evolves multiple biological functions, including Chl biosynthesis, retrograde signaling, and abscisic acid (ABA) responses. Additionally, it integrates into various chloroplast-derived signaling pathways, encompassing both retrograde signaling and hormonal signaling. The former comprises ROS (reactive oxygen species), heme, GUN (genomes uncoupled), MEcPP (methylerythritol cyclodiphosphate), β-CC (β-cyclocitral), and PAP (3'-phosphoadenosine-5'-phosphate). The latter involves phytohormones like ABA, ethylene, auxin, cytokinin, gibberellin, strigolactone, brassinolide, salicylic acid, and jasmonic acid. Together, these elements create a coordinated regulatory network tailored to plant development and adaptation. An intriguing example is how drought-mediated improvement of fruit quality provides insights into chloroplast-derived signaling, aiding the shift from vegetative to reproductive growth. In this context, we explore the integration of CHLH's multifaceted roles into chloroplast-derived signaling, which lays the foundation for plant development and adaptation, as well as fruit ripening and quality. In the future, manipulating chloroplast-derived signaling may offer a promising avenue to enhance crop yield and quality through the homeostasis, function, and regulation of Chls.
Collapse
Affiliation(s)
- Mimi Sun
- College of Horticulture, China Agricultural University, Beijing 100193, China; College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102206, China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102206, China.
| |
Collapse
|
11
|
Yuan Y, Khourchi S, Li S, Du Y, Delaplace P. Unlocking the Multifaceted Mechanisms of Bud Outgrowth: Advances in Understanding Shoot Branching. PLANTS (BASEL, SWITZERLAND) 2023; 12:3628. [PMID: 37896091 PMCID: PMC10610460 DOI: 10.3390/plants12203628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
Shoot branching is a complex and tightly regulated developmental process that is essential for determining plant architecture and crop yields. The outgrowth of tiller buds is a crucial step in shoot branching, and it is influenced by a variety of internal and external cues. This review provides an extensive overview of the genetic, plant hormonal, and environmental factors that regulate shoot branching in several plant species, including rice, Arabidopsis, tomato, and wheat. We especially highlight the central role of TEOSINTE BRANCHED 1 (TB1), a key gene in orchestrating bud outgrowth. In addition, we discuss how the phytohormones cytokinins, strigolactones, and auxin interact to regulate tillering/branching. We also shed light on the involvement of sugar, an integral component of plant development, which can impact bud outgrowth in both trophic and signaling ways. Finally, we emphasize the substantial influence of environmental factors, such as light, temperature, water availability, biotic stresses, and nutrients, on shoot branching. In summary, this review offers a comprehensive evaluation of the multifaced regulatory mechanisms that underpin shoot branching and highlights the adaptable nature of plants to survive and persist in fluctuating environmental conditions.
Collapse
Affiliation(s)
- Yundong Yuan
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Said Khourchi
- Plant Sciences, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Shujia Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanfang Du
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Pierre Delaplace
- Plant Sciences, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| |
Collapse
|
12
|
Asim M, Zhang Y, Liu W. Editorial: Cooperation of gene regulatory networks and phytohormones in cell development and morphogenesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1290538. [PMID: 37860232 PMCID: PMC10583544 DOI: 10.3389/fpls.2023.1290538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023]
Affiliation(s)
- Muhammad Asim
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Wenwen Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| |
Collapse
|
13
|
Zhai X, Feng Y, Zhang X, Guo X. Comparative Analysis Based on Physiological and Transcriptomic Data between Juvenile and Adult Tree Peony ( Paeonia delavayi). Int J Mol Sci 2023; 24:10906. [PMID: 37446082 DOI: 10.3390/ijms241310906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
A long juvenile period limits the breeding process of many woody plants including tree peony. To investigate the physiological and transcriptomic differences between juvenile and adult plants of tree peony and to explore the key SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes, which are vital in age-dependent pathways, 1-year-old and 3-year-old Paeonia delavayi plants were used to compare the relevant physiological parameters and transcriptomic profiles of the leaves in two phases of plants. The results of the physiological parameters showed that the starch content in the leaves of adult plants remained unchanged and that the soluble sugar content significantly increased compared with those in the juvenile plants. In terms of plant hormones, the contents of cytokinin-like hormone (N6-isopentenyladenine (iP)) and jasmonic acid (JA) significantly decreased, whereas the contents of auxin (indole-3-acetic acid, IAA), abscisic acid (ABA), cytokinin-like hormone (N6-isopentenyladenenosine (iPR)), and ethylene precursor (1-aminocyclopropane-1-carboxylic acid, ACC) showed no statistic difference. Transcriptome sequencing results showed that there were 194 differentially expressed genes (DEGs) between juvenile and adult plants, including 171 up-regulated DEGs and 23 down-regulated DEGs. Circadian rhythm, plant hormone signal transduction, and sugar metabolism were closely related to the juvenile-to-adult transition in P. delavayi, involving a total of 12 DEGs. In addition, a total of 13 SPL genes were identified in the transcriptome data, but only PdSPL10 (c71307.graph_c0) was differentially expressed. It was further validated via qRT-PCR analysis, indicating that PdSPL10 might be a key gene regulating the process of juvenile-to-adult in P. delavayi. Based on the above results, a hypothetical transcriptional network regulating juvenile-to-adult transition and flowering in P. delavayi was proposed. These findings provide a reference for understanding the mechanism of juvenile-to-adult transition in tree peony.
Collapse
Affiliation(s)
- Xiaoli Zhai
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Feng
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Xiuxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianfeng Guo
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
14
|
Kuwayama H, Kikuchi H, Kubohara Y. Derivatives of Differentiation-Inducing Factor 1 Differentially Control Chemotaxis and Stalk Cell Differentiation in Dictyostelium discoideum. BIOLOGY 2023; 12:873. [PMID: 37372157 DOI: 10.3390/biology12060873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Differentiation-inducing factors 1 and 2 (DIF-1 and DIF-2) are small lipophilic signal molecules that induce stalk cell differentiation but differentially modulate chemotaxis toward cAMP in the cellular slime mold Dictyostelium discoideum; DIF-1 suppresses chemotactic cell movement in shallow cAMP gradients, whereas DIF-2 promotes it. The receptor(s) for DIF-1 and DIF-2 have not yet been identified. We examined the effects of nine derivatives of DIF-1 on chemotactic cell movement toward cAMP and compared their chemotaxis-modulating activity and stalk cell differentiation-inducing activity in wild-type and mutant strains. The DIF derivatives differentially affected chemotaxis and stalk cell differentiation; for example, TM-DIF-1 suppressed chemotaxis and showed poor stalk-inducing activity, DIF-1(3M) suppressed chemotaxis and showed strong stalk-inducing activity, and TH-DIF-1 promoted chemotaxis. These results suggest that DIF-1 and DIF-2 have at least three receptors: one for stalk cell induction and two for chemotaxis modulation. In addition, our results show that the DIF derivatives can be used to analyze the DIF-signaling pathways in D. discoideum.
Collapse
Affiliation(s)
- Hidekazu Kuwayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Haruhisa Kikuchi
- Division of Natural Medicines, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Yuzuru Kubohara
- Laboratory of Health and Life Science, Graduate School of Health and Sports Science, Juntendo University, Inzai 270-1695, Japan
| |
Collapse
|
15
|
Hirayama T, Mochida K. Plant Hormonomics: A Key Tool for Deep Physiological Phenotyping to Improve Crop Productivity. PLANT & CELL PHYSIOLOGY 2023; 63:1826-1839. [PMID: 35583356 PMCID: PMC9885943 DOI: 10.1093/pcp/pcac067] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/07/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Agriculture is particularly vulnerable to climate change. To cope with the risks posed by climate-related stressors to agricultural production, global population growth, and changes in food preferences, it is imperative to develop new climate-smart crop varieties with increased yield and environmental resilience. Molecular genetics and genomic analyses have revealed that allelic variations in genes involved in phytohormone-mediated growth regulation have greatly improved productivity in major crops. Plant science has remarkably advanced our understanding of the molecular basis of various phytohormone-mediated events in plant life. These findings provide essential information for improving the productivity of crops growing in changing climates. In this review, we highlight the recent advances in plant hormonomics (multiple phytohormone profiling) and discuss its application to crop improvement. We present plant hormonomics as a key tool for deep physiological phenotyping, focusing on representative plant growth regulators associated with the improvement of crop productivity. Specifically, we review advanced methodologies in plant hormonomics, highlighting mass spectrometry- and nanosensor-based plant hormone profiling techniques. We also discuss the applications of plant hormonomics in crop improvement through breeding and agricultural management practices.
Collapse
Affiliation(s)
- Takashi Hirayama
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046 Japan
| | - Keiichi Mochida
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumiku, Yokohama, Kanagawa, 230-0045 Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maiokacho, Totsukaku, Yokohama, Kanagawa, 244-0813 Japan
- School of Information and Data Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521 Japan
- RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehirocho, Tsurumiku, Yokohama, Kanagawa 230-0045 Japan
| |
Collapse
|
16
|
Liu B, Liu K, Chen X, Xiao D, Wang T, Yang Y, Shuai H, Wu S, Yuan L, Chen L. Comparative Transcriptome Analysis Reveals the Interaction of Sugar and Hormone Metabolism Involved in the Root Hair Morphogenesis of the Endangered Fir Abies beshanzuensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:276. [PMID: 36678989 PMCID: PMC9862426 DOI: 10.3390/plants12020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Abies beshanzuensis, an extremely rare and critically endangered plant with only three wild adult trees globally, is strongly mycorrhizal-dependent, leading to difficulties in protection and artificial breeding without symbiosis. Root hair morphogenesis plays an important role in the survival of mycorrhizal symbionts. Due to the lack of an effective genome and transcriptome of A. beshanzuensis, the molecular signals involved in the root hair development remain unknown, which hinders its endangered mechanism analysis and protection. Herein, transcriptomes of radicles with root hair (RH1) and without root hair (RH0) from A. beshanzuensis in vitro plantlets were primarily established. Functional annotation and differentially expressed gene (DEG) analysis showed that the two phenotypes have highly differentially expressed gene clusters. Transcriptome divergence identified hormone and sugar signaling primarily involved in root hair morphogenesis of A. beshanzuensis. Weighted correlation network analysis (WGCNA) coupled with quantitative real-time PCR (qRT-PCR) found that two hormone-sucrose-root hair modules were linked by IAA17, and SUS was positioned in the center of the regulation network, co-expressed with SRK2E in hormone transduction and key genes related to root hair morphogenesis. Our results contribute to better understanding of the molecular mechanisms of root hair development and offer new insights into deciphering the survival mechanism of A. beshanzuensis and other endangered species, utilizing root hair as a compensatory strategy instead of poor mycorrhizal growth.
Collapse
Affiliation(s)
- Bin Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ke Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiaorong Chen
- Qingyuan Conservation Center of Qianjiangyuan-Baishanzu National Park, Qingyuan 323800, China
| | - Duohong Xiao
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Tingjin Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yang Yang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hui Shuai
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Sumei Wu
- Qingyuan Conservation Center of Qianjiangyuan-Baishanzu National Park, Qingyuan 323800, China
| | - Lu Yuan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Liping Chen
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Navarro-Cartagena S, Micol JL. Is auxin enough? Cytokinins and margin patterning in simple leaves. TRENDS IN PLANT SCIENCE 2023; 28:54-73. [PMID: 36180378 DOI: 10.1016/j.tplants.2022.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
The interplay between auxin and cytokinins affects facets of plant development as different as ovule formation and lateral root initiation. Moreover, cytokinins favor complexity in the development of Solanum lycopersicum and Cardamine hirsuta compound leaves. Nevertheless, no role has been proposed for cytokinins in patterning the margins of the simple leaves of Arabidopsis thaliana, a process that is assumed to be sufficiently explained by auxin localization. Here, we discuss evidence supporting the hypothesis that cytokinins play a role in simple leaf margin morphogenesis via crosstalk with auxin, as occurs in other plant developmental events. Indeed, mutant or transgenic arabidopsis plants defective in cytokinin biosynthesis or signaling, or with increased cytokinin degradation have leaf margins less serrated than the wild type.
Collapse
Affiliation(s)
- Sergio Navarro-Cartagena
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain.
| |
Collapse
|
18
|
Han Z, Ghanizadeh H, Zhang H, Li X, Li T, Wang Q, Liu J, Wang A. Clonostachys rosea Promotes Root Growth in Tomato by Secreting Auxin Produced through the Tryptamine Pathway. J Fungi (Basel) 2022; 8:1166. [PMID: 36354933 PMCID: PMC9695606 DOI: 10.3390/jof8111166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/29/2022] [Accepted: 10/29/2022] [Indexed: 07/01/2024] Open
Abstract
Clonostachys rosea (Link) Schroers is a filamentous fungus that has been widely used for biological control, biological fermentation, biodegradation and bioenergy. In this research, we investigated the impact of this fungus on root growth in tomato and the underlying mechanisms. The results showed that C. rosea can promote root growth in tomato, and tryptophan enhances its growth-promoting impacts. The results also showed that tryptophan increases the abundance of metabolites in C. rosea, with auxin (IAA) and auxin-related metabolites representing a majority of the highly abundant metabolites in the presence of tryptophan. It was noted that C. rosea could metabolize tryptophan into tryptamine (TRA) and indole-3-acetaldehyde (IAAId), and these two compounds are used by C. rosea to produce IAA through the tryptamine (TAM) pathway, which is one of the major pathways in tryptophan-dependent IAA biosynthesis. The IAA produced is used by C. rosea to promote root growth in tomato. To the best of our knowledge, this is the first report on IAA biosynthesis by C. rosea through the TAM pathway. More research is needed to understand the molecular mechanisms underlying IAA biosynthesis in C. rosea, as well as to examine the ability of this fungus to boost plant development in the field.
Collapse
Affiliation(s)
- Zhengyuan Han
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150038, China
| | - Hossein Ghanizadeh
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Haotian Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150038, China
| | - Xinmao Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150038, China
| | - Tiantian Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150038, China
| | - Qi Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150038, China
| | - Jiayin Liu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150038, China
| | - Aoxue Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150038, China
- College of Life Sciences, Northeast Agricultural University, Harbin 150038, China
| |
Collapse
|
19
|
Tahir MM, Tong L, Fan L, Liu Z, Li S, Zhang X, Li K, Shao Y, Zhang D, Mao J. Insights into the complicated networks contribute to adventitious rooting in transgenic MdWOX11 apple microshoots under nitrate treatments. PLANT, CELL & ENVIRONMENT 2022; 45:3134-3156. [PMID: 35902247 DOI: 10.1111/pce.14409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Adventitious root formation is a bottleneck for the mass propagation of microshoots, and nitrate is an essential nutrient regulating adventitious roots. WOX11 is involved in adventitious rooting. But the crosstalk between nitrate and WOX11 is completely unknown. In this study, MdWOX11 transgenic apple microshoots were grown on different nitrate treatments. Low nitrate promotes adventitious rooting in overexpressed microshoots more than wild type and RNA interference microshoots. In contrast, medium nitrate significantly inhibits it in overexpressed and RNA interference microshoots compared with wild type microshoots. Stem anatomy indicated that medium nitrate delays root primordia formation compared with low nitrate. Methyl jasmonate and zeatin riboside played positive and negative roles in adventitious rooting, respectively. Transcriptomic analysis was conducted to understand the molecular mechanisms behind the phenotypes better. Hormone signalling, sugar metabolism, nitrogen metabolism, cell cycle and root development pathway-related genes were selected for their potential involvement in adventitious rooting. Results suggest that nitrogen signaling and MdWOX11 expression affect cytokinin accumulation and response to cytokinin through regulating the expression of genes related to cytokinin synthesis and transduction pathways, which ultimately affect adventitious rooting. This study provided important insights into the complicated networks involved in adventitious rooting in transgenic microshoots under nitrate treatments.
Collapse
Affiliation(s)
- Muhammad Mobeen Tahir
- College of Horticulture, Yangling Sub-Center of the National Center for Apple Improvement, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Lu Tong
- College of Horticulture, Yangling Sub-Center of the National Center for Apple Improvement, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Li Fan
- College of Horticulture, Yangling Sub-Center of the National Center for Apple Improvement, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Zhimin Liu
- College of Horticulture, Yangling Sub-Center of the National Center for Apple Improvement, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Shaohuan Li
- College of Horticulture, Yangling Sub-Center of the National Center for Apple Improvement, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Xiaoyun Zhang
- College of Horticulture, Yangling Sub-Center of the National Center for Apple Improvement, Northwest A & F University, Yangling, Shaanxi, P. R. China
- Agricultural College, The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization in Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
| | - Ke Li
- College of Horticulture, Yangling Sub-Center of the National Center for Apple Improvement, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Yun Shao
- College of Horticulture, Yangling Sub-Center of the National Center for Apple Improvement, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Dong Zhang
- College of Horticulture, Yangling Sub-Center of the National Center for Apple Improvement, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Jiangping Mao
- College of Horticulture, Yangling Sub-Center of the National Center for Apple Improvement, Northwest A & F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
20
|
Sun L, Lv L, Zhao J, Hu M, Zhang Y, Zhao Y, Tang X, Wang P, Li Q, Chen X, Li H, Zhang Y. Genome-wide identification and expression analysis of the TaRRA gene family in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1006409. [PMID: 36110359 PMCID: PMC9468597 DOI: 10.3389/fpls.2022.1006409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Cytokinin is an important endogenous hormone in plants performing a wide spectrum of biological roles. The type-A response regulators (RRAs) are primary cytokinin response genes, which are important components of the cytokinin signaling pathway and are involved in the regulation of plant growth and development. By analysis of the whole genome sequence of wheat, we identified 20 genes encoding RRAs which were clustered into eight homologous groups. The gene structure, conserved motifs, chromosomal location, and cis-acting regulatory elements of the TaRRAs were analyzed. Quantitative real-time polymerase chain reaction (qRT-PCR) results showed that the expression levels of most of the TaRRAs increased rapidly on exogenous cytokinin application. Moreover, the TaRRA family members displayed different expression profiles under the stress treatments of drought, salt, cold, and heat. This study provides valuable insights into the RRA gene family in wheat and promotes the potential application of these genes in wheat genetic improvement.
Collapse
|
21
|
Jain P, Singh A, Iquebal MA, Jaiswal S, Kumar S, Kumar D, Rai A. Genome-Wide Analysis and Evolutionary Perspective of the Cytokinin Dehydrogenase Gene Family in Wheat ( Triticum aestivum L.). Front Genet 2022; 13:931659. [PMID: 36061212 PMCID: PMC9437647 DOI: 10.3389/fgene.2022.931659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Cytokinin dehydrogenase (CKX; EC.1.5.99.12) regulates the level of cytokinin (CK) in plants and is involved in CK regulatory activities. In different plants, a small gene family encodes CKX proteins with varied numbers of members. These genes are expanded in the genome mainly due to segmental duplication events. Despite their biological importance, CKX genes in Triticum aestivum have yet to be studied in depth. A total of 11 CKX subfamilies were identified with similar gene structures, motifs, domains, cis-acting elements, and an average signal peptide of 25 amino acid length was found. Introns, ranging from one to four, were present in the coding regions at a similar interval in major CKX genes. Putative cis-elements such as abscisic acid, auxin, salicylic acid, and low-temperature-, drought-, and light-responsive cis-regulatory elements were found in the promoter region of majority CKX genes. Variation in the expression pattern of CKX genes were identified across different tissues in Triticum. Phylogenetic analysis shows that the same subfamily of CKX clustered into a similar clade that reflects their evolutionary relationship. We performed a genome-wide identification of CKX family members in the Triticum aestivum genome to get their chromosomal location, gene structure, cis-element, phylogeny, synteny, and tissue- and stage-specific expression along with gene ontology. This study has also elaborately described the tissue- and stage-specific expression and is the resource for further analysis of CKX in the regulation of biotic and abiotic stress resistance, growth, and development in Triticum and other cereals to endeavor for higher production and proper management.
Collapse
Affiliation(s)
- Priyanka Jain
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ankita Singh
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India,*Correspondence: Sarika Jaiswal,
| | - Sundeep Kumar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India,Department of Biotechnology, School of Interdisciplinary and Allied Sciences (SIAS), Central University of Haryana, Haryana, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
22
|
Research Progress on the Leaf Morphology, Fruit Development and Plant Architecture of the Cucumber. PLANTS 2022; 11:plants11162128. [PMID: 36015432 PMCID: PMC9415855 DOI: 10.3390/plants11162128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
Cucumber (Cucumis sativus L.) is an annual climbing herb that belongs to the Cucurbitaceae family and is one of the most important economic crops in the world. The breeding of cucumber varieties with excellent agronomic characteristics has gained more attention in recent years. The size and shape of the leaves or fruit and the plant architecture are important agronomic traits that influence crop management and productivity, thus determining the crop yields and consumer preferences. The growth of the plant is precisely regulated by both environmental stimuli and internal signals. Although significant progress has been made in understanding the plant morphological regulation of Arabidopsis, rice, and maize, our understanding of the control mechanisms of the growth and development of cucumber is still limited. This paper reviews the regulation of phytohormones in plant growth and expounds the latest progress in research regarding the genetic regulation pathways in leaf development, fruit size and shape, branching, and plant type in cucumber, so as to provide a theoretical basis for improving cucumber productivity and cultivation efficiency.
Collapse
|
23
|
Avilez-Montalvo JR, Quintana-Escobar AO, Méndez-Hernández HA, Aguilar-Hernández V, Brito-Argáez L, Galaz-Ávalos RM, Uc-Chuc MA, Loyola-Vargas VM. Auxin-Cytokinin Cross Talk in Somatic Embryogenesis of Coffea canephora. PLANTS 2022; 11:plants11152013. [PMID: 35956493 PMCID: PMC9370429 DOI: 10.3390/plants11152013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/01/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022]
Abstract
Cytokinins (CK) are plant growth regulators involved in multiple physiological processes in plants. One less studied aspect is CK homeostasis (HM). The primary genes related to HM are involved in biosynthesis (IPT), degradation (CKX), and signaling (ARR). This paper demonstrates the effect of auxin (Aux) and CK and their cross talk in a Coffea canephora embryogenic system. The transcriptome and RT-qPCR suggest that Aux in pre-treatment represses biosynthesis, degradation, and signal CK genes. However, in the induction, there is an increase of genes implicated in the CK perception/signal, indicating perhaps, as in other species, Aux is repressing CK, and CK are inducing per se genes involved in its HM. This is reflected in the endogenous concentration of CK; pharmacology experiments helped study the effect of each plant growth regulator in our SE system. We conclude that the Aux–CK balance is crucial to directing somatic embryogenesis in C. canephora.
Collapse
Affiliation(s)
- Johny R. Avilez-Montalvo
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Ana O. Quintana-Escobar
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Hugo A. Méndez-Hernández
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Víctor Aguilar-Hernández
- Catedrático CONACYT, Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida 97205, Mexico;
| | - Ligia Brito-Argáez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Rosa M. Galaz-Ávalos
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Miguel A. Uc-Chuc
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Víctor M. Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
- Correspondence: ; Tel.: +52-999-942-83-30 (ext. 243)
| |
Collapse
|
24
|
Royo J, Muñiz LM, Gómez E, Añazco-Guenkova AM, Hueros G. Distinct Hormone Signalling-Modulation Activities Characterize Two Maize Endosperm-Specific Type-A Response Regulators. PLANTS 2022; 11:plants11151992. [PMID: 35956471 PMCID: PMC9370639 DOI: 10.3390/plants11151992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022]
Abstract
ZmTCRR1 and 2 are type-A response regulators expressed in the maize endosperm transfer cells (TC). While type-B response regulators transcriptionally control canonical type-A response regulators, as part of the cytokinin signal transduction mechanism, the ZmTCRRs are regulated by ZmMRP1, a master regulator of TC identity. In addition, the corresponding proteins are not detected in the TC, accumulating in the inner endosperm cells instead. These features suggest these molecules are not involved in classical, cell-autonomous, cytokinin signalling pathways. Using transgenic Arabidopsis plants ectopically expressing these genes, we have shown that ZmTCRR1 and 2 can modulate auxin and cytokinin signalling, respectively. In Arabidopsis, the ectopic expression of ZmTCRR2 blocked, almost completely, cytokinin perception. Given the conservation of these signalling pathways at the molecular level, our results suggest that the ZmTCRRs modulate cytokinin and auxin perception in the inner endosperm cells.
Collapse
|
25
|
Mahto RK, Ambika, Singh C, Chandana BS, Singh RK, Verma S, Gahlaut V, Manohar M, Yadav N, Kumar R. Chickpea Biofortification for Cytokinin Dehydrogenase via Genome Editing to Enhance Abiotic-Biotic Stress Tolerance and Food Security. Front Genet 2022; 13:900324. [PMID: 35669196 PMCID: PMC9164125 DOI: 10.3389/fgene.2022.900324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Globally more than two billion people suffer from micronutrient malnutrition (also known as "hidden hunger"). Further, the pregnant women and children in developing nations are mainly affected by micronutrient deficiencies. One of the most important factors is food insecurity which can be mitigated by improving the nutritional values through biofortification using selective breeding and genetic enhancement techniques. Chickpea is the second most important legume with numerous economic and nutraceutical properties. Therefore, chickpea production needs to be increased from the current level. However, various kind of biotic and abiotic stresses hamper global chickpea production. The emerging popular targets for biofortification in agronomic crops include targeting cytokinin dehydrogenase (CKX). The CKXs play essential roles in both physiological and developmental processes and directly impact several agronomic parameters i.e., growth, development, and yield. Manipulation of CKX genes using genome editing tools in several crop plants reveal that CKXs are involved in regulation yield, shoot and root growth, and minerals nutrition. Therefore, CKXs have become popular targets for yield improvement, their overexpression and mutants can be directly correlated with the increased yield and tolerance to various stresses. Here, we provide detailed information on the different roles of CKX genes in chickpea. In the end, we discuss the utilization of genome editing tool clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) to engineer CKX genes that can facilitate trait improvement. Overall, recent advancements in CKX and their role in plant growth, stresses and nutrient accumulation are highlighted, which could be used for chickpea improvement.
Collapse
Affiliation(s)
| | - Ambika
- Department of Genetics and Plant Breeding, UAS, Bangalore, India
| | - Charul Singh
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - B S. Chandana
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | | | - Shruti Verma
- NCoE-SAM, Department of Pediatrics, KSCH, Lady Hardinge Medical College, New Delhi, India
| | - Vijay Gahlaut
- Institute of Himalayan Bioresource Technology (CSIR), Palampur, India
| | - Murli Manohar
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| | - Neelam Yadav
- Centre of Food Technology, University of Allahabad, Prayagraj, India
| | - Rajendra Kumar
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| |
Collapse
|
26
|
Álvarez-Rodríguez S, López-González D, Reigosa MJ, Araniti F, Sánchez-Moreiras AM. Ultrastructural and hormonal changes related to harmaline-induced treatment in Arabidopsis thaliana (L.) Heynh. root meristem. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:78-89. [PMID: 35325658 DOI: 10.1016/j.plaphy.2022.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Harmaline is an indole alkaloid with demonstrated phytotoxicity and recognized pharmacological applications. However, no information is available concerning its mode of action on plant metabolism. Therefore, the present work evaluated bioherbicide mode of action of harmaline on plant metabolism of Arabidopsis thaliana (L.) Heynh. Harmaline induced a strong inhibitory activity on root growth of treated seedlings, reaching IC50 and IC80 values of 14 and 29 μM, respectively. Treated roots were shorter and thicker than control and were characterized by a shorter root meristem size and an increase of root hairs production. Harmaline induced ultrastructural changes such as increment of cell wall thickness, higher density and condensation of mitochondria and vacuolization, appearance of cell wall deposits, increment of Golgi secretory activity and higher percentage of aberrant nuclei. The ethylene inhibitor AgNO3 reversed high root hair appearance and increment of root thickness, and pTCSn::GFP transgenic line showed fluorescence cytokinin signal in stele zone after harmaline treatment that was absent in control, whereas the auxin signal in the transgenic line DR5 was significantly reduced by the treatment. All these results suggest that the mode of action of harmaline could be involving auxin, ethylene and cytokinin synergic/antagonistic action.
Collapse
Affiliation(s)
- Sara Álvarez-Rodríguez
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - David López-González
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Manuel J Reigosa
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Fabrizio Araniti
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università Statale di Milano, Via Celoria nº2, 20133, Milano, Italy
| | - Adela M Sánchez-Moreiras
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain.
| |
Collapse
|
27
|
Frank M, Cortleven A, Pěnčík A, Novak O, Schmülling T. The Photoperiod Stress Response in Arabidopsis thaliana Depends on Auxin Acting as an Antagonist to the Protectant Cytokinin. Int J Mol Sci 2022; 23:2936. [PMID: 35328357 PMCID: PMC8955046 DOI: 10.3390/ijms23062936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/05/2023] Open
Abstract
Fluctuating environmental conditions trigger adaptive responses in plants, which are regulated by phytohormones. During photoperiod stress caused by a prolongation of the light period, cytokinin (CK) has a protective function. Auxin often acts as an antagonist of CK in developmental processes and stress responses. Here, we investigated the regulation of the photoperiod stress response in Arabidopsis thaliana by auxin and its interaction with CK. Transcriptome analysis revealed an altered transcript abundance of numerous auxin metabolism and signaling genes after photoperiod stress treatment. The changes appeared earlier and were stronger in the photoperiod-stress-sensitive CK receptor mutant arabidopsis histidine kinase 2 (ahk2),3 compared to wild-type plants. The concentrations of indole-3-acetic acid (IAA), IAA-Glc and IAA-Asp increased in both genotypes, but the increases were more pronounced in ahk2,3. Genetic analysis revealed that the gain-of-function YUCCA 1 (YUC1) mutant, yuc1D, displayed an increased photoperiod stress sensitivity. In contrast, a loss of the auxin receptors TRANSPORT-INHIBITOR-RESISTANT 1 (TIR1), AUXIN SIGNALING F-BOX 2 (AFB2) and AFB3 in wild-type and ahk2,3 background caused a reduced photoperiod stress response. Overall, this study revealed that auxin promotes response to photoperiod stress antagonizing the protective CK.
Collapse
Affiliation(s)
- Manuel Frank
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, D-14195 Berlin, Germany; (M.F.); (A.C.)
| | - Anne Cortleven
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, D-14195 Berlin, Germany; (M.F.); (A.C.)
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (A.P.); (O.N.)
| | - Ondrej Novak
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (A.P.); (O.N.)
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, D-14195 Berlin, Germany; (M.F.); (A.C.)
| |
Collapse
|
28
|
Sanchez J, Kaur PP, Pabuayon ICM, Karampudi NBR, Kitazumi A, Sandhu N, Catolos M, Kumar A, de Los Reyes BG. DECUSSATE network with flowering genes explains the variable effects of qDTY12.1 to rice yield under drought across genetic backgrounds. THE PLANT GENOME 2022; 15:e20168. [PMID: 34806842 DOI: 10.1002/tpg2.20168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
The impact of qDTY12.1 in maintaining yield under drought has not been consistent across genetic backgrounds. We hypothesized that synergism or antagonism with additive-effect peripheral genes across the background genome either enhances or undermines its full potential. By modeling the transcriptional networks across sibling qDTY12.1-introgression lines with contrasting yield under drought (LPB = low-yield penalty; HPB = high-yield penalty), the qDTY12.1-encoded DECUSSATE gene (OsDEC) was revealed as the core of a synergy with other genes in the genetic background. OsDEC is expressed in flag leaves and induced by progressive drought at booting stage in LPB but not in HPB. The unique OsDEC signature in LPB is coordinated with 35 upstream and downstream peripheral genes involved in floral development through the cytokinin signaling pathway. Results support the differential network rewiring effects through genetic coupling-uncoupling between qDTY12.1 and other upstream and downstream peripheral genes across the distinct genetic backgrounds of LPB and HPB. The functional DEC-network in LPB defines a mechanism for early flowering as a means for avoiding the drought-induced depletion of photosynthate needed for reproductive growth. Its impact is likely through the timely establishment of stronger source-sink dynamics that sustains a robust reproductive transition under drought.
Collapse
Affiliation(s)
- Jacobo Sanchez
- Dep. of Plant and Soil Science, Texas Tech Univ., Lubbock, TX, USA
| | | | | | | | - Ai Kitazumi
- Dep. of Plant and Soil Science, Texas Tech Univ., Lubbock, TX, USA
| | - Nitika Sandhu
- International Rice Research Institute, Los Banos, Philippines
- Current address: School of Agricultural Biotechnology, Punjab Agricultural Univ., Ludhiana, India
| | | | - Arvind Kumar
- International Rice Research Institute, Los Banos, Philippines
- Current address: International Crops Research Institute for the Semi-Arid Tropics, Petancheru, India
| | | |
Collapse
|
29
|
Basnet P, Um T, Roy NS, Cho WS, Park SC, Park KC, Choi IY. Identification and Characterization of Key Genes Responsible for Weedy and Cultivar Growth Types in Soybean. Front Genet 2022; 13:805347. [PMID: 35281824 PMCID: PMC8907156 DOI: 10.3389/fgene.2022.805347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
In cultivated plants, shoot morphology is an important factor that influences crop economic value. However, the effects of gene expression patterns on shoot morphology are not clearly understood. In this study, the molecular mechanism behind shoot morphology (including leaf, stem, and node) was analyzed using RNA sequencing to compare weedy (creeper) and cultivar (stand) growth types obtained in F7 derived from a cross of wild and cultivated soybeans. A total of 12,513 (in leaves), 14,255 (in stems), and 11,850 (in nodes) differentially expressed genes were identified among weedy and cultivar soybeans. Comparative transcriptome and expression analyses revealed 22 phytohormone-responsive genes. We found that GIBBERELLIN 2-OXIDASE 8 (GA2ox), SPINDLY (SPY), FERONIA (FER), AUXIN RESPONSE FACTOR 8 (ARF8), CYTOKININ DEHYDROGENASE-1 (CKX1), and ARABIDOPSIS HISTIDINE KINASE-3 (AHK3), which are crucial phytohormone response genes, were mainly regulated in the shoot of weedy and cultivar types. These results indicate that interactions between phytohormone signaling genes regulate shoot morphology in weedy and cultivar growth type plants. Our study provides insights that are useful for breeding and improving crops to generate high-yield soybean varieties.
Collapse
Affiliation(s)
- Prakash Basnet
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Taeyoung Um
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Neha Samir Roy
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Woo Suk Cho
- Department of Agricultural Biotechnology/National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Soo Chul Park
- Department of Agricultural Biotechnology/National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Kyong-Cheul Park
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
- *Correspondence: Ik-Young Choi,
| |
Collapse
|
30
|
Naureen A, Nasim FUH, Choudhary MS, Ashraf M, Grundler FMW, Schleker ASS. A new endophytic fungus CJAN1179 isolated from the Cholistan desert promotes lateral root growth in Arabidopsis and produces IAA through tryptophan-dependent pathway. Arch Microbiol 2022; 204:181. [PMID: 35175443 PMCID: PMC8854254 DOI: 10.1007/s00203-022-02768-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 11/27/2022]
Abstract
Fungi, important for growth of plants in arid lands, are expected to be involved in novel biochemical activities during fungal–plant interactions. We isolated 150 fungi associated with rhizosphere and root endosphere of two perennial grasses, Cymbopogon jwarancusa and Panicum antidotale, from Cholistan desert. The isolates were screened for their impact on plant growth and development using Arabidopsis thaliana (Col-0) as a model system. A root-endophytic fungus CJAN1179 from C. jwarancusa showed the highest plant growth-promoting effects. The most remarkable was enhanced number of lateral roots (3.1-fold). CJAN1179 produced indole-3-acetic acid (IAA) particularly in the presence of tryptophan. ITS sequence and phylogenetic analysis characterisation suggested the fungus to be a new species within Sordariomycetidae. CJAN1179 appears to promote plant growth by secreting IAA using tryptophan as a precursor. This fungus can be further explored for its suitability to promote growth of commercially important crops, particularly in arid regions.
Collapse
Affiliation(s)
- Adeela Naureen
- Chemistry Department, The Islamia University of Bahawalpur, Bahawalpur, 63000, Pakistan.,INRES, Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University Bonn, Karlrobert-Kreiten-Str. 13, 53115, Bonn, Germany
| | - Faiz-Ul H Nasim
- Chemistry Department, The Islamia University of Bahawalpur, Bahawalpur, 63000, Pakistan.,Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Baghdad Ul Jadeed Campus, Bahawalpur, 63000, Pakistan
| | - Muhammad S Choudhary
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, 63000, Pakistan
| | - Muhammad Ashraf
- Chemistry Department, The Islamia University of Bahawalpur, Bahawalpur, 63000, Pakistan
| | - Florian M W Grundler
- INRES, Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University Bonn, Karlrobert-Kreiten-Str. 13, 53115, Bonn, Germany
| | - A Sylvia S Schleker
- INRES, Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University Bonn, Karlrobert-Kreiten-Str. 13, 53115, Bonn, Germany.
| |
Collapse
|
31
|
Xu C, Zhang Y, Zhao M, Liu Y, Xu X, Li T. Transcriptomic analysis of melon/squash graft junction reveals molecular mechanisms potentially underlying the graft union development. PeerJ 2022; 9:e12569. [PMID: 34993019 PMCID: PMC8675255 DOI: 10.7717/peerj.12569] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/08/2021] [Indexed: 01/20/2023] Open
Abstract
Oriental melon (Cucumis melo var. makuwa Makino) has become a widely planted horticultural crop in China especially in recent years and has been subjected to the grafting technique for the improvement of cultivation and stress resistance. Although grafting has a long history in horticulture, there is little known about the molecular mechanisms of the graft healing process in oriental melon. This study aims to reveal the molecular changes involved in the graft healing process. In the present work, anatomical observations indicated that the 2, 6, and 9 DAG were three critical stages for the graft healing and therefore, were selected for the subsequent high-throughput RNA-seq analysis. A total of 1,950 and 1,313 DEGs were identified by comparing IL vs. CA and CA vs. VB libraries, respectively. More DEGs in the melon scion exhibited abundant transcriptional changes compared to the squash rootstock, providing increased metabolic activity and thus more material basis for the graft healing formation in the scion. Several DEGs were enriched in the plant hormone signal transduction pathway, phenylpropanoid biosynthesis, and carbon metabolism. In addition, the results showed that concentrations of IAA, GA3, and ZR were induced in the graft junctions. In conclusion, our study determined that genes involved in the hormone-signaling pathway and lignin biosynthesis played the essential roles during graft healing. These findings expand our current understandings of the molecular basis of the graft junction formation and facilitate the improvement and success of melon grafting in future production.
Collapse
Affiliation(s)
- Chuanqiang Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China.,Collaborative Innovation Center of Protected Vegetable Surround Bohai Gulf Region, Shenyang, Liaoning, China.,Key Laboratory of Protected Horticulture (Shenyang Agricultural University) Ministry of Education, Shenyang, Liaoning, China
| | - Ying Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China.,Collaborative Innovation Center of Protected Vegetable Surround Bohai Gulf Region, Shenyang, Liaoning, China.,Key Laboratory of Protected Horticulture (Shenyang Agricultural University) Ministry of Education, Shenyang, Liaoning, China
| | - Mingzhe Zhao
- College of Agronomy, Shenyang Agricultural University, Shenyang City, Liaoning Province, China
| | - Yiling Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China.,Collaborative Innovation Center of Protected Vegetable Surround Bohai Gulf Region, Shenyang, Liaoning, China.,Key Laboratory of Protected Horticulture (Shenyang Agricultural University) Ministry of Education, Shenyang, Liaoning, China
| | - Xin Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China.,Collaborative Innovation Center of Protected Vegetable Surround Bohai Gulf Region, Shenyang, Liaoning, China.,Key Laboratory of Protected Horticulture (Shenyang Agricultural University) Ministry of Education, Shenyang, Liaoning, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China.,Collaborative Innovation Center of Protected Vegetable Surround Bohai Gulf Region, Shenyang, Liaoning, China.,Key Laboratory of Protected Horticulture (Shenyang Agricultural University) Ministry of Education, Shenyang, Liaoning, China
| |
Collapse
|
32
|
Sharif R, Su L, Chen X, Qi X. Hormonal interactions underlying parthenocarpic fruit formation in horticultural crops. HORTICULTURE RESEARCH 2022; 9:6497882. [PMID: 35031797 PMCID: PMC8788353 DOI: 10.1093/hr/uhab024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/30/2021] [Accepted: 08/25/2021] [Indexed: 05/22/2023]
Abstract
In some horticultural crops, such as Cucurbitaceae, Solanaceae, and Rosaceae species, fruit set and development can occur without the fertilization of ovules, a process known as parthenocarpy. Parthenocarpy is an important agricultural trait that can not only mitigate fruit yield losses caused by environmental stresses but can also induce the development of seedless fruit, which is a desirable trait for consumers. In the present review, the induction of parthenocarpic fruit by the application of hormones such as auxins (2,4 dichlorophenoxyacetic acid; naphthaleneacetic acid), cytokinins (forchlorfenuron; 6-benzylaminopurine), gibberellic acids, and brassinosteroids is first presented. Then, the molecular mechanisms of parthenocarpic fruit formation, mainly related to plant hormones, are presented. Auxins, gibberellic acids, and cytokinins are categorized as primary players in initiating fruit set. Other hormones, such as ethylene, brassinosteroids, and melatonin, also participate in parthenocarpic fruit formation. Additionally, synergistic and antagonistic crosstalk between these hormones is crucial for deciding the fate of fruit set. Finally, we highlight knowledge gaps and suggest future directions of research on parthenocarpic fruit formation in horticultural crops.
Collapse
Affiliation(s)
- Rahat Sharif
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| | - Li Su
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| | - Xuehao Chen
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
- Corresponding authors. E-mail: ,
| | - Xiaohua Qi
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
33
|
Gao P, Quilichini TD, Yang H, Li Q, Nilsen KT, Qin L, Babic V, Liu L, Cram D, Pasha A, Esteban E, Condie J, Sidebottom C, Zhang Y, Huang Y, Zhang W, Bhowmik P, Kochian LV, Konkin D, Wei Y, Provart NJ, Kagale S, Smith M, Patterson N, Gillmor CS, Datla R, Xiang D. Evolutionary divergence in embryo and seed coat development of U's Triangle Brassica species illustrated by a spatiotemporal transcriptome atlas. THE NEW PHYTOLOGIST 2022; 233:30-51. [PMID: 34687557 DOI: 10.1111/nph.17759] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The economically valuable Brassica species include the six related members of U's Triangle. Despite the agronomic and economic importance of these Brassicas, the impacts of evolution and relatively recent domestication events on the genetic landscape of seed development have not been comprehensively examined in these species. Here we present a 3D transcriptome atlas for the six species of U's Triangle, producing a unique resource that captures gene expression data for the major subcompartments of the seed, from the unfertilized ovule to the mature embryo and seed coat. This comprehensive dataset for seed development in tetraploid and ancestral diploid Brassicas provides new insights into evolutionary divergence and expression bias at the gene and subgenome levels during the domestication of these valued crop species. Comparisons of gene expression associated with regulatory networks and metabolic pathways operating in the embryo and seed coat during seed development reveal differences in storage reserve accumulation and fatty acid metabolism among the six Brassica species. This study illustrates the genetic underpinnings of seed traits and the selective pressures placed on seed production, providing an immense resource for continued investigation of Brassica polyploid biology, genomics and evolution.
Collapse
Affiliation(s)
- Peng Gao
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Teagen D Quilichini
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Hui Yang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kirby T Nilsen
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB, R7C 1A1, Canada
| | - Li Qin
- College of Art & Science, University of Saskatchewan, 9 Campus Dr, Saskatoon, SK, S7N 5A5, Canada
| | - Vivijan Babic
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Li Liu
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Dustin Cram
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Asher Pasha
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Eddi Esteban
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Janet Condie
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Christine Sidebottom
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Yan Zhang
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Wentao Zhang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Pankaj Bhowmik
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Leon V Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - David Konkin
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Yangdou Wei
- College of Art & Science, University of Saskatchewan, 9 Campus Dr, Saskatoon, SK, S7N 5A5, Canada
| | - Nicholas J Provart
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Sateesh Kagale
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Mark Smith
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Nii Patterson
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV-IPN), Irapuato, Guanajuato, 36821, México
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Daoquan Xiang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| |
Collapse
|
34
|
Kaźmierczak A, Kunikowska A, Doniak M, Kornaś A. Mechanism of kinetin-induced death of Vicia faba ssp. minor root cortex cells. Sci Rep 2021; 11:23746. [PMID: 34887458 PMCID: PMC8660813 DOI: 10.1038/s41598-021-03103-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023] Open
Abstract
Cell death (CD) may be induced by endogenous or exogenous factors and contributes to all the steps of plant development. This paper presents results related to the mechanism of CD regulation induced by kinetin (Kin) in the root cortex of Vicia faba ssp. minor. To explain the process, 6-(2-hydroxy-3-methylbenzylamino)purine (PI-55), adenine (Ad), 5'-amine-5'-deoxyadenosine (Ado) and N-(2-chloro-4-piridylo)-N'-phenylurea (CPPU) were applied to (i) block cytokinin receptors (CKs) and inhibit the activities of enzymes of CK metabolism, i.e., (ii) phosphoribosyltransferase, (iii) kinases, and (iv) oxidases, respectively. Moreover, ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA), lanthanum chloride (LaCl3), ruthenium red (RRed) and cyclosporine A (CS-A) were applied to (i) chelate extracellular calcium ions (Ca2+) as well as blocks of (ii) plasma-, (iii) endoplasmic reticulum- (ER) membrane Ca2+ ion channels and (iv) mitochondria- (MIT) Ca2+ ions release by permeability transition por (PTP), respectively. The measured physiological effectiveness of these factors was the number of living and dying cortex cells estimated with orange acridine (OA) and ethidium bromide (EB), the amounts of cytosolic Ca2+ ions with chlortetracycline (CTC) staining and the intensity of chromatin and Ca2+-CTC complex fluorescence, respectively. Moreover, the role of sorafenib, an inhibitor of RAF kinase, on the vitality of cortex cells and ethylene levels as well as the activities of RAF-like kinase and MEK2 with Syntide-2 and Mek2 as substrates were studied. The results clarified the previously presented suggestion that Kin is converted to appropriate ribotides (5'-monophosphate ribonucleotides), which cooperate with the ethylene and Ca2+ ion signalling pathways to transduce the signal of kinetin-programmed cell death (Kin-PCD). Based on the present and previously published results related to Kin-PCD, the crosstalk between ethylene and MAP kinase signalling, as well as inhibitors of CK receptors and enzymes of their metabolism, is proposed.
Collapse
Affiliation(s)
- Andrzej Kaźmierczak
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Anita Kunikowska
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Lodz, Poland
| | - Magdalena Doniak
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Lodz, Poland
| | - Andrzej Kornaś
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 30-084, Kraków, Poland
| |
Collapse
|
35
|
Tiwari M, Yadav M, Singh B, Pandey V, Nawaz K, Bhatia S. Evolutionary and functional analysis of two-component system in chickpea reveals CaRR13, a TypeB RR, as positive regulator of symbiosis. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2415-2427. [PMID: 34146435 PMCID: PMC8633487 DOI: 10.1111/pbi.13649] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 05/19/2023]
Abstract
The critical role of cytokinin in early nodulation in legumes is well known. In our study, exogenous cytokinin application to roots of the important crop legume, chickpea (Cicer arietinum L.), led to the formation of pseudo-nodules even in the absence of rhizobia. Hence, a genome-wide analysis of the cytokinin signalling, two-component system (TCS) genes, was conducted in chickpea, Medicago and Cajanus cajan. The integrated phylogenetic, evolutionary and expression analysis of the TCS genes was carried out, which revealed that histidine kinases (HKs) were highly conserved, whereas there was diversification leading to neofunctionalization at the level of response regulators (RRs) especially the TypeB RRs. Further, the functional role of the CaHKs in nodulation was established by complementation of the sln1Δ mutant of yeast and cre1 mutants of (Medicago) which led to restoration of the nodule-deficient phenotype. Additionally, the highest expressing TypeB RR of chickpea, CaRR13, was functionally characterized. Its localization in the nucleus and its Y1H assay-based interaction with the promoter of the early nodulation gene CaNSP2 indicated its role as a transcription factor regulating early nodulation. Overexpression, RNAi lines and complementation of cre1 mutants with CaRR13 revealed its critical involvement as an important signalling molecule regulating early events of nodule organogenesis in chickpea.
Collapse
Affiliation(s)
- Manish Tiwari
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Manisha Yadav
- National Institute of Plant Genome ResearchNew DelhiIndia
| | | | - Vimal Pandey
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Kashif Nawaz
- National Institute of Plant Genome ResearchNew DelhiIndia
| | | |
Collapse
|
36
|
Singh D, Singla-Pareek SL, Pareek A. Two-component signaling system in plants: interaction network and specificity in response to stress and hormones. PLANT CELL REPORTS 2021; 40:2037-2046. [PMID: 34109469 DOI: 10.1007/s00299-021-02727-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Plants are exposed to various environmental challenges that can hamper their growth, development, and productivity. Being sedentary, plants cannot escape from these unfavorable environmental conditions and have evolved various signaling cascades to endure them. The two-component signaling (TCS) system is one such essential signaling circuitry present in plants regulating responses against multiple abiotic and biotic stresses. It is among the most ancient and evolutionary conserved signaling pathways in plants, which include membrane-bound histidine kinases (HKs), cytoplasmic histidine phosphotransfer proteins (Hpts), and nuclear or cytoplasmic response regulators (RRs). At the same time, TCS also involved in many signaling circuitries operative in plants in response to diverse hormones. These plant growth hormones play a significant role in diverse physiological and developmental processes, and their contribution to plant stress responses is coming up in a big way. Therefore, it is intriguing to know how TCS and various plant growth regulators, along with the key transcription factors, directly or indirectly control the responses of plants towards diverse stresses. The present review attempts to explore this relationship, hoping that this knowledge will contribute towards developing crop plants with enhanced climate resilience.
Collapse
Affiliation(s)
- Deepti Singh
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, Delhi, India.
- National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| |
Collapse
|
37
|
Abstract
Plants exhibit remarkable lineage plasticity, allowing them to regenerate organs that differ from their respective origins. Such developmental plasticity is dependent on the activity of pluripotent founder cells or stem cells residing in meristems. At the shoot apical meristem (SAM), the constant flow of cells requires continuing cell specification governed by a complex genetic network, with the WUSCHEL transcription factor and phytohormone cytokinin at its core. In this review, I discuss some intriguing recent discoveries that expose new principles and mechanisms of patterning and cell specification acting both at the SAM and, prior to meristem organogenesis during shoot regeneration. I also highlight unanswered questions and future challenges in the study of SAM and meristem regeneration. Finally, I put forward a model describing stochastic events mediated by epigenetic factors to explain how the gene regulatory network might be initiated at the onset of shoot regeneration. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Leor Eshed Williams
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel;
| |
Collapse
|
38
|
Auxin and Cytokinin Interplay during Leaf Morphogenesis and Phyllotaxy. PLANTS 2021; 10:plants10081732. [PMID: 34451776 PMCID: PMC8400353 DOI: 10.3390/plants10081732] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 12/03/2022]
Abstract
Auxins (IAA) and cytokinins (CKs) are the most influential phytohormones, having multifaceted roles in plants. They are key regulators of plant growth and developmental processes. Additionally, their interplay exerts tight control on plant development and differentiation. Although several reviews have been published detailing the auxin-cytokinin interplay in controlling root growth and differentiation, their roles in the shoot, particularly in leaf morphogenesis are largely unexplored. Recent reports have provided new insights on the roles of these two hormones and their interplay on leaf growth and development. In this review, we focus on the effect of auxins, CKs, and their interactions in regulating leaf morphogenesis. Additionally, the regulatory effects of the auxins and CKs interplay on the phyllotaxy of plants are discussed.
Collapse
|
39
|
Yan Z, Wang J, Wang F, Xie C, Lv B, Yu Z, Dai S, Liu X, Xia G, Tian H, Li C, Ding Z. MPK3/6-induced degradation of ARR1/10/12 promotes salt tolerance in Arabidopsis. EMBO Rep 2021; 22:e52457. [PMID: 34402578 DOI: 10.15252/embr.202152457] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/18/2021] [Accepted: 07/30/2021] [Indexed: 11/09/2022] Open
Abstract
Cytokinins are phytohormones that regulate plant development, growth, and responses to stress. In particular, cytokinin has been reported to negatively regulate plant adaptation to high salinity; however, the molecular mechanisms that counteract cytokinin signaling and enable salt tolerance are not fully understood. Here, we provide evidence that salt stress induces the degradation of the cytokinin signaling components Arabidopsis (Arabidopisis thaliana) response regulator 1 (ARR1), ARR10 and ARR12. Furthermore, the stress-activated mitogen-activated protein kinase 3 (MPK3) and MPK6 interact with and phosphorylate ARR1/10/12 to promote their degradation in response to salt stress. As expected, salt tolerance is decreased in the mpk3/6 double mutant, but enhanced upon ectopic MPK3/MPK6 activation in an MKK5DD line. Importantly, salt hypersensitivity phenotypes of the mpk3/6 line were significantly alleviated by mutation of ARR1/12. The above results indicate that MPK3/6 enhance salt tolerance in part via their negative regulation of ARR1/10/12 protein stability. Thus, our work reveals a new molecular mechanism underlying salt-induced stress adaptation and the inhibition of plant growth, via enhanced degradation of cytokinin signaling components.
Collapse
Affiliation(s)
- Zhenwei Yan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Junxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Fengxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Chuantian Xie
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Bingsheng Lv
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Zipeng Yu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xia Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory of Wheat and Maize/Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-huai River Plain, Ministry of Agriculture, Jinan, China
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Huiyu Tian
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Cuiling Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
40
|
Neogy A, Singh Z, Mushahary KKK, Yadav SR. Dynamic cytokinin signaling and function of auxin in cytokinin responsive domains during rice crown root development. PLANT CELL REPORTS 2021; 40:1367-1375. [PMID: 33047229 DOI: 10.1007/s00299-020-02618-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
We reveal the onset and dynamic tissue-specific cytokinin signaling domains and functional importance of auxin in the auxin-cytokinin interaction domains in shaping root architecture in the economically important rice plant. Plant hormones such as auxin and cytokinin are central regulators of root organogenesis. Typical in the grass species, the root system in rice is primarily composed of post-embryonic adventitious/crown roots (ARs/CRs). Antagonistic auxin-cytokinin activities mutually balance each other to ensure proper root development. Cytokinin has been shown to inhibit crown root initiation in rice; albeit, the responsive domains remain elusive during the initiation and outgrowth of crown root primordia (CRP). Here, we show the cytokinin response domains during various stages of CRP development. RNA-RNA in situ hybridization and protein immunohistochemistry studies of the reporter gene expressed under the cytokinin responsive synthetic promoter revealed detailed spatio-temporal cytokinin signaling domains in the developing CRP. Furthermore, rice lines genetically depleted for endogenous auxin in the cytokinin responsive domains provided insight into the functional importance of auxin signaling during crown root development. Thus, our study demonstrates the onset and dynamic tissue-specific cytokinin response and functional significance of auxin-cytokinin interaction during root architecture formation in rice, a model grass species.
Collapse
Affiliation(s)
- Ananya Neogy
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Zeenu Singh
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Roorkee, Uttarakhand, 247667, India
| | | | - Shri Ram Yadav
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
41
|
Hormonal Regulation and Crosstalk of Auxin/Cytokinin Signaling Pathways in Potatoes In Vitro and in Relation to Vegetation or Tuberization Stages. Int J Mol Sci 2021; 22:ijms22158207. [PMID: 34360972 PMCID: PMC8347663 DOI: 10.3390/ijms22158207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Auxins and cytokinins create versatile regulatory network controlling virtually all aspects of plant growth and development. These hormonal systems act in close contact, synergistically or antagonistically, determining plant phenotype, resistance and productivity. However, the current knowledge about molecular interactions of these systems is still scarce. Our study with potato plants aimed at deciphering potential interactions between auxin and cytokinin signaling pathways at the level of respective gene expression. Potato plants grown on sterile medium with 1.5% (vegetation) or 5% (tuberization) sucrose were treated for 1 h with auxin or cytokinin. Effects of these two hormones on expression profiles of genes belonging to main signaling pathways of auxin and cytokinin were quantified by RT-qPCR. As a result, several signaling genes were found to respond to auxin and/or cytokinin by up- or down-regulation. The observed effects were largely organ-specific and depended on sucrose content. Auxin strongly reduced cytokinin perception apparatus while reciprocal cytokinin effect was ambiguous and sucrose-dependent. In many cases, functional clustering of genes of the same family was observed. Promoters in some clusters are enriched with canonic hormone-response cis-elements supporting their direct sensitivity to hormones. Collectively, our data shed new light on the crosstalk between auxin- and cytokinin signaling pathways.
Collapse
|
42
|
Vázquez-Chimalhua E, Valencia-Cantero E, López-Bucio J, Ruiz-Herrera LF. N,N-dimethyl-hexadecylamine modulates Arabidopsis root growth through modifying the balance between stem cell niche and jasmonic acid-dependent gene expression. Gene Expr Patterns 2021; 41:119201. [PMID: 34329770 DOI: 10.1016/j.gep.2021.119201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/28/2021] [Accepted: 07/26/2021] [Indexed: 11/18/2022]
Abstract
N,N-dimethyl-hexadecylamine (DMHDA) is released as part of volatile blends emitted by plant probiotic bacteria and affects root architecture, defense and nutrition of plants. Here, we investigated the changes in gene expression of transcription factors responsible of maintenance of the root stem cell niche and jasmonic acid signaling in Arabidopsis seedlings in response to this volatile. Concentrations of DMHDA that repress primary root growth were found to alter cell size and division augmenting cell tissue layers in the meristem and causing root widening. DMHDA triggered the division of quiescent center cells, which correlated with repression of SHORT ROOT (SHR), SCARECROW (SCR), and PLETHORA 1 (PLT1) proteins and induction of WUSCHEL-RELATED HOMEOBOX 5 (WOX5) transcription factor. Interestingly, an activation of the expression of the jasmonic acid-related reporter genes JAZ1/TIFY10A-GFP and JAZ10pro::JAZ10-GFP suggests that the halted growth of the primary root inversely correlated with expression patterns underlying the defense reaction, which may be of adaptive importance to protect roots against biotic stress. Our data help to unravel the gene expression signatures upon sensing of a highly active bacterial volatile in Arabidopsis seedlings.
Collapse
Affiliation(s)
- Ernesto Vázquez-Chimalhua
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria, Morelia, Michoacán, Mexico
| | - Eduardo Valencia-Cantero
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria, Morelia, Michoacán, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria, Morelia, Michoacán, Mexico.
| | - León Francisco Ruiz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria, Morelia, Michoacán, Mexico.
| |
Collapse
|
43
|
Genome of the world's smallest flowering plant, Wolffia australiana, helps explain its specialized physiology and unique morphology. Commun Biol 2021; 4:900. [PMID: 34294872 PMCID: PMC8298427 DOI: 10.1038/s42003-021-02422-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
Watermeal, Wolffia australiana, is the smallest known flowering monocot and is rich in protein. Despite its great potential as a biotech crop, basic research on Wolffia is in its infancy. Here, we generated the reference genome of a species of watermeal, W. australiana, and identified the genome-wide features that may contribute to its atypical anatomy and physiology, including the absence of roots, adaxial stomata development, and anaerobic life as a turion. In addition, we found evidence of extensive genome rearrangements that may underpin the specialized aquatic lifestyle of watermeal. Analysis of the gene inventory of this intriguing species helps explain the distinct characteristics of W. australiana and its unique evolutionary trajectory. Halim Park and Jin Hwa Park et al. report the nuclear genome sequence of the duckweed Wolffia australiana, the smallest known flowering plant. The genome assembly represents an improvement over a recently published genome and highlights genome rearrangements that may be linked to its specialized aquatic adaptations.
Collapse
|
44
|
Wang Y, Sun H, Wang H, Yang X, Xu Y, Yang Z, Xu C, Li P. Integrating transcriptome, co-expression and QTL-seq analysis reveals that primary root growth in maize is regulated via flavonoid biosynthesis and auxin signal transduction. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4773-4795. [PMID: 33909071 DOI: 10.1093/jxb/erab177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 04/24/2021] [Indexed: 05/28/2023]
Abstract
The primary root is critical for early seedling growth and survival. To understand the molecular mechanisms governing primary root development, we performed a dynamic transcriptome analysis of two maize (Zea mays) inbred lines with contrasting primary root length at nine time points over a 12-day period. A total of 18 702 genes were differentially expressed between two lines or different time points. Gene enrichment, phytohormone content determination, and metabolomics analysis showed that auxin biosynthesis and signal transduction, as well as the phenylpropanoid and flavonoid biosynthesis pathways, were associated with root development. Co-expression network analysis revealed that eight modules were associated with lines/stages, as well as primary or lateral root length. In root-related modules, flavonoid metabolism accompanied by auxin biosynthesis and signal transduction constituted a complex gene regulatory network during primary root development. Two candidate genes (rootless concerning crown and seminal roots, rtcs and Zm00001d012781) involved in auxin signaling and flavonoid biosynthesis were identified by co-expression network analysis, QTL-seq and functional annotation. These results increase our understanding of the regulatory network controlling the development of primary and lateral root length, and provide a valuable genetic resource for improvement of root performance in maize.
Collapse
Affiliation(s)
- Yunyun Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Hui Sun
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Houmiao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Xiaoyi Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Yang Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, China
| | - Chenwu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, China
| | - Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
45
|
Zhou Y, Underhill SJR. Differential transcription pathways associated with rootstock-induced dwarfing in breadfruit (Artocarpus altilis) scions. BMC PLANT BIOLOGY 2021; 21:261. [PMID: 34090350 PMCID: PMC8178858 DOI: 10.1186/s12870-021-03013-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/26/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Breadfruit (Artocarpus altilis) is a traditional staple tree crop throughout the tropics. Through interspecific grafting, a dwarf phenotype with over 50% reduction in plant height was identified when marang (Artocarpus odoratissimus) rootstocks were used. However, the molecular mechanism underlying the rootstock-induced breadfruit dwarfing is poorly understood. RESULTS An RNA-sequencing study of breadfruit scions at 22 months after grafting identified 5409 differentially expressed genes (DEGs) of which 2069 were upregulated and 3339 were downregulated in scion stems on marang rootstocks compared to those on self-graft. The DEGs were predominantly enriched for biological processes involved in carbon metabolism, cell wall organization, plant hormone signal transduction and redox homeostasis. The down-regulation of genes encoding vacuolar acid invertases and alkaline/neutral invertases, was consistent with the decreased activity of both enzymes, accompanying with a higher sucrose but lower glucose and fructose levels in the tissues. Key genes of biosynthetic pathways for amino acids, lipids and cell wall were down regulated, reflecting reduction of sucrose utilisation for stem growth on dwarfing rootstocks. Genes encoding sugar transporters, amino acid transporters, choline transporters, along with large number of potassium channels and aquaporin family members were down-regulated in scion stems on marang rootstocks. Lower activity of plasma membrane H+-ATPase, together with the predominance of genes encoding expansins, wall-associated receptor kinases and key enzymes for biosynthesis and re-modelling of cellulose, xyloglucans and pectins in down-regulated DGEs suggested impairment of cell expansion. Signalling pathways of auxin and gibberellin, along with strigolacton and brassinosteroid biosynthetic genes dominated the down-regulated DEGs. Phenylpropanoid pathway was enriched, with key lignin biosynthetic genes down-regulated, and flavonoid biosynthetic genes upregulated in scions on marang rootstocks. Signalling pathways of salicylic acid, jasmonic acid, ethylene and MAPK cascade were significantly enriched in the upregulated DEGs. CONCLUSIONS Rootstock-induced disruption in pathways regulating nutrient transport, sucrose utilisation, cell wall biosynthesis and networks of hormone transduction are proposed to impair cell expansion and stem elongation, leading to dwarf phenotype in breadfruit scions. The information provides opportunity to develop screening strategy for rootstock breeding and selection for breadfruit dwarfing.
Collapse
Affiliation(s)
- Yuchan Zhou
- Australian Centre for Pacific Islands Research, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Steven J R Underhill
- Australian Centre for Pacific Islands Research, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
46
|
Wu W, Du K, Kang X, Wei H. The diverse roles of cytokinins in regulating leaf development. HORTICULTURE RESEARCH 2021; 8:118. [PMID: 34059666 PMCID: PMC8167137 DOI: 10.1038/s41438-021-00558-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/11/2021] [Accepted: 03/22/2021] [Indexed: 05/24/2023]
Abstract
Leaves provide energy for plants, and consequently for animals, through photosynthesis. Despite their important functions, plant leaf developmental processes and their underlying mechanisms have not been well characterized. Here, we provide a holistic description of leaf developmental processes that is centered on cytokinins and their signaling functions. Cytokinins maintain the growth potential (pluripotency) of shoot apical meristems, which provide stem cells for the generation of leaf primordia during the initial stage of leaf formation; cytokinins and auxins, as well as their interaction, determine the phyllotaxis pattern. The activities of cytokinins in various regions of the leaf, especially at the margins, collectively determine the final leaf morphology (e.g., simple or compound). The area of a leaf is generally determined by the number and size of the cells in the leaf. Cytokinins promote cell division and increase cell expansion during the proliferation and expansion stages of leaf cell development, respectively. During leaf senescence, cytokinins reduce sugar accumulation, increase chlorophyll synthesis, and prolong the leaf photosynthetic period. We also briefly describe the roles of other hormones, including auxin and ethylene, during the whole leaf developmental process. In this study, we review the regulatory roles of cytokinins in various leaf developmental stages, with a focus on cytokinin metabolism and signal transduction processes, in order to shed light on the molecular mechanisms underlying leaf development.
Collapse
Affiliation(s)
- Wenqi Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, PR China
| | - Kang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, PR China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory for Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiangyang Kang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, PR China.
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China.
- Key Laboratory for Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
47
|
Fu X, Su H, Liu S, Du X, Xu C, Luo K. Cytokinin signaling localized in phloem noncell-autonomously regulates cambial activity during secondary growth of Populus stems. THE NEW PHYTOLOGIST 2021; 230:1476-1488. [PMID: 33540480 DOI: 10.1111/nph.17255] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
The regulation of cytokinin on secondary vascular development has been uncovered by modulating cytokinin content. However, it remains unclear how cytokinin enriched in developing secondary phloem regulates cambium activity in poplar. Here, we visualized the gradient distribution of cytokinin with a peak in the secondary phloem of poplar stem via immunohistochemical imaging, and determined the role of phloem-located cytokinin signaling during wood formation. We generated transgenic poplar harboring cytokinin oxidase/dehydrogenase (CKX)2, a gene encoding a cytokinin degrading enzyme, driven by the phloem-specific CLE41b promoter, indicating that the disruption of the cytokinin gradient pattern restricts the cambial activity. The RNA interference-based knockdown of the histidine kinase (HK) genes encoding cytokinin receptors specifically in secondary phloem significantly compromised the division activity of cambial cells, whereas the phloem-specific expression of a type-B response regulator (RR) transcription factor stimulated cambial proliferation, providing evidence for the noncell-autonomous regulation of local cytokinin signaling on the cambial activity. Moreover, the cambium-specific knockdown of HKs also led to restricted cambial activity, and the defects were aggravated by the reduced cytokinin accumulation. Our results showed that local cytokinin signaling in secondary phloem regulates cambial activity noncell-autonomously, and coordinately with its local signaling in cambium.
Collapse
Affiliation(s)
- Xiaokang Fu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Huili Su
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shuai Liu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xuelian Du
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
48
|
Cytokinin-Controlled Gradient Distribution of Auxin in Arabidopsis Root Tip. Int J Mol Sci 2021; 22:ijms22083874. [PMID: 33918090 PMCID: PMC8069370 DOI: 10.3390/ijms22083874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
The plant root is a dynamic system, which is able to respond promptly to external environmental stimuli by constantly adjusting its growth and development. A key component regulating this growth and development is the finely tuned cross-talk between the auxin and cytokinin phytohormones. The gradient distribution of auxin is not only important for the growth and development of roots, but also for root growth in various response. Recent studies have shed light on the molecular mechanisms of cytokinin-mediated regulation of local auxin biosynthesis/metabolism and redistribution in establishing active auxin gradients, resulting in cell division and differentiation in primary root tips. In this review, we focus our attention on the molecular mechanisms underlying the cytokinin-controlled auxin gradient in root tips.
Collapse
|
49
|
Jiang L, Yoshida T, Stiegert S, Jing Y, Alseekh S, Lenhard M, Pérez-Alfocea F, Fernie AR. Multi-omics approach reveals the contribution of KLU to leaf longevity and drought tolerance. PLANT PHYSIOLOGY 2021; 185:352-368. [PMID: 33721894 PMCID: PMC8133585 DOI: 10.1093/plphys/kiaa034] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/05/2020] [Indexed: 05/05/2023]
Abstract
KLU, encoded by a cytochrome P450 CYP78A family gene, generates an important-albeit unknown-mobile signal that is distinct from the classical phytohormones. Multiple lines of evidence suggest that KLU/KLU-dependent signaling functions in several vital developmental programs, including leaf initiation, leaf/floral organ growth, and megasporocyte cell fate. However, the interactions between KLU/KLU-dependent signaling and the other classical phytohormones, as well as how KLU influences plant physiological responses, remain poorly understood. Here, we applied in-depth, multi-omics analysis to monitor transcriptome and metabolome dynamics in klu-mutant and KLU-overexpressing Arabidopsis plants. By integrating transcriptome sequencing data and primary metabolite profiling alongside phytohormone measurements, our results showed that cytokinin signaling, with its well-established function in delaying leaf senescence, was activated in KLU-overexpressing plants. Consistently, KLU-overexpressing plants exhibited significantly delayed leaf senescence and increased leaf longevity, whereas the klu-mutant plants showed early leaf senescence. In addition, proline biosynthesis and catabolism were enhanced following KLU overexpression owing to increased expression of genes associated with proline metabolism. Furthermore, KLU-overexpressing plants showed enhanced drought-stress tolerance and reduced water loss. Collectively, our work illustrates a role for KLU in positively regulating leaf longevity and drought tolerance by synergistically activating cytokinin signaling and promoting proline metabolism. These data promote KLU as a potential ideal genetic target to improve plant fitness.
Collapse
Affiliation(s)
- Liang Jiang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Takuya Yoshida
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Sofia Stiegert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Genetics, University of Potsdam, 14469 Potsdam, Germany
| | - Yue Jing
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Michael Lenhard
- Department of Genetics, University of Potsdam, 14469 Potsdam, Germany
| | - Francisco Pérez-Alfocea
- Department of Plant Nutrition, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Genetics, University of Potsdam, 14469 Potsdam, Germany
- Author for communication:
| |
Collapse
|
50
|
Ratu STN, Teulet A, Miwa H, Masuda S, Nguyen HP, Yasuda M, Sato S, Kaneko T, Hayashi M, Giraud E, Okazaki S. Rhizobia use a pathogenic-like effector to hijack leguminous nodulation signalling. Sci Rep 2021; 11:2034. [PMID: 33479414 PMCID: PMC7820406 DOI: 10.1038/s41598-021-81598-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/06/2021] [Indexed: 01/29/2023] Open
Abstract
Legume plants form a root-nodule symbiosis with rhizobia. This symbiosis establishment generally relies on rhizobium-produced Nod factors (NFs) and their perception by leguminous receptors (NFRs) that trigger nodulation. However, certain rhizobia hijack leguminous nodulation signalling via their type III secretion system, which functions in pathogenic bacteria to deliver effector proteins into host cells. Here, we report that rhizobia use pathogenic-like effectors to hijack legume nodulation signalling. The rhizobial effector Bel2-5 resembles the XopD effector of the plant pathogen Xanthomonas campestris and could induce nitrogen-fixing nodules on soybean nfr mutant. The soybean root transcriptome revealed that Bel2-5 induces expression of cytokinin-related genes, which are important for nodule organogenesis and represses ethylene- and defense-related genes that are deleterious to nodulation. Remarkably, Bel2-5 introduction into a strain unable to nodulate soybean mutant affected in NF perception conferred nodulation ability. Our findings show that rhizobia employ and have customized pathogenic effectors to promote leguminous nodulation signalling.
Collapse
Affiliation(s)
- Safirah Tasa Nerves Ratu
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Albin Teulet
- Laboratoire Des Symbioses Tropicales Et Méditerranéennes, Institut de Recherche Pour Le Développement, UMR Institut de Recherche Pour Le Développement/SupAgro/Institut National de Recherche Pour L'Agriculture, L'Alimentation Et L'Environnement, Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique Pour Le Développement, 34398, Montpellier Cedex 5, France
| | - Hiroki Miwa
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Sachiko Masuda
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Hien P Nguyen
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Michiko Yasuda
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Takakazu Kaneko
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, 603-8555, Japan
| | - Makoto Hayashi
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Eric Giraud
- Laboratoire Des Symbioses Tropicales Et Méditerranéennes, Institut de Recherche Pour Le Développement, UMR Institut de Recherche Pour Le Développement/SupAgro/Institut National de Recherche Pour L'Agriculture, L'Alimentation Et L'Environnement, Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique Pour Le Développement, 34398, Montpellier Cedex 5, France
| | - Shin Okazaki
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan.
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|