1
|
Saeki K, Ozato K. Transcription factors that define the epigenome structures and transcriptomes in microglia. Exp Hematol 2025:104814. [PMID: 40425139 DOI: 10.1016/j.exphem.2025.104814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 05/08/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025]
Abstract
Microglia, the resident macrophages of the brain, play critical roles in maintaining brain health. Recent genome-wide analyses, including ATAC-seq, ChIP-seq/CUT&RUN, and single-cell RNA-seq, have identified key transcription factors that define the transcriptome programs of microglia. Four transcription factors-PU.1, IRF8, SALL1, and SMAD4-form enhancer complexes and act as lineage-determining factors, shaping microglial identity. These factors co-bind with other lineage-determining transcription factors, directing one towards designated regions that program microglia while inhibiting the other from binding to DNA. Other transcription factors, such as BATF3 and MAFB, contribute to transcriptional cascades in microglia. TGF-β is a crucial cytokine driving these transcription factors to bind DNA and maintain homeostatic microglia. These findings provide insights into the physiological aspects of microglia and their roles in neuroinflammatory and neurodegenerative diseases. TEASER ABSTRACT: eTOC blurb: In this article, we compiled more than 100 transcription factors expressed in microglia. Our analysis illustrates that some transcription factors are under a distinct hierarchical rank and are sequentially activated to achieve microglia specific transcriptome programs. This article offers a new scope on the mechanistic foundation underlying microglia's complex activity.
Collapse
Affiliation(s)
- Keita Saeki
- Section on Molecular Genetics of Immunity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Keiko Ozato
- Section on Molecular Genetics of Immunity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Chung H, Rahmani W, Sinha S, Imanzadeh A, Pun A, Arora R, Jaffer A, Biernaskie J, Chun J. Nephron progenitor fate is modulated by angiotensin type 1 receptor signaling in human kidney organoids. Stem Cells 2025; 43:sxaf012. [PMID: 40111092 PMCID: PMC12080355 DOI: 10.1093/stmcls/sxaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
The renin-angiotensin system (RAS) is essential for normal kidney development. Dysregulation of the RAS during embryogenesis can result in kidney abnormalities. To explore how angiotensin type 1 receptor (AT1R) signaling modulates nephron progenitor (NP) fate specification, we used induced pluripotent stem cell (iPSC) derived human kidney organoids treated with angiotensin II (Ang II) or the AT1R blocker losartan during differentiation. Ang II promoted NP proliferation and differentiation preferentially toward a podocyte fate, depleted the podocyte precursor population, and accelerated glomerular maturation. By contrast, losartan expanded the podocyte precursor population, delayed podocyte differentiation, and regressed the transcriptional signature to a more immature fetal state. Overall, using various in silico approaches with validation by RNAscope, we identified a role for AT1R signaling in regulating NP fate during nephrogenesis in kidney organoids. Our work supports the use of RAS modulators to improve organoid maturation and suggests that RAS may be a determinant of nephron endowment in vivo.
Collapse
Affiliation(s)
- Hyunjae Chung
- Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Waleed Rahmani
- Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Aysa Imanzadeh
- Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Alexander Pun
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Rohit Arora
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Arzina Jaffer
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Justin Chun
- Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| |
Collapse
|
3
|
Zheng Y, Zhang TN, Hao PH, Yang N, Du Y. Histone deacetylases and their inhibitors in kidney diseases. Mol Ther 2025:S1525-0016(25)00300-4. [PMID: 40263937 DOI: 10.1016/j.ymthe.2025.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/18/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025] Open
Abstract
Histone deacetylases (HDACs) have emerged as key regulators in the pathogenesis of various kidney diseases. This review explores recent advancements in HDAC research, focusing on their role in kidney development and their critical involvement in the progression of chronic kidney disease (CKD), acute kidney injury (AKI), autosomal dominant polycystic kidney disease (ADPKD), and diabetic kidney disease (DKD). It also discusses the therapeutic potential of HDAC inhibitors in treating these conditions. Various HDAC inhibitors have shown promise by targeting specific HDAC isoforms and modulating a range of biological pathways. Their protective effects include modulation of apoptosis, autophagy, inflammation, and fibrosis, underscoring their broad therapeutic potential for kidney diseases. However, further research is essential to improve the selectivity of HDAC inhibitors, minimize toxicity, overcome drug resistance, and enhance their pharmacokinetic properties. This review offers insights to guide future research and prevention strategies for kidney disease management.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Peng-Hui Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Yue Du
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Rinta-Jaskari MM, Naillat F, Ruotsalainen HJ, Ronkainen VP, Heljasvaara R, Akram SU, Izzi V, Miinalainen I, Vainio SJ, Pihlajaniemi TA. Collagen XVIII regulates extracellular matrix integrity in the developing nephrons and impacts nephron progenitor cell behavior. Matrix Biol 2024; 131:30-45. [PMID: 38788809 DOI: 10.1016/j.matbio.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Renal development is a complex process in which two major processes, tubular branching and nephron development, regulate each other reciprocally. Our previous findings have indicated that collagen XVIII (ColXVIII), an extracellular matrix protein, affects the renal branching morphogenesis. We investigate here the role of ColXVIII in nephron formation and the behavior of nephron progenitor cells (NPCs) using isoform-specific ColXVIII knockout mice. The results show that the short ColXVIII isoform predominates in the early epithelialized nephron structures whereas the two longer isoforms are expressed only in the later phases of glomerular formation. Meanwhile, electron microscopy showed that the ColXVIII mutant embryonic kidneys have ultrastructural defects at least from embryonic day 16.5 onwards. Similar structural defects had previously been observed in adult ColXVIII-deficient mice, indicating a congenital origin. The lack of ColXVIII led to a reduced NPC population in which changes in NPC proliferation and maintenance and in macrophage influx were perceived to play a role. The changes in NPC behavior in turn led to notably reduced overall nephron formation. In conclusion, the results show that ColXVIII has multiple roles in renal development, both in ureteric branching and in NPC behavior.
Collapse
Affiliation(s)
- Mia M Rinta-Jaskari
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, Oulu 90230, Finland
| | - Florence Naillat
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, Oulu 90230, Finland
| | - Heli J Ruotsalainen
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, Oulu 90230, Finland
| | | | - Ritva Heljasvaara
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, Oulu 90230, Finland
| | - Saad U Akram
- Center for Machine Vision and Signal Analysis (CMVS), University of Oulu, Helsinki, Finland
| | - Valerio Izzi
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, Oulu 90230, Finland; Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Finland
| | | | - Seppo J Vainio
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, Oulu 90230, Finland; InfoTech Oulu, Finland; Kvantum Institute, University of Oulu, Finland
| | - Taina A Pihlajaniemi
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, Oulu 90230, Finland.
| |
Collapse
|
5
|
Chi Y, Yao Y, Sun F, Zhang W, Zhang Z, Wang Y, Hao W. A novel SALL1 C757T mutation in a Chinese family causes a rare disease --Townes-Brocks syndrome. Ital J Pediatr 2024; 50:121. [PMID: 38915054 PMCID: PMC11197267 DOI: 10.1186/s13052-024-01691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/09/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Townes-Brocks syndrome (TBS) is a rare genetic disorder characterized by imperforate anus, dysplastic ears, thumb malformations, and other abnormalities. Previous studies have revealed that mutations in the SALL1 gene can disrupt normal development, resulting in the characteristic features of Townes-Brocks syndrome. Spalt-like transcription factors (SALLs) are highly conserved proteins that play important roles in various cellular processes, including embryonic development, cell differentiation, and cell survival. Over 400 different variants or mutations have been reported in the SALL1 gene in individuals with TBS. Most of these variants lead to the formation of premature termination codons (PTCs), also known as nonsense mutations. The majority of these PTCs occur in a specific region of the SALL1 gene called the "hotspot region", which is particularly susceptible to mutation. METHODS In this study, we conducted whole-exome sequencing on a three-generation Chinese family with anorectal malformations. RESULTS We identified a novel heterozygous mutation (chr16:51175376:c.757 C > T p.Gln253*) in the SALL1 gene. Molecular analysis revealed a heterozygous C to T transition at nucleotide position 757 in exon 2 of the SALL1 (NM_002968) gene. This mutation is predicted to result in the substitution of the Gln253 codon with a premature stop codon (p.Gln253*). The glutamine-rich domain forms a long alpha helix, enabling the mutant protein to interact with the wild-type SALL1 protein. This interaction may result in steric hindrance effects on the wild-type SALL1 protein. CONCLUSIONS Our findings have expanded the mutation database of the SALL1 gene, which is significant for genetic counseling and clinical surveillance in the affected family. Furthermore, our study enhances the understanding of Townes-Brocks syndrome and has the potential to improve its diagnosis and treatment.
Collapse
Affiliation(s)
- Yunqian Chi
- Department of Neonatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong Province, PR China
| | - Yi Yao
- Basic Medical College, Guangxi Medical University, Nanning, 530021, Guangxi Province, PR China
| | - Futao Sun
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong Province, PR China
| | - Wenhong Zhang
- Department of Neonatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong Province, PR China
| | - Zihan Zhang
- Department of Neonatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong Province, PR China
| | - Yunhe Wang
- Department of Neonatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong Province, PR China
| | - Wei Hao
- Department of Neonatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong Province, PR China.
- Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250021, Shandong Province, China.
| |
Collapse
|
6
|
Huang B, Zeng Z, Kim S, Fausto CC, Koppitch K, Li H, Li Z, Chen X, Guo J, Zhang CC, Ma T, Medina P, Schreiber ME, Xia MW, Vonk AC, Xiang T, Patel T, Li Y, Parvez RK, Der B, Chen JH, Liu Z, Thornton ME, Grubbs BH, Diao Y, Dou Y, Gnedeva K, Ying Q, Pastor-Soler NM, Fei T, Hallows KR, Lindström NO, McMahon AP, Li Z. Long-term expandable mouse and human-induced nephron progenitor cells enable kidney organoid maturation and modeling of plasticity and disease. Cell Stem Cell 2024; 31:921-939.e17. [PMID: 38692273 PMCID: PMC11162329 DOI: 10.1016/j.stem.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 02/07/2024] [Accepted: 04/01/2024] [Indexed: 05/03/2024]
Abstract
Nephron progenitor cells (NPCs) self-renew and differentiate into nephrons, the functional units of the kidney. Here, manipulation of p38 and YAP activity allowed for long-term clonal expansion of primary mouse and human NPCs and induced NPCs (iNPCs) from human pluripotent stem cells (hPSCs). Molecular analyses demonstrated that cultured iNPCs closely resemble primary human NPCs. iNPCs generated nephron organoids with minimal off-target cell types and enhanced maturation of podocytes relative to published human kidney organoid protocols. Surprisingly, the NPC culture medium uncovered plasticity in human podocyte programs, enabling podocyte reprogramming to an NPC-like state. Scalability and ease of genome editing facilitated genome-wide CRISPR screening in NPC culture, uncovering genes associated with kidney development and disease. Further, NPC-directed modeling of autosomal-dominant polycystic kidney disease (ADPKD) identified a small-molecule inhibitor of cystogenesis. These findings highlight a broad application for the reported iNPC platform in the study of kidney development, disease, plasticity, and regeneration.
Collapse
Affiliation(s)
- Biao Huang
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zipeng Zeng
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Sunghyun Kim
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Connor C Fausto
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kari Koppitch
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Hui Li
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zexu Li
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P.R. China
| | - Xi Chen
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Chennan C Zhang
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tianyi Ma
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pedro Medina
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Megan E Schreiber
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mateo W Xia
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ariel C Vonk
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tianyuan Xiang
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tadrushi Patel
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yidan Li
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Riana K Parvez
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Balint Der
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Urology, Faculty of Medicine, Semmelweis University, Budapest 3170, Hungary
| | - Jyun Hao Chen
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhenqing Liu
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Matthew E Thornton
- Division of Maternal Fetal Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Brendan H Grubbs
- Division of Maternal Fetal Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yarui Diao
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yali Dou
- Department of Medicine, Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ksenia Gnedeva
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Tina and Rick Caruso Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Qilong Ying
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nuria M Pastor-Soler
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Teng Fei
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P.R. China
| | - Kenneth R Hallows
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhongwei Li
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
7
|
Gao G, Zhou Z. Isthmin-1: A critical regulator of branching morphogenesis and metanephric mesenchyme condensation during early kidney development. Bioessays 2024; 46:e2300189. [PMID: 38161234 DOI: 10.1002/bies.202300189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Isthmin-1 (Ism1) was first described to be syn-expressed with Fgf8 in Xenopus. However, its biological role has not been elucidated until recent years. Despite of accumulated evidence that Ism1 participates in angiogenesis, tumor invasion, macrophage apoptosis, and glucose metabolism, the cognate receptors for Ism1 remain largely unknown. Ism1 deficiency in mice results in renal agenesis (RA) with a transient loss of Gdnf transcription and impaired mesenchyme condensation at E11.5. Ism1 binds to and activates Integrin α8β1 to positively regulate Gdnf/Ret signaling, thus promoting mesenchyme condensation and ureteric epithelium branching morphogenesis. Here, we propose the hypothesis underlying the mechanism by which Ism1 regulates branching morphogenesis during early kidney development.
Collapse
Affiliation(s)
- Ge Gao
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhongjun Zhou
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Reproductive Medical Center, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
8
|
Wang SX, Streit A. Shared features in ear and kidney development - implications for oto-renal syndromes. Dis Model Mech 2024; 17:dmm050447. [PMID: 38353121 PMCID: PMC10886756 DOI: 10.1242/dmm.050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
The association between ear and kidney anomalies has long been recognized. However, little is known about the underlying mechanisms. In the last two decades, embryonic development of the inner ear and kidney has been studied extensively. Here, we describe the developmental pathways shared between both organs with particular emphasis on the genes that regulate signalling cross talk and the specification of progenitor cells and specialised cell types. We relate this to the clinical features of oto-renal syndromes and explore links to developmental mechanisms.
Collapse
Affiliation(s)
- Scarlet Xiaoyan Wang
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Andrea Streit
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
9
|
Stevenson MJ, Phanor SK, Patel U, Gisselbrecht SS, Bulyk ML, O'Brien LL. Altered binding affinity of SIX1-Q177R correlates with enhanced WNT5A and WNT pathway effector expression in Wilms tumor. Dis Model Mech 2023; 16:dmm050208. [PMID: 37815464 PMCID: PMC10668032 DOI: 10.1242/dmm.050208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023] Open
Abstract
Wilms tumors present as an amalgam of varying proportions of tissues located within the developing kidney, one being the nephrogenic blastema comprising multipotent nephron progenitor cells (NPCs). The recurring missense mutation Q177R in NPC transcription factors SIX1 and SIX2 is most correlated with tumors of blastemal histology and is significantly associated with relapse. Yet, the transcriptional regulatory consequences of SIX1/2-Q177R that might promote tumor progression and recurrence have not been investigated extensively. Utilizing multiple Wilms tumor transcriptomic datasets, we identified upregulation of the gene encoding non-canonical WNT ligand WNT5A in addition to other WNT pathway effectors in SIX1/2-Q177R mutant tumors. SIX1 ChIP-seq datasets from Wilms tumors revealed shared binding sites for SIX1/SIX1-Q177R within a promoter of WNT5A and at putative distal cis-regulatory elements (CREs). We demonstrate colocalization of SIX1 and WNT5A in Wilms tumor tissue and utilize in vitro assays that support SIX1 and SIX1-Q177R activation of expression from the WNT5A CREs, as well as enhanced binding affinity within the WNT5A promoter that may promote the differential expression of WNT5A and other WNT pathway effectors associated with SIX1-Q177R tumors.
Collapse
Affiliation(s)
- Matthew J. Stevenson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sabrina K. Phanor
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Urvi Patel
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephen S. Gisselbrecht
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Lori L. O'Brien
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Basta J, Robbins L, Stout L, Brennan M, Shapiro J, Chen M, Denner D, Baldan A, Messias N, Madhavan S, Parikh SV, Rauchman M. Deletion of NuRD component Mta2 in nephron progenitor cells causes developmentally programmed FSGS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562984. [PMID: 38948707 PMCID: PMC11213133 DOI: 10.1101/2023.10.18.562984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Low nephron endowment at birth is a risk factor for chronic kidney disease. The prevalence of this condition is increasing due to higher survival rates of preterm infants and children with multi- organ birth defect syndromes that affect the kidney and urinary tract. We created a mouse model of congenital low nephron number due to deletion of Mta2 in nephron progenitor cells. Mta2 is a core component of the Nucleosome Remodeling and Deacetylase (NuRD) chromatin remodeling complex. These mice developed albuminuria at 4 weeks of age followed by focal segmental glomerulosclerosis (FSGS) at 8 weeks, with progressive kidney injury and fibrosis. Our studies reveal that altered mitochondrial metabolism in the post-natal period leads to accumulation of neutral lipids in glomeruli at 4 weeks of age followed by reduced mitochondrial oxygen consumption. We found that NuRD cooperated with Zbtb7a/7b to regulate a large number of metabolic genes required for fatty acid oxidation and oxidative phosphorylation. Analysis of human kidney tissue also supported a role for reduced mitochondrial lipid metabolism and ZBTB7A/7B in FSGS and CKD. We propose that an inability to meet the physiological and metabolic demands of post-natal somatic growth of the kidney promotes the transition to CKD in the setting of glomerular hypertrophy due to low nephron endowment.
Collapse
|
11
|
Wang Z, Sun Z, Diao Y, Wang Z, Yang X, Jiang B, Wu Y, Liu G. Identification of two novel SALL1 mutations in chinese families with townes-brocks syndrome and literature review. Orphanet J Rare Dis 2023; 18:250. [PMID: 37644569 PMCID: PMC10466882 DOI: 10.1186/s13023-023-02874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Townes-Brocks syndrome is a rare autosomal dominant genetic syndrome caused by mutations in SALL1. The clinical features of Townes-Brocks syndrome are highly heterogonous. Identification of new SALL1 mutations and study of the relation between SALL1 mutations and clinical features can facilitate diagnosis of Townes-Brocks syndrome. METHODS We collected clinical data and blood samples of the two patients and their family members for whole-exome sequencing and Sanger sequencing. Prediction analysis of the SALL1variation protein structure was achieved using Alphafold. The clinical materials and gene sequencing results were analyzed. The clinical materials and gene sequencing results were analyzed. The related literature of Townes-Brocks syndrome were searched and the genotype-renal phenotype analysis was performed combined with this two cases. RESULTS Based on the clinical features and gene sequencing results, the two patients were diagnosed as Townes-Brocks syndrome. Two novel SALL1 mutations (c.878-887del and c.1240G > T) were identified, both of which were pathogenic mutations. The correlation between genotypes and renal phenotypes in Townes-Brocks syndrome patients caused by SALL1 mutation were summarized. CONCLUSION This study identified two novel mutations and provided new insights into the correlation of genotypes and renal phenotypes of Townes-Brocks syndrome.
Collapse
Affiliation(s)
- Zhendong Wang
- Department of Nephrology, Qilu Hospital, Shandong University, Jinan, China
- Department of Nephrology, Jining NO.1 People's Hospital, Jining, China
| | - Zhenfu Sun
- Department of Nephrology, Heze Municipal Hospital, Heze, China
| | - Yujie Diao
- Department of Nephrology, Qilu Hospital, Shandong University, Jinan, China
| | - Zhouyang Wang
- Department of Nephrology, Qilu Hospital, Shandong University, Jinan, China
| | - Xiangdong Yang
- Department of Nephrology, Qilu Hospital, Shandong University, Jinan, China
| | - Bei Jiang
- Department of Nephrology, Qilu Hospital, Shandong University, Jinan, China
| | - Yumei Wu
- Department of Nephrology, Jining NO.1 People's Hospital, Jining, China
| | - Guangyi Liu
- Department of Nephrology, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
12
|
Trinh A, Huang Y, Shao H, Ram A, Morival J, Wang J, Chung EJ, Downing TL. Targeting the ADPKD methylome using nanoparticle-mediated combination therapy. APL Bioeng 2023; 7:026111. [PMID: 37305656 PMCID: PMC10257530 DOI: 10.1063/5.0151408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
DNA methylation aberrancies are found in autosomal dominant polycystic kidney disease (ADPKD), which suggests the methylome to be a promising therapeutic target. However, the impact of combining DNA methylation inhibitors (DNMTi) and ADPKD drugs in treating ADPKD and on disease-associated methylation patterns has not been fully explored. To test this, ADPKD drugs, metformin and tolvaptan (MT), were delivered in combination with DNMTi 5-aza-2'-deoxycytidine (Aza) to 2D or 3D cystic Pkd1 heterozygous renal epithelial cells (PKD1-Het cells) as free drugs or within nanoparticles to enable direct delivery for future in vivo applications. We found Aza synergizes with MT to reduce cell viability and cystic growth. Reduced representation bisulfite sequencing (RRBS) was performed across four groups: PBS, Free-Aza (Aza), Free-Aza+MT (F-MTAza), and Nanoparticle-Aza+MT (NP-MTAza). Global methylation patterns showed that while Aza alone induces a unimodal intermediate methylation landscape, Aza+MT recovers the bimodality reminiscent of somatic methylomes. Importantly, site-specific methylation changes associated with F-MTAza and NP-MTAza were largely conserved including hypomethylation at ADPKD-associated genes. Notably, we report hypomethylation of cancer-associated genes implicated in ADPKD pathogenesis as well as new target genes that may provide additional therapeutic effects. Overall, this study motivates future work to further elucidate the regulatory mechanisms of observed drug synergy and apply these combination therapies in vivo.
Collapse
Affiliation(s)
| | - Yi Huang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA
| | | | - Aparna Ram
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA
| | | | - Jonathan Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA
| | - Eun Ji Chung
- Authors to whom correspondence should be addressed: and
| | | |
Collapse
|
13
|
Huang B, Zeng Z, Li H, Li Z, Chen X, Guo J, Zhang CC, Schreiber ME, Vonk AC, Xiang T, Patel T, Li Y, Parvez RK, Der B, Chen JH, Liu Z, Thornton ME, Grubbs BH, Diao Y, Dou Y, Gnedeva K, Lindström NO, Ying Q, Pastor-Soler NM, Fei T, Hallows KR, McMahon AP, Li Z. Modeling kidney development, disease, and plasticity with clonal expandable nephron progenitor cells and nephron organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542343. [PMID: 37293038 PMCID: PMC10245960 DOI: 10.1101/2023.05.25.542343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nephron progenitor cells (NPCs) self-renew and differentiate into nephrons, the functional units of the kidney. Here we report manipulation of p38 and YAP activity creates a synthetic niche that allows the long-term clonal expansion of primary mouse and human NPCs, and induced NPCs (iNPCs) from human pluripotent stem cells. Cultured iNPCs resemble closely primary human NPCs, generating nephron organoids with abundant distal convoluted tubule cells, which are not observed in published kidney organoids. The synthetic niche reprograms differentiated nephron cells into NPC state, recapitulating the plasticity of developing nephron in vivo. Scalability and ease of genome-editing in the cultured NPCs allow for genome-wide CRISPR screening, identifying novel genes associated with kidney development and disease. A rapid, efficient, and scalable organoid model for polycystic kidney disease was derived directly from genome-edited NPCs, and validated in drug screen. These technological platforms have broad applications to kidney development, disease, plasticity, and regeneration.
Collapse
Affiliation(s)
- Biao Huang
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- These authors contributed equally
| | - Zipeng Zeng
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- These authors contributed equally
| | - Hui Li
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zexu Li
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Xi Chen
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Chennan C. Zhang
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Megan E. Schreiber
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ariel C. Vonk
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tianyuan Xiang
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tadrushi Patel
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yidan Li
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Riana K. Parvez
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Balint Der
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jyun Hao Chen
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhenqing Liu
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Matthew E. Thornton
- Division of Maternal Fetal Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Brendan H. Grubbs
- Division of Maternal Fetal Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yarui Diao
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yali Dou
- Department of Medicine, Department of Biochemistry and Molecular Medicine, University of Southern California, CA 90033, USA
| | - Ksenia Gnedeva
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Tina and Rick Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Nils O. Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Qilong Ying
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nuria M. Pastor-Soler
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Teng Fei
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Kenneth R. Hallows
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhongwei Li
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Lead contact
| |
Collapse
|
14
|
Schnell J, Achieng M, Lindström NO. Principles of human and mouse nephron development. Nat Rev Nephrol 2022; 18:628-642. [PMID: 35869368 DOI: 10.1038/s41581-022-00598-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2022] [Indexed: 12/17/2022]
Abstract
The mechanisms underlying kidney development in mice and humans is an area of intense study. Insights into kidney organogenesis have the potential to guide our understanding of the origin of congenital anomalies and enable the assembly of genetic diagnostic tools. A number of studies have delineated signalling nodes that regulate positional identities and cell fates of nephron progenitor and precursor cells, whereas cross-species comparisons have markedly enhanced our understanding of conserved and divergent features of mammalian kidney organogenesis. Greater insights into the complex cellular movements that occur as the proximal-distal axis is established have challenged our understanding of nephron patterning and provided important clues to the elaborate developmental context in which human kidney diseases can arise. Studies of kidney development in vivo have also facilitated efforts to recapitulate nephrogenesis in kidney organoids in vitro, by providing a detailed blueprint of signalling events, cell movements and patterning mechanisms that are required for the formation of correctly patterned nephrons and maturation of physiologically functional apparatus that are responsible for maintaining human health.
Collapse
Affiliation(s)
- Jack Schnell
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at University of Southern California, Los Angeles, CA, USA
| | - MaryAnne Achieng
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at University of Southern California, Los Angeles, CA, USA
| | - Nils Olof Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Motojima M, Tanaka M, Kume T. Foxc1 and Foxc2 are indispensable for maintenance of progenitors of nephron and stroma in the developing kidney. J Cell Sci 2022; 135:276938. [PMID: 36073617 DOI: 10.1242/jcs.260356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Nephron development proceeds with reciprocal interactions among three layers: nephron progenitors (NPs), ureteric buds, and stromal progenitors (SPs). We found Foxc1 and Foxc2 (Foxc1/2) expression in NPs and SPs. Systemic deletion of Foxc1/2 two days after the onset of metanephros development (E13.5) resulted in epithelialization of NPs and ectopic formation of renal vesicles. NP-specific deletion did not cause these phenotypes, indicating that Foxc1/2 in other cells (likely in SPs) contributed to the maintenance of NPs. Single-cell RNA-seq analysis revealed NP and SP subpopulations, the border between committed NPs and renewing NPs, and similarity among cortical interstitium and vascular smooth muscle type cells. Integrated analysis of the control and knockout data indicated transformation of some NPs to strange cells expressing markers of vascular endothelium, reduced numbers of self-renewing NP and SP populations, downregulation of crucial genes for kidney development such as Fgf20 and Frem1 in NPs, and Foxd1 and Sall1 in SPs. It also revealed upregulation of genes that were not usually expressed in NPs and SPs. Thus, Foxc1/2 maintains NPs and SPs by regulating the expression of multiple genes.
Collapse
Affiliation(s)
- Masaru Motojima
- Department of Clinical Pharmacology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Masayuki Tanaka
- Medical Science College Office, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Tsutomu Kume
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
16
|
Tran T, Song CJ, Nguyen T, Cheng SY, McMahon JA, Yang R, Guo Q, Der B, Lindström NO, Lin DCH, McMahon AP. A scalable organoid model of human autosomal dominant polycystic kidney disease for disease mechanism and drug discovery. Cell Stem Cell 2022; 29:1083-1101.e7. [PMID: 35803227 PMCID: PMC11088748 DOI: 10.1016/j.stem.2022.06.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/28/2022] [Accepted: 06/08/2022] [Indexed: 12/13/2022]
Abstract
Human pluripotent stem-cell-derived organoids are models for human development and disease. We report a modified human kidney organoid system that generates thousands of similar organoids, each consisting of 1-2 nephron-like structures. Single-cell transcriptomic profiling and immunofluorescence validation highlighted patterned nephron-like structures utilizing similar pathways, with distinct morphogenesis, to human nephrogenesis. To examine this platform for therapeutic screening, the polycystic kidney disease genes PKD1 and PKD2 were inactivated by gene editing. PKD1 and PKD2 mutant models exhibited efficient and reproducible cyst formation. Cystic outgrowths could be propagated for months to centimeter-sized cysts. To shed new light on cystogenesis, 247 protein kinase inhibitors (PKIs) were screened in a live imaging assay identifying compounds blocking cyst formation but not overall organoid growth. Scaling and further development of the organoid platform will enable a broader capability for kidney disease modeling and high-throughput drug screens.
Collapse
Affiliation(s)
- Tracy Tran
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Cheng Jack Song
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Amgen Research, Cardiometabolic Disorders, 1120 Veterans Blvd, South San Francisco, CA 94080, USA
| | - Trang Nguyen
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Shun-Yang Cheng
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jill A McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Rui Yang
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Qiuyu Guo
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Balint Der
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Daniel C-H Lin
- Amgen Research, Cardiometabolic Disorders, 1120 Veterans Blvd, South San Francisco, CA 94080, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
17
|
Lindström NO, Sealfon R, Chen X, Parvez RK, Ransick A, De Sena Brandine G, Guo J, Hill B, Tran T, Kim AD, Zhou J, Tadych A, Watters A, Wong A, Lovero E, Grubbs BH, Thornton ME, McMahon JA, Smith AD, Ruffins SW, Armit C, Troyanskaya OG, McMahon AP. Spatial transcriptional mapping of the human nephrogenic program. Dev Cell 2021; 56:2381-2398.e6. [PMID: 34428401 PMCID: PMC8396064 DOI: 10.1016/j.devcel.2021.07.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/06/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022]
Abstract
Congenital abnormalities of the kidney and urinary tract are among the most common birth defects, affecting 3% of newborns. The human kidney forms around a million nephrons from a pool of nephron progenitors over a 30-week period of development. To establish a framework for human nephrogenesis, we spatially resolved a stereotypical process by which equipotent nephron progenitors generate a nephron anlage, then applied data-driven approaches to construct three-dimensional protein maps on anatomical models of the nephrogenic program. Single-cell RNA sequencing identified progenitor states, which were spatially mapped to the nephron anatomy, enabling the generation of functional gene networks predicting interactions within and between nephron cell types. Network mining identified known developmental disease genes and predicted targets of interest. The spatially resolved nephrogenic program made available through the Human Nephrogenesis Atlas (https://sckidney.flatironinstitute.org/) will facilitate an understanding of kidney development and disease and enhance efforts to generate new kidney structures.
Collapse
Affiliation(s)
- Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Rachel Sealfon
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Xi Chen
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Riana K Parvez
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andrew Ransick
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Guilherme De Sena Brandine
- Molecular and Computational Biology, Division of Biological Sciences, University of Southern, Los Angeles, CA 90089, USA
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bill Hill
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Tracy Tran
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Albert D Kim
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jian Zhou
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Alicja Tadych
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Aaron Watters
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Aaron Wong
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Elizabeth Lovero
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Brendan H Grubbs
- Maternal Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matthew E Thornton
- Maternal Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jill A McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andrew D Smith
- Molecular and Computational Biology, Division of Biological Sciences, University of Southern, Los Angeles, CA 90089, USA
| | - Seth W Ruffins
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chris Armit
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; BGI Hong Kong, 26/F, Kings Wing Plaza 2, 1 On Kwan Street, Shek Mun, NT, Hong Kong
| | - Olga G Troyanskaya
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Computer Science, Princeton University, Princeton, NJ, USA.
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Lin Y, Xiao Y, Lin C, Zhang Q, Zhang S, Pei F, Liu H, Chen Z. SALL1 regulates commitment of odontoblast lineages by interacting with RUNX2 to remodel open chromatin regions. STEM CELLS (DAYTON, OHIO) 2020; 39:196-209. [PMID: 33159702 DOI: 10.1002/stem.3298] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 10/18/2020] [Indexed: 11/10/2022]
Abstract
Mouse dental papilla cells (mDPCs) derive from cranial neural crest cells and maintain mesenchymal stem cell characteristics. The differentiation of neural crest cells into odontoblasts is orchestrated by transcription factors regulating the expression of genes whose enhancers are initially inaccessible. However, the identity of the transcription factors driving the emergence of odontoblast lineages remains elusive. In this study, we identified SALL1, a transcription factor that was particularly expressed in preodontoblasts, polarizing odontoblasts, and secretory odontoblasts in vivo. Knockdown of Sall1 in mDPCs inhibited their odontoblastic differentiation. In order to identify the regulatory network of Sall1, RNA sequencing and an assay for transposase-accessible chromatin with high-throughput sequencing were performed to analyze the genome-wide direct regulatory targets of SALL1. We found that inhibition of Sall1 expression could decrease the accessibility of some chromatin regions associated with odontoblast lineages at embryonic day 16.5, whereas these regions remained unaffected at postnatal day 0.5, suggesting that SALL1 regulates the fate of mDPCs by remodeling open chromatin regions at the early bell stage. Specifically, we found that SALL1 could directly increase the accessibility of cis-regulatory elements near Tgf-β2 and within the Runx2 locus. Moreover, coimmunoprecipitation and proximal ligation assays showed that SALL1 could establish functional interactions with RUNX2. Taken together, our results demonstrated that SALL1 positively regulates the commitment of odontoblast lineages by interacting with RUNX2 and directly activating Tgf-β2 at an early stage.
Collapse
Affiliation(s)
- Yuxiu Lin
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Yao Xiao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - ChuJiao Lin
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Qian Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Shu Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Fei Pei
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Huan Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.,Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Zhi Chen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
19
|
The struggle to equilibrate outer and inner milieus: Renal evolution revisited. Ann Anat 2020; 233:151610. [PMID: 33065247 DOI: 10.1016/j.aanat.2020.151610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/20/2022]
Abstract
The journey of life, from primordial protoplasm to a complex vertebrate form, is a tale of survival against incessant alterations in climate, surface topography, food chain, and chemistry of the external environment. Kidneys present with an ensemble embodiment of the adaptations devised by diverse life-forms to cope with such challenges and maintain a chemical equilibrium of water and solutes, both in and outside the body. This minireview revisits renal evolution utilizing the classic: From Fish to Philosopher; the story of our internal environment, by Prof. Homer W. Smith (1895-1962) as a template. Prof. Smith's views exemplified the invention of glomeruli, or its abolishment, as a mechanism to filter water. Moreover, with the need to preserve water, as in reptiles, the loop of Henle was introduced to concentrate urine. When compared to smaller mammals, the larger ones, albeit having loops of Henle of similar lengths, demonstrated a distinct packing of the nephrons in kidneys. Moreover, the renal portal system degenerated in mammals, while still present in other vertebrates. This account will present with a critique of the current concepts of renal evolution while examining how various other factors, including the ones that we know more about now, such as genetic factors, synchronize to achieve renal development. Finally, it will try to assess the validity of ideas laid by Prof. Smith with the knowledge that we possess now, and understand the complex architecture that evolution has imprinted on the kidneys during its struggle to survive over epochs.
Collapse
|
20
|
Basta JM, Singh AP, Robbins L, Stout L, Pherson M, Rauchman M. The core SWI/SNF catalytic subunit Brg1 regulates nephron progenitor cell proliferation and differentiation. Dev Biol 2020; 464:176-187. [PMID: 32504627 DOI: 10.1016/j.ydbio.2020.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/09/2023]
Abstract
Chromatin-remodeling complexes play critical roles in establishing gene expression patterns in response to developmental signals. How these epigenetic regulators determine the fate of progenitor cells during development of specific organs is not well understood. We found that genetic deletion of Brg1 (Smarca4), the core enzymatic protein in SWI/SNF, in nephron progenitor cells leads to severe renal hypoplasia. Nephron progenitor cells were depleted in Six2-Cre, Brg1flx/flx mice due to reduced cell proliferation. This defect in self-renewal, together with impaired differentiation resulted in a profound nephron deficit in Brg1 mutant kidneys. Sall1, a transcription factor that is required for expansion and maintenance of nephron progenitors, associates with SWI/SNF. Brg1 and Sall1 bind promoters of many progenitor cell genes and regulate expression of key targets that promote their proliferation.
Collapse
Affiliation(s)
- Jeannine M Basta
- John T. Milliken Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, Mo 63110 USA
| | - Ajeet P Singh
- Division of Pediatric Hematology/Oncology, Departement of Pediatrics and Department of Biochemistry & Molecular Biology, Pennsylvania State University, Hershey, PA 17033 USA
| | - Lynn Robbins
- John T. Milliken Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, Mo 63110 USA; VA St. Louis Health Care System, John Cochran Division, St. Louis, MO, 63106, USA
| | - Lisa Stout
- John T. Milliken Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, Mo 63110 USA
| | - Michelle Pherson
- Department of Biochemistry & Molecular Biology, Saint Louis University, St. Louis, MO 63104 USA
| | - Michael Rauchman
- John T. Milliken Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, Mo 63110 USA; VA St. Louis Health Care System, John Cochran Division, St. Louis, MO, 63106, USA; Deaprtememt of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110 USA.
| |
Collapse
|
21
|
Deciphering Cell Lineage Specification during Male Sex Determination with Single-Cell RNA Sequencing. Cell Rep 2019; 22:1589-1599. [PMID: 29425512 DOI: 10.1016/j.celrep.2018.01.043] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/21/2017] [Accepted: 01/12/2018] [Indexed: 11/20/2022] Open
Abstract
The gonad is a unique biological system for studying cell-fate decisions. However, major questions remain regarding the identity of somatic progenitor cells and the transcriptional events driving cell differentiation. Using time-series single-cell RNA sequencing on XY mouse gonads during sex determination, we identified a single population of somatic progenitor cells prior to sex determination. A subset of these progenitors differentiates into Sertoli cells, a process characterized by a highly dynamic genetic program consisting of sequential waves of gene expression. Another subset of multipotent cells maintains their progenitor state but undergoes significant transcriptional changes restricting their competence toward a steroidogenic fate required for the differentiation of fetal Leydig cells. Our findings confirm the presence of a unique multipotent progenitor population in the gonadal primordium that gives rise to both supporting and interstitial lineages. These also provide the most granular analysis of the transcriptional events occurring during testicular cell-fate commitment.
Collapse
|
22
|
Kurtzeborn K, Kwon HN, Kuure S. MAPK/ERK Signaling in Regulation of Renal Differentiation. Int J Mol Sci 2019; 20:E1779. [PMID: 30974877 PMCID: PMC6479953 DOI: 10.3390/ijms20071779] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are common birth defects derived from abnormalities in renal differentiation during embryogenesis. CAKUT is the major cause of end-stage renal disease and chronic kidney diseases in children, but its genetic causes remain largely unresolved. Here we discuss advances in the understanding of how mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) activity contributes to the regulation of ureteric bud branching morphogenesis, which dictates the final size, shape, and nephron number of the kidney. Recent studies also demonstrate that the MAPK/ERK pathway is directly involved in nephrogenesis, regulating both the maintenance and differentiation of the nephrogenic mesenchyme. Interestingly, aberrant MAPK/ERK signaling is linked to many cancers, and recent studies suggest it also plays a role in the most common pediatric renal cancer, Wilms' tumor.
Collapse
Affiliation(s)
- Kristen Kurtzeborn
- Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland.
| | - Hyuk Nam Kwon
- Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland.
| | - Satu Kuure
- Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland.
- GM-unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
| |
Collapse
|
23
|
Li H, Natarajan A, Ezike J, Barrasa MI, Le Y, Feder ZA, Yang H, Ma C, Markoulaki S, Lodish HF. Rate of Progression through a Continuum of Transit-Amplifying Progenitor Cell States Regulates Blood Cell Production. Dev Cell 2019; 49:118-129.e7. [PMID: 30827895 DOI: 10.1016/j.devcel.2019.01.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/03/2018] [Accepted: 01/30/2019] [Indexed: 01/04/2023]
Abstract
The nature of cell-state transitions during the transit-amplifying phases of many developmental processes-hematopoiesis in particular-is unclear. Here, we use single-cell RNA sequencing to demonstrate a continuum of transcriptomic states in committed transit-amplifying erythropoietic progenitors, which correlates with a continuum of proliferative potentials in these cells. We show that glucocorticoids enhance erythrocyte production by slowing the rate of progression through this developmental continuum of transit-amplifying progenitors, permitting more cell divisions prior to terminal erythroid differentiation. Mechanistically, glucocorticoids prolong expression of genes that antagonize and slow induction of genes that drive terminal erythroid differentiation. Erythroid progenitor daughter cell pairs have similar transcriptomes with or without glucocorticoid stimulation, indicating largely symmetric cell division. Thus, the rate of progression along a developmental continuum dictates the absolute number of erythroid cells generated from each transit-amplifying progenitor, suggesting a paradigm for regulating the total output of differentiated cells in numerous other developmental processes.
Collapse
Affiliation(s)
- Hojun Li
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Anirudh Natarajan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Jideofor Ezike
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Yenthanh Le
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Zoë A Feder
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Huan Yang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Clement Ma
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Boston, MA 02215, USA
| | | | - Harvey F Lodish
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
24
|
Minocha E, Chaturvedi CP, Nityanand S. Renogenic characterization and in vitro differentiation of rat amniotic fluid stem cells into renal proximal tubular- and juxtaglomerular-like cells. In Vitro Cell Dev Biol Anim 2019; 55:138-147. [PMID: 30645697 DOI: 10.1007/s11626-018-00315-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/16/2018] [Indexed: 12/31/2022]
Abstract
The aim of the present study was to investigate the renogenic characteristics of amniotic fluid stem cells (AFSCs) and to evaluate their in vitro differentiation potential into renal proximal tubular-like cells and juxtaglomerular-like cells. We culture expanded AFSCs derived from rat amniotic fluid. The AFSCs grew as adherent spindle-shaped cells and expressed mesenchymal markers CD73, CD90, and CD105 as well as renal progenitor markers WT1, PAX2, SIX2, SALL1, and CITED1. AFSCs exhibited an in vitro differentiation potential into renal proximal tubular epithelial-like cells, as shown by the upregulation of expression of proximal tubular cell-specific genes like AQP1, CD13, PEPT1, GLUT5, OAT1, and OCT1. AFSCs could also be differentiated into juxtaglomerular-like cells as demonstrated by the expression of renin and α-SMA. The AFSCs also expressed pluripotency markers OCT4, NANOG, and SOX2 and could be induced into embryoid bodies with differentiation into all the three germ layers, highlighting the pluripotent nature of these cells. Our results show that amniotic fluid contains a population of primitive stem cells that express renal-progenitor markers and also possess the propensity to differentiate into two renal lineage cell types and, thus, may have a therapeutic potential in renal regenerative medicine.
Collapse
Affiliation(s)
- Ekta Minocha
- Stem Cell Research Facility, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow, UP, 226014, India
| | - Chandra Prakash Chaturvedi
- Stem Cell Research Facility, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow, UP, 226014, India
| | - Soniya Nityanand
- Stem Cell Research Facility, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow, UP, 226014, India.
| |
Collapse
|
25
|
Nef S, Stévant I, Greenfield A. Characterizing the bipotential mammalian gonad. Curr Top Dev Biol 2019; 134:167-194. [DOI: 10.1016/bs.ctdb.2019.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Abstract
The nephron is a multifunctional filtration device equipped with an array of sophisticated sensors. For appropriate physiological function in the human and mouse, nephrons must be stereotypically arrayed in large numbers, and this essential structural property that defines the kidney is determined during its fetal development. This review explores the process of nephron determination in the fetal kidney, providing an overview of the foundational literature in the field as well as exploring new developments in this dynamic research area. Mechanisms that ensure that a large number of nephrons can be formed from a small initial number of progenitor cells are central to this process, and the question of how the nephron progenitor cell population balances epithelial differentiation with renewal in the progenitor state is a subject of particular interest. Key growth factor signaling pathways and transcription factor networks are discussed.
Collapse
Affiliation(s)
- Leif Oxburgh
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074, USA;
| |
Collapse
|
27
|
O'Brien LL. Nephron progenitor cell commitment: Striking the right balance. Semin Cell Dev Biol 2018; 91:94-103. [PMID: 30030141 DOI: 10.1016/j.semcdb.2018.07.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 06/29/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022]
Abstract
The filtering component of the kidney, the nephron, arises from a single progenitor population. These nephron progenitor cells (NPCs) both self-renew and differentiate throughout the course of kidney development ensuring sufficient nephron endowment. An appropriate balance of these processes must be struck as deficiencies in nephron numbers are associated with hypertension and kidney disease. This review will discuss the mechanisms and molecules supporting NPC maintenance and differentiation. A focus on recent work will highlight new molecular insights into NPC regulation and their dynamic behavior in both space and time.
Collapse
Affiliation(s)
- Lori L O'Brien
- Department of Cell Biology and Physiology, UNC Kidney Center, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
28
|
Yun K, Hurwitz AA, Perantoni AO. Constitutive metanephric mesenchyme-specific expression of interferon-gamma causes renal dysplasia by regulating Sall1 expression. PLoS One 2018; 13:e0197356. [PMID: 29771971 PMCID: PMC5957351 DOI: 10.1371/journal.pone.0197356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 05/01/2018] [Indexed: 11/19/2022] Open
Abstract
Transplacental viral and parasitic infections have been shown to initiate an innate response in the mammalian embryo by increasing the expression of pro-inflammatory cytokines such as interferon-gamma (Ifng). However, the developmental consequences of an activated innate immunity and, in particular, the effects of induction of Ifng expression independent of infection have been largely overlooked. Here, we demonstrate in vivo that the conditional overexpression of Ifng in metanephric mesenchymal (MM) progenitors results in renal agenesis or hypoplasia. Cell death was observed in and around the MM region of E10.5-11.5 mutants where Ifng was constitutively expressed during early kidney development and resulted in a retardation of branching morphogenesis. Furthermore, isolated mutant or normal Ifng-treated metanephroi replicated this phenotype in culture, demonstrating the inherent nature of the aberrant morphogenesis. The expression of renal progenitor marker Sall1 was significantly decreased in the MM of mutant kidneys, suggesting that a reduction in Sall1 may be the cause of cell death in the MM during early kidney development and that, in turn, retards UB branching in the mutants. Therefore, the aberrant induction of Ifng expression, as part of an innate immune response, may contribute to renal agenesis or hypoplasia during early metanephric development by regulating the MM progenitor population.
Collapse
Affiliation(s)
- Kangsun Yun
- National Cancer Institute/NIH, Cancer and Developmental Biology Laboratory, Frederick, MD, United States of America
| | - Arthur A. Hurwitz
- National Cancer Institute/NIH, Laboratory of Molecular Immunoregulation, Frederick, MD, United States of America
| | - Alan O. Perantoni
- National Cancer Institute/NIH, Cancer and Developmental Biology Laboratory, Frederick, MD, United States of America
- * E-mail:
| |
Collapse
|
29
|
Liu H, Chen S, Yao X, Li Y, Chen CH, Liu J, Saifudeen Z, El-Dahr SS. Histone deacetylases 1 and 2 regulate the transcriptional programs of nephron progenitors and renal vesicles. Development 2018; 145:dev.153619. [PMID: 29712641 DOI: 10.1242/dev.153619] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 04/20/2018] [Indexed: 12/17/2022]
Abstract
Nephron progenitor cells (NPCs) are Six2-positive metanephric mesenchyme cells, which undergo self-renewal and differentiation to give rise to nephrons until the end of nephrogenesis. Histone deacetylases (HDACs) are a group of epigenetic regulators that control cell fate, but their role in balancing NPC renewal and differentiation is unknown. Here, we report that NPC-specific deletion of Hdac1 and Hdac2 genes in mice results in early postnatal lethality owing to renal hypodysplasia and loss of NPCs. HDAC1/2 interact with the NPC renewal regulators Six2, Osr1 and Sall1, and are co-bound along with Six2 on the Six2 enhancer. Although the mutant NPCs differentiate into renal vesicles (RVs), Hdac1/2 mutant kidneys lack nascent nephrons or mature glomeruli, a phenocopy of Lhx1 mutants. Transcriptional profiling and network analysis identified disrupted expression of Lhx1 and its downstream genes, Dll1 and Hnf1a/4a, as key mediators of the renal phenotype. Finally, although HDAC1/2-deficient NPCs and RVs overexpress hyperacetylated p53, Trp53 deletion failed to rescue the renal dysgenesis. We conclude that the epigenetic regulators HDAC1 and HDAC2 control nephrogenesis via interactions with the transcriptional programs of nephron progenitors and renal vesicles.
Collapse
Affiliation(s)
- Hongbing Liu
- Department of Pediatrics and The Tulane Hypertension & Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Shaowei Chen
- Department of Pediatrics and The Tulane Hypertension & Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Xiao Yao
- Department of Pediatrics and The Tulane Hypertension & Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Yuwen Li
- Department of Pediatrics and The Tulane Hypertension & Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Chao-Hui Chen
- Department of Pediatrics and The Tulane Hypertension & Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jiao Liu
- Department of Pediatrics and The Tulane Hypertension & Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Zubaida Saifudeen
- Department of Pediatrics and The Tulane Hypertension & Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Samir S El-Dahr
- Department of Pediatrics and The Tulane Hypertension & Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
30
|
Lorente-Sorolla J, Truchado-Garcia M, Perry KJ, Henry JQ, Grande C. Molecular, phylogenetic and developmental analyses of Sall proteins in bilaterians. EvoDevo 2018; 9:9. [PMID: 29644029 PMCID: PMC5892016 DOI: 10.1186/s13227-018-0096-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 03/17/2018] [Indexed: 11/10/2022] Open
Abstract
Background Sall (Spalt-like) proteins are zinc-finger transcription factors involved in a number of biological processes. They have only been studied in a few model organisms, such as Drosophila melanogaster, Caenorhabditis elegans, Schmidtea mediterranea and some vertebrates. Further taxon sampling is critical to understand the evolution and diversification of this protein and its functional roles in animals. Results Using genome and transcriptome mining, we confirmed the presence of sall genes in a range of additional animal taxa, for which their presence had not yet been described. We show that sall genes are broadly conserved across the Bilateria, and likely appeared in the bilaterian stem lineage. Our analysis of the protein domains shows that the characteristic arrangement of the multiple zinc-finger domains is conserved in bilaterians and may represent the ancient arrangement of this family of transcription factors. We also show the existence of a previously unknown zinc-finger domain. In situ hybridization was used to describe the gene expression patterns in embryonic and larval stages in two species of snails: Crepidula fornicata and Lottia gigantea. In L. gigantea, sall presents maternal expression, although later on the expression is restricted to the A and B quadrants during gastrulation and larval stage. In C. fornicata, sall has no maternal expression and it is expressed mainly in the A, C and D quadrants during blastula stages and in an asymmetric fashion during the larval stage. Discussion Our results suggest that the bilaterian common ancestor had a Sall protein with at least six zinc-finger domains. The evolution of Sall proteins in bilaterians might have occurred mostly as a result of the loss of protein domains and gene duplications leading to diversification. The new evidence complements previous studies in highlighting an important role of Sall proteins in bilaterian development. Our results show maternal expression of sall in the snail L. gigantea, but not C. fornicata. The asymmetric expression shown in the ectoderm of the trochophore larva of snails is probably related to shell/mantle development. The observed sall expression in cephalic tissue in snails and some other bilaterians suggests a possible ancestral role of sall in neural development in bilaterians.
Collapse
Affiliation(s)
- José Lorente-Sorolla
- 1Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,2Present Address: Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Truchado-Garcia
- 1Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,2Present Address: Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Kimberly J Perry
- 3Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL 61801 USA
| | - Jonathan Q Henry
- 3Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL 61801 USA
| | - Cristina Grande
- 1Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,2Present Address: Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.,4Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Darwin, 1; Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
31
|
Misawa K, Misawa Y, Imai A, Mochizuki D, Endo S, Mima M, Ishikawa R, Kawasaki H, Yamatodani T, Kanazawa T. Epigenetic modification of SALL1 as a novel biomarker for the prognosis of early stage head and neck cancer. J Cancer 2018; 9:941-949. [PMID: 29581773 PMCID: PMC5868161 DOI: 10.7150/jca.23527] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
This study examined Sal-like protein (SALL)1 methylation profiles in head and neck squamous-cell carcinoma (HNSCC) patients at diagnosis and follow-up, and evaluated their prognostic significance and value as a biomarker. SALL1 expression was examined in a panel of cell lines by quantitative reverse transcription PCR (qRT-PCR). Promoter methylation was determined by quantitative methylation-specific polymerase chain reaction (qMSP) and was compared to the clinical characteristics of 205 samples. SALL1 promoter methylation was associated with transcriptional inhibition and was correlated with disease recurrence in 31.7% of cases, with an odds ratio of 1.694 (95% confidence interval: 1.093-2.626; P = 0.018) by multivariate Cox proportional hazard regression analysis. SALL1 promoter hypermethylation showed highly discriminatory receiver operator characteristic curve profiles that clearly distinguished HNSCC from adjacent normal mucosal tissue, and was correlated with reduced disease-free survival in early stage T1 and T2 patients (log-rank test, P < 0.001). SALL1 methylation was significantly correlated with the methylation status of both SALL3 and CDH1. This study suggests that CpG hypermethylation is a likely mechanism of SALL1 gene inactivation, supporting the hypothesis that SALL1 might play a role in HNSCC tumorigenesis and could serve as an important biomarker.
Collapse
Affiliation(s)
- Kiyoshi Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yuki Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Atsushi Imai
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Daiki Mochizuki
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shiori Endo
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Masato Mima
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Ryuji Ishikawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hideya Kawasaki
- Department of Regenerative & Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takashi Yamatodani
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takeharu Kanazawa
- Department of Otolaryngology/Head and Neck Surgery, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
32
|
Gálvez H, Tena JJ, Giraldez F, Abelló G. The Repression of Atoh1 by Neurogenin1 during Inner Ear Development. Front Mol Neurosci 2017; 10:321. [PMID: 29104531 PMCID: PMC5655970 DOI: 10.3389/fnmol.2017.00321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/21/2017] [Indexed: 01/01/2023] Open
Abstract
Atonal homolog 1 (Atoh1) and Neurogenin1 (Neurog1) are basic Helix-Loop-Helix (bHLH) transcription factors crucial for the generation of hair cells (HCs) and neurons in the inner ear. Both genes are induced early in development, but the expression of Atoh1 is counteracted by Neurog1. As a result, HC development is prevented during neurogenesis. This work aimed at understanding the molecular basis of this interaction. Atoh1 regulation depends on a 3'Atoh1-enhancer that is the site for Atoh1 autoregulation. Reporter assays on chick embryos and P19 cells show that Neurog1 hampers the autoactivation of Atoh1, the effect being cell autonomous and independent on Notch activity. Assay for Transposase-Accessible Chromatin with high throughput sequencing (ATAC-Seq) analysis shows that the region B of the 3'Atoh1-enhancer is accessible during development and sufficient for both activation and repression. Neurog1 requires the regions flanking the class A E-box to show its repressor effect, however, it does not require binding to DNA for Atoh1 repression. This depends on the dimerization domains Helix-1 and Helix-2 and the reduction of Atoh1 protein levels. The results point towards the acceleration of Atoh1 mRNA degradation as the potential mechanism for the reduction of Atoh1 levels. Such a mechanism dissociates the prevention of Atoh1 expression in neurosensory progenitors from the unfolding of the neurogenic program.
Collapse
Affiliation(s)
- Héctor Gálvez
- DCEXS, Universitat Pompeu Fabra (UPF) - Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Fernando Giraldez
- DCEXS, Universitat Pompeu Fabra (UPF) - Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Gina Abelló
- DCEXS, Universitat Pompeu Fabra (UPF) - Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| |
Collapse
|
33
|
Basta JM, Robbins L, Denner DR, Kolar GR, Rauchman M. A Sall1-NuRD interaction regulates multipotent nephron progenitors and is required for loop of Henle formation. Development 2017; 144:3080-3094. [PMID: 28760814 DOI: 10.1242/dev.148692] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/24/2017] [Indexed: 01/03/2023]
Abstract
The formation of the proper number of nephrons requires a tightly regulated balance between renal progenitor cell self-renewal and differentiation. The molecular pathways that regulate the transition from renal progenitor to renal vesicle are not well understood. Here, we show that Sall1interacts with the nucleosome remodeling and deacetylase complex (NuRD) to inhibit premature differentiation of nephron progenitor cells. Disruption of Sall1-NuRD in vivo in knock-in mice (ΔSRM) resulted in accelerated differentiation of nephron progenitors and bilateral renal hypoplasia. Transcriptional profiling of mutant kidneys revealed a striking pattern in which genes of the glomerular and proximal tubule lineages were either unchanged or upregulated, and those in the loop of Henle and distal tubule lineages were downregulated. These global changes in gene expression were accompanied by a significant decrease in THP-, NKCC2- and AQP1-positive loop of Henle nephron segments in mutant ΔSRM kidneys. These findings highlight an important function of Sall1-NuRD interaction in the regulation of Six2-positive multipotent renal progenitor cells and formation of the loop of Henle.
Collapse
Affiliation(s)
- Jeannine M Basta
- Department of Internal Medicine, Saint Louis University, St Louis, MO 63104, USA
| | - Lynn Robbins
- Department of Internal Medicine, Saint Louis University, St Louis, MO 63104, USA
| | - Darcy R Denner
- Department of Biochemistry and Molecular Biology, Saint Louis University, St Louis, MO 63104, USA
| | - Grant R Kolar
- Department of Pathology, Saint Louis University, St Louis, MO 63104, USA
| | - Michael Rauchman
- Department of Internal Medicine, Saint Louis University, St Louis, MO 63104, USA .,Department of Biochemistry and Molecular Biology, Saint Louis University, St Louis, MO 63104, USA.,VA Saint Louis Health Care System, John Cochran Division, St Louis, MO 63106, USA
| |
Collapse
|
34
|
Abstract
p53 is best identified as a tumor suppressor for its transcriptional control of genes involved in cell cycle progression and apoptosis. Beyond its irrefutable involvement in restraining unchecked cell proliferation, research over the past several years has indicated a requirement for p53 function in sustaining normal development. Here I summarize the role of p53 in embryonic development, with a focus on knowledge gained from p53 loss and overexpression during kidney development. In contrast to its classical role in suppressing proliferative pathways, p53 positively regulates nephron progenitor cell (NPC) renewal. Emerging evidence suggests p53 may control cell fate decisions by preserving energy metabolism homeostasis of progenitors in the nephrogenic niche. Maintaining a critical level of p53 function appears to be a prerequisite for optimal nephron endowment. Defining the molecular networks targeted by p53 in the NPC may well provide new targets not only for regenerative medicine but also for cancer treatment.
Collapse
Affiliation(s)
- Zubaida Saifudeen
- Department of Pediatrics, Section of Pediatric Nephrology, Tulane University School of Medicine, 1430 Tulane Avenue, SL37, New Orleans, LA, 70112, USA.
| |
Collapse
|
35
|
Abstract
Renal anomalies are common birth defects that may manifest as a wide spectrum of anomalies from hydronephrosis (dilation of the renal pelvis and calyces) to renal aplasia (complete absence of the kidney(s)). Aneuploidies and mosaicisms are the most common syndromes associated with CAKUT. Syndromes with single gene and renal developmental defects are less common but have facilitated insight into the mechanism of renal and other organ development. Analysis of underlying genetic mutations with transgenic and mutant mice has also led to advances in our understanding of mechanisms of renal development.
Collapse
|
36
|
Rowan CJ, Sheybani-Deloui S, Rosenblum ND. Origin and Function of the Renal Stroma in Health and Disease. Results Probl Cell Differ 2017; 60:205-229. [PMID: 28409347 DOI: 10.1007/978-3-319-51436-9_8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The renal stroma is defined as a heterogeneous population of cells that serve both as a supportive framework and as a source of specialized cells in the renal capsule, glomerulus, vasculature, and interstitium. In this chapter, we review published evidence defining what, where, and why stromal cells are important. We describe the functions of the renal stroma andhow stromal derivatives are crucial for normal kidney function. Next, we review the specification of stromal cells from the Osr1+ intermediate mesoderm and T+ presomitic mesoderm during embryogenesis and stromal cell differentiation. We focus on stromal signaling mechanisms that act in both a cell and non-cell autonomous manner in communication with the nephron progenitor and ureteric lineages. To conclude, stromal cells and the contribution of stromal cells to renal fibrosis and chronic kidney disease are described.
Collapse
Affiliation(s)
- Christopher J Rowan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sepideh Sheybani-Deloui
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Norman D Rosenblum
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Division of Nephrology, Department of Paediatrics, University of Toronto, Toronto, ON, Canada.
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay St., Rm 16-9-706, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
37
|
Chambers BE, Wingert RA. Renal progenitors: Roles in kidney disease and regeneration. World J Stem Cells 2016; 8:367-375. [PMID: 27928463 PMCID: PMC5120241 DOI: 10.4252/wjsc.v8.i11.367] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/17/2016] [Accepted: 09/08/2016] [Indexed: 02/06/2023] Open
Abstract
Kidney disease is a devastating condition that affects millions of people worldwide, and its prevalence is predicted to significantly increase. The kidney is a complex organ encompassing many diverse cell types organized in a elaborate tissue architecture, making regeneration a challenging feat. In recent years, there has been a surge in the field of stem cell research to develop regenerative therapies for various organ systems. Here, we review some recent progressions in characterizing the role of renal progenitors in development, regeneration, and kidney disease in mammals. We also discuss how the zebrafish provides a unique experimental animal model that can provide a greater molecular and genetic understanding of renal progenitors, which may contribute to the development of potential regenerative therapies for human renal afflictions.
Collapse
|
38
|
Manson SR, Austin PF, Guo Q, Moore KH. BMP-7 Signaling and its Critical Roles in Kidney Development, the Responses to Renal Injury, and Chronic Kidney Disease. VITAMINS AND HORMONES 2016; 99:91-144. [PMID: 26279374 DOI: 10.1016/bs.vh.2015.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD) is a significant health problem that most commonly results from congenital abnormalities in children and chronic renal injury in adults. The therapeutic potential of BMP-7 was first recognized nearly two decades ago with studies demonstrating its requirement for kidney development and ability to inhibit the pathogenesis of renal injury in models of CKD. Since this time, our understanding of CKD has advanced considerably and treatment strategies have evolved with the identification of many additional signaling pathways, cell types, and pathologic processes that contribute to disease progression. The purpose of this review is to revisit the seminal studies that initially established the importance of BMP-7, highlight recent advances in BMP-7 research, and then integrate this knowledge with current research paradigms. We will provide an overview of the evolutionarily conserved roles of BMP proteins and the features that allow BMP signaling pathways to function as critical signaling nodes for controlling biological processes, including those related to CKD. We will discuss the multifaceted functions of BMP-7 during kidney development and the potential for alterations in BMP-7 signaling to result in congenital abnormalities and pediatric kidney disease. We will summarize the renal protective effects of recombinant BMP-7 in experimental models of CKD and then propose a model to describe the potential physiological role of endogenous BMP-7 in the innate repair mechanisms of the kidneys that respond to renal injury. Finally, we will highlight emerging clinical approaches for applying our knowledge of BMP-7 toward improving the treatment of patients with CKD.
Collapse
Affiliation(s)
- Scott R Manson
- Department of Surgery, Division of Urology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA.
| | - Paul F Austin
- Department of Surgery, Division of Urology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Qiusha Guo
- Department of Surgery, Division of Urology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Katelynn H Moore
- Department of Surgery, Division of Urology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| |
Collapse
|
39
|
Li Y, Liu J, Li W, Brown A, Baddoo M, Li M, Carroll T, Oxburgh L, Feng Y, Saifudeen Z. p53 Enables metabolic fitness and self-renewal of nephron progenitor cells. Development 2016; 142:1228-41. [PMID: 25804735 DOI: 10.1242/dev.111617] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Contrary to its classic role in restraining cell proliferation, we demonstrate here a divergent function of p53 in the maintenance of self-renewal of the nephron progenitor pool in the embryonic mouse kidney. Nephron endowment is regulated by progenitor availability and differentiation potential. Conditional deletion of p53 in nephron progenitor cells (Six2Cre(+);p53(fl/fl)) induces progressive depletion of Cited1(+)/Six2(+) self-renewing progenitors and loss of cap mesenchyme (CM) integrity. The Six2(p53-null) CM is disorganized, with interspersed stromal cells and an absence of a distinct CM-epithelia and CM-stroma interface. Impaired cell adhesion and epithelialization are indicated by decreased E-cadherin and NCAM expression and by ineffective differentiation in response to Wnt induction. The Six2Cre(+);p53(fl/fl) cap has 30% fewer Six2(GFP(+)) cells. Apoptotic index is unchanged, whereas proliferation index is significantly reduced in accordance with cell cycle analysis showing disproportionately fewer Six2Cre(+);p53(fl/fl) cells in the S and G2/M phases compared with Six2Cre(+);p53(+/+) cells. Mutant kidneys are hypoplastic with fewer generations of nascent nephrons. A significant increase in mean arterial pressure is observed in early adulthood in both germline and conditional Six2(p53-null) mice, linking p53-mediated defects in kidney development to hypertension. RNA-Seq analyses of FACS-isolated wild-type and Six2(GFP(+)) CM cells revealed that the top downregulated genes in Six2Cre(+);p53(fl/fl) CM belong to glucose metabolism and adhesion and/or migration pathways. Mutant cells exhibit a ∼ 50% decrease in ATP levels and a 30% decrease in levels of reactive oxygen species, indicating energy metabolism dysfunction. In summary, our data indicate a novel role for p53 in enabling the metabolic fitness and self-renewal of nephron progenitors.
Collapse
Affiliation(s)
- Yuwen Li
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Jiao Liu
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA The Hypertension and Renal Centers of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Wencheng Li
- Department of Biomedical Science, Colorado State University, Fort Collins, CO 80523, USA
| | - Aaron Brown
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | | | - Marilyn Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas Carroll
- Department of Internal Medicine (Nephrology) and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Leif Oxburgh
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | - Yumei Feng
- Department of Biomedical Science, Colorado State University, Fort Collins, CO 80523, USA
| | - Zubaida Saifudeen
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA The Hypertension and Renal Centers of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
40
|
Lin FJ, Lu W, Gale D, Yao Y, Zou R, Bian F, Jiang GR. Delayed diagnosis of Townes-Brocks syndrome with multicystic kidneys and renal failure caused by a novel SALL1 nonsense mutation: A case report. Exp Ther Med 2016; 11:1249-1252. [PMID: 27073431 PMCID: PMC4812390 DOI: 10.3892/etm.2016.3035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 01/15/2016] [Indexed: 12/17/2022] Open
Abstract
Townes-Brocks syndrome (TBS) is a rare autosomal dominant congenital anomaly syndrome characterized by the triad of anorectal, hand and external ear malformations. Kidney involvement is less common and may progress to end-stage renal failure (ESRF) early in life. The present study reports the case of a male patient presenting with multiple bilateral cortical kidney cysts at the age of 4 years, at which time the kidneys were of normal size and function. A clinical diagnosis of autosomal recessive polycystic kidney disease was made initially as the patient's parents are clinically healthy. However, the consideration of extra-renal involvements (imperforate anus at birth, preaxial polydactyly and dysplastic right ear) following the progression of the patient to ESRF at the age of 16 years, led to the diagnosis of TBS. This prompted sequencing of the SALL1 gene, which identified a novel heterozygous nonsense mutation in the mutational 'hotspot' of exon 2 (c.874C>T, p.Q292X), and this mutation was not detected in healthy controls. The current case highlights that TBS may present with normal sized, cystic kidneys in childhood, while recognition of extra-renal features of cystic kidney diseases, such as TBS, and genetic testing may facilitate the correct diagnosis and transmission mode. Reaching a correct diagnosis of as TBS is important since this condition has a 50% rate of transmission to offspring and can progress to ESRF early in life.
Collapse
Affiliation(s)
- Fu-Jun Lin
- Department of Nephrology, XinHua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Wei Lu
- Department of Nephrology, XinHua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Daniel Gale
- UCL Centre for Nephrology, Royal Free Campus, UCL Medical School, University College London, London NW3 2PF, United Kingdom
| | - Yao Yao
- Department of Nephrology, XinHua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Ren Zou
- Department of Medical Ultrasound, XinHua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Fan Bian
- Department of Nephrology, XinHua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Geng-Ru Jiang
- Department of Nephrology, XinHua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| |
Collapse
|
41
|
Abstract
The basic unit of kidney function is the nephron. In the mouse, around 14,000 nephrons form in a 10-day period extending into early neonatal life, while the human fetus forms the adult complement of nephrons in a 32-week period completed prior to birth. This review discusses our current understanding of mammalian nephrogenesis: the contributing cell types and the regulatory processes at play. A conceptual developmental framework has emerged for the mouse kidney. This framework is now guiding studies of human kidney development enabled in part by in vitro systems of pluripotent stem cell-seeded nephrogenesis. A near future goal will be to translate our developmental knowledge-base to the productive engineering of new kidney structures for regenerative medicine.
Collapse
Affiliation(s)
- Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
42
|
Hirsch S, El-Achkar T, Robbins L, Basta J, Heitmeier M, Nishinakamura R, Rauchman M. A mouse model of Townes-Brocks syndrome expressing a truncated mutant Sall1 protein is protected from acute kidney injury. Am J Physiol Renal Physiol 2015; 309:F852-63. [DOI: 10.1152/ajprenal.00222.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/21/2015] [Indexed: 11/22/2022] Open
Abstract
It has been postulated that developmental pathways are reutilized during repair and regeneration after injury, but functional analysis of many genes required for kidney formation has not been performed in the adult organ. Mutations in SALL1 cause Townes-Brocks syndrome (TBS) and nonsyndromic congenital anomalies of the kidney and urinary tract, both of which lead to childhood kidney failure. Sall1 is a transcriptional regulator that is expressed in renal progenitor cells and developing nephrons in the embryo. However, its role in the adult kidney has not been investigated. Using a mouse model of TBS ( Sall1 TBS), we investigated the role of Sall1 in response to acute kidney injury. Our studies revealed that Sall1 is expressed in terminally differentiated renal epithelia, including the S3 segment of the proximal tubule, in the mature kidney. Sall1 TBS mice exhibited significant protection from ischemia-reperfusion injury and aristolochic acid-induced nephrotoxicity. This protection from acute injury is seen despite the presence of slowly progressive chronic kidney disease in Sall1 TBS mice. Mice containing null alleles of Sall1 are not protected from acute kidney injury, indicating that expression of a truncated mutant protein from the Sall1 TBS allele, while causative of congenital anomalies, protects the adult kidney from injury. Our studies further revealed that basal levels of the preconditioning factor heme oxygenase-1 are elevated in Sall1 TBS kidneys, suggesting a mechanism for the relative resistance to injury in this model. Together, these studies establish a functional role for Sall1 in the response of the adult kidney to acute injury.
Collapse
Affiliation(s)
- Sara Hirsch
- Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri
- John Cochran Division, Veterans Affairs St. Louis Health Care System, St. Louis, Missouri
| | - Tarek El-Achkar
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Lynn Robbins
- Department of Internal Medicine (Nephrology), Saint Louis University, St. Louis, Missouri
- John Cochran Division, Veterans Affairs St. Louis Health Care System, St. Louis, Missouri
| | - Jeannine Basta
- Department of Internal Medicine (Nephrology), Saint Louis University, St. Louis, Missouri
- John Cochran Division, Veterans Affairs St. Louis Health Care System, St. Louis, Missouri
| | - Monique Heitmeier
- Department of Internal Medicine (Nephrology), Saint Louis University, St. Louis, Missouri
| | - Ryuichi Nishinakamura
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Michael Rauchman
- Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri
- Department of Internal Medicine (Nephrology), Saint Louis University, St. Louis, Missouri
- John Cochran Division, Veterans Affairs St. Louis Health Care System, St. Louis, Missouri
| |
Collapse
|
43
|
Uy N, Reidy K. Developmental Genetics and Congenital Anomalies of the Kidney and Urinary Tract. J Pediatr Genet 2015; 5:51-60. [PMID: 27617142 DOI: 10.1055/s-0035-1558423] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/10/2015] [Indexed: 02/06/2023]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are common birth defects and the leading cause of end-stage renal disease in children. There is a wide spectrum of renal abnormalities, from mild hydronephrosis to more severe cases, such as bilateral renal dysplasia. The etiology of the majority of cases of CAKUT remains unknown, but there is increasing evidence that genomic imbalance contributes to the pathogenesis of CAKUT. Advances in human and mouse genetics have contributed to increased understanding of the pathophysiology of CAKUT. Mutations in genes involved in both transcription factors and signal transduction pathways involved in renal development are associated with CAKUT. Large cohort studies suggest that copy number variants, genomic, or de novo mutations may explain up to one-third of all cases of CAKUT. One of the major challenges to the use of genetic information in the clinical setting remains the lack of strict genotype-phenotype correlation. However, identifying genetic causes of CAKUT may lead to improved diagnosis of extrarenal complications. With the advent of decreasing costs for whole genome and exome sequencing, future studies focused on genotype-phenotype correlations, gene modifiers, and animal models of gene mutations will be needed to translate genetic advances into improved clinical care.
Collapse
Affiliation(s)
- Natalie Uy
- Department of Pediatrics/Nephrology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Kimberly Reidy
- Department of Pediatrics/Nephrology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York, United States
| |
Collapse
|
44
|
Signaling during Kidney Development. Cells 2015; 4:112-32. [PMID: 25867084 PMCID: PMC4493451 DOI: 10.3390/cells4020112] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 12/17/2022] Open
Abstract
The kidney plays an essential role during excretion of metabolic waste products, maintenance of key homeostasis components such as ion concentrations and hormone levels. It influences the blood pressure, composition and volume. The kidney tubule system is composed of two distinct cell populations: the nephrons forming the filtering units and the collecting duct system derived from the ureteric bud. Nephrons are composed of glomeruli that filter the blood to the Bowman’s capsule and tubular structures that reabsorb and concentrate primary urine. The collecting duct is a Wolffian duct-derived epithelial tube that concentrates and collects urine and transfers it via the renal pelvis into the bladder. The mammalian kidney function depends on the coordinated development of specific cell types within a precise architectural framework. Due to the availability of modern analysis techniques, the kidney has become a model organ defining the paradigm to study organogenesis. As kidney diseases are a problem worldwide, the understanding of mammalian kidney cells is of crucial importance to develop diagnostic tools and novel therapies. This review focuses on how the pattern of renal development is generated, how the inductive signals are regulated and what are their effects on proliferation, differentiation and morphogenesis.
Collapse
|
45
|
Basta J, Rauchman M. The nucleosome remodeling and deacetylase complex in development and disease. Transl Res 2015; 165:36-47. [PMID: 24880148 PMCID: PMC4793962 DOI: 10.1016/j.trsl.2014.05.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 02/07/2023]
Abstract
The nucleosome remodeling and deacetylase (NuRD) complex is one of the major chromatin remodeling complexes found in cells. It plays an important role in regulating gene transcription, genome integrity, and cell cycle progression. Through its impact on these basic cellular processes, increasing evidence indicates that alterations in the activity of this macromolecular complex can lead to developmental defects, oncogenesis, and accelerated aging. Recent genetic and biochemical studies have elucidated the mechanisms of NuRD action in modifying the chromatin landscape. These advances have the potential to lead to new therapeutic approaches to birth defects and cancer.
Collapse
Affiliation(s)
- Jeannine Basta
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri; Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri; John Cochran Division, VA St. Louis Health Care System, St. Louis, Missouri
| | - Michael Rauchman
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri; Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri; John Cochran Division, VA St. Louis Health Care System, St. Louis, Missouri.
| |
Collapse
|