1
|
Jones M, Norman M, Tiet AM, Lee J, Lee MH. C. elegans Germline as Three Distinct Tumor Models. BIOLOGY 2024; 13:425. [PMID: 38927305 PMCID: PMC11200432 DOI: 10.3390/biology13060425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Tumor cells display abnormal growth and division, avoiding the natural process of cell death. These cells can be benign (non-cancerous growth) or malignant (cancerous growth). Over the past few decades, numerous in vitro or in vivo tumor models have been employed to understand the molecular mechanisms associated with tumorigenesis in diverse regards. However, our comprehension of how non-tumor cells transform into tumor cells at molecular and cellular levels remains incomplete. The nematode C. elegans has emerged as an excellent model organism for exploring various phenomena, including tumorigenesis. Although C. elegans does not naturally develop cancer, it serves as a valuable platform for identifying oncogenes and the underlying mechanisms within a live organism. In this review, we describe three distinct germline tumor models in C. elegans, highlighting their associated mechanisms and related regulators: (1) ectopic proliferation due to aberrant activation of GLP-1/Notch signaling, (2) meiotic entry failure resulting from the loss of GLD-1/STAR RNA-binding protein, (3) spermatogenic dedifferentiation caused by the loss of PUF-8/PUF RNA-binding protein. Each model requires the mutations of specific genes (glp-1, gld-1, and puf-8) and operates through distinct molecular mechanisms. Despite these differences in the origins of tumorigenesis, the internal regulatory networks within each tumor model display shared features. Given the conservation of many of the regulators implicated in C. elegans tumorigenesis, it is proposed that these unique models hold significant potential for enhancing our comprehension of the broader control mechanisms governing tumorigenesis.
Collapse
Affiliation(s)
- Mariah Jones
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA; (M.J.); (M.N.)
| | - Mina Norman
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA; (M.J.); (M.N.)
| | - Alex Minh Tiet
- Neuroscience Program, East Carolina University, Greenville, NC 27858, USA;
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Jiwoo Lee
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Myon Hee Lee
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA; (M.J.); (M.N.)
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
2
|
Yu CW, Yen PL, How CM, Kuo YH, Hsiu-Chuan Liao V. Early-life long-term ibuprofen exposure reduces reproductive capacity involved in spermatogenesis impairment and associated with the transcription factor DAF-5 in Caenorhabditis elegans. CHEMOSPHERE 2024; 347:140717. [PMID: 37979808 DOI: 10.1016/j.chemosphere.2023.140717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/16/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are emerging environmental contaminants and have raised significant concern due to their potential adverse impact on the environment. Ibuprofen is one of the most extensively used non-steroidal anti-inflammatory drugs (NSAIDs) and is also considered an environmental contaminant. The negative impact of ibuprofen on non-target organisms has been documented; however, the molecular mechanisms behind its reproductive toxicity remain unclear. We investigated the impact of early-life long-term ibuprofen exposure on reproductive capacity and its involvement of spermiogenesis in the non-target model organism Caenorhabditis elegans. Hermaphrodites were exposed to various ibuprofen concentrations (0.1, 1, 10, and 100 mg/L), resulting in a dose-dependent inhibition of reproduction. In addition, the lowest observed adverse effect concentration (LOAEC) for ibuprofen exposure on the total brood size of C. elegans was 0.1 mg/L, a concentration that falls within the environmentally relevant range for ibuprofen. Outcross progeny assays revealed a significant 47% reduction in total brood size for larval males (him-5) exposed to ibuprofen, while females (fog-2) exhibited only a minor effect. We found that early-life long-term ibuprofen exposure impairs spermatogenesis. The number of mitotic cells significantly reduced by 31%. The rate of sperm malformation in exposed males was 63%, much higher than in unexposed males (11%). Additionally, the percentage of sperm activation decreased from 89% to 39% in ibuprofen-exposed worms. Mechanistic insights indicated that ibuprofen downregulated mRNA levels of genes related to spermatogenesis and DAF-7/TGF-β signaling. RNAi assays provided evidence for the crucial role of the transcription factor DAF-5 in mediating the spermatogenesis impairment by ibuprofen. Our study provides insight into the environmental impacts of pharmaceutical contaminants, such as ibuprofen, on both male and female reproductive systems to safeguard environmental health.
Collapse
Affiliation(s)
- Chan-Wei Yu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Chun Ming How
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Yu-Hsuan Kuo
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 106, Taiwan.
| |
Collapse
|
3
|
Dufourcq Sekatcheff E, Godon C, Bailly A, Quevarec L, Camilleri V, Galas S, Frelon S. Two distinct mechanisms lead to either oocyte or spermatocyte decrease in C. elegans after whole developmental exposure to γ-rays. PLoS One 2023; 18:e0294766. [PMID: 38011087 PMCID: PMC10681227 DOI: 10.1371/journal.pone.0294766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
Wildlife is subject to various sources of pollution, including ionizing radiation. Adverse effects can impact the survival, growth, or reproduction of organisms, later affecting population dynamics. In invertebrates, reproduction, which directly impacts population dynamics, has been found to be the most radiosensitive endpoint. Understanding the underlying molecular pathways inducing this reproduction decrease can help to comprehend species-specific differences in radiosensitivity. From our previous studies, we found that decrease in reproduction is life stage dependent in the roundworm Caenorhabditis elegans, possibly resulting from an accumulation of damages during germ cell development and gamete differentiation. To go further, we used the same experimental design to assess more precisely the molecular determinants of reproductive toxicity, primarily decreases in gamete number. As before, worms were chronically exposed to 50 mGy·h-1 external gamma ionizing radiation throughout different developmental periods (namely embryogenesis, gametogenesis, and full development). To enable cross species extrapolation, conserved molecular pathways across invertebrates and vertebrates were analysed: apoptosis and MAP kinase Ras/ERK (MPK-1), both involved in reproduction and stress responses. Our results showed that these pathways are life-stage dependent, resulting from an accumulation of damages upon chronic exposure to IR throughout the life development. The Ras/ERK pathway was activated in our conditions in the pachytene region of the gonad where it regulates cell fate including apoptosis, but not in the ovulation zone, where it controls oocyte maturation and ovulation. Additionally, assessment of germ cell proliferation via Ras/ERK pathway showed no effect. Finally, a functional analysis of apoptosis revealed that while the decrease of the ovulation rate is caused by DNA-damaged induced apoptosis, this process does not occur in spermatocytes. Thus, sperm decrease seems to be mediated via another mechanism, probably a decrease in germ cell proliferation speed that needs further investigation to better characterize sex-specific responses to IR exposure. These results are of main importance to describe radio-induced reprotoxic effects and contribute as weight of evidence for the AOP #396 "Deposition of ionizing energy leads to population decline via impaired meiosis".
Collapse
Affiliation(s)
- Elizabeth Dufourcq Sekatcheff
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, F-13115, Saint Paul-Lez-Durance, France
| | - Christian Godon
- Institut de Biosciences et Biotechnologies Aix-Marseille, Aix Marseille University, CEA, CNRS, BIAM, CEA Cadarache, 13108, Saint Paul-Lez-Durance, France
| | - Aymeric Bailly
- CRBM, CNRS, Université de Montpellier, UMR5237, Montpellier, 34090, France
| | - Loïc Quevarec
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, F-13115, Saint Paul-Lez-Durance, France
| | - Virginie Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, F-13115, Saint Paul-Lez-Durance, France
| | - Simon Galas
- CNRS, ENSCM, IBMM Université de Montpellier, 34093, Montpellier, France
| | - Sandrine Frelon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, F-13115, Saint Paul-Lez-Durance, France
| |
Collapse
|
4
|
Xu J, Jiang Y, Sherrard R, Ikegami K, Conradt B. PUF-8, a C. elegans ortholog of the RNA-binding proteins PUM1 and PUM2, is required for robustness of the cell death fate. Development 2023; 150:dev201167. [PMID: 37747106 PMCID: PMC10565243 DOI: 10.1242/dev.201167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
During C. elegans development, 1090 somatic cells are generated, of which 959 survive and 131 die, many through apoptosis. We present evidence that PUF-8, a C. elegans ortholog of the mammalian RNA-binding proteins PUM1 and PUM2, is required for the robustness of this 'survival and death' pattern. We found that PUF-8 prevents the inappropriate death of cells that normally survive, and we present evidence that this anti-apoptotic activity of PUF-8 is dependent on the ability of PUF-8 to interact with ced-3 (a C. elegans ortholog of caspase) mRNA, thereby repressing the activity of the pro-apoptotic ced-3 gene. PUF-8 also promotes the death of cells that are programmed to die, and we propose that this pro-apoptotic activity of PUF-8 may depend on the ability of PUF-8 to repress the expression of the anti-apoptotic ced-9 gene (a C. elegans ortholog of Bcl2). Our results suggest that stochastic differences in the expression of genes within the apoptosis pathway can disrupt the highly reproducible and robust survival and death pattern during C. elegans development, and that PUF-8 acts at the post-transcriptional level to level out these differences, thereby ensuring proper cell number homeostasis.
Collapse
Affiliation(s)
- Jimei Xu
- Faculty of Biology, Center for Integrative Protein Sciences Munich (CIPSM), Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Yanwen Jiang
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Ryan Sherrard
- Faculty of Biology, Center for Integrative Protein Sciences Munich (CIPSM), Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
| | - Kyoko Ikegami
- Faculty of Biology, Center for Integrative Protein Sciences Munich (CIPSM), Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
| | - Barbara Conradt
- Faculty of Biology, Center for Integrative Protein Sciences Munich (CIPSM), Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| |
Collapse
|
5
|
Jayadev R, Chi Q, Sherwood DR. Post-embryonic endogenous expression and localization of LET-60/Ras in C. elegans. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000931. [PMID: 37692087 PMCID: PMC10492041 DOI: 10.17912/micropub.biology.000931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
Ras GTPases regulate many developmental and physiological processes and mutations in Ras are associated with numerous human cancers. Here, we report the function, levels, and localization of an N-terminal knock-in of mNeonGreen (mNG) into C. elegans LET-60 /Ras. mNG:: LET-60 interferes with some but not all LET-60 /Ras functions. mNG:: LET-60 is broadly present in tissues, found at different levels in cells, and concentrates in distinct subcellular compartments, including the nucleolus, nucleus, intracellular region, and plasma membrane. These results suggest that mNG:: LET-60 can be a useful tool for determining LET-60 levels and localization once its functionality in a developmental or physiological process is established.
Collapse
Affiliation(s)
| | - Qiuyi Chi
- Department of Biology, Duke University, Durham, NC, USA
| | | |
Collapse
|
6
|
Yu L, Yang M, Jiang D, Jin H, Jin Z, Chu X, Zhao M, Wu S, Zhang F, Hu X. Antibacterial peptides from Monochamus alternatus induced oxidative stress and reproductive defects in pine wood nematode through the ERK/MAPK signaling pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105511. [PMID: 37532327 DOI: 10.1016/j.pestbp.2023.105511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023]
Abstract
Pine wilt disease is a devastating disease of pine caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus. Long-term use of chemical nematicides leads to the development of resistance in nematodes and harms the environment. Evaluations for green environmental protection agents, identified the antibacterial peptide, MaltDef1, from Monochamus alternatus which had nematicidal effect. We studied its nematicidal activity and action against PWN. In this study, the antibacterial peptide S-defensin was synthesized from M. alternatus. The results showed that S-defensin caused mortality to the PWN, causing shrinkage, pore, cell membrane dissolution and muscle atrophy. In addition, PWN reproduction was also affected by S-defensin; it decreased in a concentration dependent manner with increasing treatment concentration. By contrast, reactive oxygen species (ROS) in vivo increased in a concentration-dependent manner. We applied transcriptome to analyze the changes in gene expressions in S-defensin treated PWN, and found that the most significantly enriched pathway was the ERK/MAPK signaling pathway. RNAi was used to validate the functions of four differential genes (Let-23, Let-60, Mek-2 and Lin-1) in this pathway. The results showed that knockdown of these genes significantly decreased the survival rate and reproductive yield of, and also increased ROS in PWN. The antibacterial peptide S-defensin had a significant inhibitory effect on the survival and reproduction of PWN, shown by cell membrane damage and intracellular biological oxidative stress via regulating the ERK/MAPK signaling pathway. This indicates that S-defensin has a target in B. xylophilus, against which new green target pesticides can be developed.
Collapse
Affiliation(s)
- Lu Yu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meijiao Yang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Di Jiang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haole Jin
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zehong Jin
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Chu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingzhen Zhao
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Songqing Wu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feiping Zhang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xia Hu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
7
|
Ezhil Buvani AP, Subramaniam K. The C. elegans gene gvd-1 promotes late larval development and germ cell proliferation. Biol Open 2023; 12:bio059978. [PMID: 37310364 PMCID: PMC10320718 DOI: 10.1242/bio.059978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/18/2023] [Indexed: 06/14/2023] Open
Abstract
Limiting maternal resources necessitates deferring the development of adult-specific structures, notably the reproductive structures, to the postembryonic phase. These structures form postembryonically from blast cells generated during embryogenesis. A close coordination of developmental timing and pattern among the various postembryonic cell lineages is essential to form a functional adult. Here, we show that the C. elegans gene gvd-1 is essential for the development of several structures that form during the late larval stages. In gvd-1 mutant animals, blast cells that normally divide during the late larval stages (L3 and L4) fail to divide. In addition, germ cell proliferation is also severely reduced in these animals. Expression patterns of relevant reporter transgenes revealed a delay in G1/S transition in the vulval precursor cell P6.p and cytokinesis failure in seam cells in gvd-1 larvae. Our analyses of GVD-1::GFP transgenes indicate that GVD-1 is expressed in both soma and germ line, and functions in both. Sequence comparisons revealed that the sequence of gvd-1 is conserved only among nematodes, which does not support a broadly conserved housekeeping function for gvd-1. Instead, our results indicate a crucial role for gvd-1 that is specific to the larval development of nematodes.
Collapse
Affiliation(s)
- Anbalagan Pon Ezhil Buvani
- Department of Biotechnology, Indian Institute of Technology–Madras, Chennai 600036, India
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Kuppuswamy Subramaniam
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
8
|
Park Y, Gaddy M, Hyun M, Jones ME, Aslam HM, Lee MH. Genetic and Chemical Controls of Sperm Fate and Spermatocyte Dedifferentiation via PUF-8 and MPK-1 in Caenorhabditis elegans. Cells 2023; 12:cells12030434. [PMID: 36766775 PMCID: PMC9913519 DOI: 10.3390/cells12030434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Using the nematode C. elegans germline as a model system, we previously reported that PUF-8 (a PUF RNA-binding protein) and LIP-1 (a dual-specificity phosphatase) repress sperm fate at 20 °C and the dedifferentiation of spermatocytes into mitotic cells (termed "spermatocyte dedifferentiation") at 25 °C. Thus, double mutants lacking both PUF-8 and LIP-1 produce excess sperm at 20 °C, and their spermatocytes return to mitotically dividing cells via dedifferentiation at 25 °C, resulting in germline tumors. To gain insight into the molecular competence for spermatocyte dedifferentiation, we compared the germline phenotypes of three mutant strains that produce excess sperm-fem-3(q20gf), puf-8(q725); fem-3(q20gf), and puf-8(q725); lip-1(zh15). Spermatocyte dedifferentiation was not observed in fem-3(q20gf) mutants, but it was more severe in puf-8(q725); lip-1(zh15) than in puf-8(q725); fem-3(q20gf) mutants. These results suggest that MPK-1 (the C. elegans ERK1/2 MAPK ortholog) activation in the absence of PUF-8 is required to promote spermatocyte dedifferentiation. This idea was confirmed using Resveratrol (RSV), a potential activator of MPK-1 and ERK1/2 in C. elegans and human cells, respectively. Notably, spermatocyte dedifferentiation was significantly enhanced by RSV treatment in the absence of PUF-8, and its effect was blocked by mpk-1 RNAi. We, therefore, conclude that PUF-8 and MPK-1 are essential regulators for spermatocyte dedifferentiation and tumorigenesis. Since these regulators are broadly conserved, we suggest that similar regulatory circuitry may control cellular dedifferentiation and tumorigenesis in other organisms, including humans.
Collapse
Affiliation(s)
- Youngyong Park
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Matthew Gaddy
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Moonjung Hyun
- Biological Resources Research Group, Bioenvironmental Science & Toxicology Division, Korea Institute of Toxicology, Jinju 52834, Gyeongsangnam-do, Republic of Korea
| | - Mariah E. Jones
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Hafiz M. Aslam
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Myon Hee Lee
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
- Correspondence:
| |
Collapse
|
9
|
Xu Z, Zhao J, Hong M, Zeng C, Guang S, Shi Y. Structural recognition of the mRNA 3' UTR by PUF-8 restricts the lifespan of C. elegans. Nucleic Acids Res 2021; 49:10082-10097. [PMID: 34478557 PMCID: PMC8464079 DOI: 10.1093/nar/gkab754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/31/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022] Open
Abstract
The molecular mechanisms of aging are unsolved fundamental biological questions. Caenorhabditis elegans is an ideal model organism for investigating aging. PUF-8, a PUF (Pumilio and FBF) protein in C. elegans, is crucial for germline development through binding with the 3′ untranslated regions (3′ UTR) in the target mRNAs. Recently, PUF-8 was reported to alter mitochondrial dynamics and mitophagy by regulating MFF-1, a mitochondrial fission factor, and subsequently regulated longevity. Here, we determined the crystal structure of the PUF domain of PUF-8 with an RNA substrate. Mutagenesis experiments were performed to alter PUF-8 recognition of its target mRNAs. Those mutations reduced the fertility and extended the lifespan of C. elegans. Deep sequencing of total mRNAs from wild-type and puf-8 mutant worms as well as in vivo RNA Crosslinking and Immunoprecipitation (CLIP) experiments identified six PUF-8 regulated genes, which contain at least one PUF-binding element (PBE) at the 3′ UTR. One of the six genes, pqm-1, is crucial for lipid storage and aging process. Knockdown of pqm-1 could revert the lifespan extension of puf-8 mutant animals. We conclude that PUF-8 regulate the lifespan of C. elegans may not only via MFF but also via modulating pqm-1-related pathways.
Collapse
Affiliation(s)
- Zheng Xu
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Jie Zhao
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Minjie Hong
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Chenming Zeng
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Shouhong Guang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Yunyu Shi
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| |
Collapse
|
10
|
Singh R, Smit RB, Wang X, Wang C, Racher H, Hansen D. Reduction of Derlin activity suppresses Notch-dependent tumours in the C. elegans germ line. PLoS Genet 2021; 17:e1009687. [PMID: 34555015 PMCID: PMC8491880 DOI: 10.1371/journal.pgen.1009687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/05/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022] Open
Abstract
Regulating the balance between self-renewal (proliferation) and differentiation is key to the long-term functioning of all stem cell pools. In the Caenorhabditis elegans germline, the primary signal controlling this balance is the conserved Notch signaling pathway. Gain-of-function mutations in the GLP-1/Notch receptor cause increased stem cell self-renewal, resulting in a tumour of proliferating germline stem cells. Notch gain-of-function mutations activate the receptor, even in the presence of little or no ligand, and have been associated with many human diseases, including cancers. We demonstrate that reduction in CUP-2 and DER-2 function, which are Derlin family proteins that function in endoplasmic reticulum-associated degradation (ERAD), suppresses the C. elegans germline over-proliferation phenotype associated with glp-1(gain-of-function) mutations. We further demonstrate that their reduction does not suppress other mutations that cause over-proliferation, suggesting that over-proliferation suppression due to loss of Derlin activity is specific to glp-1/Notch (gain-of-function) mutations. Reduction of CUP-2 Derlin activity reduces the expression of a read-out of GLP-1/Notch signaling, suggesting that the suppression of over-proliferation in Derlin loss-of-function mutants is due to a reduction in the activity of the mutated GLP-1/Notch(GF) receptor. Over-proliferation suppression in cup-2 mutants is only seen when the Unfolded Protein Response (UPR) is functioning properly, suggesting that the suppression, and reduction in GLP-1/Notch signaling levels, observed in Derlin mutants may be the result of activation of the UPR. Chemically inducing ER stress also suppress glp-1(gf) over-proliferation but not other mutations that cause over-proliferation. Therefore, ER stress and activation of the UPR may help correct for increased GLP-1/Notch signaling levels, and associated over-proliferation, in the C. elegans germline. Notch signaling is a highly conserved signaling pathway that is utilized in many cell fate decisions in many organisms. In the C. elegans germline, Notch signaling is the primary signal that regulates the balance between stem cell proliferation and differentiation. Notch gain-of-function mutations cause the receptor to be active, even when a signal that is normally needed to activate the receptor is absent. In the germline of C. elegans, gain-of-function mutations in GLP-1, a Notch receptor, results in over-proliferation of the stem cells and tumour formation. Here we demonstrate that a reduction or loss of Derlin activity, which is a conserved family of proteins involved in endoplasmic reticulum-associated degradation (ERAD), suppresses over-proliferation due to GLP-1/Notch gain-of-function mutations. Furthermore, we demonstrate that a surveillance mechanism utilized in cells to monitor and react to proteins that are not folded properly (Unfolded Protein Response-UPR) must be functioning well in order for the loss of Derlin activity to supress over-proliferation caused by glp-1/Notch gain-of-function mutations. This suggests that activation of the UPR may be the mechanism at work for suppressing this type of over-proliferation, when Derlin activity is reduced. Therefore, decreasing Derlin activity may be a means of reducing the impact of phenotypes and diseases due to certain Notch gain-of-function mutations.
Collapse
Affiliation(s)
- Ramya Singh
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Ryan B. Smit
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Xin Wang
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Chris Wang
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Hilary Racher
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, Calgary, Canada
- * E-mail:
| |
Collapse
|
11
|
Cipriani PG, Bay O, Zinno J, Gutwein M, Gan HH, Mayya VK, Chung G, Chen JX, Fahs H, Guan Y, Duchaine TF, Selbach M, Piano F, Gunsalus KC. Novel LOTUS-domain proteins are organizational hubs that recruit C. elegans Vasa to germ granules. eLife 2021; 10:60833. [PMID: 34223818 PMCID: PMC8331183 DOI: 10.7554/elife.60833] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 06/27/2021] [Indexed: 12/16/2022] Open
Abstract
We describe MIP-1 and MIP-2, novel paralogous C. elegans germ granule components that interact with the intrinsically disordered MEG-3 protein. These proteins promote P granule condensation, form granules independently of MEG-3 in the postembryonic germ line, and balance each other in regulating P granule growth and localization. MIP-1 and MIP-2 each contain two LOTUS domains and intrinsically disordered regions and form homo- and heterodimers. They bind and anchor the Vasa homolog GLH-1 within P granules and are jointly required for coalescence of MEG-3, GLH-1, and PGL proteins. Animals lacking MIP-1 and MIP-2 show temperature-sensitive embryonic lethality, sterility, and mortal germ lines. Germline phenotypes include defects in stem cell self-renewal, meiotic progression, and gamete differentiation. We propose that these proteins serve as scaffolds and organizing centers for ribonucleoprotein networks within P granules that help recruit and balance essential RNA processing machinery to regulate key developmental transitions in the germ line.
Collapse
Affiliation(s)
- Patricia Giselle Cipriani
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States.,NYU Abu Dhabi Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Olivia Bay
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - John Zinno
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Michelle Gutwein
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Hin Hark Gan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Vinay K Mayya
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Canada
| | - George Chung
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Jia-Xuan Chen
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Hala Fahs
- NYU Abu Dhabi Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Yu Guan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Thomas F Duchaine
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Canada
| | | | - Fabio Piano
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States.,NYU Abu Dhabi Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kristin C Gunsalus
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States.,NYU Abu Dhabi Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
12
|
BRAF Controls the Effects of Metformin on Neuroblast Cell Divisions in C. elegans. Int J Mol Sci 2020; 22:ijms22010178. [PMID: 33375360 PMCID: PMC7795703 DOI: 10.3390/ijms22010178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Metformin has demonstrated substantial potential for use in cancer treatments. Liver kinase B (LKB)-AMP-activated protein kinase (AMPK) and mTOR are reported to be the main targets of metformin in relation to its ability to prevent cancer cell proliferation. However, the role of metformin in the control of neoplastic cancer cell growth is possibly independent of LKB-AMPK and mTOR. Using C. elegans as a model, we found that the neuronal Q-cell divisions in L1-arrested worms were suppressed following metformin treatment in AMPK-deficient mutants, suggesting that the mechanism by which metformin suppresses these cell divisions is independent of AMPK. Our results showed that the mTOR pathway indeed played a role in controlling germ cell proliferation, but it was not involved in the neuronal Q-cell divisions occurring in L1-arrested worms. We found that the neuronal Q-cells divisions were held at G1/S cell stage by metformin in vivo. Additionally, we demonstrated that metformin could reduce the phosphorylation activity of BRAF and block the BRAF-MAPK oncogenesis pathway to regulate neuronal Q-cell divisions during L1 arrest. This work discloses a new mechanism by which metformin treatment acts to promote neuronal cancer prevention, and these results will help promote the study of the anticancer mechanisms underlying metformin treatments.
Collapse
|
13
|
Vishnupriya R, Thomas L, Wahba L, Fire A, Subramaniam K. PLP-1 is essential for germ cell development and germline gene silencing in Caenorhabditis elegans. Development 2020; 147:dev.195578. [PMID: 33051256 DOI: 10.1242/dev.195578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
The germline genome is guarded against invading foreign genetic elements by small RNA-dependent gene-silencing pathways. Components of these pathways localize to, or form distinct aggregates in the vicinity of, germ granules. These components and their dynamics in and out of granules are currently being intensively studied. Here, we report the identification of PLP-1, a Caenorhabditis elegans protein related to the human single-stranded nucleic acid-binding protein Pur-alpha, as a component of germ granules in C. elegans We show that PLP-1 is essential for silencing different types of transgenes in the germ line and for suppressing the expression of several endogenous genes controlled by the germline gene-silencing pathways. Our results reveal that PLP-1 functions downstream of small RNA biogenesis during initiation of gene silencing. Based on these results and the earlier findings that Pur-alpha proteins interact with both RNA and protein, we propose that PLP-1 couples certain RNAs with their protein partners in the silencing complex. PLP-1 orthologs localized on RNA granules may similarly contribute to germline gene silencing in other organisms.
Collapse
Affiliation(s)
- Rajaram Vishnupriya
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Linitha Thomas
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Lamia Wahba
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew Fire
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kuppuswamy Subramaniam
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| |
Collapse
|
14
|
Wang X, Voronina E. Diverse Roles of PUF Proteins in Germline Stem and Progenitor Cell Development in C. elegans. Front Cell Dev Biol 2020; 8:29. [PMID: 32117964 PMCID: PMC7015873 DOI: 10.3389/fcell.2020.00029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/14/2020] [Indexed: 01/05/2023] Open
Abstract
Stem cell development depends on post-transcriptional regulation mediated by RNA-binding proteins (RBPs) (Zhang et al., 1997; Forbes and Lehmann, 1998; Okano et al., 2005; Ratti et al., 2006; Kwon et al., 2013). Pumilio and FBF (PUF) family RBPs are highly conserved post-transcriptional regulators that are critical for stem cell maintenance (Wickens et al., 2002; Quenault et al., 2011). The RNA-binding domains of PUF proteins recognize a family of related sequence motifs in the target mRNAs, yet individual PUF proteins have clearly distinct biological functions (Lu et al., 2009; Wang et al., 2018). The C. elegans germline is a simple and powerful model system for analyzing regulation of stem cell development. Studies in C. elegans uncovered specific physiological roles for PUFs expressed in the germline stem cells ranging from control of proliferation and differentiation to regulation of the sperm/oocyte decision. Importantly, recent studies started to illuminate the mechanisms behind PUF functional divergence. This review summarizes the many roles of PUF-8, FBF-1, and FBF-2 in germline stem and progenitor cells (SPCs) and discusses the factors accounting for their distinct biological functions. PUF proteins are conserved in evolution, and insights into PUF-mediated regulation provided by the C. elegans model system are likely relevant for other organisms.
Collapse
Affiliation(s)
- Xiaobo Wang
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Ekaterina Voronina
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| |
Collapse
|
15
|
Hubbard EJA, Schedl T. Biology of the Caenorhabditis elegans Germline Stem Cell System. Genetics 2019; 213:1145-1188. [PMID: 31796552 PMCID: PMC6893382 DOI: 10.1534/genetics.119.300238] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
Stem cell systems regulate tissue development and maintenance. The germline stem cell system is essential for animal reproduction, controlling both the timing and number of progeny through its influence on gamete production. In this review, we first draw general comparisons to stem cell systems in other organisms, and then present our current understanding of the germline stem cell system in Caenorhabditis elegans In contrast to stereotypic somatic development and cell number stasis of adult somatic cells in C. elegans, the germline stem cell system has a variable division pattern, and the system differs between larval development, early adult peak reproduction and age-related decline. We discuss the cell and developmental biology of the stem cell system and the Notch regulated genetic network that controls the key decision between the stem cell fate and meiotic development, as it occurs under optimal laboratory conditions in adult and larval stages. We then discuss alterations of the stem cell system in response to environmental perturbations and aging. A recurring distinction is between processes that control stem cell fate and those that control cell cycle regulation. C. elegans is a powerful model for understanding germline stem cells and stem cell biology.
Collapse
Affiliation(s)
- E Jane Albert Hubbard
- Skirball Institute of Biomolecular Medicine, Departments of Cell Biology and Pathology, New York University School of Medicine, New York 10016
| | - Tim Schedl
- and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
16
|
Bhat VD, McCann KL, Wang Y, Fonseca DR, Shukla T, Alexander JC, Qiu C, Wickens M, Lo TW, Tanaka Hall TM, Campbell ZT. Engineering a conserved RNA regulatory protein repurposes its biological function in vivo. eLife 2019; 8:43788. [PMID: 30652968 PMCID: PMC6351103 DOI: 10.7554/elife.43788] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/15/2019] [Indexed: 12/18/2022] Open
Abstract
PUF (PUmilio/FBF) RNA-binding proteins recognize distinct elements. In C. elegans, PUF-8 binds to an 8-nt motif and restricts proliferation in the germline. Conversely, FBF-2 recognizes a 9-nt element and promotes mitosis. To understand how motif divergence relates to biological function, we first determined a crystal structure of PUF-8. Comparison of this structure to that of FBF-2 revealed a major difference in a central repeat. We devised a modified yeast 3-hybrid screen to identify mutations that confer recognition of an 8-nt element to FBF-2. We identified several such mutants and validated structurally and biochemically their binding to 8-nt RNA elements. Using genome engineering, we generated a mutant animal with a substitution in FBF-2 that confers preferential binding to the PUF-8 element. The mutant largely rescued overproliferation in animals that spontaneously generate tumors in the absence of puf-8. This work highlights the critical role of motif length in the specification of biological function.
Collapse
Affiliation(s)
- Vandita D Bhat
- Department of Biological Sciences, University of Texas Dallas, Richardson, United States
| | - Kathleen L McCann
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Yeming Wang
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | | | - Tarjani Shukla
- Department of Biological Sciences, University of Texas Dallas, Richardson, United States
| | | | - Chen Qiu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Marv Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Te-Wen Lo
- Department of Biology, Ithaca College, Ithaca, United States
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Zachary T Campbell
- Department of Biological Sciences, University of Texas Dallas, Richardson, United States
| |
Collapse
|
17
|
Kumar GA, Subramaniam K. PUF-8 facilitates homologous chromosome pairing by promoting proteasome activity during meiotic entry in C. elegans. Development 2018. [PMID: 29540500 DOI: 10.1242/dev.163949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pairing of homologous chromosomes is essential for genetic recombination during gametogenesis. In many organisms, chromosome ends are attached to cytoplasmic dynein, and dynein-driven chromosomal movements facilitate the pairing process. Factors that promote or control the cytoskeletal tethering of chromosomes are largely unknown. Here, we show that the conserved RNA-binding protein PUF-8 facilitates the tethering and pairing processes in the C. elegans germline by promoting proteasome activity. We have isolated a hypomorphic allele of pas-1, which encodes a proteasome core subunit, and find that the homologous chromosomes fail to pair in the puf-8; pas-1 double mutant due to failure of chromosome tethering. Our results reveal that the puf-8; pas-1 meiotic defects are caused by the loss of proteasome activity. The axis component HTP-3 accumulates prematurely in the double mutant, and reduction of its activity partially suppresses some of the puf-8; pas-1 meiotic defects, suggesting that HTP-3 might be an important target of the proteasome in promoting early meiotic events. In summary, our results reveal a role for the proteasome in chromosome tethering and identify PUF-8 as a regulator of proteasome activity during early meiosis.
Collapse
Affiliation(s)
- Ganga Anil Kumar
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India.,Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Kuppuswamy Subramaniam
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| |
Collapse
|
18
|
Shin H, Haupt KA, Kershner AM, Kroll-Conner P, Wickens M, Kimble J. SYGL-1 and LST-1 link niche signaling to PUF RNA repression for stem cell maintenance in Caenorhabditis elegans. PLoS Genet 2017; 13:e1007121. [PMID: 29232700 PMCID: PMC5741267 DOI: 10.1371/journal.pgen.1007121] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/22/2017] [Accepted: 11/20/2017] [Indexed: 01/14/2023] Open
Abstract
Central questions in regenerative biology include how stem cells are maintained and how they transition from self-renewal to differentiation. Germline stem cells (GSCs) in Caeno-rhabditis elegans provide a tractable in vivo model to address these questions. In this system, Notch signaling and PUF RNA binding proteins, FBF-1 and FBF-2 (collectively FBF), maintain a pool of GSCs in a naïve state. An open question has been how Notch signaling modulates FBF activity to promote stem cell self-renewal. Here we report that two Notch targets, SYGL-1 and LST-1, link niche signaling to FBF. We find that SYGL-1 and LST-1 proteins are cytoplasmic and normally restricted to the GSC pool region. Increasing the distribution of SYGL-1 expands the pool correspondingly, and vast overexpression of either SYGL-1 or LST-1 generates a germline tumor. Thus, SYGL-1 and LST-1 are each sufficient to drive "stemness" and their spatial restriction prevents tumor formation. Importantly, SYGL-1 and LST-1 can only drive tumor formation when FBF is present. Moreover, both proteins interact physically with FBF, and both are required to repress a signature FBF mRNA target. Together, our results support a model in which SYGL-1 and LST-1 form a repressive complex with FBF that is crucial for stem cell maintenance. We further propose that progression from a naïve stem cell state to a state primed for differentiation relies on loss of SYGL-1 and LST-1, which in turn relieves FBF target RNAs from repression. Broadly, our results provide new insights into the link between niche signaling and a downstream RNA regulatory network and how this circuitry governs the balance between self-renewal and differentiation.
Collapse
Affiliation(s)
- Heaji Shin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kimberly A. Haupt
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Aaron M. Kershner
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Peggy Kroll-Conner
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
19
|
Tang H, Han M. Fatty Acids Regulate Germline Sex Determination through ACS-4-Dependent Myristoylation. Cell 2017; 169:457-469.e13. [PMID: 28431246 DOI: 10.1016/j.cell.2017.03.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/03/2017] [Accepted: 03/31/2017] [Indexed: 01/06/2023]
Abstract
Fat metabolism has been linked to fertility and reproductive adaptation in animals and humans, and environmental sex determination potentially plays a role in the process. To investigate the impact of fatty acids (FA) on sex determination and reproductive development, we examined and observed an impact of FA synthesis and mobilization by lipolysis in somatic tissues on oocyte fate in Caenorhabditis elegans. The subsequent genetic analysis identified ACS-4, an acyl-CoA synthetase and its FA-CoA product, as key germline factors that mediate the role of FA in promoting oocyte fate through protein myristoylation. Further tests indicated that ACS-4-dependent protein myristoylation perceives and translates the FA level into regulatory cues that modulate the activities of MPK-1/MAPK and key factors in the germline sex-determination pathway. These findings, including a similar role of ACS-4 in a male/female species, uncover a likely conserved mechanism by which FA, an environmental factor, regulates sex determination and reproductive development.
Collapse
Affiliation(s)
- Hongyun Tang
- Howard Hughes Medical Institute and Department of MCDB of the University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Min Han
- Howard Hughes Medical Institute and Department of MCDB of the University of Colorado at Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
20
|
Singh R, Hansen D. Regulation of the Balance Between Proliferation and Differentiation in Germ Line Stem Cells. Results Probl Cell Differ 2017; 59:31-66. [PMID: 28247045 DOI: 10.1007/978-3-319-44820-6_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In many animals, reproductive fitness is dependent upon the production of large numbers of gametes over an extended period of time. This level of gamete production is possible due to the continued presence of germ line stem cells. These cells can produce two types of daughter cells, self-renewing daughter cells that will maintain the stem cell population and differentiating daughter cells that will become gametes. A balance must be maintained between the proliferating self-renewing cells and those that differentiate for long-term gamete production to be maintained. Too little proliferation can result in depletion of the stem cell population, while too little differentiation can lead to a lack of gamete formation and possible tumor formation. In this chapter, we discuss our current understanding of how the balance between proliferation and differentiation is achieved in three well-studied germ line model systems: the Drosophila female, the mouse male, and the C. elegans hermaphrodite. While these three systems have significant differences in how this balance is regulated, including differences in stem cell population size, signaling pathways utilized, and the use of symmetric and/or asymmetric cell divisions, there are also similarities found between them. These similarities include the reliance on a predominant signaling pathway to promote proliferation, negative feedback loops to rapidly shutoff proliferation-promoting cues, close association of the germ line stem cells with a somatic niche, cytoplasmic connections between cells, projections emanating from the niche cell, and multiple mechanisms to limit the spatial influence of the niche. A comparison between different systems may help to identify elements that are essential for a proper balance between proliferation and differentiation to be achieved and elements that may be achieved through various mechanisms.
Collapse
Affiliation(s)
- Ramya Singh
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada, T2N 1N4
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada, T2N 1N4.
| |
Collapse
|
21
|
Pushpa K, Kumar GA, Subramaniam K. Translational Control of Germ Cell Decisions. Results Probl Cell Differ 2017; 59:175-200. [PMID: 28247049 DOI: 10.1007/978-3-319-44820-6_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Germline poses unique challenges to gene expression control at the transcriptional level. While the embryonic germline maintains a global hold on new mRNA transcription, the female adult germline produces transcripts that are not translated into proteins until embryogenesis of subsequent generation. As a consequence, translational control plays a central role in governing various germ cell decisions including the formation of primordial germ cells, self-renewal/differentiation decisions in the adult germline, onset of gametogenesis and oocyte maturation. Mechanistically, several common themes such as asymmetric localization of mRNAs, conserved RNA-binding proteins that control translation by 3' UTR binding, translational activation by the cytoplasmic elongation of the polyA tail and the assembly of mRNA-protein complexes called mRNPs have emerged from the studies on Caenorhabditis elegans, Xenopus and Drosophila. How mRNPs assemble, what influences their dynamics, and how a particular 3' UTR-binding protein turns on the translation of certain mRNAs while turning off other mRNAs at the same time and space are key challenges for future work.
Collapse
Affiliation(s)
- Kumari Pushpa
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Ganga Anil Kumar
- Indian Institute of Technology-Kanpur, Kanpur, India.,Indian Institute of Technology-Madras, Chennai, India
| | | |
Collapse
|
22
|
Lee MH, Yoon DS. A Phenotype-Based RNAi Screening for Ras-ERK/MAPK Signaling-Associated Stem Cell Regulators in C. elegans. Methods Mol Biol 2017; 1622:207-221. [PMID: 28674811 DOI: 10.1007/978-1-4939-7108-4_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stem cells have the ability to self-renew and to generate differentiated cell types. A regulatory network that controls this balance is critical for stem cell homeostasis and normal animal development. Particularly, Ras-ERK/MAPK signaling pathway is critical for stem cell self-renewal and differentiation in mammals, including humans. Aberrant regulation of Ras-ERK/MAPK signaling pathway results in either stem cell or overproliferation. Therefore, the identification of Ras-ERK/MAPK signaling pathway-associated regulators is critical to understand the mechanism of stem cell (possibly cancer stem cell) control. In this report, using the nematode C. elegans mutants, we developed a methodology for a phenotype-based RNAi screening that identifies stem cell regulator genes associated with Ras-ERK/MAPK signaling within the context of a whole organism. Importantly, this phenotype-based RNAi screening can be applied for other stem cell-associated signaling pathways such as Wnt/β-catenin and Notch using the C. elegans.
Collapse
Affiliation(s)
- Myon-Hee Lee
- Division of Hematology/Oncology, Department of Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Dong Suk Yoon
- Division of Hematology/Oncology, Department of Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| |
Collapse
|
23
|
Maheshwari R, Pushpa K, Subramaniam K. A role for post-transcriptional control of endoplasmic reticulum dynamics and function in C. elegans germline stem cell maintenance. Development 2016; 143:3097-108. [PMID: 27510976 DOI: 10.1242/dev.134056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 07/21/2016] [Indexed: 01/02/2023]
Abstract
Membrane-bound receptors, which are crucial for mediating several key developmental signals, are synthesized on endoplasmic reticulum (ER). The functional integrity of ER must therefore be important for the regulation of at least some developmental programs. However, the developmental control of ER function is not well understood. Here, we identify the C. elegans protein FARL-11, an ortholog of the mammalian STRIPAK complex component STRIP1/2 (FAM40A/B), as an ER protein. In the C. elegans embryo, we find that FARL-11 is essential for the cell cycle-dependent morphological changes of ER and for embryonic viability. In the germline, FARL-11 is required for normal ER morphology and for membrane localization of the GLP-1/Notch receptor involved in germline stem cell (GSC) maintenance. Furthermore, we provide evidence that PUF-8, a key translational regulator in the germline, promotes the translation of farl-11 mRNA. These findings reveal that ER form and function in the C. elegans germline are post-transcriptionally regulated and essential for the niche-GSC signaling mediated by GLP-1.
Collapse
Affiliation(s)
- Richa Maheshwari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Kumari Pushpa
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Kuppuswamy Subramaniam
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India Department of Biotechnology, Indian Institute of Technology - Madras, Chennai 600036, India
| |
Collapse
|
24
|
PUF-8 Functions Redundantly with GLD-1 to Promote the Meiotic Progression of Spermatocytes in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2015; 5:1675-84. [PMID: 26068572 PMCID: PMC4528324 DOI: 10.1534/g3.115.019521] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Successful meiotic progression of germ cells is crucial for gametogenesis. Defects in this process affect proper genetic transmission and sometimes lead to tumor formation in the germline. In Caenorhabditis elegans, the RNA-binding protein GLD-1 is essential for the meiotic development of oocytes. However, its role during spermatogenesis has not been understood. Here, we show that GLD-1 functions redundantly with the PUF family protein PUF-8 to ensure proper meiotic development of spermatocytes. When grown at 20°-the standard laboratory temperature for C. elegans growth-primary spermatocytes in both gld-1 and puf-8 single-mutant males and hermaphrodites complete the meiotic divisions normally. By contrast, some of the gld-1; puf-8 double-mutant spermatocytes exit meiosis and form germ cell tumors in both sexes. During larval development, gld-1; puf-8 double-mutant germ cells begin to express the meiotic marker HIM-3, lose P granules, and form the sperm-specific membranous organelle, which are characteristics of developing spermatocytes. However, some of these cells quickly lose HIM-3 and form germ cell tumors that lack membranous organelle but contain P granules. Mutations that block meiotic progression at late pachytene or diakinetic stage fail to arrest the tumorigenesis, suggesting that the gld-1; puf-8 double-mutant spermatocytes exit meiosis prior to the completion of pachytene. Together, results presented here uncover a novel function for gld-1 in the meiotic development of spermatocytes in both hermaphrodites and males.
Collapse
|
25
|
Sorokin EP, Gasch AP, Kimble J. Competence for chemical reprogramming of sexual fate correlates with an intersexual molecular signature in Caenorhabditis elegans. Genetics 2014; 198:561-75. [PMID: 25146970 PMCID: PMC4196613 DOI: 10.1534/genetics.114.169409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/10/2014] [Indexed: 01/24/2023] Open
Abstract
In multicellular organisms, genetic programs guide cells to adopt cell fates as tissues are formed during development, maintained in adults, and repaired after injury. Here we explore how a small molecule in the environment can switch a genetic program from one fate to another. Wild-type Caenorhabditis elegans XX adult hermaphrodites make oocytes continuously, but certain mutant XX adults make sperm instead in an otherwise hermaphrodite soma. Thus, puf-8; lip-1 XX adults make only sperm, but they can be switched from sperm to oocyte production by treatment with a small-molecule MEK inhibitor. To ask whether this chemical reprogramming is common, we tested six XX sperm-only mutants, but found only one other capable of cell fate switching, fbf-1; lip-1. Therefore, reprogramming competence relies on genotype, with only certain mutants capable of responding to the MEK inhibitor with a cell fate change. To gain insight into the molecular basis of competence for chemical reprogramming, we compared polyadenylated transcriptomes of competent and noncompetent XX sperm-only mutants in the absence of the MEK inhibitor and hence in the absence of cell fate reprogramming. Despite their cellular production of sperm, competent mutants were enriched for oogenic messenger RNAs relative to mutants lacking competence for chemical reprogramming. In addition, competent mutants expressed the oocyte-specific protein RME-2, whereas those lacking competence did not. Therefore, mutants competent for reprogramming possess an intersexual molecular profile at both RNA and protein levels. We suggest that this intersexual molecular signature is diagnostic of an intermediate network state that poises the germline tissue for changing its cellular fate in response to environmental cues.
Collapse
Affiliation(s)
- Elena P Sorokin
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706
| | - Audrey P Gasch
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Judith Kimble
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706 Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 Howard Hughes Medical Institute, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
26
|
Jiang J, Lau AC, Csankovszki G. Pluripotent cells will not dosage compensate. WORM 2014; 3:e29051. [PMID: 25254152 DOI: 10.4161/worm.29051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/17/2014] [Accepted: 04/28/2014] [Indexed: 11/19/2022]
Abstract
Dosage compensation is the mechanism that balances gene expression levels between males and females as well as between the X chromosome and autosomes. In mammals, loss of pluripotency and differentiation are closely linked with the onset of dosage compensation. Pluripotency factors negatively regulate Xist (the non-coding RNA that triggers X chromosome inactivation) and positively regulate Tsix, a repressor of Xist, to inhibit dosage compensation. In addition, X chromosome dose also regulates exit from the pluripotent state. A double dose of X chromosomes in undifferentiated female cells inhibits the MAPK and Gsk3 signaling pathways and activates the Akt pathway, thereby blocking differentiation. Here we review our recent report, which showed that the onset of dosage compensation is also linked to the loss of pluripotency in C. elegans. We discuss these findings in light of what is known about pluripotency and differentiation in this organism.
Collapse
Affiliation(s)
- Jianhao Jiang
- Department of Molecular, Cellular and Developmental Biology; University of Michigan; Ann Arbor, MI USA
| | - Alyssa C Lau
- Department of Molecular, Cellular and Developmental Biology; University of Michigan; Ann Arbor, MI USA
| | - Györgyi Csankovszki
- Department of Molecular, Cellular and Developmental Biology; University of Michigan; Ann Arbor, MI USA
| |
Collapse
|
27
|
Datla US, Scovill NC, Brokamp AJ, Kim E, Asch AS, Lee MH. Role of PUF-8/PUF protein in stem cell control, sperm-oocyte decision and cell fate reprogramming. J Cell Physiol 2014; 229:1306-11. [PMID: 24638209 DOI: 10.1002/jcp.24618] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/14/2014] [Indexed: 01/18/2023]
Abstract
Pumilio and FBF (PUF) proteins are conserved stem cell regulators that maintain germline stem cells (GSCs) in worms and flies. Moreover, they are also present in vertebrate stem cells. The nematode Caenorhabditis elegans has multiple PUF proteins with specialized roles. Among them, PUF-8 protein controls multiple cellular processes, including proliferation, differentiation, sperm-oocyte decision, and cell fate reprogramming, depending on the genetic context in the C. elegans germline. In this review, we describe the possible mechanisms of how PUF-8 protein systematically controls multiple cellular processes in the C. elegans germline. Since PUF proteins are evolutionarily conserved, we suggest that a similar mechanism may be involved in controlling stem cell regulation and differentiation in other organisms, including humans.
Collapse
Affiliation(s)
- Udaya Sree Datla
- Program in Biomedical Sciences, Brody School of Medicine, East Carolina University, Greenville, North Carolina; Department of Oncology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | | | | | | | | | | |
Collapse
|
28
|
Kobet RA, Pan X, Zhang B, Pak SC, Asch AS, Lee MH. Caenorhabditis elegans: A Model System for Anti-Cancer Drug Discovery and Therapeutic Target Identification. Biomol Ther (Seoul) 2014; 22:371-83. [PMID: 25414766 PMCID: PMC4201220 DOI: 10.4062/biomolther.2014.084] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 01/27/2023] Open
Abstract
The nematode Caenorhabditis elegans (C. elegans) offers a unique opportunity for biological and basic medical researches due to its genetic tractability and well-defined developmental lineage. It also provides an exceptional model for genetic, molecular, and cellular analysis of human disease-related genes. Recently, C. elegans has been used as an ideal model for the identification and functional analysis of drugs (or small-molecules) in vivo. In this review, we describe conserved oncogenic signaling pathways (Wnt, Notch, and Ras) and their potential roles in the development of cancer stem cells. During C. elegans germline development, these signaling pathways regulate multiple cellular processes such as germline stem cell niche specification, germline stem cell maintenance, and germ cell fate specification. Therefore, the aberrant regulations of these signaling pathways can cause either loss of germline stem cells or overproliferation of a specific cell type, resulting in sterility. This sterility phenotype allows us to identify drugs that can modulate the oncogenic signaling pathways directly or indirectly through a high-throughput screening. Current in vivo or in vitro screening methods are largely focused on the specific core signaling components. However, this phenotype-based screening will identify drugs that possibly target upstream or downstream of core signaling pathways as well as exclude toxic effects. Although phenotype-based drug screening is ideal, the identification of drug targets is a major challenge. We here introduce a new technique, called Drug Affinity Responsive Target Stability (DARTS). This innovative method is able to identify the target of the identified drug. Importantly, signaling pathways and their regulators in C. elegans are highly conserved in most vertebrates, including humans. Therefore, C. elegans will provide a great opportunity to identify therapeutic drugs and their targets, as well as to understand mechanisms underlying the formation of cancer.
Collapse
Affiliation(s)
- Robert A Kobet
- Department of Medicine, Department of Oncology, Division of Hematology/Oncology, Brody School of Medicine, East Carolina University, Greenville, NC 27834
| | - Xiaoping Pan
- Department of Biology, East Carolina University, Greenville, NC 27858
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858
| | - Stephen C Pak
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224
| | - Adam S Asch
- Department of Medicine, Department of Oncology, Division of Hematology/Oncology, Brody School of Medicine, East Carolina University, Greenville, NC 27834 ; Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 ; Current address: Department of Medicine, Division of Hematology/Oncology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Myon-Hee Lee
- Department of Medicine, Department of Oncology, Division of Hematology/Oncology, Brody School of Medicine, East Carolina University, Greenville, NC 27834 ; Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
29
|
Benson JA, Cummings EE, O'Reilly LP, Lee MH, Pak SC. A high-content assay for identifying small molecules that reprogram C. elegans germ cell fate. Methods 2014; 68:529-35. [PMID: 24990146 DOI: 10.1016/j.ymeth.2014.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/23/2014] [Accepted: 05/24/2014] [Indexed: 10/25/2022] Open
Abstract
Recent breakthrough discoveries have shown that committed cell fates can be reprogrammed by genetic, chemical and environmental manipulations. The germline of the nematode Caenorhabditis elegans provides a tractable system for studying cell fate reprogramming within the context of a whole organism. To explore the possibility of using C. elegans in high-throughput screens (HTS), we developed a high-throughput workflow for testing compounds that modulate cell fate reprogramming. We utilized puf-8; lip-1 mutants that have enhanced MPK-1 (an ERK homolog)/MAP kinase (MAPK) signaling. Wild-type C. elegans hermaphrodites produce both sperm and oocytes, and are thus self-fertile. However, puf-8; lip-1 mutants produce only sperm and are sterile. Notably, compounds that pharmacologically down-regulate MPK-1 (an ERK homolog)/MAP kinase (MAPK) signaling are able to reprogram germ cell fate and restore fertility to these animals. puf-8; lip-1 mutants provide numerous challenges for HTS. First, they are sterile as homozygotes and must be maintained as heterozygotes using a balancer chromosome. Second, homozygous animals for experimentation must be physically separated from the rest of the population. Third, a high quality, high-content assay has not been developed to measure compound effects on germ cell fate reprogramming. Here we describe a semi-automated high-throughput workflow that enables effective sorting of homozygous puf-8; lip-1 mutants into 384-well plates using the COPAS™ BIOSORT. In addition, we have developed an image-based assay for rapidly measuring germ cell reprogramming by measuring the number of viable progeny in wells. The methods presented in this report enable the use of puf-8; lip-1 mutants in HTS campaigns for chemical modulators of germ cell reprogramming within the context of a whole organism.
Collapse
Affiliation(s)
- Joshua A Benson
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Erin E Cummings
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Linda P O'Reilly
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Myon-Hee Lee
- Department of Oncology, Department of Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Stephen C Pak
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| |
Collapse
|
30
|
Pushpa K, Kumar GA, Subramaniam K. PUF-8 and TCER-1 are essential for normal levels of multiple mRNAs in the C. elegans germline. Development 2013; 140:1312-20. [PMID: 23444359 PMCID: PMC3585663 DOI: 10.1242/dev.087833] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PUF family proteins are well-conserved regulators of cell proliferation in different developmental processes. They regulate target mRNAs by promoting degradation or by influencing translation through interaction with the translation initiation machinery. Here we show that Caenorhabditis elegans PUF-8 functions redundantly with the nuclear protein TCER-1 in the post-transcriptional maintenance of at least six germline mRNAs. The levels of spliced mRNAs in the puf-8(-) tcer-1(-) double mutant are only 10-30% of the wild type, whereas the unspliced forms increase by ∼2- to 3-fold compared with the wild type. These two proteins colocalise at the inner nuclear periphery, and their absence leads to reduced germ cell proliferation and to sterility. A yeast two-hybrid screen of 31 components of the nuclear pore complex and mRNA processing machineries identified seven proteins involved in mRNA export as potential partners of PUF-8. One of these, the nuclear cap-binding protein NCBP-2, colocalises with PUF-8 in the nucleus. A 50 amino acid N-terminal domain of PUF-8 is essential for interaction with NCBP-2 and for PUF-8 to function redundantly with TCER-1. These results reveal two important unexpected aspects of PUF proteins: that, in addition to the C-terminal PUF domain, the N-terminal domain is crucial for PUF function, and that PUF proteins have a novel role in mRNA maintenance. We propose that PUF proteins, in addition to their known cytoplasmic roles, participate in nuclear processing and/or export of mRNAs.
Collapse
Affiliation(s)
- Kumari Pushpa
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | | | | |
Collapse
|