1
|
Marcetteau J, Duarte P, Leitão AB, Sucena É. Transdifferentiation of plasmatocytes to crystal cells in the lymph gland of Drosophila melanogaster. EMBO Rep 2025; 26:2077-2097. [PMID: 40075235 PMCID: PMC12019564 DOI: 10.1038/s44319-025-00366-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 03/14/2025] Open
Abstract
Under homeostatic conditions, haematopoiesis in Drosophila larvae occurs in the lymph gland and sessile haemocyte clusters to produce two functionally and morphologically different cells: plasmatocytes and crystal cells. It is well-established that in the lymph gland both cell types stem from a binary decision of the medullary prohaemocyte precursors. However, in sessile clusters and dorsal vessel, crystal cells have been shown to originate from the transdifferentiation of plasmatocytes in a Notch/Serrate-dependent manner. We show that transdifferentiation occurs also in the lymph gland. In vivo phagocytosis assays confirm that cortical plasmatocytes are functionally differentiated phagocytic cells. We uncover a double-positive population in the cortical zone that lineage-tracing and long-term live imaging experiments show will differentiate into crystal cells. The reduction of Notch levels within the lymph gland plasmatocyte population reduces crystal cell number. This extension of a transdifferentiation mechanism reinforces the growing role of haematopoietic plasticity in maintaining homeostasis in Drosophila and vertebrate systems. Future work should test the regulation and relative contribution of these two processes under different immunological and/or metabolic conditions.
Collapse
Affiliation(s)
- Julien Marcetteau
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Patrícia Duarte
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | | | - Élio Sucena
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Edifício C2, Campo Grande, 1749-016, Lisbon, Portugal.
- cE3c: Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.
| |
Collapse
|
2
|
Luo W, Zhang F, Zhao F, Fang Y, Zhao L, Su Y. Dual role of PpV in Drosophila crystal cell proliferation and survival. J Mol Cell Biol 2025; 16:mjae028. [PMID: 39085037 PMCID: PMC11927399 DOI: 10.1093/jmcb/mjae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/28/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024] Open
Abstract
Drosophila melanogaster crystal cells are a specialized type of blood cells for the innate immune process upon injury. Under normal conditions, crystal cells rarely proliferate and constitute a small proportion of fly blood cells. Notch signaling has been known to guide the cell fate determination of crystal cells and maintain their survival. Here, we reported that protein phosphatase V (PpV), the unique catalytic subunit of protein phosphatase 6 in Drosophila, is a novel regulator of crystal cell proliferation and integrity. We found that PpV proteins highly accumulated in crystal cells in the larval hematopoietic organ termed the lymph gland. Silencing PpV using RNA interference led to increased crystal cell proliferation in a Notch-independent manner and induced crystal cell rupture dependent on Notch signaling. Moreover, additive PpV prevented the rupture of crystal cells in lymph glands upon a needle injury, suggesting the involvement of PpV in wound healing. Altogether, our results indicated that PpV plays a dual role in lymph glands, preventing crystal cell proliferation to limit the cell number, as well as inhibiting crystal cell rupture to maintain their survival.
Collapse
Affiliation(s)
- Wang Luo
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Fang Zhang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Fangzhen Zhao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yang Fang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Long Zhao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Ying Su
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
3
|
Deichsel S, Frankenreiter L, Fechner J, Gahr BM, Zimmermann M, Mastel H, Preis I, Preiss A, Nagel AC. Inhibition of the Notch signal transducer CSL by Pkc53E-mediated phosphorylation to fend off parasitic immune challenge in Drosophila. eLife 2024; 12:RP89582. [PMID: 39503739 PMCID: PMC11540305 DOI: 10.7554/elife.89582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Notch signalling activity regulates hematopoiesis in Drosophila and vertebrates alike. Parasitoid wasp infestation of Drosophila larvae, however, requires a timely downregulation of Notch activity to allow the formation of encapsulation-active blood cells. Here, we show that the Drosophila CSL transcription factor Suppressor of Hairless [Su(H)] is phosphorylated at Serine 269 in response to parasitoid wasp infestation. As this phosphorylation interferes with the DNA binding of Su(H), it reversibly precludes its activity. Accordingly, phospho-deficient Su(H)S269A mutants are immune-compromised. A screen for kinases involved in Su(H) phosphorylation identified Pkc53E, required for normal hematopoiesis as well as for parasitoid immune response. Genetic and molecular interactions support the specificity of the Su(H)-Pkc53E relationship. Moreover, phorbol ester treatment inhibits Su(H) activity in vivo and in human cell culture. We conclude that Pkc53E targets Su(H) during parasitic wasp infestation, thereby remodelling the blood cell population required for wasp egg encapsulation.
Collapse
Affiliation(s)
- Sebastian Deichsel
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
- Department of Medical Genetics and Applied Genomics, University of TübingenTübingenGermany
| | - Lisa Frankenreiter
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
| | - Johannes Fechner
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
- Institute of Biomedical Genetics (IBMG), University of StuttgartStuttgartGermany
| | - Bernd M Gahr
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
- Department of Internal Medicine II, Molecular Cardiology, University of UlmUlmGermany
| | - Mirjam Zimmermann
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
| | - Helena Mastel
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
| | - Irina Preis
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
| | - Anette Preiss
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
| | - Anja C Nagel
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
| |
Collapse
|
4
|
DeHaro-Arbona FJ, Roussos C, Baloul S, Townson J, Gómez Lamarca MJ, Bray S. Dynamic modes of Notch transcription hubs conferring memory and stochastic activation revealed by live imaging the co-activator Mastermind. eLife 2024; 12:RP92083. [PMID: 38727722 PMCID: PMC11087053 DOI: 10.7554/elife.92083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Developmental programming involves the accurate conversion of signalling levels and dynamics to transcriptional outputs. The transcriptional relay in the Notch pathway relies on nuclear complexes containing the co-activator Mastermind (Mam). By tracking these complexes in real time, we reveal that they promote the formation of a dynamic transcription hub in Notch ON nuclei which concentrates key factors including the Mediator CDK module. The composition of the hub is labile and persists after Notch withdrawal conferring a memory that enables rapid reformation. Surprisingly, only a third of Notch ON hubs progress to a state with nascent transcription, which correlates with polymerase II and core Mediator recruitment. This probability is increased by a second signal. The discovery that target-gene transcription is probabilistic has far-reaching implications because it implies that stochastic differences in Notch pathway output can arise downstream of receptor activation.
Collapse
Affiliation(s)
- F Javier DeHaro-Arbona
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Charalambos Roussos
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Sarah Baloul
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Jonathan Townson
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - María J Gómez Lamarca
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocıo/CSIC/Universidad de Sevilla, Departamento de Biologıa CelularSevilleSpain
| | - Sarah Bray
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
5
|
Wu Q, Jiang X, Wang LX, Liu ZY, Yang WY, Jing C, Xiao Y, Zhu Y, Dong ZQ, Lu C, Pan MH, Chen P. Bombyx moriSuppressor of Hairless is involved in the regulation of the silkworm cell cycle and endoreplication of the silk glands. Int J Biol Macromol 2024; 268:131819. [PMID: 38688334 DOI: 10.1016/j.ijbiomac.2024.131819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024]
Abstract
The Notch signaling pathway is important in cell cycle regulation and cell proliferation. The transcriptional repressor Suppressor of Hairless [Su(H)] is a molecular switch for downstream target genes of the Notch signaling pathway but the regulatory mechanism of the Su(H) gene in the cell cycle is unclear. We determined the function of the Notch signaling pathway and Bombyx mori Su(H) [BmSu(H)] in the regulation of the silkworm cell cycle. Inhibition of Notch signaling promoted the replication of DNA in silkworm gland cells and expression of the BmSu(H) gene was significantly reduced. Overexpression of the BmSu(H) gene inhibited DNA replication and cell proliferation of silkworm cells, whereas knockout of the BmSu(H) gene promoted DNA replication and cell proliferation. Knockout of the BmSu(H) in silkworms improved the efficiency of silk gland cell endoreplication and increased important economic traits. We demonstrated that BmSu(H) protein can directly bind to the promoters of BmCyclinA, BmCyclinE and BmCDK1 genes, inhibiting or promoting their transcription at the cell and individual level. This study identified molecular targets for genetic improvement of the silkworm and also provided insights into the regulatory mechanism of the cell cycle.
Collapse
Affiliation(s)
- Qiao Wu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Xia Jiang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Lan-Xing Wang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Zhen-Ye Liu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Wen-Yu Yang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Cai Jing
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Yu Xiao
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Yan Zhu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Zhan-Qi Dong
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Cheng Lu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Min-Hui Pan
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China.
| | - Peng Chen
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China.
| |
Collapse
|
6
|
Cho B, Shin M, Chang E, Son S, Shin I, Shim J. S-nitrosylation-triggered unfolded protein response maintains hematopoietic progenitors in Drosophila. Dev Cell 2024; 59:1075-1090.e6. [PMID: 38521056 DOI: 10.1016/j.devcel.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/27/2023] [Accepted: 02/29/2024] [Indexed: 03/25/2024]
Abstract
The Drosophila lymph gland houses blood progenitors that give rise to myeloid-like blood cells. Initially, blood progenitors proliferate, but later, they become quiescent to maintain multipotency before differentiation. Despite the identification of various factors involved in multipotency maintenance, the cellular mechanism controlling blood progenitor quiescence remains elusive. Here, we identify the expression of nitric oxide synthase in blood progenitors, generating nitric oxide for post-translational S-nitrosylation of protein cysteine residues. S-nitrosylation activates the Ire1-Xbp1-mediated unfolded protein response, leading to G2 cell-cycle arrest. Specifically, we identify the epidermal growth factor receptor as a target of S-nitrosylation, resulting in its retention within the endoplasmic reticulum and blockade of its receptor function. Overall, our findings highlight developmentally programmed S-nitrosylation as a critical mechanism that induces protein quality control in blood progenitors, maintaining their undifferentiated state by inhibiting cell-cycle progression and rendering them unresponsive to paracrine factors.
Collapse
Affiliation(s)
- Bumsik Cho
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Natural Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Mingyu Shin
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Eunji Chang
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Seogho Son
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Incheol Shin
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Natural Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Jiwon Shim
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Natural Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
7
|
Sinenko SA. Molecular Mechanisms of Drosophila Hematopoiesis. Acta Naturae 2024; 16:4-21. [PMID: 39188265 PMCID: PMC11345091 DOI: 10.32607/actanaturae.27410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/31/2024] [Indexed: 08/28/2024] Open
Abstract
As a model organism, the fruit fly (Drosophila melanogaster) has assumed a leading position in modern biological research. The Drosophila genetic system has a number of advantages making it a key model in investigating the molecular mechanisms of metazoan developmental processes. Over the past two decades, significant progress has been made in understanding the molecular mechanisms regulating Drosophila hematopoiesis. This review discusses the major advances in investigating the molecular mechanisms involved in maintaining the population of multipotent progenitor cells and their differentiation into mature hemocytes in the hematopoietic organ of the Drosophila larva. The use of the Drosophila hematopoietic organ as a model system for hematopoiesis has allowed to characterize the complex interactions between signaling pathways and transcription factors in regulating the maintenance and differentiation of progenitor cells through the signals from the hematopoietic niche, autocrine and paracrine signals, and the signals emanated by differentiated cells.
Collapse
Affiliation(s)
- S. A. Sinenko
- Institute of Cytology Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
| |
Collapse
|
8
|
Deichsel S, Gahr BM, Mastel H, Preiss A, Nagel AC. Numerous Serine/Threonine Kinases Affect Blood Cell Homeostasis in Drosophila melanogaster. Cells 2024; 13:576. [PMID: 38607015 PMCID: PMC11011202 DOI: 10.3390/cells13070576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Blood cells in Drosophila serve primarily innate immune responses. Various stressors influence blood cell homeostasis regarding both numbers and the proportion of blood cell types. The principle molecular mechanisms governing hematopoiesis are conserved amongst species and involve major signaling pathways like Notch, Toll, JNK, JAK/Stat or RTK. Albeit signaling pathways generally rely on the activity of protein kinases, their specific contribution to hematopoiesis remains understudied. Here, we assess the role of Serine/Threonine kinases with the potential to phosphorylate the transcription factor Su(H) in crystal cell homeostasis. Su(H) is central to Notch signal transduction, and its inhibition by phosphorylation impedes crystal cell formation. Overall, nearly twenty percent of all Drosophila Serine/Threonine kinases were studied in two assays, global and hemocyte-specific overexpression and downregulation, respectively. Unexpectedly, the majority of kinases influenced crystal cell numbers, albeit only a few were related to hematopoiesis so far. Four kinases appeared essential for crystal cell formation, whereas most kinases restrained crystal cell development. This group comprises all kinase classes, indicative of the complex regulatory network underlying blood cell homeostasis. The rather indiscriminative response we observed opens the possibility that blood cells measure their overall phospho-status as a proxy for stress-signals, and activate an adaptive immune response accordingly.
Collapse
Affiliation(s)
- Sebastian Deichsel
- Department of Molecular Genetics, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Bernd M. Gahr
- Department of Molecular Genetics, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Helena Mastel
- Department of Molecular Genetics, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Anette Preiss
- Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Anja C. Nagel
- Department of Molecular Genetics, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
9
|
Johannessen JA, Formica M, Haukeland ALC, Bråthen NR, Al Outa A, Aarsund M, Therrien M, Enserink JM, Knævelsrud H. The human leukemic oncogene MLL-AF4 promotes hyperplastic growth of hematopoietic tissues in Drosophila larvae. iScience 2023; 26:107726. [PMID: 37720104 PMCID: PMC10504488 DOI: 10.1016/j.isci.2023.107726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/25/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
MLL-rearranged (MLL-r) leukemias are among the leukemic subtypes with poorest survival, and treatment options have barely improved over the last decades. Despite increasing molecular understanding of the mechanisms behind these hematopoietic malignancies, this knowledge has had poor translation into the clinic. Here, we report a Drosophila melanogaster model system to explore the pathways affected in MLL-r leukemia. We show that expression of the human leukemic oncogene MLL-AF4 in the Drosophila hematopoietic system resulted in increased levels of circulating hemocytes and an enlargement of the larval hematopoietic organ, the lymph gland. Strikingly, depletion of Drosophila orthologs of known interactors of MLL-AF4, such as DOT1L, rescued the leukemic phenotype. In agreement, treatment with small-molecule inhibitors of DOT1L also prevented the MLL-AF4-induced leukemia-like phenotype. Taken together, this model provides an in vivo system to unravel the genetic interactors involved in leukemogenesis and offers a system for improved biological understanding of MLL-r leukemia.
Collapse
Affiliation(s)
- Julie A. Johannessen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Miriam Formica
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Aina Louise C. Haukeland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nora Rojahn Bråthen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Amani Al Outa
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Miriam Aarsund
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
- Département de pathologie et de biologie cellulaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Jorrit M. Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section for Biochemistry and Molecular Biology, The Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Helene Knævelsrud
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Islam R, Jenkins CE, Cao Q, Wong J, Bilenky M, Carles A, Moksa M, Weng AP, Hirst M. RUNX1 colludes with NOTCH1 to reprogram chromatin in T cell acute lymphoblastic leukemia. iScience 2023; 26:106795. [PMID: 37213235 PMCID: PMC10199266 DOI: 10.1016/j.isci.2023.106795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 02/10/2023] [Accepted: 04/27/2023] [Indexed: 05/23/2023] Open
Abstract
Runt-related transcription factor 1 (RUNX1) is oncogenic in diverse types of leukemia and epithelial cancers where its expression is associated with poor prognosis. Current models suggest that RUNX1 cooperates with other oncogenic factors (e.g., NOTCH1, TAL1) to drive the expression of proto-oncogenes in T cell acute lymphoblastic leukemia (T-ALL) but the molecular mechanisms controlled by RUNX1 and its cooperation with other factors remain unclear. Integrative chromatin and transcriptional analysis following inhibition of RUNX1 and NOTCH1 revealed a surprisingly widespread role of RUNX1 in the establishment of global H3K27ac levels and that RUNX1 is required by NOTCH1 for cooperative transcription activation of key NOTCH1 target genes including MYC, DTX1, HES4, IL7R, and NOTCH3. Super-enhancers were preferentially sensitive to RUNX1 knockdown and RUNX1-dependent super-enhancers were disrupted following the treatment of a pan-BET inhibitor, I-BET151.
Collapse
Affiliation(s)
- Rashedul Islam
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | | | - Qi Cao
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jasper Wong
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Misha Bilenky
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Annaïck Carles
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Michelle Moksa
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Andrew P. Weng
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Martin Hirst
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC V6T 2B5, Canada
- Corresponding author
| |
Collapse
|
11
|
Hultmark D, Andó I. Hematopoietic plasticity mapped in Drosophila and other insects. eLife 2022; 11:e78906. [PMID: 35920811 PMCID: PMC9348853 DOI: 10.7554/elife.78906] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/20/2022] [Indexed: 12/12/2022] Open
Abstract
Hemocytes, similar to vertebrate blood cells, play important roles in insect development and immunity, but it is not well understood how they perform their tasks. New technology, in particular single-cell transcriptomic analysis in combination with Drosophila genetics, may now change this picture. This review aims to make sense of recently published data, focusing on Drosophila melanogaster and comparing to data from other drosophilids, the malaria mosquito, Anopheles gambiae, and the silkworm, Bombyx mori. Basically, the new data support the presence of a few major classes of hemocytes: (1) a highly heterogenous and plastic class of professional phagocytes with many functions, called plasmatocytes in Drosophila and granular cells in other insects. (2) A conserved class of cells that control melanin deposition around parasites and wounds, called crystal cells in D. melanogaster, and oenocytoids in other insects. (3) A new class of cells, the primocytes, so far only identified in D. melanogaster. They are related to cells of the so-called posterior signaling center of the larval hematopoietic organ, which controls the hematopoiesis of other hemocytes. (4) Different kinds of specialized cells, like the lamellocytes in D. melanogaster, for the encapsulation of parasites. These cells undergo rapid evolution, and the homology relationships between such cells in different insects are uncertain. Lists of genes expressed in the different hemocyte classes now provide a solid ground for further investigation of function.
Collapse
Affiliation(s)
- Dan Hultmark
- Department of Molecular Biology, Umeå UniversityUmeåSweden
| | - István Andó
- Biological Research Centre, Institute of Genetics, Innate Immunity Group, Eötvös Loránd Research NetworkSzegedHungary
| |
Collapse
|
12
|
Kharrat B, Csordás G, Honti V. Peeling Back the Layers of Lymph Gland Structure and Regulation. Int J Mol Sci 2022; 23:7767. [PMID: 35887113 PMCID: PMC9319083 DOI: 10.3390/ijms23147767] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 12/18/2022] Open
Abstract
During the past 60 years, the fruit fly, Drosophila melanogaster, has proven to be an excellent model to study the regulation of hematopoiesis. This is not only due to the evolutionarily conserved signalling pathways and transcription factors contributing to blood cell fate, but also to convergent evolution that led to functional similarities in distinct species. An example of convergence is the compartmentalization of blood cells, which ensures the quiescence of hematopoietic stem cells and allows for the rapid reaction of the immune system upon challenges. The lymph gland, a widely studied hematopoietic organ of the Drosophila larva, represents a microenvironment with similar features and functions to classical hematopoietic stem cell niches of vertebrates. Lymph gland studies were effectively supported by the unparalleled toolkit developed in Drosophila, which enabled the high-resolution investigation of the cellular composition and regulatory interaction networks of the lymph gland. In this review, we summarize how our understanding of lymph gland structure and hematopoietic cell-to-cell communication evolved during the past decades and compare their analogous features to those of the vertebrate hematopoietic stem cell niche.
Collapse
Affiliation(s)
- Bayan Kharrat
- Drosophila Blood Cell Differentiation Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary;
- Faculty of Science and Informatics, Doctoral School of Biology, University of Szeged, P.O. Box 427, H-6720 Szeged, Hungary
| | - Gábor Csordás
- Lysosomal Degradation Research Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary;
| | - Viktor Honti
- Drosophila Blood Cell Differentiation Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary;
| |
Collapse
|
13
|
Spratford CM, Goins LM, Chi F, Girard JR, Macias SN, Ho VW, Banerjee U. Intermediate progenitor cells provide a transition between hematopoietic progenitors and their differentiated descendants. Development 2021; 148:273785. [PMID: 34918741 PMCID: PMC8722385 DOI: 10.1242/dev.200216] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Genetic and genomic analysis in Drosophila suggests that hematopoietic progenitors likely transition into terminal fates via intermediate progenitors (IPs) with some characteristics of either, but perhaps maintaining IP-specific markers. In the past, IPs have not been directly visualized and investigated owing to lack of appropriate genetic tools. Here, we report a Split GAL4 construct, CHIZ-GAL4, that identifies IPs as cells physically juxtaposed between true progenitors and differentiating hemocytes. IPs are a distinct cell type with a unique cell-cycle profile and they remain multipotent for all blood cell fates. In addition, through their dynamic control of the Notch ligand Serrate, IPs specify the fate of direct neighbors. The Ras pathway controls the number of IP cells and promotes their transition into differentiating cells. This study suggests that it would be useful to characterize such intermediate populations of cells in mammalian hematopoietic systems.
Collapse
Affiliation(s)
- Carrie M Spratford
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, USA.,Molecular Biology Institute, University of California, Los Angeles, USA
| | - Lauren M Goins
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, USA.,Molecular Biology Institute, University of California, Los Angeles, USA
| | - Fangtao Chi
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, USA.,Molecular Biology Institute, University of California, Los Angeles, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, USA
| | - Juliet R Girard
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, USA.,Molecular Biology Institute, University of California, Los Angeles, USA
| | - Savannah N Macias
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, USA
| | - Vivien W Ho
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, USA
| | - Utpal Banerjee
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, USA.,Molecular Biology Institute, University of California, Los Angeles, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, USA.,Department of Biological Chemistry, University of California, Los Angeles, USA
| |
Collapse
|
14
|
Girard JR, Goins LM, Vuu DM, Sharpley MS, Spratford CM, Mantri SR, Banerjee U. Paths and pathways that generate cell-type heterogeneity and developmental progression in hematopoiesis. eLife 2021; 10:e67516. [PMID: 34713801 PMCID: PMC8610493 DOI: 10.7554/elife.67516] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 10/22/2021] [Indexed: 12/29/2022] Open
Abstract
Mechanistic studies of Drosophila lymph gland hematopoiesis are limited by the availability of cell-type-specific markers. Using a combination of bulk RNA-Seq of FACS-sorted cells, single-cell RNA-Seq, and genetic dissection, we identify new blood cell subpopulations along a developmental trajectory with multiple paths to mature cell types. This provides functional insights into key developmental processes and signaling pathways. We highlight metabolism as a driver of development, show that graded Pointed expression allows distinct roles in successive developmental steps, and that mature crystal cells specifically express an alternate isoform of Hypoxia-inducible factor (Hif/Sima). Mechanistically, the Musashi-regulated protein Numb facilitates Sima-dependent non-canonical, and inhibits canonical, Notch signaling. Broadly, we find that prior to making a fate choice, a progenitor selects between alternative, biologically relevant, transitory states allowing smooth transitions reflective of combinatorial expressions rather than stepwise binary decisions. Increasingly, this view is gaining support in mammalian hematopoiesis.
Collapse
Affiliation(s)
- Juliet R Girard
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Lauren M Goins
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Dung M Vuu
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Mark S Sharpley
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Carrie M Spratford
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Shreya R Mantri
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Utpal Banerjee
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
- Molecular Biology Institute, University of California, Los AngelesLos AngelesUnited States
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
15
|
Kwon H, Mohammed M, Franzén O, Ankarklev J, Smith RC. Single-cell analysis of mosquito hemocytes identifies signatures of immune cell subtypes and cell differentiation. eLife 2021; 10:66192. [PMID: 34318744 PMCID: PMC8376254 DOI: 10.7554/elife.66192] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Mosquito immune cells, known as hemocytes, are integral to cellular and humoral responses that limit pathogen survival and mediate immune priming. However, without reliable cell markers and genetic tools, studies of mosquito immune cells have been limited to morphological observations, leaving several aspects of their biology uncharacterized. Here, we use single-cell RNA sequencing (scRNA-seq) to characterize mosquito immune cells, demonstrating an increased complexity to previously defined prohemocyte, oenocytoid, and granulocyte subtypes. Through functional assays relying on phagocytosis, phagocyte depletion, and RNA-FISH experiments, we define markers to accurately distinguish immune cell subtypes and provide evidence for immune cell maturation and differentiation. In addition, gene-silencing experiments demonstrate the importance of lozenge in defining the mosquito oenocytoid cell fate. Together, our scRNA-seq analysis provides an important foundation for future studies of mosquito immune cell biology and a valuable resource for comparative invertebrate immunology.
Collapse
Affiliation(s)
- Hyeogsun Kwon
- Department of Entomology, Iowa State University, Ames, United States
| | - Mubasher Mohammed
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Oscar Franzén
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Novum, Huddinge, Sweden
| | - Johan Ankarklev
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,Microbial Single Cell Genomics facility, SciLifeLab, Biomedical Center (BMC) Uppsala University, Uppsala, Sweden
| | - Ryan C Smith
- Department of Entomology, Iowa State University, Ames, United States
| |
Collapse
|
16
|
Hass MR, Brissette D, Parameswaran S, Pujato M, Donmez O, Kottyan LC, Weirauch MT, Kopan R. Runx1 shapes the chromatin landscape via a cascade of direct and indirect targets. PLoS Genet 2021; 17:e1009574. [PMID: 34111109 PMCID: PMC8219162 DOI: 10.1371/journal.pgen.1009574] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 06/22/2021] [Accepted: 05/03/2021] [Indexed: 11/18/2022] Open
Abstract
Runt-related transcription factor 1 (Runx1) can act as both an activator and a repressor. Here we show that CRISPR-mediated deletion of Runx1 in mouse metanephric mesenchyme-derived mK4 cells results in large-scale genome-wide changes to chromatin accessibility and gene expression. Open chromatin regions near down-regulated loci enriched for Runx sites in mK4 cells lose chromatin accessibility in Runx1 knockout cells, despite remaining Runx2-bound. Unexpectedly, regions near upregulated genes are depleted of Runx sites and are instead enriched for Zeb transcription factor binding sites. Re-expressing Zeb2 in Runx1 knockout cells restores suppression, and CRISPR mediated deletion of Zeb1 and Zeb2 phenocopies the gained expression and chromatin accessibility changes seen in Runx1KO due in part to subsequent activation of factors like Grhl2. These data confirm that Runx1 activity is uniquely needed to maintain open chromatin at many loci, and demonstrate that Zeb proteins are required and sufficient to maintain Runx1-dependent genome-scale repression. Runt-related transcription factor (Runx) 1 & 2 impact development and disease by activating or repressing transcription. In this manuscript we used genome editing tools to remove Runx1, and as expected, observed widespread changes in chromatin accessibility. Newly closed areas contained Runx1 binding sites and were enriched near genes whose expression depended on Runx1. Interestingly, this occurred despite continued binding of Runx2 to the same regions of DNA, which suggests that Runx2 is insufficient to maintain open chromatin and expression of Runx1 target genes in this cellular context. By contrast, newly opened chromatin regions, many near genes that were upregulated in Runx1 knockout cells, did not enrich for Runx1 binding sites. Instead, these regions were enriched for sites for the repressor Zeb proteins. We found that the loss of Zeb 1 & 2 expression, direct transcriptional targets of Runx1, resulted in the opening of chromatin and upregulation of genes residing near the newly open sites in Runx1 knockout cells. The same sites were also open and nearby genes expressed in edited Zeb1 and Zeb2 knockout cells. Among them were transcription factors, such as the Grhl2 gene, which in turn bind to and upregulate their target genes. Thus, the loss of a single transcription factor initiates a cascade of direct and indirect ramifications with likely negative effects on development and health.
Collapse
Affiliation(s)
- Matthew R. Hass
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Daniel Brissette
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Sreeja Parameswaran
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Mario Pujato
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Omer Donmez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Leah C. Kottyan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Matthew T. Weirauch
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail: (MTW); (RK)
| | - Raphael Kopan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail: (MTW); (RK)
| |
Collapse
|
17
|
Ferreira A, Aster JC. Notch signaling in cancer: Complexity and challenges on the path to clinical translation. Semin Cancer Biol 2021; 85:95-106. [PMID: 33862222 DOI: 10.1016/j.semcancer.2021.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/29/2021] [Accepted: 04/11/2021] [Indexed: 12/22/2022]
Abstract
Notch receptors participate in a conserved pathway in which ligands expressed on neighboring cells trigger a series of proteolytic cleavages that allow the intracellular portion of the receptor to travel to the nucleus and form a short-lived transcription complex that turns on target gene expression. The directness and seeming simplicity of this signaling mechanism belies the complexity of the outcomes of Notch signaling in normal cells, which are highly context and dosage dependent. This complexity is reflected in the diverse roles of Notch in cancers of various types, in which Notch may be oncogenic or tumor suppressive and may have a wide spectrum of effects on tumor cells and stromal elements. This review provides an overview of the roles of Notch in cancer and discusses challenges to clinical translation of Notch targeting agents as well as approaches that may overcome these hurdles.
Collapse
Affiliation(s)
- Antonio Ferreira
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, United States
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, United States.
| |
Collapse
|
18
|
Frankenreiter L, Gahr BM, Schmid H, Zimmermann M, Deichsel S, Hoffmeister P, Turkiewicz A, Borggrefe T, Oswald F, Nagel AC. Phospho-Site Mutations in Transcription Factor Suppressor of Hairless Impact Notch Signaling Activity During Hematopoiesis in Drosophila. Front Cell Dev Biol 2021; 9:658820. [PMID: 33937259 PMCID: PMC8079769 DOI: 10.3389/fcell.2021.658820] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
The highly conserved Notch signaling pathway controls a multitude of developmental processes including hematopoiesis. Here, we provide evidence for a novel mechanism of tissue-specific Notch regulation involving phosphorylation of CSL transcription factors within the DNA-binding domain. Earlier we found that a phospho-mimetic mutation of the Drosophila CSL ortholog Suppressor of Hairless [Su(H)] at Ser269 impedes DNA-binding. By genome-engineering, we now introduced phospho-specific Su(H) mutants at the endogenous Su(H) locus, encoding either a phospho-deficient [Su(H) S269A ] or a phospho-mimetic [Su(H) S269D ] isoform. Su(H) S269D mutants were defective of Notch activity in all analyzed tissues, consistent with impaired DNA-binding. In contrast, the phospho-deficient Su(H) S269A mutant did not generally augment Notch activity, but rather specifically in several aspects of blood cell development. Unexpectedly, this process was independent of the corepressor Hairless acting otherwise as a general Notch antagonist in Drosophila. This finding is in agreement with a novel mode of Notch regulation by posttranslational modification of Su(H) in the context of hematopoiesis. Importantly, our studies of the mammalian CSL ortholog (RBPJ/CBF1) emphasize a potential conservation of this regulatory mechanism: phospho-mimetic RBPJ S221D was dysfunctional in both the fly as well as two human cell culture models, whereas phospho-deficient RBPJ S221A rather gained activity during fly hematopoiesis. Thus, dynamic phosphorylation of CSL-proteins within the DNA-binding domain provides a novel means to fine-tune Notch signal transduction in a context-dependent manner.
Collapse
Affiliation(s)
- Lisa Frankenreiter
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Bernd M Gahr
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Hannes Schmid
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Mirjam Zimmermann
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Sebastian Deichsel
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Philipp Hoffmeister
- Department of Internal Medicine 1, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | | | - Tilman Borggrefe
- Institute of Biochemistry, Justus-Liebig University of Giessen, Giessen, Germany
| | - Franz Oswald
- Department of Internal Medicine 1, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | - Anja C Nagel
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
19
|
Niederhuber MJ, McKay DJ. Mechanisms underlying the control of dynamic regulatory element activity and chromatin accessibility during metamorphosis. CURRENT OPINION IN INSECT SCIENCE 2021; 43:21-28. [PMID: 32979530 PMCID: PMC7985040 DOI: 10.1016/j.cois.2020.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/25/2020] [Indexed: 05/10/2023]
Abstract
Cis-regulatory modules of metazoan genomes determine the when and where of gene expression during development. Here we discuss insights into the genetic and molecular mechanisms behind cis-regulatory module usage that have come from recent application of genomics assays to insect metamorphosis. Assays including FAIRE-seq, ATAC-seq, and CUT&RUN indicate that sequential changes in chromatin accessibility play a key role in mediating stage-specific cis-regulatory module activity and gene expression. We review the current understanding of what controls precisely coordinated changes in chromatin accessibility during metamorphosis and describe evidence that points to systemic hormone signaling as a primary signal to trigger genome-wide shifts in accessibility patterns and cis-regulatory module usage.
Collapse
Affiliation(s)
- Matthew J Niederhuber
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Daniel J McKay
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
20
|
Transcription Factor RBPJ as a Molecular Switch in Regulating the Notch Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1287:9-30. [PMID: 33034023 DOI: 10.1007/978-3-030-55031-8_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Notch signal transduction cascade requires cell-to-cell contact and results in the proteolytic processing of the Notch receptor and subsequent assembly of a transcriptional coactivator complex containing the Notch intracellular domain (NICD) and transcription factor RBPJ. In the absence of a Notch signal, RBPJ remains at Notch target genes and dampens transcriptional output. Like in other signaling pathways, RBPJ is able to switch from activation to repression by associating with corepressor complexes containing several chromatin-modifying enzymes. Here, we focus on the recent advances concerning RBPJ-corepressor functions, especially in regard to chromatin regulation. We put this into the context of one of the best-studied model systems for Notch, blood cell development. Alterations in the RBPJ-corepressor functions can contribute to the development of leukemia, especially in the case of acute myeloid leukemia (AML). The versatile role of transcription factor RBPJ in regulating pivotal target genes like c-MYC and HES1 may contribute to the better understanding of the development of leukemia.
Collapse
|
21
|
Feng S, Zacharioudaki E, Millen K, Bray SJ. The SLC36 transporter Pathetic is required for neural stem cell proliferation and for brain growth under nutrition restriction. Neural Dev 2020; 15:10. [PMID: 32741363 PMCID: PMC7398078 DOI: 10.1186/s13064-020-00148-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/16/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Drosophila neuroblasts (NBs) are neural stem cells whose maintenance relies on Notch activity. NBs proliferate throughout larval stages to generate a large number of adult neurons. Their proliferation is protected under conditions of nutrition restriction but the mechanisms responsible are not fully understood. As amino acid transporters (Solute Carrier transporters, SLCs), such as SLC36, have important roles in coupling nutrition inputs to growth pathways, they may have a role in this process. For example, an SLC36 family transporter Pathetic (Path) that supports body size and neural dendrite growth in Drosophila, was identified as a putative Notch target in genome-wide studies. However, its role in sustaining stem cell proliferation and maintenance has not been investigated. This study aimed to investigate the function of Path in the larval NBs and to determine whether it is involved in protecting them from nutrient deprivation. METHODS The expression and regulation of Path in the Drosophila larval brain was analysed using a GFP knock-in allele and reporter genes containing putative Notch regulated enhancers. Path function in NB proliferation and overall brain growth was investigated under different nutrition conditions by depleting it from specific cell types in the CNS, using mitotic recombination to generate mutant clones or by directed RNA-interference. RESULTS Path is expressed in both NBs and glial cells in the Drosophila CNS. In NBs, path is directly targeted by Notch signalling via Su(H) binding at an intronic enhancer, PathNRE. This enhancer is responsive to Notch regulation both in cell lines and in vivo. Loss of path in neural stem cells delayed proliferation, consistent with it having a role in NB maintenance. Expression from pathNRE was compromised in conditions of amino acid deprivation although other Notch regulated enhancers are unaffected. However, NB-expressed Path was not required for brain sparing under amino acid deprivation. Instead, it appears that Path is important in glial cells to help protect brain growth under conditions of nutrient restriction. CONCLUSIONS We identify a novel Notch target gene path that is required in NBs for neural stem cell proliferation, while in glia it protects brain growth under nutrition restriction.
Collapse
Affiliation(s)
- Shiyun Feng
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Evanthia Zacharioudaki
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Kat Millen
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Sarah J Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK.
| |
Collapse
|
22
|
Lan W, Liu S, Zhao L, Su Y. Regulation of Drosophila Hematopoiesis in Lymph Gland: From a Developmental Signaling Point of View. Int J Mol Sci 2020; 21:ijms21155246. [PMID: 32722007 PMCID: PMC7432643 DOI: 10.3390/ijms21155246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022] Open
Abstract
The Drosophila hematopoietic system is becoming increasingly attractive for its simple blood cell lineage and its developmental and functional parallels with the vertebrate system. As the dedicated organ for Drosophila larval hematopoiesis, the lymph gland harbors both multipotent stem-like progenitor cells and differentiated blood cells. The balance between progenitor maintenance and differentiation in the lymph gland must be precisely and tightly controlled. Multiple developmental signaling pathways, such as Notch, Hedgehog, and Wnt/Wingless, have been demonstrated to regulate the hematopoietic processes in the lymph gland. Focusing on blood cell maintenance and differentiation, this article summarizes the functions of several classic developmental signaling pathways for lymph gland growth and patterning, highlighting the important roles of developmental signaling during lymph gland development as well as Drosophila larval hematopoiesis.
Collapse
Affiliation(s)
- Wenwen Lan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (W.L.); (S.L.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Sumin Liu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (W.L.); (S.L.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Long Zhao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (W.L.); (S.L.)
- Fisheries College, Ocean University of China, Qingdao 266003, China
- Correspondence: (L.Z.); (Y.S.)
| | - Ying Su
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (W.L.); (S.L.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Correspondence: (L.Z.); (Y.S.)
| |
Collapse
|
23
|
Vanderbeck A, Maillard I. Notch signaling at the crossroads of innate and adaptive immunity. J Leukoc Biol 2020; 109:535-548. [PMID: 32557824 DOI: 10.1002/jlb.1ri0520-138r] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Notch signaling is an evolutionarily conserved cell-to-cell signaling pathway that regulates cellular differentiation and function across multiple tissue types and developmental stages. In this review, we discuss our current understanding of Notch signaling in mammalian innate and adaptive immunity. The importance of Notch signaling is pervasive throughout the immune system, as it elicits lineage and context-dependent effects in a wide repertoire of cells. Although regulation of binary cell fate decisions encompasses many of the functions first ascribed to Notch in the immune system, recent advances in the field have refined and expanded our view of the Notch pathway beyond this initial concept. From establishing T cell identity in the thymus to regulating mature T cell function in the periphery, the Notch pathway is an essential, recurring signal for the T cell lineage. Among B cells, Notch signaling is required for the development and maintenance of marginal zone B cells in the spleen. Emerging roles for Notch signaling in innate and innate-like lineages such as classical dendritic cells and innate lymphoid cells are likewise coming into view. Lastly, we speculate on the molecular underpinnings that shape the activity and versatility of the Notch pathway.
Collapse
Affiliation(s)
- Ashley Vanderbeck
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Veterinary Medical Scientist Training Program, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Ivan Maillard
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Feng S, Zeng D, Zheng J, Zhao D. New Insights of Human Parvovirus B19 in Modulating Erythroid Progenitor Cell Differentiation. Viral Immunol 2020; 33:539-549. [PMID: 32412895 DOI: 10.1089/vim.2020.0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Human parvovirus B19 (B19), a human pathogen of the erythroparvovirus genus, is responsible for a variety of diseases. B19 cause less symptoms in healthy individuals, also cause acute and chronic anemia in immunodeficiency patients. Transient aplastic crisis and pure red cell aplasia are two kinds of anemic hemogram, respectively, in acute and chronic B19 infection phase, especially occurring in patients with a shortened red cell survival or with immunodeficiency. In addition, B19-infected pregnant women may cause hydrops fetalis or fetal loss. B19 possesses high affinity to bone marrow and fetal liver due to its extremely restricted cytotoxicity to erythroid progenitor cells (EPCs) mediated by viral proteins. The nonstructural protein NS1 is considered to be the major pathogenic factor, which has been shown to inhibit the differentiation and maturation of EPCs through inducing viral DNA damage responses and cell cycle arrest. The time phase property of NS1 activity during DNA replication and conformity to transient change of hemogram are suggestive of its role in regulating differentiation of hematopoietic cells, which is not completely understood. In this review, we summarized the bridge between B19 NS1 and Notch signaling pathway or transcriptional factors GATA, which play an important role in erythroid cell proliferation and differentiation, to provide a new insight of the potential mechanism of B19-induced differential inhibition of EPCs.
Collapse
Affiliation(s)
- Shuwen Feng
- Pediatrics Department, Children Digital and Health Data Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dongxin Zeng
- Pediatrics Department, Children Digital and Health Data Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junwen Zheng
- Pediatrics Department, Children Digital and Health Data Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dongchi Zhao
- Pediatrics Department, Children Digital and Health Data Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
25
|
Tattikota SG, Cho B, Liu Y, Hu Y, Barrera V, Steinbaugh MJ, Yoon SH, Comjean A, Li F, Dervis F, Hung RJ, Nam JW, Ho Sui S, Shim J, Perrimon N. A single-cell survey of Drosophila blood. eLife 2020; 9:e54818. [PMID: 32396065 PMCID: PMC7237219 DOI: 10.7554/elife.54818] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/08/2020] [Indexed: 12/30/2022] Open
Abstract
Drosophila blood cells, called hemocytes, are classified into plasmatocytes, crystal cells, and lamellocytes based on the expression of a few marker genes and cell morphologies, which are inadequate to classify the complete hemocyte repertoire. Here, we used single-cell RNA sequencing (scRNA-seq) to map hemocytes across different inflammatory conditions in larvae. We resolved plasmatocytes into different states based on the expression of genes involved in cell cycle, antimicrobial response, and metabolism together with the identification of intermediate states. Further, we discovered rare subsets within crystal cells and lamellocytes that express fibroblast growth factor (FGF) ligand branchless and receptor breathless, respectively. We demonstrate that these FGF components are required for mediating effective immune responses against parasitoid wasp eggs, highlighting a novel role for FGF signaling in inter-hemocyte crosstalk. Our scRNA-seq analysis reveals the diversity of hemocytes and provides a rich resource of gene expression profiles for a systems-level understanding of their functions.
Collapse
Affiliation(s)
| | - Bumsik Cho
- Department of Life Science, Hanyang UniversitySeoulRepublic of Korea
| | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | | | | | - Sang-Ho Yoon
- Department of Life Science, Hanyang UniversitySeoulRepublic of Korea
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Fangge Li
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Franz Dervis
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Ruei-Jiun Hung
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Jin-Wu Nam
- Department of Life Science, Hanyang UniversitySeoulRepublic of Korea
| | | | - Jiwon Shim
- Department of Life Science, Hanyang UniversitySeoulRepublic of Korea
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
- Howard Hughes Medical InstituteBostonUnited States
| |
Collapse
|
26
|
Blanco-Obregon D, Katz MJ, Durrieu L, Gándara L, Wappner P. Context-specific functions of Notch in Drosophila blood cell progenitors. Dev Biol 2020; 462:101-115. [PMID: 32243888 DOI: 10.1016/j.ydbio.2020.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 01/10/2023]
Abstract
Drosophila Larval hematopoiesis takes place at the lymph gland, where myeloid-like progenitors differentiate into Plasmatocytes and Crystal Cells, under regulation of conserved signaling pathways. It has been established that the Notch pathway plays a specific role in Crystal Cell differentiation and maintenance. In mammalian hematopoiesis, the Notch pathway has been proposed to fulfill broader functions, including Hematopoietic Stem Cell maintenance and cell fate decision in progenitors. In this work we describe different roles that Notch plays in the lymph gland. We show that Notch, activated by its ligand Serrate, expressed at the Posterior Signaling Center, is required to restrain Core Progenitor differentiation. We define a novel population of blood cell progenitors that we name Distal Progenitors, where Notch, activated by Serrate expressed in Lineage Specifying Cells at the Medullary Zone/Cortical Zone boundary, regulates a binary decision between Plasmatocyte and Crystal Cell fates. Thus, Notch plays context-specific functions in different blood cell progenitor populations of the Drosophila lymph gland.
Collapse
Affiliation(s)
- D Blanco-Obregon
- Instituto Leloir, CONICET, Patricias Argentinas 435, Buenos Aires, 1405, Argentina
| | - M J Katz
- Instituto Leloir, CONICET, Patricias Argentinas 435, Buenos Aires, 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - L Durrieu
- Instituto Leloir, CONICET, Patricias Argentinas 435, Buenos Aires, 1405, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales-Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
| | - L Gándara
- Instituto Leloir, CONICET, Patricias Argentinas 435, Buenos Aires, 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - P Wappner
- Instituto Leloir, CONICET, Patricias Argentinas 435, Buenos Aires, 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales-Universidad de Buenos Aires, Buenos Aires, 1428, Argentina.
| |
Collapse
|
27
|
Koranteng F, Cha N, Shin M, Shim J. The Role of Lozenge in Drosophila Hematopoiesis. Mol Cells 2020; 43:114-120. [PMID: 31992020 PMCID: PMC7057836 DOI: 10.14348/molcells.2019.0249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/04/2019] [Indexed: 01/20/2023] Open
Abstract
Drosophila hematopoiesis is comparable to mammalian differentiation of myeloid lineages, and therefore, has been a useful model organism in illustrating the molecular and genetic basis for hematopoiesis. Multiple novel regulators and signals have been uncovered using the tools of Drosophila genetics. A Runt domain protein, lozenge, is one of the first players recognized and closely studied in the hematopoietic lineage specification. Here, we explore the role of lozenge in determination of prohemocytes into a special class of hemocyte, namely the crystal cell, and discuss molecules and signals controlling the lozenge function and its implication in immunity and stress response. Given the highly conserved nature of Runt domain in both invertebrates and vertebrates, studies in Drosophila will enlighten our perspectives on Runx-mediated development and pathologies.
Collapse
Affiliation(s)
| | - Nuri Cha
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Mingyu Shin
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Jiwon Shim
- Department of Life Science, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Science, Hanyang University, Seoul 04763, Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 0476, Korea
| |
Collapse
|
28
|
Hung RJ, Hu Y, Kirchner R, Liu Y, Xu C, Comjean A, Tattikota SG, Li F, Song W, Ho Sui S, Perrimon N. A cell atlas of the adult Drosophila midgut. Proc Natl Acad Sci U S A 2020; 117:1514-1523. [PMID: 31915294 PMCID: PMC6983450 DOI: 10.1073/pnas.1916820117] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Studies of the adult Drosophila midgut have led to many insights in our understanding of cell-type diversity, stem cell regeneration, tissue homeostasis, and cell fate decision. Advances in single-cell RNA sequencing provide opportunities to identify new cell types and molecular features. We used single-cell RNA sequencing to characterize the transcriptome of midgut epithelial cells and identified 22 distinct clusters representing intestinal stem cells, enteroblasts, enteroendocrine cells (EEs), and enterocytes. This unbiased approach recovered most of the known intestinal stem cells/enteroblast and EE markers, highlighting the high quality of the dataset, and led to insights on intestinal stem cell biology, cell type-specific organelle features, the roles of new transcription factors in progenitors and regional variation along the gut, 5 additional EE gut hormones, EE hormonal expression diversity, and paracrine function of EEs. To facilitate mining of this rich dataset, we provide a web-based resource for visualization of gene expression in single cells. Altogether, our study provides a comprehensive resource for addressing functions of genes in the midgut epithelium.
Collapse
Affiliation(s)
- Ruei-Jiun Hung
- Department of Genetics, Harvard Medical School, Boston, MA 02115;
| | - Yanhui Hu
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Rory Kirchner
- Bioinformatics Core, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Yifang Liu
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Chiwei Xu
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Aram Comjean
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | | | - Fangge Li
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Wei Song
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Shannan Ho Sui
- Bioinformatics Core, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115;
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
29
|
A Functional Analysis of the Drosophila Gene hindsight: Evidence for Positive Regulation of EGFR Signaling. G3-GENES GENOMES GENETICS 2020; 10:117-127. [PMID: 31649045 PMCID: PMC6945037 DOI: 10.1534/g3.119.400829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have investigated the relationship between the function of the gene hindsight (hnt), which is the Drosophila homolog of Ras Responsive Element Binding protein-1 (RREB-1), and the EGFR signaling pathway. We report that hnt mutant embryos are defective in EGFR signaling dependent processes, namely chordotonal organ recruitment and oenocyte specification. We also show the temperature sensitive hypomorphic allele hntpebbled is enhanced by the hypomorphic MAPK allele rolled (rl1 ). We find that hnt overexpression results in ectopic DPax2 expression within the embryonic peripheral nervous system, and we show that this effect is EGFR-dependent. Finally, we show that the canonical U-shaped embryonic lethal phenotype of hnt, which is associated with premature degeneration of the extraembyonic amnioserosa and a failure in germ band retraction, is rescued by expression of several components of the EGFR signaling pathway (sSpi, Ras85D V12 , pntP1 ) as well as the caspase inhibitor p35 Based on this collection of corroborating evidence, we suggest that an overarching function of hnt involves the positive regulation of EGFR signaling.
Collapse
|
30
|
Falo-Sanjuan J, Bray SJ. Decoding the Notch signal. Dev Growth Differ 2019; 62:4-14. [PMID: 31886523 DOI: 10.1111/dgd.12644] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 01/04/2023]
Abstract
Notch signalling controls many key cellular processes which differ according to the context where the pathway is deployed due to the transcriptional activation of specific sets of genes. The pathway is unusual in its lack of amplification, also raising the question of how it can efficiently activate transcription with limited amounts of nuclear activity. Here, we focus on mechanisms that enable Notch to produce appropriate transcriptional responses and speculate on models that could explain the current gaps in knowledge.
Collapse
Affiliation(s)
- Julia Falo-Sanjuan
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Sarah J Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
31
|
Gahr BM, Brändle F, Zimmermann M, Nagel AC. An RBPJ- Drosophila Model Reveals Dependence of RBPJ Protein Stability on the Formation of Transcription-Regulator Complexes. Cells 2019; 8:cells8101252. [PMID: 31615108 PMCID: PMC6829621 DOI: 10.3390/cells8101252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 01/07/2023] Open
Abstract
Notch signaling activity governs widespread cellular differentiation in higher animals, including humans, and is involved in several congenital diseases and different forms of cancer. Notch signals are mediated by the transcriptional regulator RBPJ in a complex with activated Notch (NICD). Analysis of Notch pathway regulation in humans is hampered by a partial redundancy of the four Notch receptor copies, yet RBPJ is solitary, allowing its study in model systems. In Drosophila melanogaster, the RBPJ orthologue is encoded by Suppressor of Hairless [Su(H)]. Using genome engineering, we replaced Su(H) by murine RBPJ in order to study its function in the fly. In fact, RBPJ largely substitutes for Su(H)’s function, yet subtle phenotypes reflect increased Notch signaling activity. Accordingly, the binding of RBPJ to Hairless (H) protein, the general Notch antagonist in Drosophila, was considerably reduced compared to that of Su(H). An H-binding defective RBPJLLL mutant matched the respective Su(H)LLL allele: homozygotes were lethal due to extensive Notch hyperactivity. Moreover, RBPJLLL protein accumulated at lower levels than wild type RBPJ, except in the presence of NICD. Apparently, RBPJ protein stability depends on protein complex formation with either H or NICD, similar to Su(H), demonstrating that the murine homologue underlies the same regulatory mechanisms as Su(H) in Drosophila. These results underscore the importance of regulating the availability of RBPJ protein to correctly mediate Notch signaling activity in the fly.
Collapse
Affiliation(s)
- Bernd M. Gahr
- Institute of Genetics (240), University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany; (B.M.G.); (F.B.); (M.Z.)
- Present address: Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Franziska Brändle
- Institute of Genetics (240), University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany; (B.M.G.); (F.B.); (M.Z.)
| | - Mirjam Zimmermann
- Institute of Genetics (240), University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany; (B.M.G.); (F.B.); (M.Z.)
| | - Anja C. Nagel
- Institute of Genetics (240), University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany; (B.M.G.); (F.B.); (M.Z.)
- Correspondence: ; Tel.: +49-711-45922210
| |
Collapse
|
32
|
Korzelius J, Azami S, Ronnen-Oron T, Koch P, Baldauf M, Meier E, Rodriguez-Fernandez IA, Groth M, Sousa-Victor P, Jasper H. The WT1-like transcription factor Klumpfuss maintains lineage commitment of enterocyte progenitors in the Drosophila intestine. Nat Commun 2019; 10:4123. [PMID: 31511511 PMCID: PMC6739418 DOI: 10.1038/s41467-019-12003-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/09/2019] [Indexed: 01/01/2023] Open
Abstract
In adult epithelial stem cell lineages, the precise differentiation of daughter cells is critical to maintain tissue homeostasis. Notch signaling controls the choice between absorptive and entero-endocrine cell differentiation in both the mammalian small intestine and the Drosophila midgut, yet how Notch promotes lineage restriction remains unclear. Here, we describe a role for the transcription factor Klumpfuss (Klu) in restricting the fate of enteroblasts (EBs) in the Drosophila intestine. Klu is induced in Notch-positive EBs and its activity restricts cell fate towards the enterocyte (EC) lineage. Transcriptomics and DamID profiling show that Klu suppresses enteroendocrine (EE) fate by repressing the action of the proneural gene Scute, which is essential for EE differentiation. Loss of Klu results in differentiation of EBs into EE cells. Our findings provide mechanistic insight into how lineage commitment in progenitor cell differentiation can be ensured downstream of initial specification cues. Notch signaling mediates intestinal enteroblast specification in Drosophila but the molecular mechanism as to how this is regulated is unclear. Here, the authors show that the transcription factor Klumpfuss ensures enteroblast commitment through repression of enteroendocrine cell fate downstream of Notch.
Collapse
Affiliation(s)
- Jerome Korzelius
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany. .,Max-Planck-Institute for Biology of Aging, Cologne, Germany.
| | - Sina Azami
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany.,Max-Planck-Institute for Biology of Aging, Cologne, Germany
| | - Tal Ronnen-Oron
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945-1400, USA
| | - Philipp Koch
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Maik Baldauf
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Elke Meier
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - Marco Groth
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Pedro Sousa-Victor
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945-1400, USA
| | - Heinrich Jasper
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany. .,Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945-1400, USA. .,Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
33
|
Couturier L, Mazouni K, Corson F, Schweisguth F. Regulation of Notch output dynamics via specific E(spl)-HLH factors during bristle patterning in Drosophila. Nat Commun 2019; 10:3486. [PMID: 31375669 PMCID: PMC6677740 DOI: 10.1038/s41467-019-11477-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/03/2019] [Indexed: 12/13/2022] Open
Abstract
The stereotyped arrangement of sensory bristles on the adult fly thorax arises from a self-organized process, in which inhibitory Notch signaling both delimits proneural stripes and singles out sensory organ precursor cells (SOPs). A dynamic balance between proneural factors and Enhancer of split-HLH (E(spl)-HLH) Notch targets underlies patterning, but how this is regulated is unclear. Here, were identify two classes of E(spl)-HLH factors, whose expression both precedes and delimits proneural activity, and is dependent on proneural activity and required for proper SOP spacing within the stripes, respectively. These two classes are partially redundant, since a member of the second class, that is normally cross-repressed by members of the first class, can functionally compensate for their absence. The regulation of specific E(spl)-HLH genes by proneural factors amplifies the response to Notch as SOPs are being selected, contributing to patterning dynamics in the notum, and likely operates in other developmental contexts. The patterning of sensory bristles on the dorsal thorax of flies is regulated by two transcription factor families but the dynamics of this regulation is unclear. Here, the authors visualize seven E(spl)-HLH proteins, showing their regulated expression promotes mutual inhibition by Notch during notum patterning.
Collapse
Affiliation(s)
- Lydie Couturier
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015, Paris, France.,CNRS, UMR3738, 75015, Paris, France
| | - Khalil Mazouni
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015, Paris, France.,CNRS, UMR3738, 75015, Paris, France
| | - Francis Corson
- Laboratoire de Physique de l'Ecole Normale Supérieure, CNRS, Sorbonne Université, Université Paris Diderot, 75005, Paris, France
| | - François Schweisguth
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015, Paris, France. .,CNRS, UMR3738, 75015, Paris, France.
| |
Collapse
|
34
|
Yao J, Zhong L, Zhong P, Liu D, Yuan Z, Liu J, Yao S, Zhao Y, Chen M, Li L, Liu L, Liu B. RAS-Responsive Element-Binding Protein 1 Blocks the Granulocytic Differentiation of Myeloid Leukemia Cells. Oncol Res 2019; 27:809-818. [PMID: 30982491 PMCID: PMC7848438 DOI: 10.3727/096504018x15451301487729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RAS-responsive element-binding protein 1 (RREB1) is a transcription factor that is implicated in RAS signaling and multiple tumors. However, the role of RREB1 in acute myeloid leukemia has not been studied. We found that RREB1 is overexpressed in AML patients and myeloid leukemia cell lines (NB4 and HL-60), and RREB1 expression was significantly decreased during granulocytic differentiation of myeloid leukemia cells induced by all-trans retinoic acid (ATRA). Then we performed a RREB1 knockdown assay in NB4 and HL-60 cells; the results showed that knockdown of RREB1 upregulated expression of CD11b, CEBPβ, and microRNA-145 (miR-145), which hinted that knockdown of RREB1 enhanced granulocytic differentiation of myeloid leukemia cells. In addition, inhibitor of miR-145 can offset the enhanced effect on granulocytic differentiation mediated by downregulation of RREB1. These collective findings demonstrated that RREB1 blocks granulocytic differentiation of myeloid leukemia cells by inhibiting the expression of miR-145 and downstream targets of the RAS signal pathway. These may provide a promising therapeutic target for AML patients.
Collapse
Affiliation(s)
- Juanjuan Yao
- Central Laboratory of Yong Chuan Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Pengqiang Zhong
- Central Laboratory of Yong Chuan Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Dongdong Liu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Zhen Yuan
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Junmei Liu
- Central Laboratory of Yong Chuan Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Shifei Yao
- Central Laboratory of Yong Chuan Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Yi Zhao
- Central Laboratory of Yong Chuan Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Min Chen
- Central Laboratory of Yong Chuan Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Lianwen Li
- Central Laboratory of Yong Chuan Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Lu Liu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Beizhong Liu
- Central Laboratory of Yong Chuan Hospital, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
35
|
Khadilkar RJ, Tanentzapf G. Septate junction components control Drosophila hematopoiesis through the Hippo pathway. Development 2019; 146:dev.166819. [PMID: 30890573 DOI: 10.1242/dev.166819] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 03/08/2019] [Indexed: 12/12/2022]
Abstract
Hematopoiesis requires coordinated cell signals to control the proliferation and differentiation of progenitor cells. In Drosophila, blood progenitors, called prohemocytes, which are located in a hematopoietic organ called the lymph gland, are regulated by the Salvador-Warts-Hippo pathway. In epithelial cells, the Hippo pathway integrates diverse biological inputs, such as cell polarity and cell-cell contacts, but Drosophila blood cells lack the conspicuous polarity of epithelial cells. Here, we show that the septate-junction components Cora and NrxIV promote Hippo signaling in the lymph gland. Depletion of septate-junction components in hemocytes produces similar phenotypes to those observed in Hippo pathway mutants, including increased differentiation of immune cells. Our analysis places septate-junction components as upstream regulators of the Hippo pathway where they recruit Merlin to the membrane. Finally, we show that interactions of septate-junction components with the Hippo pathway are a key functional component of the cellular immune response following infection.
Collapse
Affiliation(s)
- Rohan J Khadilkar
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver V6T 1Z3, Canada
| |
Collapse
|
36
|
Pillidge Z, Bray SJ. SWI/SNF chromatin remodeling controls Notch-responsive enhancer accessibility. EMBO Rep 2019; 20:embr.201846944. [PMID: 30914409 DOI: 10.15252/embr.201846944] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/18/2022] Open
Abstract
Notch signaling plays a key role in many cell fate decisions during development by directing different gene expression programs via the transcription factor CSL, known as Su(H) in Drosophila Which target genes are responsive to Notch signaling is influenced by the chromatin state of enhancers, yet how this is regulated is not fully known. Detecting a specific increase in the histone variant H3.3 in response to Notch signaling, we tested which chromatin remodelers or histone chaperones are required for the changes in enhancer accessibility to Su(H) binding. We show a crucial role for the Brahma SWI/SNF chromatin remodeling complex, including the actin-related BAP55 subunit, in conferring enhancer accessibility and enabling the transcriptional response to Notch activity. The Notch-responsive regions have high levels of nucleosome turnover which depend on the Brahma complex, increase in magnitude with Notch signaling, and primarily involve histone H3.3. Together these results highlight the importance of SWI/SNF-mediated nucleosome turnover in rendering enhancers responsive to Notch.
Collapse
Affiliation(s)
- Zoe Pillidge
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Sarah J Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
37
|
Banerjee U, Girard JR, Goins LM, Spratford CM. Drosophila as a Genetic Model for Hematopoiesis. Genetics 2019; 211:367-417. [PMID: 30733377 PMCID: PMC6366919 DOI: 10.1534/genetics.118.300223] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
In this FlyBook chapter, we present a survey of the current literature on the development of the hematopoietic system in Drosophila The Drosophila blood system consists entirely of cells that function in innate immunity, tissue integrity, wound healing, and various forms of stress response, and are therefore functionally similar to myeloid cells in mammals. The primary cell types are specialized for phagocytic, melanization, and encapsulation functions. As in mammalian systems, multiple sites of hematopoiesis are evident in Drosophila and the mechanisms involved in this process employ many of the same molecular strategies that exemplify blood development in humans. Drosophila blood progenitors respond to internal and external stress by coopting developmental pathways that involve both local and systemic signals. An important goal of these Drosophila studies is to develop the tools and mechanisms critical to further our understanding of human hematopoiesis during homeostasis and dysfunction.
Collapse
Affiliation(s)
- Utpal Banerjee
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
- Molecular Biology Institute, University of California, Los Angeles, California 90095
- Department of Biological Chemistry, University of California, Los Angeles, California 90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California 90095
| | - Juliet R Girard
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Lauren M Goins
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Carrie M Spratford
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| |
Collapse
|
38
|
Henrique D, Schweisguth F. Mechanisms of Notch signaling: a simple logic deployed in time and space. Development 2019; 146:146/3/dev172148. [PMID: 30709911 DOI: 10.1242/dev.172148] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most cells in our body communicate during development and throughout life via Notch receptors and their ligands. Notch receptors relay information from the cell surface to the genome via a very simple mechanism, yet Notch plays multiple roles in development and disease. Recent studies suggest that this versatility in Notch function may not necessarily arise from complex and context-dependent integration of Notch signaling with other developmental signals, but instead arises, in part, from signaling dynamics. Here, we review recent findings on the core Notch signaling mechanism and discuss how spatial-temporal dynamics contribute to Notch signaling output.
Collapse
Affiliation(s)
- Domingos Henrique
- Instituto de Histologia e Biologia do Desenvolvimento and Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egaz Moniz, 1649-028 Lisboa, Portugal
| | - François Schweisguth
- Institut Pasteur, Department of Developmental and Stem Cell Biology, F-75015 Paris, France .,CNRS, UMR3738, F-75015 Paris, France
| |
Collapse
|
39
|
Zhao W, Yu Z, Aweya JJ, Wang F, Yao D, Ma H, Lun J, Zhang Y. Molecular cloning and functional characterization of a homolog of the transcriptional regulator CSL in Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 88:152-160. [PMID: 30031869 DOI: 10.1016/j.dci.2018.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/15/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
The Notch signaling pathway transcriptional regulator, CSL (also called as CBF1, Suppressor of Hairless or Lag-1 in different species, generally designated as CSL1), is not only associated with cell proliferation and differentiation but also involved in tumorigenesis, inflammation and immune regulation in vertebrates. We recently showed that Notch signaling was involved in the immune response of Litopenaeus vannamei shrimp. However, as an important transcriptional regulator of this pathway, whether or not shrimp CSL was also involved in immune response had not been explored. Here, we cloned and characterized the CSL gene in L. vannamei (LvCSL), which has a 2271 bp open reading frame (ORF) encoding a putative protein of 756 amino acids, and contains two conserved Lag1-DNA bind as well as beta trefoil domains (BTD). LvCSL clustered with invertebrates in the phylogenetic tree and closely related to the RBP Jk X1 of Parasteatoda tepidariorum. The transcript level of LvCSL analyzed by quantitative polymerase chain reaction (qPCR) showed that LvCSL was widely expressed in all tissues tested, with induced levels observed in the hepatopancreas and hemocytes following immune challenge with Vibrio parahaemolyticus, Streptoccocus iniae, lipopolysaccharide (LPS), and white spot syndrome virus (WSSV), therefore, suggesting LvCSL involvement in shrimp immune response to pathogens. Besides, LvCSL knockdown decreased the expression of proliferation-related genes (LvHey2 and LvAstakine), and attenuated the expression of immune-related genes L. vannamei hypoxia inducible factor alpha (LvHIF-α), LvLectin and L. vannamei small subunit hemocyanin (LvHMCS) in shrimp hemocytes, as well as significantly decreased total hemocyte count. Moreover, high cumulative mortality was observed in LvCSL depleted shrimp challenged with V. parahaemoliticus. In conclusion, our present data strongly suggest that LvCSL is an important factor in shrimp, vital for shrimp survival and contributing to immune resistance to pathogens.
Collapse
Affiliation(s)
- Weiling Zhao
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Zhixue Yu
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Jude Juventus Aweya
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Fan Wang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Defu Yao
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Hongyu Ma
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Jingsheng Lun
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Yueling Zhang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
| |
Collapse
|
40
|
Serrato-Salas J, Hernández-Martínez S, Martínez-Barnetche J, Condé R, Alvarado-Delgado A, Zumaya-Estrada F, Lanz-Mendoza H. De Novo DNA Synthesis in Aedes aegypti Midgut Cells as a Complementary Strategy to Limit Dengue Viral Replication. Front Microbiol 2018; 9:801. [PMID: 29755433 PMCID: PMC5932203 DOI: 10.3389/fmicb.2018.00801] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/10/2018] [Indexed: 12/23/2022] Open
Abstract
Aedes aegypti is the main vector of Dengue Virus, carrying the virus during the whole mosquito life post-infection. Few mosquito fitness costs have been associated to the virus infection, thereby allowing for a swift dissemination. In order to diminish the mosquito population, public health agency use persistent chemicals with environmental impact for disease control. Most countries barely use biological controls, if at all. With the purpose of developing novel Dengue control strategies, a detailed understanding of the unexplored virus-vector interactions is urgently needed. Damage induced (through tissue injury or bacterial invasion) DNA duplication (endoreplication) has been described in insects during epithelial cells renewal. Here, we delved into the mosquito midgut tissue ability to synthesize DNA de novo; postulating that Dengue virus infection could trigger a protective endoreplication mechanism in some mosquito cells. We hypothesized that the Aedes aegypti orthologue of the Drosophila melanogaster hindsight gene (not previously annotated in Aedes aegypti transcriptome/genome) is part of the Delta-Notch pathway. The activation of this transcriptional cascade leads to genomic DNA endoreplication. The amplification of the genomic copies of specific genes ultimately limits the viral spreading during infection. Conversely, inhibiting DNA synthesis capacity, hence endoreplication, leads to a higher viral replication.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Humberto Lanz-Mendoza
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| |
Collapse
|
41
|
Bray SJ, Gomez-Lamarca M. Notch after cleavage. Curr Opin Cell Biol 2018; 51:103-109. [DOI: 10.1016/j.ceb.2017.12.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/13/2017] [Indexed: 01/13/2023]
|
42
|
Von Stetina JR, Frawley LE, Unhavaithaya Y, Orr-Weaver TL. Variant cell cycles regulated by Notch signaling control cell size and ensure a functional blood-brain barrier. Development 2018; 145:145/3/dev157115. [PMID: 29440220 PMCID: PMC5818001 DOI: 10.1242/dev.157115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/09/2018] [Indexed: 12/31/2022]
Abstract
Regulation of cell size is crucial in development. In plants and animals two cell cycle variants are employed to generate large cells by increased ploidy: the endocycle and endomitosis. The rationale behind the choice of which of these cycles is implemented is unknown. We show that in the Drosophila nervous system the subperineurial glia (SPG) are unique in using both the endocycle and endomitosis to grow. In the brain, the majority of SPG initially endocycle, then switch to endomitosis during larval development. The Notch signaling pathway and the String Cdc25 phosphatase are crucial for the endocycle versus endomitosis choice, providing the means experimentally to change cells from one to the other. This revealed fundamental insights into the control of cell size and the properties of endomitotic cells. Endomitotic cells attain a higher ploidy and larger size than endocycling cells, and endomitotic SPG are necessary for the blood-brain barrier. Decreased Notch signaling promotes endomitosis even in the ventral nerve cord SPG that normally are mononucleate, but not in the endocycling salivary gland cells, revealing tissue-specific cell cycle responses. Highlighted Article: In Drosophila brain lobes, Notch and the mitosis-activating phosphatase String regulate the switch of subperineurial glia from endocycle to endomitosis during larval development, with endomitotic cells attaining increased ploidy and size.
Collapse
Affiliation(s)
| | - Laura E Frawley
- Whitehead Institute, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Terry L Orr-Weaver
- Whitehead Institute, Cambridge, MA 02142, USA .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
43
|
Salazar JL, Yamamoto S. Integration of Drosophila and Human Genetics to Understand Notch Signaling Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:141-185. [PMID: 30030826 PMCID: PMC6233323 DOI: 10.1007/978-3-319-89512-3_8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling research dates back to more than one hundred years, beginning with the identification of the Notch mutant in the fruit fly Drosophila melanogaster. Since then, research on Notch and related genes in flies has laid the foundation of what we now know as the Notch signaling pathway. In the 1990s, basic biological and biochemical studies of Notch signaling components in mammalian systems, as well as identification of rare mutations in Notch signaling pathway genes in human patients with rare Mendelian diseases or cancer, increased the significance of this pathway in human biology and medicine. In the 21st century, Drosophila and other genetic model organisms continue to play a leading role in understanding basic Notch biology. Furthermore, these model organisms can be used in a translational manner to study underlying mechanisms of Notch-related human diseases and to investigate the function of novel disease associated genes and variants. In this chapter, we first briefly review the major contributions of Drosophila to Notch signaling research, discussing the similarities and differences between the fly and human pathways. Next, we introduce several biological contexts in Drosophila in which Notch signaling has been extensively characterized. Finally, we discuss a number of genetic diseases caused by mutations in genes in the Notch signaling pathway in humans and we expand on how Drosophila can be used to study rare genetic variants associated with these and novel disorders. By combining modern genomics and state-of-the art technologies, Drosophila research is continuing to reveal exciting biology that sheds light onto mechanisms of disease.
Collapse
Affiliation(s)
- Jose L Salazar
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA.
- Program in Developmental Biology, BCM, Houston, TX, USA.
- Department of Neuroscience, BCM, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
44
|
Choi SH, Severson E, Pear WS, Liu XS, Aster JC, Blacklow SC. The common oncogenomic program of NOTCH1 and NOTCH3 signaling in T-cell acute lymphoblastic leukemia. PLoS One 2017; 12:e0185762. [PMID: 29023469 PMCID: PMC5638296 DOI: 10.1371/journal.pone.0185762] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 09/19/2017] [Indexed: 11/24/2022] Open
Abstract
Notch is a major oncogenic driver in T cell acute lymphoblastic leukemia (T-ALL), in part because it binds to an enhancer that increases expression of MYC. Here, we exploit the capacity of activated NOTCH1 and NOTCH3 to induce T-ALL, despite substantial divergence in their intracellular regions, as a means to elucidate a broad, common Notch-dependent oncogenomic program through systematic comparison of the transcriptomes and Notch-bound genomic regulatory elements of NOTCH1- and NOTCH3-dependent T-ALL cells. ChIP-seq studies show a high concordance of functional NOTCH1 and NOTCH3 genomic binding sites that are enriched in binding motifs for RBPJ, the transcription factor that recruits activated Notch to DNA. The interchangeability of NOTCH1 and NOTCH3 was confirmed by rescue of NOTCH1-dependent T-ALL cells with activated NOTCH3 and vice versa. Despite remarkable overall similarity, there are nuanced differences in chromatin landscapes near critical common Notch target genes, most notably at a Notch-dependent enhancer that regulates MYC, which correlates with responsiveness to Notch pathway inhibitors. Overall, a common oncogenomic program driven by binding of either Notch is sufficient to maintain T-ALL cell growth, whereas cell-context specific differences appear to influence the response of T-ALL cells to Notch inhibition.
Collapse
Affiliation(s)
- Sung Hee Choi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, United States of America
| | - Eric Severson
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States of America
- Departments of Biostatistics and Computational Biology, Dana Farber Cancer Institute, and Harvard School of Public Health, Boston, MA, United States of America
| | - Warren S. Pear
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
| | - Xiaole S. Liu
- Departments of Biostatistics and Computational Biology, Dana Farber Cancer Institute, and Harvard School of Public Health, Boston, MA, United States of America
| | - Jon C. Aster
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States of America
- * E-mail: (SCB); (JCA)
| | - Stephen C. Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, United States of America
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States of America
- * E-mail: (SCB); (JCA)
| |
Collapse
|
45
|
Siebel C, Lendahl U. Notch Signaling in Development, Tissue Homeostasis, and Disease. Physiol Rev 2017; 97:1235-1294. [PMID: 28794168 DOI: 10.1152/physrev.00005.2017] [Citation(s) in RCA: 674] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Notch signaling is an evolutionarily highly conserved signaling mechanism, but in contrast to signaling pathways such as Wnt, Sonic Hedgehog, and BMP/TGF-β, Notch signaling occurs via cell-cell communication, where transmembrane ligands on one cell activate transmembrane receptors on a juxtaposed cell. Originally discovered through mutations in Drosophila more than 100 yr ago, and with the first Notch gene cloned more than 30 yr ago, we are still gaining new insights into the broad effects of Notch signaling in organisms across the metazoan spectrum and its requirement for normal development of most organs in the body. In this review, we provide an overview of the Notch signaling mechanism at the molecular level and discuss how the pathway, which is architecturally quite simple, is able to engage in the control of cell fates in a broad variety of cell types. We discuss the current understanding of how Notch signaling can become derailed, either by direct mutations or by aberrant regulation, and the expanding spectrum of diseases and cancers that is a consequence of Notch dysregulation. Finally, we explore the emerging field of Notch in the control of tissue homeostasis, with examples from skin, liver, lung, intestine, and the vasculature.
Collapse
Affiliation(s)
- Chris Siebel
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Urban Lendahl
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
46
|
Miller M, Chen A, Gobert V, Augé B, Beau M, Burlet-Schiltz O, Haenlin M, Waltzer L. Control of RUNX-induced repression of Notch signaling by MLF and its partner DnaJ-1 during Drosophila hematopoiesis. PLoS Genet 2017; 13:e1006932. [PMID: 28742844 PMCID: PMC5549762 DOI: 10.1371/journal.pgen.1006932] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/08/2017] [Accepted: 07/18/2017] [Indexed: 12/26/2022] Open
Abstract
A tight regulation of transcription factor activity is critical for proper development. For instance, modifications of RUNX transcription factors dosage are associated with several diseases, including hematopoietic malignancies. In Drosophila, Myeloid Leukemia Factor (MLF) has been shown to control blood cell development by stabilizing the RUNX transcription factor Lozenge (Lz). However, the mechanism of action of this conserved family of proteins involved in leukemia remains largely unknown. Here we further characterized MLF's mode of action in Drosophila blood cells using proteomic, transcriptomic and genetic approaches. Our results show that MLF and the Hsp40 co-chaperone family member DnaJ-1 interact through conserved domains and we demonstrate that both proteins bind and stabilize Lz in cell culture, suggesting that MLF and DnaJ-1 form a chaperone complex that directly regulates Lz activity. Importantly, dnaj-1 loss causes an increase in Lz+ blood cell number and size similarly as in mlf mutant larvae. Moreover we find that dnaj-1 genetically interacts with mlf to control Lz level and Lz+ blood cell development in vivo. In addition, we show that mlf and dnaj-1 loss alters Lz+ cell differentiation and that the increase in Lz+ blood cell number and size observed in these mutants is caused by an overactivation of the Notch signaling pathway. Finally, using different conditions to manipulate Lz activity, we show that high levels of Lz are required to repress Notch transcription and signaling. All together, our data indicate that the MLF/DnaJ-1-dependent increase in Lz level allows the repression of Notch expression and signaling to prevent aberrant blood cell development. Thus our findings establish a functional link between MLF and the co-chaperone DnaJ-1 to control RUNX transcription factor activity and Notch signaling during blood cell development in vivo.
Collapse
Affiliation(s)
- Marion Miller
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Aichun Chen
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Vanessa Gobert
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Benoit Augé
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Mathilde Beau
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marc Haenlin
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lucas Waltzer
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
47
|
Dynamic Notch Signaling Specifies Each Cell Fate in Drosophila Spermathecal Lineage. G3-GENES GENOMES GENETICS 2017; 7:1417-1427. [PMID: 28258114 PMCID: PMC5427495 DOI: 10.1534/g3.117.040212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Spermathecae are glandular organs in the insect female reproductive tract that play essential roles in insect reproduction; however, the molecular mechanism involved in their development is largely unknown. Drosophila spermathecae consist of class-III secretory units, in which each secretory cell (SC) discharges its products to the central lumen through an end-apparatus and a canal. Secretory unit formation in Drosophila spermathecae utilizes a fixed cell lineage, in which each secretory unit precursor (SUP) divides to produce one pIIb cell and one pIIa cell. The former differentiates into an apical cell (AC), whereas the latter divides again to produce an SC and a basal cell (BC). It is unclear how each cell acquires its identity and contributes to secretory unit formation. Here, we demonstrate that Notch signaling is required and sufficient for the specification of lumen epithelial precursors (LEPs; vs. SUPs), pIIb (vs. pIIa), and SCs (vs. BCs) sequentially. To our surprise, Notch activation in LEPs and SCs apparently utilizes different ligand mechanisms. In addition, Notch signaling both suppresses and activates transcription factors Hindsight (Hnt) and Cut during spermathecal lineage specification, supporting the notion that Notch signaling can have opposite biological outcomes in different cellular environments. Furthermore, LEP-derived epithelial cells (ECs) and ACs show distinct cellular morphology and are essential for securing secretory units to the epithelial lumen. Our work demonstrates, for the first time, the dynamic role of Notch signaling in binary cell fate determination in Drosophila spermathecae and the role of ECs and ACs in secretory unit formation.
Collapse
|
48
|
Screening and Analysis of Janelia FlyLight Project Enhancer-Gal4 Strains Identifies Multiple Gene Enhancers Active During Hematopoiesis in Normal and Wasp-Challenged Drosophila Larvae. G3-GENES GENOMES GENETICS 2017; 7:437-448. [PMID: 27913635 PMCID: PMC5295592 DOI: 10.1534/g3.116.034439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A GFP expression screen has been conducted on >1000 Janelia FlyLight Project enhancer-Gal4 lines to identify transcriptional enhancers active in the larval hematopoietic system. A total of 190 enhancers associated with 87 distinct genes showed activity in cells of the third instar larval lymph gland and hemolymph. That is, gene enhancers were active in cells of the lymph gland posterior signaling center (PSC), medullary zone (MZ), and/or cortical zone (CZ), while certain of the transcriptional control regions were active in circulating hemocytes. Phenotypic analyses were undertaken on 81 of these hematopoietic-expressed genes, with nine genes characterized in detail as to gain- and loss-of-function phenotypes in larval hematopoietic tissues and blood cells. These studies demonstrated the functional requirement of the cut gene for proper PSC niche formation, the hairy, Btk29A, and E2F1 genes for blood cell progenitor production in the MZ domain, and the longitudinals lacking, dFOXO, kayak, cap-n-collar, and delilah genes for lamellocyte induction and/or differentiation in response to parasitic wasp challenge and infestation of larvae. Together, these findings contribute substantial information to our knowledge of genes expressed during the larval stage of Drosophila hematopoiesis and newly identify multiple genes required for this developmental process.
Collapse
|
49
|
El Chamy L, Matt N, Reichhart JM. Advances in Myeloid-Like Cell Origins and Functions in the Model Organism Drosophila melanogaster. Microbiol Spectr 2017; 5:10.1128/microbiolspec.mchd-0038-2016. [PMID: 28102122 PMCID: PMC11687447 DOI: 10.1128/microbiolspec.mchd-0038-2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 12/22/2022] Open
Abstract
Drosophila has long served as a valuable model for deciphering many biological processes, including immune responses. Indeed, the genetic tractability of this organism is particularly suited for large-scale analyses. Studies performed during the last 3 decades have proven that the signaling pathways that regulate the innate immune response are conserved between Drosophila and mammals. This review summarizes the recent advances on Drosophila hematopoiesis and immune cellular responses, with a particular emphasis on phagocytosis.
Collapse
Affiliation(s)
- Laure El Chamy
- Laboratoire de Génétique de la drosophile et virulence microbienne, UR. EGFEM, Faculté des Sciences, Université Saint-Joseph de Beyrouth, B.P. 17-5208 Mar Mikhaël Beyrouth 1104 2020, Liban
| | - Nicolas Matt
- Université de Strasbourg, UPR 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg Cedex 67084, France
| | - Jean-Marc Reichhart
- Université de Strasbourg, UPR 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg Cedex 67084, France
| |
Collapse
|
50
|
Baril C, Gavory G, Bidla G, Knævelsrud H, Sauvageau G, Therrien M. Human NUP98-HOXA9 promotes hyperplastic growth of hematopoietic tissues in Drosophila. Dev Biol 2016; 421:16-26. [PMID: 27838340 DOI: 10.1016/j.ydbio.2016.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 01/02/2023]
Abstract
Acute myeloid leukemia (AML) is a complex malignancy with poor prognosis. Several genetic lesions can lead to the disease. One of these corresponds to the NUP98-HOXA9 (NA9) translocation that fuses sequences encoding the N-terminal part of NUP98 to those encoding the DNA-binding domain of HOXA9. Despite several studies, the mechanism underlying NA9 ability to induce leukemia is still unclear. To bridge this gap, we sought to functionally dissect NA9 activity using Drosophila. For this, we generated transgenic NA9 fly lines and expressed the oncoprotein during larval hematopoiesis. This markedly enhanced cell proliferation and tissue growth, but did not alter cell fate specification. Moreover, reminiscent to NA9 activity in mammals, strong cooperation was observed between NA9 and the MEIS homolog HTH. Genetic characterization of NA9-induced phenotypes suggested interference with PVR (Flt1-4 RTK homolog) signaling, which is similar to functional interactions observed in mammals between Flt3 and HOXA9 in leukemia. Finally, NA9 expression was also found to induce non-cell autonomous effects, raising the possibility that its leukemia-inducing activity also relies on this property. Together, our work suggests that NA9 ability to induce blood cell expansion is evolutionarily conserved. The amenability of NA9 activity to a genetically-tractable system should facilitate unraveling its molecular underpinnings.
Collapse
Affiliation(s)
- Caroline Baril
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | - Gwenaëlle Gavory
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | - Gawa Bidla
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | - Helene Knævelsrud
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | - Guy Sauvageau
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7; Département de médecine, Université de Montréal, Canada
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7; Département de pathologie et de biologie cellulaire, Université de Montréal, Canada.
| |
Collapse
|