1
|
Tsinopoulou VR, Bacopoulou F, Fidani S, Christoforidis A. Genetic determinants of age at menarche: does the LIN28B gene play a role? A narrative review. Hormones (Athens) 2025; 24:167-177. [PMID: 39227549 DOI: 10.1007/s42000-024-00594-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024]
Abstract
Menarche, the first menstrual period marking the onset of female reproduction, is a milestone of female puberty. The timing of menarche determines the timing of later phases of pubertal maturation in girls and has major implications for health later in life, including behavioral and psychosocial disorders during adolescence and fertility problems and increased risk for certain diseases in adulthood. Over the last few decades, a continuous decline in age at menarche has been noted, with environmental factors contributing to this change in the timing of menarche. However, a genetic component of age at menarche and pubertal onset has been strongly suggested by studies in families and twins wherein up to approximately 80% of the variance in puberty onset can be explained by heritability. Gene association studies have revealed several genetic loci involved in age at menarche, among which LIN28B has emerged as a key regulator of female growth and puberty. LIN28B, a human homolog of Lin28 of C. elegans, is a known RNA-binding protein that regulates let-7 microRNA biogenesis. Genome-wide association studies have identified the association of polymorphisms in the LIN28B gene with age at menarche in several population cohorts worldwide. In this paper, we review the genetic factors contributing to age of menarche, with particular focus on the identified polymorphisms in LIN28B gene.
Collapse
Affiliation(s)
- Vasiliki Rengina Tsinopoulou
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University General Hospital AHEPA, Stilponos Kyriakidi 1, Thessaloniki, 54636, Greece.
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - Styliani Fidani
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University General Hospital AHEPA, Stilponos Kyriakidi 1, Thessaloniki, 54636, Greece
- Laboratory of Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Christoforidis
- 1st Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Ippokratio General Hospital, Thessaloniki, Greece
| |
Collapse
|
2
|
Suzuki K, Kwon SJ, Saito D, Atsuta Y. LIN28 is essential for the maintenance of chicken primordial germ cells. Cells Dev 2023; 176:203874. [PMID: 37453484 DOI: 10.1016/j.cdev.2023.203874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Understanding the mechanism of stem cell maintenance underlies the establishment of long-term and mass culture methods for stem cells that are fundamental for clinical and agricultural applications. In this study, we use chicken primordial germ cell (PGC) as a model to elucidate the molecular mechanisms underlying stem cell maintenance. The PGC is a useful experimental model because it is readily gene-manipulatable and easy to test gene function in vivo using transplantation. Previous studies to establish a long-term culture system have shown that secreted factors such as FGF2 are required to maintain the self-renewal capability of PGC. On the other hand, we know little about intracellular regulators responsible for PGC maintenance. Among representative stem cell factors, we focus on RNA-binding factors LIN28A and LIN28B as possible central regulators for the gene regulatory network essential to PGC maintenance. By taking advantage of the CRISPR/Cas9-mediated gene editing and a clonal culture technique, we find that both LIN28A and LIN28B regulate the proliferation of PGC in vitro. We further showed that colonization efficiency of grafted PGC at the genital ridges, rudiments for the gonads, of chicken embryos were significantly decreased by knockout (KO) of LIN28A or LIN28B. Of note, overexpression of human LIN28 in LIN28-KO PGC was sufficient to restore the low colonization rates, suggesting that LIN28 plays a key role in PGC colonization at the gonads. Transcriptomic analyses of LIN28-KO PGC reveal that several genes related to mesenchymal traits are upregulated, including EGR1, a transcription factor that promotes the differentiation of mesodermal tissues. Finally, we show that the forced expression of human EGR1 deteriorates replication activity and colonization efficiency of PGCs. Taken together, this work demonstrates that LIN28 maintains self-renewal of PGC by suppressing the expression of differentiation genes including EGR1.
Collapse
Affiliation(s)
- Katsuya Suzuki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Seung June Kwon
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Daisuke Saito
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Yuji Atsuta
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
3
|
Cowell LM, King M, West H, Broadsmith M, Genever P, Pownall ME, Isaacs HV. Regulation of gene expression downstream of a novel Fgf/Erk pathway during Xenopus development. PLoS One 2023; 18:e0286040. [PMID: 37856433 PMCID: PMC10586617 DOI: 10.1371/journal.pone.0286040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/08/2023] [Indexed: 10/21/2023] Open
Abstract
Activation of Map kinase/Erk signalling downstream of fibroblast growth factor (Fgf) tyrosine kinase receptors regulates gene expression required for mesoderm induction and patterning of the anteroposterior axis during Xenopus development. We have proposed that a subset of Fgf target genes are activated in the embyo in response to inhibition of a transcriptional repressor. Here we investigate the hypothesis that Cic (Capicua), which was originally identified as a transcriptional repressor negatively regulated by receptor tyrosine kinase/Erk signalling in Drosophila, is involved in regulating Fgf target gene expression in Xenopus. We characterise Xenopus Cic and show that it is widely expressed in the embryo. Fgf overexpression or ectodermal wounding, both of which potently activate Erk, reduce Cic protein levels in embryonic cells. In keeping with our hypothesis, we show that Cic knockdown and Fgf overexpression have overlapping effects on embryo development and gene expression. Transcriptomic analysis identifies a cohort of genes that are up-regulated by Fgf overexpression and Cic knockdown. We investigate two of these genes as putative targets of the proposed Fgf/Erk/Cic axis: fos and rasl11b, which encode a leucine zipper transcription factor and a ras family GTPase, respectively. We identify Cic consensus binding sites in a highly conserved region of intron 1 in the fos gene and Cic sites in the upstream regions of several other Fgf/Cic co-regulated genes, including rasl11b. We show that expression of fos and rasl11b is blocked in the early mesoderm when Fgf and Erk signalling is inhibited. In addition, we show that fos and rasl11b expression is associated with the Fgf independent activation of Erk at the site of ectodermal wounding. Our data support a role for a Fgf/Erk/Cic axis in regulating a subset of Fgf target genes during gastrulation and is suggestive that Erk signalling is involved in regulating Cic target genes at the site of ectodermal wounding.
Collapse
Affiliation(s)
- Laura M. Cowell
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Michael King
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Helena West
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Matthew Broadsmith
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Paul Genever
- Department of Biology, University of York, Heslington, York, United Kingdom
| | | | - Harry V. Isaacs
- Department of Biology, University of York, Heslington, York, United Kingdom
| |
Collapse
|
4
|
Xu Y, Zhang T, Zhou Q, Hu M, Qi Y, Xue Y, Nie Y, Wang L, Bao Z, Shi W. A single-cell transcriptome atlas profiles early organogenesis in human embryos. Nat Cell Biol 2023; 25:604-615. [PMID: 36928764 DOI: 10.1038/s41556-023-01108-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/16/2023] [Indexed: 03/18/2023]
Abstract
The early window of human embryogenesis is largely a black box for developmental biologists. Here we probed the cellular diversity of 4-6 week human embryos when essentially all organs are just laid out. On the basis of over 180,000 single-cell transcriptomes, we generated a comprehensive atlas of 313 clusters in 18 developmental systems, which were annotated with a collection of ontology and markers from 157 publications. Together with spatial transcriptome on embryonic sections, we characterized the molecule and spatial architecture of previously unappreciated cell types. Combined with data from other vertebrates, the rich information shed light on spatial patterning of axes, systemic temporal regulation of developmental progression and potential human-specific regulation. Our study provides a compendium of early progenitor cells of human organs, which can serve as the root of lineage analysis in organogenesis.
Collapse
Affiliation(s)
- Yichi Xu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Tengjiao Zhang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qin Zhou
- Traditional Chinese Medicine Hospital of Kunshan, Suzhou, China
| | - Mengzhu Hu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yao Qi
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yifang Xue
- Traditional Chinese Medicine Hospital of Kunshan, Suzhou, China
| | - Yuxiao Nie
- School of Pharmacy, Fudan University, Shanghai, China
| | - Lihui Wang
- Traditional Chinese Medicine Hospital of Kunshan, Suzhou, China
| | - Zhirong Bao
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| | - Weiyang Shi
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
5
|
Guo L, Li L. LIN28A alleviates inflammation, oxidative stress, osteogenic differentiation and mineralization in lipopolysaccharide (LPS)‑treated human periodontal ligament stem cells. Exp Ther Med 2022; 23:411. [PMID: 35601075 PMCID: PMC9117959 DOI: 10.3892/etm.2022.11338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/27/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Ling Guo
- Stomatology Clinic, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, Guangdong 514000, P.R. China
| | - Liang Li
- Department of Stomatology, Xiangfang General Hospital, Heilongjiang Provincial Hospital, Harbin Institute of Technology, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
6
|
Salamon I, Rasin MR. Evolution of the Neocortex Through RNA-Binding Proteins and Post-transcriptional Regulation. Front Neurosci 2022; 15:803107. [PMID: 35082597 PMCID: PMC8784817 DOI: 10.3389/fnins.2021.803107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
The human neocortex is undoubtedly considered a supreme accomplishment in mammalian evolution. It features a prenatally established six-layered structure which remains plastic to the myriad of changes throughout an organism’s lifetime. A fundamental feature of neocortical evolution and development is the abundance and diversity of the progenitor cell population and their neuronal and glial progeny. These evolutionary upgrades are partially enabled due to the progenitors’ higher proliferative capacity, compartmentalization of proliferative regions, and specification of neuronal temporal identities. The driving force of these processes may be explained by temporal molecular patterning, by which progenitors have intrinsic capacity to change their competence as neocortical neurogenesis proceeds. Thus, neurogenesis can be conceptualized along two timescales of progenitors’ capacity to (1) self-renew or differentiate into basal progenitors (BPs) or neurons or (2) specify their fate into distinct neuronal and glial subtypes which participate in the formation of six-layers. Neocortical development then proceeds through sequential phases of proliferation, differentiation, neuronal migration, and maturation. Temporal molecular patterning, therefore, relies on the precise regulation of spatiotemporal gene expression. An extensive transcriptional regulatory network is accompanied by post-transcriptional regulation that is frequently mediated by the regulatory interplay between RNA-binding proteins (RBPs). RBPs exhibit important roles in every step of mRNA life cycle in any system, from splicing, polyadenylation, editing, transport, stability, localization, to translation (protein synthesis). Here, we underscore the importance of RBP functions at multiple time-restricted steps of early neurogenesis, starting from the cell fate transition of transcriptionally primed cortical progenitors. A particular emphasis will be placed on RBPs with mostly conserved but also divergent evolutionary functions in neural progenitors across different species. RBPs, when considered in the context of the fascinating process of neocortical development, deserve to be main protagonists in the story of the evolution and development of the neocortex.
Collapse
|
7
|
Study on the Function and Mechanism of Lin28B in the Formation of Chicken Primordial Germ Cells. Animals (Basel) 2020; 11:ani11010043. [PMID: 33379329 PMCID: PMC7823903 DOI: 10.3390/ani11010043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 12/24/2022] Open
Abstract
Lin28A and Lin28B are two homologues of the same family of RNA binding proteins (RBPs). The function and molecular mechanism of Lin28A in the formation of primordial germ cells (PGCs) are very clear, but the related research on Lin28B is rarely reported. Here, we found that the overexpression of Lin28B can promote the formation of PGC in vivo. Furthermore, the overexpression of Lin28B also resulted in the inhibition of totipotency gene expression and upregulated the PGCs marker genes, and a significant increase in the number of PGCs in genital ridge, as detected by Periodic Acid-Schiff(PAS) staining. However, the inhibited Lin28B expression showed completely opposite results, which were confirmed on the PGC induction model in vitro. Mechanistically, we found that the overexpression of Lin28B can inhibit the maturation of let-7a-3p, and the results of high-throughput sequencing indicated that let-7a-3p was a negative regulator of the formation process of PGCs. Therefore, we conclude that our results determine that Lin28B participates in the formation of PGCs through let-7a-3p, which set a theoretical foundation for improving the function and mechanism of Lin28 family in the formation of PGCs.
Collapse
|
8
|
Varela-Rodríguez H, Abella-Quintana DG, Espinal-Centeno A, Varela-Rodríguez L, Gomez-Zepeda D, Caballero-Pérez J, García-Medel PL, Brieba LG, Ordaz-Ortiz JJ, Cruz-Ramirez A. Functional Characterization of the Lin28/let-7 Circuit During Forelimb Regeneration in Ambystoma mexicanum and Its Influence on Metabolic Reprogramming. Front Cell Dev Biol 2020; 8:562940. [PMID: 33330447 PMCID: PMC7710800 DOI: 10.3389/fcell.2020.562940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022] Open
Abstract
The axolotl (Ambystoma mexicanum) is a caudate amphibian, which has an extraordinary ability to restore a wide variety of damaged structures by a process denominated epimorphosis. While the origin and potentiality of progenitor cells that take part during epimorphic regeneration are known to some extent, the metabolic changes experienced and their associated implications, remain unexplored. However, a circuit with a potential role as a modulator of cellular metabolism along regeneration is that formed by Lin28/let-7. In this study, we report two Lin28 paralogs and eight mature let-7 microRNAs encoded in the axolotl genome. Particularly, in the proliferative blastema stage amxLin28B is more abundant in the nuclei of blastemal cells, while the microRNAs amx-let-7c and amx-let-7a are most downregulated. Functional inhibition of Lin28 factors increase the levels of most mature let-7 microRNAs, consistent with an increment of intermediary metabolites of the Krebs cycle, and phenotypic alterations in the outgrowth of the blastema. In summary, we describe the primary components of the Lin28/let-7 circuit and their function during axolotl regeneration, acting upstream of metabolic reprogramming events.
Collapse
Affiliation(s)
- Hugo Varela-Rodríguez
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del IPN, Guanajuato, Mexico
| | - Diana G Abella-Quintana
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del IPN, Guanajuato, Mexico
| | - Annie Espinal-Centeno
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del IPN, Guanajuato, Mexico
| | | | - David Gomez-Zepeda
- Mass Spectrometry and Metabolomics Laboratory, Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del IPN, Guanajuato, Mexico
| | - Juan Caballero-Pérez
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del IPN, Guanajuato, Mexico
| | - Paola L García-Medel
- Structural Biochemistry Group, Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del IPN, Guanajuato, Mexico
| | - Luis G Brieba
- Structural Biochemistry Group, Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del IPN, Guanajuato, Mexico
| | - José J Ordaz-Ortiz
- Mass Spectrometry and Metabolomics Laboratory, Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del IPN, Guanajuato, Mexico
| | - Alfredo Cruz-Ramirez
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del IPN, Guanajuato, Mexico
| |
Collapse
|
9
|
Mills WT, Nassar NN, Ravindra D, Li X, Meffert MK. Multi-Level Regulatory Interactions between NF-κB and the Pluripotency Factor Lin28. Cells 2020; 9:E2710. [PMID: 33348917 PMCID: PMC7767241 DOI: 10.3390/cells9122710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/22/2022] Open
Abstract
An appreciation for the complex interactions between the NF-κB transcription factor and the Lin28 RNA binding protein/let-7 microRNA pathways has grown substantially over the past decade. Both the NF-κB and Lin28/let-7 pathways are master regulators impacting cell survival, growth and proliferation, and an understanding of how interfaces between these pathways participate in governing pluripotency, progenitor differentiation, and neuroplastic responses remains an emerging area of research. In this review, we provide a concise summary of the respective pathways and focus on the function of signaling interactions at both the transcriptional and post-transcriptional levels. Regulatory loops capable of providing both reinforcing and extinguishing feedback have been described. We highlight convergent findings in disparate biological systems and indicate future directions for investigation.
Collapse
Affiliation(s)
- William T. Mills
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (W.T.M.IV); (N.N.N.); (D.R.); (X.L.)
| | - Noor N. Nassar
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (W.T.M.IV); (N.N.N.); (D.R.); (X.L.)
| | - Deepa Ravindra
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (W.T.M.IV); (N.N.N.); (D.R.); (X.L.)
| | - Xinbei Li
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (W.T.M.IV); (N.N.N.); (D.R.); (X.L.)
| | - Mollie K. Meffert
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (W.T.M.IV); (N.N.N.); (D.R.); (X.L.)
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Drew K, Lee C, Cox RM, Dang V, Devitt CC, McWhite CD, Papoulas O, Huizar RL, Marcotte EM, Wallingford JB. A systematic, label-free method for identifying RNA-associated proteins in vivo provides insights into vertebrate ciliary beating machinery. Dev Biol 2020; 467:108-117. [PMID: 32898505 DOI: 10.1016/j.ydbio.2020.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/18/2020] [Indexed: 01/06/2023]
Abstract
Cell-type specific RNA-associated proteins are essential for development and homeostasis in animals. Despite a massive recent effort to systematically identify RNA-associated proteins, we currently have few comprehensive rosters of cell-type specific RNA-associated proteins in vertebrate tissues. Here, we demonstrate the feasibility of determining the RNA-associated proteome of a defined vertebrate embryonic tissue using DIF-FRAC, a systematic and universal (i.e., label-free) method. Application of DIF-FRAC to cultured tissue explants of Xenopus mucociliary epithelium identified dozens of known RNA-associated proteins as expected, but also several novel RNA-associated proteins, including proteins related to assembly of the mitotic spindle and regulation of ciliary beating. In particular, we show that the inner dynein arm tether Cfap44 is an RNA-associated protein that localizes not only to axonemes, but also to liquid-like organelles in the cytoplasm called DynAPs. This result led us to discover that DynAPs are generally enriched for RNA. Together, these data provide a useful resource for a deeper understanding of mucociliary epithelia and demonstrate that DIF-FRAC will be broadly applicable for systematic identification of RNA-associated proteins from embryonic tissues.
Collapse
Affiliation(s)
- Kevin Drew
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Chanjae Lee
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Rachael M Cox
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Vy Dang
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Caitlin C Devitt
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Claire D McWhite
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Ophelia Papoulas
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Ryan L Huizar
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Edward M Marcotte
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA.
| | - John B Wallingford
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA.
| |
Collapse
|
11
|
Ishiuchi T, Ohishi H, Sato T, Kamimura S, Yorino M, Abe S, Suzuki A, Wakayama T, Suyama M, Sasaki H. Zfp281 Shapes the Transcriptome of Trophoblast Stem Cells and Is Essential for Placental Development. Cell Rep 2020; 27:1742-1754.e6. [PMID: 31067460 DOI: 10.1016/j.celrep.2019.04.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/13/2019] [Accepted: 04/03/2019] [Indexed: 11/26/2022] Open
Abstract
Placental development is a key event in mammalian reproduction and embryogenesis. However, the molecular basis underlying placental development is not fully understood. Here, we conduct a forward genetic screen to identify regulators for extraembryonic development and identify Zfp281 as a key factor. Zfp281 overexpression in mouse embryonic stem cells facilitates the induction of trophoblast stem-like cells. Zfp281 is preferentially expressed in the undifferentiated trophoblast stem cell population in an FGF-dependent manner, and disruption of Zfp281 in mice causes severe defects in early placental development. Consistently, Zfp281-depleted trophoblast stem cells exhibit defects in maintaining the transcriptome and differentiation capacity. Mechanistically, Zfp281 interacts with MLL or COMPASS subunits and occupies the promoters of its target genes. Importantly, ZNF281, the human ortholog of this factor, is required to stabilize the undifferentiated status of human trophoblast stem cells. Thus, we identify Zfp281 as a conserved factor for the maintenance of trophoblast stem cell plasticity.
Collapse
Affiliation(s)
- Takashi Ishiuchi
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.
| | - Hiroaki Ohishi
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Tetsuya Sato
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Satoshi Kamimura
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Masayoshi Yorino
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Shusaku Abe
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi Suzuki
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
12
|
Kempfle JS, Luu NNC, Petrillo M, Al-Asad R, Zhang A, Edge ASB. Lin28 reprograms inner ear glia to a neuronal fate. Stem Cells 2020; 38:890-903. [PMID: 32246510 PMCID: PMC10908373 DOI: 10.1002/stem.3181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 12/16/2022]
Abstract
Sensorineural hearing loss is irreversible and can be caused by loss of auditory neurons. Regeneration of neural cells from endogenous cells may offer a future tool to restore the auditory circuit and to enhance the performance of implantable hearing devices. Neurons and glial cells in the peripheral nervous system are closely related and originate from a common progenitor. Prior work in our lab indicated that in the early postnatal mouse inner ear, proteolipid protein 1 (Plp1) expressing glial cells could act as progenitor cells for neurons in vitro. Here, we used a transgenic mouse model to transiently overexpress Lin28, a neural stem cell regulator, in Plp1-positive glial cells. Lin28 promoted proliferation and conversion of auditory glial cells into neurons in vitro. To study the effects of Lin28 on endogenous glial cells after loss of auditory neurons in vivo, we produced a model of auditory neuropathy by selectively damaging auditory neurons with ouabain. After neural damage was confirmed by the auditory brainstem response, we briefly upregulated the Lin28 in Plp1-expressing inner ear glial cells. One month later, we analyzed the cochlea for neural marker expression by quantitative RT-PCR and immunohistochemistry. We found that transient Lin28 overexpression in Plp1-expressing glial cells induced expression of neural stem cell markers and subsequent conversion into neurons. This suggests the potential for inner ear glia to be converted into neurons as a regeneration therapy for neural replacement in auditory neuropathy.
Collapse
Affiliation(s)
- Judith S. Kempfle
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts
- University Department of Otolaryngology, Head and Neck Surgery, Tübingen, Germany
| | - Ngoc-Nhi C. Luu
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts
- University Department of Otolaryngology, Head and Neck Surgery, Zürich, Switzerland
| | - Marco Petrillo
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts
| | - Reef Al-Asad
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts
| | - Andrea Zhang
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts
| | - Albert S. B. Edge
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts
| |
Collapse
|
13
|
Sato T, Kataoka K, Ito Y, Yokoyama S, Inui M, Mori M, Takahashi S, Akita K, Takada S, Ueno-Kudoh H, Asahara H. Lin28a/let-7 pathway modulates the Hox code via Polycomb regulation during axial patterning in vertebrates. eLife 2020; 9:53608. [PMID: 32479258 PMCID: PMC7259951 DOI: 10.7554/elife.53608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 05/18/2020] [Indexed: 01/06/2023] Open
Abstract
The body plan along the anteroposterior axis and regional identities are specified by the spatiotemporal expression of Hox genes. Multistep controls are required for their unique expression patterns; however, the molecular mechanisms behind the tight control of Hox genes are not fully understood. In this study, we demonstrated that the Lin28a/let-7 pathway is critical for axial elongation. Lin28a–/– mice exhibited axial shortening with mild skeletal transformations of vertebrae, which were consistent with results in mice with tail bud-specific mutants of Lin28a. The accumulation of let-7 in Lin28a–/– mice resulted in the reduction of PRC1 occupancy at the Hox cluster loci by targeting Cbx2. Consistently, Lin28a loss in embryonic stem-like cells led to aberrant induction of posterior Hox genes, which was rescued by the knockdown of let-7. These results suggest that the Lin28/let-7 pathway is involved in the modulation of the ‘Hox code’ via Polycomb regulation during axial patterning.
Collapse
Affiliation(s)
- Tempei Sato
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kensuke Kataoka
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yoshiaki Ito
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Research Core, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigetoshi Yokoyama
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan.,Laboratory of Metabolism, National Institutes of Health, Bethesda, United States
| | - Masafumi Inui
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan.,Laboratory of Animal Regeneration Systemology, Meiji University, Kanagawa, Japan
| | - Masaki Mori
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Medical Chemistry, Shiga University of Medical Science, Shiga, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, University of Tsukuba, Ibaraki, Japan
| | - Keiichi Akita
- Department of Clinical Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroe Ueno-Kudoh
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan.,Reproduction Center, Yokohama City University, Yokohama, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
| |
Collapse
|
14
|
Nathan FM, Ohtake Y, Wang S, Jiang X, Sami A, Guo H, Zhou FQ, Li S. Upregulating Lin28a Promotes Axon Regeneration in Adult Mice with Optic Nerve and Spinal Cord Injury. Mol Ther 2020; 28:1902-1917. [PMID: 32353321 DOI: 10.1016/j.ymthe.2020.04.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/16/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
Severed CNS axons fail to regenerate in adult mammals and there are no effective regenerative strategies to treat patients with CNS injuries. Several genes, including phosphatase and tensin homolog (PTEN) and Krüppel-like factors, regulate intrinsic growth capacity of mature neurons. The Lin28 gene is essential for cell development and pluripotency in worms and mammals. In this study, we evaluated the role of Lin28a in regulating regenerative capacity of diverse populations of CNS neurons in adult mammals. Using a neuron-specific Thy1 promoter, we generated transgenic mice that overexpress Lin28a protein in multiple populations of projection neurons, including corticospinal tracts and retinal ganglion cells. We demonstrate that upregulation of Lin28a in transgenic mice induces significant long distance regeneration of both corticospinal axons and the optic nerve in adult mice. Importantly, overexpression of Lin28a by post-injury treatment with adeno-associated virus type 2 (AAV2) vector stimulates dramatic regeneration of descending spinal tracts and optic nerve axons after lesions. Upregulation of Lin28a also enhances activity of the Akt signaling pathway in mature CNS neurons. Therefore, Lin28a is critical for regulating growth capacity of multiple CNS neurons and may become an important molecular target for treating CNS injuries.
Collapse
Affiliation(s)
- Fatima M Nathan
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yosuke Ohtake
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Shuo Wang
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Xinpei Jiang
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Armin Sami
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Hua Guo
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Feng-Quan Zhou
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
15
|
Glanzner WG, Gutierrez K, Rissi VB, de Macedo MP, Lopez R, Currin L, Dicks N, Baldassarre H, Agellon LB, Bordignon V. Histone Lysine Demethylases KDM5B and KDM5C Modulate Genome Activation and Stability in Porcine Embryos. Front Cell Dev Biol 2020; 8:151. [PMID: 32211412 PMCID: PMC7076052 DOI: 10.3389/fcell.2020.00151] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/24/2020] [Indexed: 12/16/2022] Open
Abstract
The lysine demethylases KDM5B and KDM5C are highly, but transiently, expressed in porcine embryos around the genome activation stage. Attenuation of KDM5B and KDM5C mRNA hampered embryo development to the blastocyst stage in fertilized, parthenogenetically activated and nuclear transfer embryos. While KDM5B attenuation increased H3K4me2-3 levels on D3 embryos and H3K4me1-2-3 on D5 embryos, KDM5C attenuation increased H3K9me1 on D3 embryos, and H3K9me1 and H3K4me1 on D5 embryos. The relative mRNA abundance of EIF1AX and EIF2A on D3 embryos, and the proportion of D4 embryos presenting a fluorescent signal for uridine incorporation were severely reduced in both KDM5B- and KDM5C-attenuated compared to control embryos, which indicate a delay in the initiation of the embryo transcriptional activity. Moreover, KDM5B and KDM5C attenuation affected DNA damage response and increased DNA double-strand breaks (DSBs), and decreased development of UV-irradiated embryos. Findings from this study revealed that both KDM5B and KDM5C are important regulators of early development in porcine embryos as their attenuation altered H3K4 and H3K9 methylation patterns, perturbed embryo genome activation, and decreased DNA damage repair capacity.
Collapse
Affiliation(s)
- Werner Giehl Glanzner
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Karina Gutierrez
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Vitor Braga Rissi
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | | | - Rosalba Lopez
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Luke Currin
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Naomi Dicks
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Hernan Baldassarre
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Luis B Agellon
- School of Human Nutrition, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
16
|
West RC, McWhorter ES, Ali A, Goetzman LN, Russ JE, Gonzalez-Berrios CL, Anthony RV, Bouma GJ, Winger QA. HMGA2 is regulated by LIN28 and BRCA1 in human placental cells. Biol Reprod 2020; 100:227-238. [PMID: 30137214 DOI: 10.1093/biolre/ioy183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/16/2018] [Indexed: 12/24/2022] Open
Abstract
The chromatin associated transcription factor HMGA2 is a downstream target of let-7 miRNAs and binds to chromatin to regulate gene expression. Inhibition of let-7 miRNAs by RNA-binding proteins LIN28A and LIN28B is necessary during early embryogenesis to ensure stable expression of HMGA2. In addition to LIN28, HMGA2 is regulated by a BRCA1/ZNF350/CtIP repressor complex. In normal tissues, the BRCA1/ZNF350/CtIP complex binds to the HMGA2 promoter to prevent transcription. However, in many cancers the oncomiR miR-182 targets BRCA1, preventing BRCA1 translation and allowing for increased HMGA2. Little is known about the regulation of HMGA2 during early placental development; therefore, we hypothesized that both LIN28 and BRCA1 can regulate HMGA2 in placental cells. Using siRNA and CRISPR gene editing techniques, we found that knockdowns of both LIN28A and LIN28B increase HMGA2 levels in ACH-3P cells. These cells also demonstrated deficiencies in cell differentiation, seemingly differentiating solely towards the syncytiotrophoblast sublineage, secreting higher amounts of hCG, and displaying upregulated ERVW-1. Additionally, we found that a knockout of both LIN28A and LIN28B caused a significant increase of miR-182 and a decrease in BRCA1 allowing HMGA2 mRNA levels to increase and protein levels to remain the same. Using chromatin immunoprecipitation, we saw binding of the BRCA1 repressor complex to HMGA2. We also saw a decrease in binding to HMGA2's promoter in the LIN28A/B knockout cells. These findings suggest a novel role for BRCA1 during early human placental development.
Collapse
Affiliation(s)
- R C West
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - E S McWhorter
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - A Ali
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - L N Goetzman
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - J E Russ
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - C L Gonzalez-Berrios
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - R V Anthony
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - G J Bouma
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Q A Winger
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
17
|
Sang H, Wang D, Zhao S, Zhang J, Zhang Y, Xu J, Chen X, Nie Y, Zhang K, Zhang S, Wang Y, Wang N, Ma F, Shuai L, Li Z, Liu N. Dppa3 is critical for Lin28a-regulated ES cells naïve-primed state conversion. J Mol Cell Biol 2019; 11:474-488. [PMID: 30481289 PMCID: PMC6734493 DOI: 10.1093/jmcb/mjy069] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 09/26/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022] Open
Abstract
Lin28a is a pluripotent factor that promotes somatic cell reprogramming. Unlike other pluripotent factors, Lin28a expression is transient and accumulated in primed embryonic stem (ES) cells, but its exact function and mechanism in the conversion of ES cells from naïve to primed state remain unclear. Here, we present evidence for Dppa3, a protein originally known for its role in germ cell development, as a downstream target of Lin28a in naïve-primed conversion. Using rescue experiment, we demonstrate that Dppa3 functions predominantly downstream of Lin28a during naïve-primed state conversion. Higher level of Lin28a prevents let-7 maturation and results in Dnmt3a/b (target of let-7) upregulation, which in turn induces hypermethylation of the Dppa3 promoter. Dppa3 demarcates naïve versus primed pluripotency states. These results emphasize that Lin28a plays an important role during the naïve-primed state conversion of ES cells, which is partially mediated by a Lin28a-let-7-Dnmt3a/b-Dppa3 axis.
Collapse
Affiliation(s)
- Hui Sang
- School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Dan Wang
- School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Shuang Zhao
- School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jinxin Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Yan Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Jia Xu
- School of Medicine, Nankai University, Tianjin, China
| | - Xiaoniao Chen
- State Key Laboratory of Kidney Diseases, Beijing, China
| | - Yan Nie
- School of Medicine, Nankai University, Tianjin, China
| | - Kaiyue Zhang
- School of Medicine, Nankai University, Tianjin, China
| | | | - Yuebing Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Na Wang
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital CCK, Stockholm, Sweden
| | - Fengxia Ma
- State Key Lab of Experimental Hematology, Institute of Hematology &Hospital of Blood Diseases, Chinese Academy of Medical Sciences, Tianjin, China
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Na Liu
- School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
18
|
Lee M, Nguyen TMT, Kim K. In-depth study of lin-28 suggests selectively conserved let-7 independent mechanism in Drosophila. Gene 2019; 687:64-72. [DOI: 10.1016/j.gene.2018.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/03/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022]
|
19
|
Leinonen JT, Chen YC, Tukiainen T, Panula P, Widén E. Transient modification of lin28b expression - Permanent effects on zebrafish growth. Mol Cell Endocrinol 2019; 479:61-70. [PMID: 30196135 DOI: 10.1016/j.mce.2018.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 08/09/2018] [Accepted: 09/01/2018] [Indexed: 11/24/2022]
Abstract
Recent genome-wide association studies and mouse models have identified LIN28B as a gene affecting several pubertal timing-related traits and vertebrate growth. However, the exact biological mechanisms underlying the associations remain unknown. We have explored the mechanisms linking LIN28B with growth regulation by combining human gene expression data with functional models. Specifically, we show that 1) pubertal timing-associated genetic variation correlates with LIN28B expression in the pituitary and hypothalamus, 2) downregulating lin28b in zebrafish embryos associates with aberrant development of kiss2-neurons, and 3) increasing lin28b expression transiently by synthetic mRNA injections during embryogenesis results in sustained enhancement of zebrafish growth. Unexpectedly, the mRNA injections resulted in advanced sexual maturation of female fish, suggesting that lin28b may influence pubertal timing through multiple developmental mechanisms. Overall, these results provide novel insight into LIN28B function in vertebrate growth regulation, emphasizing the importance of the gene and related genetic pathways for embryonic and juvenile development.
Collapse
Affiliation(s)
- Jaakko T Leinonen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, P.O. Box 20 (Tukholmankatu 8), Helsinki, 00014, Finland
| | - Yu-Chia Chen
- Department of Anatomy and Neuroscience Center, University of Helsinki, P.O. Box 63, (Haartmaninkatu 8), Helsinki, 00014, Finland
| | - Taru Tukiainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, P.O. Box 20 (Tukholmankatu 8), Helsinki, 00014, Finland
| | - Pertti Panula
- Department of Anatomy and Neuroscience Center, University of Helsinki, P.O. Box 63, (Haartmaninkatu 8), Helsinki, 00014, Finland
| | - Elisabeth Widén
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, P.O. Box 20 (Tukholmankatu 8), Helsinki, 00014, Finland.
| |
Collapse
|
20
|
Romer-Seibert JS, Hartman NW, Moss EG. The RNA-binding protein LIN28 controls progenitor and neuronal cell fate during postnatal neurogenesis. FASEB J 2018; 33:3291-3303. [PMID: 30423261 PMCID: PMC6404560 DOI: 10.1096/fj.201801118r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The RNA-binding protein LIN28 is known to regulate cell fate, tissue growth, and pluripotency; however, a unified understanding of its role at the cellular level has not been achieved. Here, we address its developmental activity in mammalian postnatal neurogenesis. Constitutive expression of LIN28 in progenitor cells of the mouse subventricular zone (SVZ) caused several distinct effects: 1) the number of differentiated neurons in the olfactory bulb was dramatically reduced, whereas the relative abundance of 2 neuronal subtypes was significantly altered, 2) the population of proliferating neural progenitors in the SVZ was reduced, whereas the proportion of neuroblasts was increased, and 3) the number of astrocytes was reduced, occasionally causing them to appear early. Thus, LIN28 acts at a poststem cell/predifferentiation step, and its continuous expression caused a precocious phenotype unlike in other experimental systems. Furthermore, for the first time in a vertebrate system, we separate the majority of the biologic role of LIN28 from its known activity of blocking the microRNA let-7 by using a circular RNA sponge. We find that although LIN28 has a multifaceted role in the number and types of cells produced during postnatal neurogenesis, it appears that its action through let-7 is responsible for only a fraction of these effects.—Romer-Seibert, J. S., Hartman, N. W., Moss, E. G. The RNA-binding protein LIN28 controls progenitor and neuronal cell fate during postnatal neurogenesis.
Collapse
Affiliation(s)
- Jennifer S Romer-Seibert
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, New Jersey, USA; and
| | - Nathaniel W Hartman
- School of Natural Sciences and Mathematics, Stockton University, Galloway, New Jersey, USA
| | - Eric G Moss
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, New Jersey, USA; and
| |
Collapse
|
21
|
West RC, Bouma GJ, Winger QA. Shifting perspectives from "oncogenic" to oncofetal proteins; how these factors drive placental development. Reprod Biol Endocrinol 2018; 16:101. [PMID: 30340501 PMCID: PMC6195737 DOI: 10.1186/s12958-018-0421-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/09/2018] [Indexed: 12/23/2022] Open
Abstract
Early human placental development strongly resembles carcinogenesis in otherwise healthy tissues. The progenitor cells of the placenta, the cytotrophoblast, rapidly proliferate to produce a sufficient number of cells to form an organ that will contribute to fetal development as early as the first trimester. The cytotrophoblast cells begin to differentiate, some towards the fused cells of the syncytiotrophoblast and some towards the highly invasive and migratory extravillous trophoblast. Invasion and migration of extravillous trophoblast cells mimics tumor metastasis. One key difference between cancer progression and placental development is the tight regulation of these oncogenes and oncogenic processes. Often, tumor suppressors and oncogenes work synergistically to regulate cell proliferation, differentiation, and invasion in a restrained manner compared to the uncontrollable growth in cancer. This review will compare and contrast the mechanisms that drive both cancer progression and placental development. Specifically, this review will focus on the molecular mechanisms that promote cell proliferation, evasion of apoptosis, cell invasion, and angiogenesis.
Collapse
Affiliation(s)
- Rachel C. West
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, 10290 Ridgegate Circle, Lone Tree, Fort Collins, CO 80124 USA
| | - Gerrit J. Bouma
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, 10290 Ridgegate Circle, Lone Tree, Fort Collins, CO 80124 USA
| | - Quinton A. Winger
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, 10290 Ridgegate Circle, Lone Tree, Fort Collins, CO 80124 USA
| |
Collapse
|
22
|
Miyazawa H, Yamaguchi Y, Sugiura Y, Honda K, Kondo K, Matsuda F, Yamamoto T, Suematsu M, Miura M. Rewiring of embryonic glucose metabolism via suppression of PFK-1 and aldolase during mouse chorioallantoic branching. Development 2017; 144:63-73. [PMID: 28049690 PMCID: PMC5278628 DOI: 10.1242/dev.138545] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 11/19/2016] [Indexed: 12/31/2022]
Abstract
Adapting the energy metabolism state to changing bioenergetic demands is essential for mammalian development accompanying massive cell proliferation and cell differentiation. However, it remains unclear how developing embryos meet the changing bioenergetic demands during the chorioallantoic branching (CB) stage, when the maternal-fetal exchange of gases and nutrients is promoted. In this study, using metabolome analysis with mass-labeled glucose, we found that developing embryos redirected glucose carbon flow into the pentose phosphate pathway via suppression of the key glycolytic enzymes PFK-1 and aldolase during CB. Concomitantly, embryos exhibited an increase in lactate pool size and in the fractional contribution of glycolysis to lactate biosynthesis. Imaging mass spectrometry visualized lactate-rich tissues, such as the dorsal or posterior neural tube, somites and head mesenchyme. Furthermore, we found that the heterochronic gene Lin28a could act as a regulator of the metabolic changes observed during CB. Perturbation of glucose metabolism rewiring by suppressing Lin28a downregulation resulted in perinatal lethality. Thus, our work demonstrates that developing embryos rewire glucose metabolism following CB for normal development. Highlighted article: Metabolic remodelling during E8.5 to E10.5 in mouse redirects glucose carbon into the pentose phosphate pathway, a process partially regulated by Lin28a.
Collapse
Affiliation(s)
- Hidenobu Miyazawa
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshifumi Yamaguchi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan .,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Yuki Sugiura
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan.,Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kurara Honda
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Koki Kondo
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takehiro Yamamoto
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan .,Agency for Medical Research and Development-Core Research for Evolutional Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-1004, Japan
| |
Collapse
|
23
|
The heterochronic gene Lin28 regulates amphibian metamorphosis through disturbance of thyroid hormone function. Dev Biol 2017; 425:142-151. [DOI: 10.1016/j.ydbio.2017.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 11/21/2022]
|
24
|
Rosario R, Childs AJ, Anderson RA. RNA-binding proteins in human oogenesis: Balancing differentiation and self-renewal in the female fetal germline. Stem Cell Res 2017; 21:193-201. [PMID: 28434825 PMCID: PMC5446320 DOI: 10.1016/j.scr.2017.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/29/2017] [Accepted: 04/13/2017] [Indexed: 12/11/2022] Open
Abstract
Primordial germ cells undergo three significant processes on their path to becoming primary oocytes: the initiation of meiosis, the formation and breakdown of germ cell nests, and the assembly of single oocytes into primordial follicles. However at the onset of meiosis, the germ cell becomes transcriptionally silenced. Consequently translational control of pre-stored mRNAs plays a central role in coordinating gene expression throughout the remainder of oogenesis; RNA binding proteins are key to this regulation. In this review we examine the role of exemplars of such proteins, namely LIN28, DAZL, BOLL and FMRP, and highlight how their roles during germ cell development are critical to oogenesis and the establishment of the primordial follicle pool. RNA-binding proteins (RBPs) are key regulators of gene expression during oogenesis. RBPs LIN28, DAZL, BOLL and FMRP display stage-specific expression in fetal oocytes. LIN28 and DAZL may regulate self-renewal and progression into meiosis respectively. BOLL and FMRP may be involved in the later stages of prophase I and oocyte growth. RBPs may have critical roles in establishing the ovarian reserve during fetal life.
Collapse
Affiliation(s)
- Roseanne Rosario
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Andrew J Childs
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London NW1 0TU, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
25
|
Peters DT, Fung HKH, Levdikov VM, Irmscher T, Warrander FC, Greive SJ, Kovalevskiy O, Isaacs HV, Coles M, Antson AA. Human Lin28 Forms a High-Affinity 1:1 Complex with the 106~363 Cluster miRNA miR-363. Biochemistry 2016; 55:5021-7. [PMID: 27559824 PMCID: PMC5193468 DOI: 10.1021/acs.biochem.6b00682] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lin28A is a post-transcriptional regulator of gene expression that interacts with and negatively regulates the biogenesis of let-7 family miRNAs. Recent data suggested that Lin28A also binds the putative tumor suppressor miR-363, a member of the 106~363 cluster of miRNAs. Affinity for this miRNA and the stoichiometry of the protein-RNA complex are unknown. Characterization of human Lin28's interaction with RNA has been complicated by difficulties in producing stable RNA-free protein. We have engineered a maltose binding protein fusion with Lin28, which binds let-7 miRNA with a Kd of 54.1 ± 4.2 nM, in agreement with previous data on a murine homologue. We show that human Lin28A binds miR-363 with a 1:1 stoichiometry and with a similar, if not higher, affinity (Kd = 16.6 ± 1.9 nM). Further analysis suggests that the interaction of the N-terminal cold shock domain of Lin28A with RNA is salt-dependent, supporting a model in which the cold shock domain allows the protein to sample RNA substrates through transient electrostatic interactions.
Collapse
Affiliation(s)
- Daniel T Peters
- York Structural Biology Laboratory, Department of Chemistry, University of York , York YO10 5DD, United Kingdom
| | - Herman K H Fung
- York Structural Biology Laboratory, Department of Chemistry, University of York , York YO10 5DD, United Kingdom.,Department of Biology, University of York , York YO10 5DD, United Kingdom
| | - Vladimir M Levdikov
- York Structural Biology Laboratory, Department of Chemistry, University of York , York YO10 5DD, United Kingdom
| | - Tobias Irmscher
- York Structural Biology Laboratory, Department of Chemistry, University of York , York YO10 5DD, United Kingdom
| | - Fiona C Warrander
- Department of Biology, University of York , York YO10 5DD, United Kingdom
| | - Sandra J Greive
- York Structural Biology Laboratory, Department of Chemistry, University of York , York YO10 5DD, United Kingdom
| | - Oleg Kovalevskiy
- York Structural Biology Laboratory, Department of Chemistry, University of York , York YO10 5DD, United Kingdom
| | - Harry V Isaacs
- Department of Biology, University of York , York YO10 5DD, United Kingdom
| | - Mark Coles
- Department of Biology, University of York , York YO10 5DD, United Kingdom
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York , York YO10 5DD, United Kingdom
| |
Collapse
|
26
|
Faunes F, Larraín J. Conservation in the involvement of heterochronic genes and hormones during developmental transitions. Dev Biol 2016; 416:3-17. [DOI: 10.1016/j.ydbio.2016.06.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/03/2016] [Accepted: 06/09/2016] [Indexed: 01/26/2023]
|
27
|
LIN28 Regulates Stem Cell Metabolism and Conversion to Primed Pluripotency. Cell Stem Cell 2016; 19:66-80. [DOI: 10.1016/j.stem.2016.05.009] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/11/2016] [Accepted: 05/12/2016] [Indexed: 01/04/2023]
|
28
|
McDaniel K, Hall C, Sato K, Lairmore T, Marzioni M, Glaser S, Meng F, Alpini G. Lin28 and let-7: roles and regulation in liver diseases. Am J Physiol Gastrointest Liver Physiol 2016; 310:G757-65. [PMID: 27012771 PMCID: PMC4888551 DOI: 10.1152/ajpgi.00080.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/16/2016] [Indexed: 01/31/2023]
Abstract
The diagnosis and treatment of liver disease remain a major health concern worldwide because of the diverse etiologies of this disease. For this reason, new therapeutic targets are greatly needed to halt the progression of this damaging disease. Upon initiation of liver injury by viral infection, autoimmune disease or toxin, and/or hepatitis, chronic disease may develop, which can progress to cirrhosis, hepatocellular carcinoma (HCC), cholangiocarcinoma, liver failure, or death. The Lin28/lethal-7 (let-7) molecular switch has emerged as a central regulator of multiorgan injuries and cancer development. Lin28 is a stem cell marker vital to initiation or maintenance of a stem cell phenotype. Lin28 has not been extensively studied in the liver, despite its ability to induce tissue regeneration via reprogramming of oxidative enzymes in other tissues and its involvement with numerous upstream regulators and downstream targets in liver disease. Theoretically, overexpression of Lin28 in certain forms of liver disease could be a potential treatment that aids in liver regeneration. Alternatively, Lin28 has been implicated numerous times in the progression of diverse cancer types and is associated with increased severity of disease. In this case, Lin28 could be a potential inhibitory target to prevent malignant transformation in the liver. This review seeks to characterize the role of Lin28 in liver disease.
Collapse
Affiliation(s)
- Kelly McDaniel
- 1Research, Central Texas Veterans Health Care System, Temple, Texas; ,2Baylor Scott & White Digestive Disease Research Center, Scott & White Memorial Hospital, Temple, Texas; ,3Operational Funds, Baylor Scott & White, Temple, Texas; ,4Department of Medicine, Baylor Scott & White and Texas A & M Health Science Center, Temple, Texas;
| | - Chad Hall
- 3Operational Funds, Baylor Scott & White, Temple, Texas; ,5Department of Surgery, Baylor Scott & White and Texas A & M Health Science Center, Temple, Texas; and
| | - Keisaku Sato
- 4Department of Medicine, Baylor Scott & White and Texas A & M Health Science Center, Temple, Texas;
| | - Terry Lairmore
- 3Operational Funds, Baylor Scott & White, Temple, Texas; ,5Department of Surgery, Baylor Scott & White and Texas A & M Health Science Center, Temple, Texas; and
| | - Marco Marzioni
- 6Department of Medicine, Universita' Politecnica delle Marche, Ancona, Italy
| | - Shannon Glaser
- 1Research, Central Texas Veterans Health Care System, Temple, Texas; ,2Baylor Scott & White Digestive Disease Research Center, Scott & White Memorial Hospital, Temple, Texas; ,3Operational Funds, Baylor Scott & White, Temple, Texas;
| | - Fanyin Meng
- 1Research, Central Texas Veterans Health Care System, Temple, Texas; ,2Baylor Scott & White Digestive Disease Research Center, Scott & White Memorial Hospital, Temple, Texas; ,3Operational Funds, Baylor Scott & White, Temple, Texas;
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, Texas; Baylor Scott & White Digestive Disease Research Center, Scott & White Memorial Hospital, Temple, Texas; Department of Medicine, Baylor Scott & White and Texas A & M Health Science Center, Temple, Texas;
| |
Collapse
|
29
|
Corre C, Shinoda G, Zhu H, Cousminer DL, Crossman C, Bellissimo C, Goldenberg A, Daley GQ, Palmert MR. Sex-specific regulation of weight and puberty by the Lin28/let-7 axis. J Endocrinol 2016; 228:179-91. [PMID: 26698568 PMCID: PMC4772724 DOI: 10.1530/joe-15-0360] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 12/18/2022]
Abstract
Growth and pubertal timing differ in boys and girls. Variants in/near LIN28B associate with age at menarche (AAM) in genome-wide association studies and some AAM-related variants associate with growth in a sex-specific manner. Sex-specific growth patterns in response to Lin28b perturbation have been detected in mice, and overexpression of Lin28a has been shown to alter pubertal timing in female mice. To investigate further how Lin28a and Lin28b affect growth and puberty in both males and females, we evaluated Lin28b loss-of-function (LOF) mice and Lin28a gain-of-function (GOF) mice. Because both Lin28a and Lin28b can act via the conserved microRNA let-7, we also examined let-7 GOF mice. As reported previously, Lin28b LOF led to lighter body weights only in male mice while Lin28a GOF yielded heavier mice of both sexes. Let-7 GOF mice weighed less than controls, and males were more affected than females. Timing of puberty was assessed by vaginal opening (VO) and preputial separation (PS). Male Lin28b LOF and male let-7 GOF, but not female, mice displayed alteration of pubertal timing, with later PS than controls. In contrast, both male and female Lin28a GOF mice displayed late onset of puberty. Together, these data point toward a complex system of regulation by Lin28a, Lin28b, and let-7, in which Lin28b and let-7 can impact both puberty and growth in a sex-specific manner, raising the possibility that this pathway may contribute to differential regulation of male and female growth and puberty in humans.
Collapse
Affiliation(s)
- Christina Corre
- Division of EndocrinologyThe Hospital for Sick Children, 555 University Avenue, Toronto ON, M5G 1X8, CanadaDivision of Hematology/OncologyBoston Children's Hospital, Boston, Massachusetts, USADepartments of Pediatrics and Internal MedicineChildren's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USAInstitute for Molecular MedicineFinland (FIMM), University of Helsinki, Helsinki, FinlandGenetics and Genome Biology ProgramThe Hospital for Sick Children, Toronto, Ontario, CanadaDepartment of Computer ScienceUniversity of Toronto, Toronto, Ontario, CanadaDepartments of Paediatrics and PhysiologyThe University of Toronto, Toronto, Ontario, Canada
| | - Gen Shinoda
- Division of EndocrinologyThe Hospital for Sick Children, 555 University Avenue, Toronto ON, M5G 1X8, CanadaDivision of Hematology/OncologyBoston Children's Hospital, Boston, Massachusetts, USADepartments of Pediatrics and Internal MedicineChildren's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USAInstitute for Molecular MedicineFinland (FIMM), University of Helsinki, Helsinki, FinlandGenetics and Genome Biology ProgramThe Hospital for Sick Children, Toronto, Ontario, CanadaDepartment of Computer ScienceUniversity of Toronto, Toronto, Ontario, CanadaDepartments of Paediatrics and PhysiologyThe University of Toronto, Toronto, Ontario, Canada
| | - Hao Zhu
- Division of EndocrinologyThe Hospital for Sick Children, 555 University Avenue, Toronto ON, M5G 1X8, CanadaDivision of Hematology/OncologyBoston Children's Hospital, Boston, Massachusetts, USADepartments of Pediatrics and Internal MedicineChildren's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USAInstitute for Molecular MedicineFinland (FIMM), University of Helsinki, Helsinki, FinlandGenetics and Genome Biology ProgramThe Hospital for Sick Children, Toronto, Ontario, CanadaDepartment of Computer ScienceUniversity of Toronto, Toronto, Ontario, CanadaDepartments of Paediatrics and PhysiologyThe University of Toronto, Toronto, Ontario, Canada
| | - Diana L Cousminer
- Division of EndocrinologyThe Hospital for Sick Children, 555 University Avenue, Toronto ON, M5G 1X8, CanadaDivision of Hematology/OncologyBoston Children's Hospital, Boston, Massachusetts, USADepartments of Pediatrics and Internal MedicineChildren's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USAInstitute for Molecular MedicineFinland (FIMM), University of Helsinki, Helsinki, FinlandGenetics and Genome Biology ProgramThe Hospital for Sick Children, Toronto, Ontario, CanadaDepartment of Computer ScienceUniversity of Toronto, Toronto, Ontario, CanadaDepartments of Paediatrics and PhysiologyThe University of Toronto, Toronto, Ontario, Canada Division of EndocrinologyThe Hospital for Sick Children, 555 University Avenue, Toronto ON, M5G 1X8, CanadaDivision of Hematology/OncologyBoston Children's Hospital, Boston, Massachusetts, USADepartments of Pediatrics and Internal MedicineChildren's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USAInstitute for Molecular MedicineFinland (FIMM), University of Helsinki, Helsinki, FinlandGenetics and Genome Biology ProgramThe Hospital for Sick Children, Toronto, Ontario, CanadaDepartment of Computer ScienceUniversity of Toronto, Toronto, Ontario, CanadaDepartments of Paediatrics and PhysiologyThe University of Toronto, Toronto, Ontario, Canada
| | - Christine Crossman
- Division of EndocrinologyThe Hospital for Sick Children, 555 University Avenue, Toronto ON, M5G 1X8, CanadaDivision of Hematology/OncologyBoston Children's Hospital, Boston, Massachusetts, USADepartments of Pediatrics and Internal MedicineChildren's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USAInstitute for Molecular MedicineFinland (FIMM), University of Helsinki, Helsinki, FinlandGenetics and Genome Biology ProgramThe Hospital for Sick Children, Toronto, Ontario, CanadaDepartment of Computer ScienceUniversity of Toronto, Toronto, Ontario, CanadaDepartments of Paediatrics and PhysiologyThe University of Toronto, Toronto, Ontario, Canada
| | - Christian Bellissimo
- Division of EndocrinologyThe Hospital for Sick Children, 555 University Avenue, Toronto ON, M5G 1X8, CanadaDivision of Hematology/OncologyBoston Children's Hospital, Boston, Massachusetts, USADepartments of Pediatrics and Internal MedicineChildren's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USAInstitute for Molecular MedicineFinland (FIMM), University of Helsinki, Helsinki, FinlandGenetics and Genome Biology ProgramThe Hospital for Sick Children, Toronto, Ontario, CanadaDepartment of Computer ScienceUniversity of Toronto, Toronto, Ontario, CanadaDepartments of Paediatrics and PhysiologyThe University of Toronto, Toronto, Ontario, Canada
| | - Anna Goldenberg
- Division of EndocrinologyThe Hospital for Sick Children, 555 University Avenue, Toronto ON, M5G 1X8, CanadaDivision of Hematology/OncologyBoston Children's Hospital, Boston, Massachusetts, USADepartments of Pediatrics and Internal MedicineChildren's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USAInstitute for Molecular MedicineFinland (FIMM), University of Helsinki, Helsinki, FinlandGenetics and Genome Biology ProgramThe Hospital for Sick Children, Toronto, Ontario, CanadaDepartment of Computer ScienceUniversity of Toronto, Toronto, Ontario, CanadaDepartments of Paediatrics and PhysiologyThe University of Toronto, Toronto, Ontario, Canada Division of EndocrinologyThe Hospital for Sick Children, 555 University Avenue, Toronto ON, M5G 1X8, CanadaDivision of Hematology/OncologyBoston Children's Hospital, Boston, Massachusetts, USADepartments of Pediatrics and Internal MedicineChildren's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USAInstitute for Molecular MedicineFinland (FIMM), University of Helsinki, Helsinki, FinlandGenetics and Genome Biology ProgramThe Hospital for Sick Children, Toronto, Ontario, CanadaDepartment of Computer ScienceUniversity of Toronto, Toronto, Ontario, CanadaDepartments of Paediatrics and PhysiologyThe University of Toronto, Toronto, Ontario, Canada
| | - George Q Daley
- Division of EndocrinologyThe Hospital for Sick Children, 555 University Avenue, Toronto ON, M5G 1X8, CanadaDivision of Hematology/OncologyBoston Children's Hospital, Boston, Massachusetts, USADepartments of Pediatrics and Internal MedicineChildren's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USAInstitute for Molecular MedicineFinland (FIMM), University of Helsinki, Helsinki, FinlandGenetics and Genome Biology ProgramThe Hospital for Sick Children, Toronto, Ontario, CanadaDepartment of Computer ScienceUniversity of Toronto, Toronto, Ontario, CanadaDepartments of Paediatrics and PhysiologyThe University of Toronto, Toronto, Ontario, Canada
| | - Mark R Palmert
- Division of EndocrinologyThe Hospital for Sick Children, 555 University Avenue, Toronto ON, M5G 1X8, CanadaDivision of Hematology/OncologyBoston Children's Hospital, Boston, Massachusetts, USADepartments of Pediatrics and Internal MedicineChildren's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USAInstitute for Molecular MedicineFinland (FIMM), University of Helsinki, Helsinki, FinlandGenetics and Genome Biology ProgramThe Hospital for Sick Children, Toronto, Ontario, CanadaDepartment of Computer ScienceUniversity of Toronto, Toronto, Ontario, CanadaDepartments of Paediatrics and PhysiologyThe University of Toronto, Toronto, Ontario, Canada Division of EndocrinologyThe Hospital for Sick Children, 555 University Avenue, Toronto ON, M5G 1X8, CanadaDivision of Hematology/OncologyBoston Children's Hospital, Boston, Massachusetts, USADepartments of Pediatrics and Internal MedicineChildren's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USAInstitute for Molecular MedicineFinland (FIMM), University of Helsinki, Helsinki, FinlandGenetics and Genome Biology ProgramThe Hospital for Sick Children, Toronto, Ontario, CanadaDepartment of Computer ScienceUniversity of Toronto, Toronto, Ontario, CanadaDepartments of Paediatrics and PhysiologyThe University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Warrander F, Faas L, Kovalevskiy O, Peters D, Coles M, Antson AA, Genever P, Isaacs HV. lin28 proteins promote expression of 17∼92 family miRNAs during amphibian development. Dev Dyn 2015; 245:34-46. [PMID: 26447465 PMCID: PMC4982076 DOI: 10.1002/dvdy.24358] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/22/2015] [Accepted: 09/24/2015] [Indexed: 12/13/2022] Open
Abstract
Background: Lin28 proteins are post‐transcriptional regulators of gene expression with multiple roles in development and the regulation of pluripotency in stem cells. Much attention has focussed on Lin28 proteins as negative regulators of let‐7 miRNA biogenesis; a function that is conserved in several animal groups and in multiple processes. However, there is increasing evidence that Lin28 proteins have additional roles, distinct from regulation of let‐7 abundance. We have previously demonstrated that lin28 proteins have functions associated with the regulation of early cell lineage specification in Xenopus embryos, independent of a lin28/let‐7 regulatory axis. However, the nature of lin28 targets in Xenopus development remains obscure. Results: Here, we show that mir‐17∼92 and mir‐106∼363 cluster miRNAs are down‐regulated in response to lin28 knockdown, and RNAs from these clusters are co‐expressed with lin28 genes during germ layer specification. Mature miRNAs derived from pre‐mir‐363 are most sensitive to lin28 inhibition. We demonstrate that lin28a binds to the terminal loop of pre‐mir‐363 with an affinity similar to that of let‐7, and that this high affinity interaction requires to conserved a GGAG motif. Conclusions: Our data suggest a novel function for amphibian lin28 proteins as positive regulators of mir‐17∼92 family miRNAs. Developmental Dynamics 245:34–46, 2016. © 2015 Wiley Periodicals, Inc. We show that mir‐17∼92 and mir‐106∼363 cluster miRNAs are down regulated in response to lin28 knockdown in Xenopus embryos. We demonstrate that lin28a binds to the terminal loop of pre‐mir‐363 and this interaction requires a conserved a GGAG motif.
Our data suggest a novel function for amphibian lin28 proteins as positive regulators of mir‐17∼92 family miRNAs.
Collapse
Affiliation(s)
- Fiona Warrander
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Laura Faas
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Oleg Kovalevskiy
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington York, YO10 5DD, UK
| | - Daniel Peters
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington York, YO10 5DD, UK
| | - Mark Coles
- Centre for Immunology and Infection, University of York, Heslington York, YO10 5DD, UK
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington York, YO10 5DD, UK
| | - Paul Genever
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Harry V Isaacs
- Department of Biology, University of York, York, YO10 5DD, UK
| |
Collapse
|
31
|
Abstract
LIN28 is an RNA-binding protein that is best known for its roles in promoting pluripotency via regulation of the microRNA let-7. However, recent studies have uncovered new roles for LIN28 and have revealed how it functions, suggesting that it is more than just a regulator of miRNA biogenesis. Together, these findings imply a new paradigm for LIN28 - as a gatekeeper molecule that regulates the transition between pluripotency and committed cell lineages, in both let-7-dependent and let-7-independent manners. Here, we provide an overview of LIN28 function in development and disease.
Collapse
Affiliation(s)
- Jennifer Tsialikas
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Jennifer Romer-Seibert
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| |
Collapse
|
32
|
Ouchi Y, Yamamoto J, Iwamoto T. The heterochronic genes lin-28a and lin-28b play an essential and evolutionarily conserved role in early zebrafish development. PLoS One 2014; 9:e88086. [PMID: 24516585 PMCID: PMC3916362 DOI: 10.1371/journal.pone.0088086] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 01/06/2014] [Indexed: 01/13/2023] Open
Abstract
The Caenorhabditis elegans heterochronic gene pathway, which consists of a set of regulatory genes, plays an important regulatory role in the timing of stage-specific cell lineage development in nematodes. Research into the heterochronic gene pathway gave rise to landmark microRNA (miRNA) studies and showed that these genes are important in stem cell and cancer biology; however, their functions in vertebrate development are largely unknown. To elucidate the function of the heterochronic gene pathway during vertebrate development, we cloned the zebrafish homologs of the C. elegans let-7 miRNA-binding protein, Lin-28, and analyzed their function in zebrafish development. The zebrafish genome contains two Lin28-related genes, lin-28a and lin-28b. Similar to mammalian Lin28 proteins, both zebrafish Lin-28a and Lin-28b have a conserved cold-shock domain and a pair of CCHC zinc finger domains, and are ubiquitously expressed during early embryonic development. In a reciprocal fashion, the expression of downstream heterochronic genes, let-7 and lin-4/miR-125 miRNA, occurred subsequent to lin-28 expression. The knockdown of Lin-28a or Lin-28b function by morpholino microinjection into embryos resulted in severe cell proliferation defects during early morphogenesis. We found that the expression of let-7 miRNA was upregulated and its downstream target gene, lin-41, was downregulated in these embryos. Interestingly, the expression of miR-430, a key regulator of maternal mRNA decay, was downregulated in lin-28a and lin-28b morphant embryos, suggesting a role for Lin-28 in the maternal-to-zygotic transition in zebrafish. Taken together, our results suggest an evolutionarily conserved and pivotal role of the heterochronic gene pathway in early vertebrate embryogenesis.
Collapse
Affiliation(s)
- Yasuo Ouchi
- The Center for Education in Laboratory Animal Research, Chubu University, Kasugai, Aichi, Japan
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Jyunya Yamamoto
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Takashi Iwamoto
- The Center for Education in Laboratory Animal Research, Chubu University, Kasugai, Aichi, Japan
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
- * E-mail:
| |
Collapse
|
33
|
Desjardins A, Bouvette J, Legault P. Stepwise assembly of multiple Lin28 proteins on the terminal loop of let-7 miRNA precursors. Nucleic Acids Res 2014; 42:4615-28. [PMID: 24452802 PMCID: PMC3985620 DOI: 10.1093/nar/gkt1391] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lin28 inhibits the biogenesis of let-7 miRNAs through direct interactions with let-7 precursors. Previous studies have described seemingly inconsistent Lin28 binding sites on pre-let-7 RNAs. Here, we reconcile these data by examining the binding mechanism of Lin28 to the terminal loop of pre-let-7g (TL-let-7g) using biochemical and biophysical methods. First, we investigate Lin28 binding to TL-let-7g variants and short RNA fragments and identify three independent binding sites for Lin28 on TL-let-7g. We then determine that Lin28 assembles in a stepwise manner on TL-let-7g to form a stable 1:3 complex. We show that the cold-shock domain (CSD) of Lin28 is responsible for remodelling the terminal loop of TL-let-7g, whereas the NCp7-like domain facilitates the initial binding of Lin28 to TL-let-7g. This stable binding of multiple Lin28 molecules to the terminal loop of pre-let-7g extends to other precursors of the let-7 family, but not to other pre-miRNAs tested. We propose a model for stepwise assembly of the 1:1, 1:2 and 1:3 pre-let-7g/Lin28 complexes. Stepwise multimerization of Lin28 on pre-let-7 is required for maximum inhibition of Dicer cleavage for a least one member of the let-7 family and may be important for orchestrating the activity of the several factors that regulate let-7 biogenesis.
Collapse
Affiliation(s)
- Alexandre Desjardins
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | | | | |
Collapse
|
34
|
Abstract
microRNAs (miRNAs) are a class of small noncoding RNA that bind to complementary sequences in the untranslated regions of multiple target mRNAs resulting in posttranscriptional regulation of gene expression. The recent discovery and expression-profiling studies of miRNAs in domestic livestock have revealed both their tissue-specific and temporal expression pattern. In addition, breed-dependent expression patterns as well as single nucleotide polymorphisms in either the miRNA or in the target mRNA binding site have revealed associations with traits of economic importance and highlight the potential use of miRNAs in future genomic selection programs.
Collapse
Affiliation(s)
- Attia Fatima
- Department of Bioinformatics, National University of Ireland Galway, Galway, Ireland; and
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co. Galway, Ireland
| | - Dermot G. Morris
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co. Galway, Ireland
| |
Collapse
|