1
|
Placzek M, Chinnaiya K, Kim DW, Blackshaw S. Control of tuberal hypothalamic development and its implications in metabolic disorders. Nat Rev Endocrinol 2025; 21:118-130. [PMID: 39313573 PMCID: PMC11864813 DOI: 10.1038/s41574-024-01036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
The tuberal hypothalamus regulates a range of crucial physiological processes, including energy homeostasis and metabolism. In this Review, we explore the intricate molecular mechanisms and signalling pathways that control the development of the tuberal hypothalamus, focusing on aspects that shape metabolic outcomes. Major developmental events are discussed in the context of their effect on the establishment of both functional hypothalamic neuronal circuits and brain-body interfaces that are pivotal to the control of metabolism. Emerging evidence indicates that aberrations in molecular pathways during tuberal hypothalamic development contribute to metabolic dysregulation. Understanding the molecular underpinnings of tuberal hypothalamic development provides a comprehensive view of neurodevelopmental processes and offers a promising avenue for future targeted interventions to prevent and treat metabolic disorders.
Collapse
Affiliation(s)
- Marysia Placzek
- School of Biosciences, University of Sheffield, Sheffield, UK.
- Bateson Centre, University of Sheffield, Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, UK.
| | | | - Dong Won Kim
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Garduño‐Tamayo NA, Almazán JL, Romo‐Rodríguez R, Valle‐García D, Meza‐Sosa KF, Pérez‐Domínguez M, Pelayo R, Pedraza‐Alva G, Pérez‐Martínez L. Klf10 Regulates the Emergence of Glial Phenotypes During Hypothalamic Development. J Neurosci Res 2025; 103:e70020. [PMID: 39924964 PMCID: PMC11808290 DOI: 10.1002/jnr.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/26/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025]
Abstract
Glial cells play a pivotal role in the Central Nervous System (CNS), constituting most brain cells. Gliogenesis, crucial in CNS development, occurs after neurogenesis. In the hypothalamus, glial progenitors first generate oligodendrocytes and later astrocytes. However, the precise molecular mechanisms governing the emergence of glial lineages in the developing hypothalamus remain incompletely understood. This study reveals the pivotal role of the transcription factor KLF10 in regulating the emergence of both astrocyte and oligodendrocyte lineages during embryonic hypothalamic development. Through transcriptomic and bioinformatic analyses, we identified novel KLF10 putative target genes, which play important roles in the differentiation of neurons, astrocytes, and oligodendrocytes. Notably, in the absence of KLF10, there is an increase in the oligodendrocyte population, while the astrocyte population decreases in the embryonic hypothalamus. Strikingly, this decline in the number of astrocytes persists into adulthood, indicating that the absence of KLF10 leads to an extended period of oligodendrocyte emergence while delaying the appearance of astrocytes. Our findings also unveil a novel signaling pathway for Klf10 gene expression regulation. We demonstrate that Klf10 is a target of CREB and that its expression is upregulated via the BDNF-p38-CREB pathway. Thus, we postulate that KLF10 is an integral part of the hypothalamic developmental program that ensures the correct timing for glial phenotypes' generation. Importantly, we propose that the Klf10-/- mouse model represents a valuable tool for investigating the impact of reduced astrocyte and microglia populations in the homeostasis of the adult hypothalamus.
Collapse
Affiliation(s)
- Norma Angelica Garduño‐Tamayo
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de BiotecnologíaUniversidad Nacional Autónoma de México (UNAM)CuernavacaMorelosMexico
| | - Jorge Luis Almazán
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de BiotecnologíaUniversidad Nacional Autónoma de México (UNAM)CuernavacaMorelosMexico
| | - Rubí Romo‐Rodríguez
- Laboratorio de Citómica del Cáncer Infantil, Centro de Investigación Biomédica de OrienteDelegación PueblaPueblaMexico
| | - David Valle‐García
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de BiotecnologíaUniversidad Nacional Autónoma de México (UNAM)CuernavacaMorelosMexico
| | - Karla F. Meza‐Sosa
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de BiotecnologíaUniversidad Nacional Autónoma de México (UNAM)CuernavacaMorelosMexico
| | - Martha Pérez‐Domínguez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de BiotecnologíaUniversidad Nacional Autónoma de México (UNAM)CuernavacaMorelosMexico
| | - Rosana Pelayo
- Laboratorio de Citómica del Cáncer Infantil, Centro de Investigación Biomédica de OrienteDelegación PueblaPueblaMexico
| | - Gustavo Pedraza‐Alva
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de BiotecnologíaUniversidad Nacional Autónoma de México (UNAM)CuernavacaMorelosMexico
| | - Leonor Pérez‐Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de BiotecnologíaUniversidad Nacional Autónoma de México (UNAM)CuernavacaMorelosMexico
| |
Collapse
|
3
|
Liu Y, Wang Z, Ma T, Gao Y, Chen W, Ye Z, Li Z. Differentiation of mesenchymal stem cells towards lens epithelial stem cells based on three-dimensional bio-printed matrix. Front Cell Dev Biol 2025; 12:1526943. [PMID: 39834393 PMCID: PMC11743933 DOI: 10.3389/fcell.2024.1526943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
The high risks of traumatic cataract treatments promoted the development of the concept of autologous lens regeneration. Biochemical cues can influence the cellular behavior of stem cells, and in this case, biophysical cues may be the important factors in producing rapid activation of cellular behavior. Here we bio-printed mesenchymal stem cells (MSCs) using a commonly used bioink sodium alginate-gelatin blends, and investigated the induction effect of MSC differentiation towards lens epithelial stem cells (LESCs) under a combination of biochemical cues and biophysical cues. It was found that biochemical cues in the porous three-dimensional (3D) matrix constructed using bioink sodium alginate-gelatin blends for bio-printing did not reduce the cell viability of loaded MSCs in the matrix by scanning electron microscope (SEM) observation and cell viability detection. Loaded MSCs in the matrix were consistently upregulated in the expression of proteins and genes involved in phenotypes and development signaling pathways of LESCs, as detected by polymerase chain reaction (PCR) with the support of biochemical cues. These results indicated that biophysical cues could rapidly activate the cellular behavior of MSCs differentiation, and biochemical cues could continuously induce MSCs differentiation towards LESCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Zi Ye
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, PLA General Hospital and PLA Medical College, Beijing, China
| | - Zhaohui Li
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, PLA General Hospital and PLA Medical College, Beijing, China
| |
Collapse
|
4
|
Lu C, Zhang J, Wang B, Gao Q, Ma K, Pei S, Li J, Cui S. Casein kinase 1α is required to maintain murine hypothalamic pro-opiomelanocortin expression. iScience 2023; 26:106670. [PMID: 37168577 PMCID: PMC10165255 DOI: 10.1016/j.isci.2023.106670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/08/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
Hypothalamic pro-opiomelanocortin (POMC) neuron development is considered to play an essential role in the development of obesity. However, the underlying mechanisms remain unclear. Casein kinase 1α (CK1α) was expressed in the embryonic mouse hypothalamus at high levels and colocalized with POMC neurons. CK1α deletion in POMC neurons caused weight gain, metabolic defects, and increased food intake. The number of POMC-expressing cells was considerably decreased in Csnk1a1fl/fl;POMCcre (PKO) mice from embryonic day 15.5 to postnatal day 60, while apoptosis of POMC neurons was not affected. Furthermore, unchanged POMC progenitor cells and a decreased POMC phenotype established CK1α function in hypothalamic POMC neuron development. CK1α deletion led to elevated Notch intracellular domain (NICD) protein expression, and NICD inhibition rescued the PKO mouse phenotype. In summary, CK1α is involved in hypothalamic POMC expression via NICD-POMC signaling, deepening our understanding of POMC neuron development and control of systemic metabolic functions.
Collapse
Affiliation(s)
- Chenyang Lu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
| | - Jinglin Zhang
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
| | - Bingjie Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
| | - Qiao Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
| | - Kezhe Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
| | - Shaona Pei
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
| | - Juxue Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People’s Republic of China
- Corresponding author
| |
Collapse
|
5
|
Brito VN, Canton APM, Seraphim CE, Abreu AP, Macedo DB, Mendonca BB, Kaiser UB, Argente J, Latronico AC. The Congenital and Acquired Mechanisms Implicated in the Etiology of Central Precocious Puberty. Endocr Rev 2023; 44:193-221. [PMID: 35930274 PMCID: PMC9985412 DOI: 10.1210/endrev/bnac020] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 01/20/2023]
Abstract
The etiology of central precocious puberty (CPP) is multiple and heterogeneous, including congenital and acquired causes that can be associated with structural or functional brain alterations. All causes of CPP culminate in the premature pulsatile secretion of hypothalamic GnRH and, consequently, in the premature reactivation of hypothalamic-pituitary-gonadal axis. The activation of excitatory factors or suppression of inhibitory factors during childhood represent the 2 major mechanisms of CPP, revealing a delicate balance of these opposing neuronal pathways. Hypothalamic hamartoma (HH) is the most well-known congenital cause of CPP with central nervous system abnormalities. Several mechanisms by which hamartoma causes CPP have been proposed, including an anatomical connection to the anterior hypothalamus, autonomous neuroendocrine activity in GnRH neurons, trophic factors secreted by HH, and mechanical pressure applied to the hypothalamus. The importance of genetic and/or epigenetic factors in the underlying mechanisms of CPP has grown significantly in the last decade, as demonstrated by the evidence of genetic abnormalities in hypothalamic structural lesions (eg, hamartomas, gliomas), syndromic disorders associated with CPP (Temple, Prader-Willi, Silver-Russell, and Rett syndromes), and isolated CPP from monogenic defects (MKRN3 and DLK1 loss-of-function mutations). Genetic and epigenetic discoveries involving the etiology of CPP have had influence on the diagnosis and familial counseling providing bases for potential prevention of premature sexual development and new treatment targets in the future. Global preventive actions inducing healthy lifestyle habits and less exposure to endocrine-disrupting chemicals during the lifespan are desirable because they are potentially associated with CPP.
Collapse
Affiliation(s)
- Vinicius N Brito
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ana P M Canton
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Carlos Eduardo Seraphim
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| | - Delanie B Macedo
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
- Núcleo de Atenção Médica Integrada, Centro de Ciências da Saúde,
Universidade de Fortaleza, Fortaleza 60811 905,
Brazil
| | - Berenice B Mendonca
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| | - Jesús Argente
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology and
Department of Pediatrics, Universidad Autónoma de Madrid, Spanish PUBERE Registry,
CIBER of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, IMDEA
Institute, Madrid 28009, Spain
| | - Ana Claudia Latronico
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| |
Collapse
|
6
|
Chinnaiya K, Burbridge S, Jones A, Kim DW, Place E, Manning E, Groves I, Sun C, Towers M, Blackshaw S, Placzek M. A neuroepithelial wave of BMP signalling drives anteroposterior specification of the tuberal hypothalamus. eLife 2023; 12:e83133. [PMID: 36718990 PMCID: PMC9917434 DOI: 10.7554/elife.83133] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/29/2023] [Indexed: 02/01/2023] Open
Abstract
The tuberal hypothalamus controls life-supporting homeostatic processes, but despite its fundamental role, the cells and signalling pathways that specify this unique region of the central nervous system in embryogenesis are poorly characterised. Here, we combine experimental and bioinformatic approaches in the embryonic chick to show that the tuberal hypothalamus is progressively generated from hypothalamic floor plate-like cells. Fate-mapping studies show that a stream of tuberal progenitors develops in the anterior-ventral neural tube as a wave of neuroepithelial-derived BMP signalling sweeps from anterior to posterior through the hypothalamic floor plate. As later-specified posterior tuberal progenitors are generated, early specified anterior tuberal progenitors become progressively more distant from these BMP signals and differentiate into tuberal neurogenic cells. Gain- and loss-of-function experiments in vivo and ex vivo show that BMP signalling initiates tuberal progenitor specification, but must be eliminated for these to progress to anterior neurogenic progenitors. scRNA-Seq profiling shows that tuberal progenitors that are specified after the major period of anterior tuberal specification begin to upregulate genes that characterise radial glial cells. This study provides an integrated account of the development of the tuberal hypothalamus.
Collapse
Affiliation(s)
- Kavitha Chinnaiya
- School of BiosciencesUniversity of Sheffield, SheffieldUnited Kingdom
| | - Sarah Burbridge
- School of BiosciencesUniversity of Sheffield, SheffieldUnited Kingdom
| | - Aragorn Jones
- School of BiosciencesUniversity of Sheffield, SheffieldUnited Kingdom
| | - Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Elsie Place
- School of BiosciencesUniversity of Sheffield, SheffieldUnited Kingdom
| | - Elizabeth Manning
- School of BiosciencesUniversity of Sheffield, SheffieldUnited Kingdom
| | - Ian Groves
- School of BiosciencesUniversity of Sheffield, SheffieldUnited Kingdom
| | - Changyu Sun
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Matthew Towers
- School of BiosciencesUniversity of Sheffield, SheffieldUnited Kingdom
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Ophthalmology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Institute for Cell Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Marysia Placzek
- School of BiosciencesUniversity of Sheffield, SheffieldUnited Kingdom
- Bateson Centre, University of SheffieldSheffieldUnited Kingdom
- Neuroscience Institute, University of SheffieldSheffieldUnited Kingdom
| |
Collapse
|
7
|
Cabrera Zapata LE, Cambiasso MJ, Arevalo MA. Epigenetic modifier Kdm6a/Utx controls the specification of hypothalamic neuronal subtypes in a sex-dependent manner. Front Cell Dev Biol 2022; 10:937875. [PMID: 36268511 PMCID: PMC9577230 DOI: 10.3389/fcell.2022.937875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Kdm6a is an X-chromosome-linked H3K27me2/3 demethylase that promotes chromatin accessibility and gene transcription and is critical for tissue/cell-specific differentiation. Previous results showed higher Kdm6a levels in XX than in XY hypothalamic neurons and a female-specific requirement for Kdm6a in mediating increased axogenesis before brain masculinization. Here, we explored the sex-specific role of Kdm6a in the specification of neuronal subtypes in the developing hypothalamus. Hypothalamic neuronal cultures were established from sex-segregated E14 mouse embryos and transfected with siRNAs to knockdown Kdm6a expression (Kdm6a-KD). We evaluated the effect of Kdm6a-KD on Ngn3 expression, a bHLH transcription factor regulating neuronal sub-specification in hypothalamus. Kdm6a-KD decreased Ngn3 expression in females but not in males, abolishing basal sex differences. Then, we analyzed Kdm6a-KD effect on Ascl1, Pomc, Npy, Sf1, Gad1, and Th expression by RT-qPCR. While Kdm6a-KD downregulated Ascl1 in both sexes equally, we found sex-specific effects for Pomc, Npy, and Th. Pomc and Th expressed higher in female than in male neurons, and Kdm6a-KD reduced their levels only in females, while Npy expressed higher in male than in female neurons, and Kdm6a-KD upregulated its expression only in females. Identical results were found by immunofluorescence for Pomc and Npy neuropeptides. Finally, using ChIP-qPCR, we found higher H3K27me3 levels at Ngn3, Pomc, and Npy promoters in male neurons, in line with Kdm6a higher expression and demethylase activity in females. At all three promoters, Kdm6a-KD induced an enrichment of H3K27me3 only in females. These results indicate that Kdm6a plays a sex-specific role in controlling the expression of transcription factors and neuropeptides critical for the differentiation of hypothalamic neuronal populations regulating food intake and energy homeostasis.
Collapse
Affiliation(s)
| | - María Julia Cambiasso
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria Angeles Arevalo
- Instituto Cajal (IC), CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Place E, Manning E, Kim DW, Kinjo A, Nakamura G, Ohyama K. SHH and Notch regulate SOX9+ progenitors to govern arcuate POMC neurogenesis. Front Neurosci 2022; 16:855288. [PMID: 36033614 PMCID: PMC9404380 DOI: 10.3389/fnins.2022.855288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/20/2022] [Indexed: 12/05/2022] Open
Abstract
Pro-opiomelanocortin (POMC)-expressing neurons in the hypothalamic arcuate nucleus (ARC) play key roles in feeding and energy homoeostasis, hence their development is of great research interest. As the process of neurogenesis is accompanied by changes in adhesion, polarity, and migration that resemble aspects of epithelial-to-mesenchymal transitions (EMTs), we have characterised the expression and regulation within the prospective ARC of transcription factors with context-dependent abilities to regulate aspects of EMT. Informed by pseudotime meta-analysis of recent scRNA-seq data, we use immunohistochemistry and multiplex in situ hybridisation to show that SOX2, SRY-Box transcription factor 9 (SOX9), PROX1, Islet1 (ISL1), and SOX11 are sequentially expressed over the course of POMC neurogenesis in the embryonic chick. Through pharmacological studies ex vivo, we demonstrate that while inhibiting either sonic hedgehog (SHH) or Notch signalling reduces the number of SOX9+ neural progenitor cells, these treatments lead, respectively, to lesser and greater numbers of differentiating ISL1+/POMC+ neurons. These results are consistent with a model in which SHH promotes the formation of SOX9+ progenitors, and Notch acts to limit their differentiation. Both pathways are also required to maintain normal levels of proliferation and to suppress apoptosis. Together our findings demonstrate that hypothalamic neurogenesis is accompanied by dynamic expression of transcription factors (TFs) that mediate EMTs, and that SHH and Notch signalling converge to regulate hypothalamic cellular homoeostasis.
Collapse
Affiliation(s)
- Elsie Place
- School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | - Elizabeth Manning
- School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | - Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Arisa Kinjo
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Go Nakamura
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Kyoji Ohyama
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
9
|
Croizier S, Bouret SG. Molecular Control of the Development of Hypothalamic Neurons Involved in Metabolic Regulation. J Chem Neuroanat 2022; 123:102117. [DOI: 10.1016/j.jchemneu.2022.102117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/03/2022] [Accepted: 06/03/2022] [Indexed: 10/18/2022]
|
10
|
Lin Y, He Y, Sun W, Wang Y, Yu J. Recent advances on the relationship between the DLK1 system and central precocious puberty. Biol Reprod 2022; 107:679-683. [PMID: 35594453 DOI: 10.1093/biolre/ioac106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/14/2022] Open
Abstract
Precocious puberty, as a common pediatric endocrine disease, can be divided into central precocious puberty (CPP) and peripheral precocious puberty (PPP), even though most cases of precocious puberty are diagnosed as CPP. According to its etiology, CPP can be further divided into organic and idiopathic CPP. However, the mechanisms of idiopathic CPP have not yet been fully elucidated. Currently, four genes, including the kisspeptin gene (KISS1), the kisspeptin receptor gene (KISS1R), the makorin ring finger protein 3 (MKRN3), and the Delta-like non-canonical Notch ligand 1 (DLK1), have been implicated in CPP cases, of which DLK1 has been determined to represent a key, recently found CPP-related gene. In this review, we will not only highlight the latest discoveries on the relationship between the DLK1 system and CPP but also explore the involvement of the system as well as the Notch signaling pathway in CPP occurrence.
Collapse
Affiliation(s)
- Yating Lin
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Yuanyuan He
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Wen Sun
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Yonghong Wang
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Jian Yu
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, Shanghai, 201102, China
| |
Collapse
|
11
|
Ghaddar B, Diotel N. Zebrafish: A New Promise to Study the Impact of Metabolic Disorders on the Brain. Int J Mol Sci 2022; 23:ijms23105372. [PMID: 35628176 PMCID: PMC9141892 DOI: 10.3390/ijms23105372] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
Zebrafish has become a popular model to study many physiological and pathophysiological processes in humans. In recent years, it has rapidly emerged in the study of metabolic disorders, namely, obesity and diabetes, as the regulatory mechanisms and metabolic pathways of glucose and lipid homeostasis are highly conserved between fish and mammals. Zebrafish is also widely used in the field of neurosciences to study brain plasticity and regenerative mechanisms due to the high maintenance and activity of neural stem cells during adulthood. Recently, a large body of evidence has established that metabolic disorders can alter brain homeostasis, leading to neuro-inflammation and oxidative stress and causing decreased neurogenesis. To date, these pathological metabolic conditions are also risk factors for the development of cognitive dysfunctions and neurodegenerative diseases. In this review, we first aim to describe the main metabolic models established in zebrafish to demonstrate their similarities with their respective mammalian/human counterparts. Then, in the second part, we report the impact of metabolic disorders (obesity and diabetes) on brain homeostasis with a particular focus on the blood-brain barrier, neuro-inflammation, oxidative stress, cognitive functions and brain plasticity. Finally, we propose interesting signaling pathways and regulatory mechanisms to be explored in order to better understand how metabolic disorders can negatively impact neural stem cell activity.
Collapse
|
12
|
Bouret SG. Developmental programming of hypothalamic melanocortin circuits. Exp Mol Med 2022; 54:403-413. [PMID: 35474338 PMCID: PMC9076880 DOI: 10.1038/s12276-021-00625-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 01/14/2023] Open
Abstract
The melanocortin system plays a critical role in the central regulation of food intake and energy balance. This system consists of neurons producing pro-opiomelanocortin (POMC), melanocortin receptors (MC4Rs), and the endogenous antagonist agouti-related peptide (AgRP). Pomc and Mc4r deficiency in rodents and humans causes early onset of obesity, whereas a loss of Agrp function is associated with leanness. Accumulating evidence shows that many chronic diseases, including obesity, might originate during early life. The melanocortin system develops during a relatively long period beginning during embryonic life with the birth of POMC and AgRP neurons and continuing postnatally with the assembly of their neuronal circuitry. The development of the melanocortin system requires the tight temporal regulation of molecular factors, such as transcription factors and axon guidance molecules, and cellular mechanisms, such as autophagy. It also involves a complex interplay of endocrine and nutritional factors. The disruption of one or more of these developmental factors can lead to abnormal maturation and function of the melanocortin system and has profound metabolic consequences later in life.
Collapse
Affiliation(s)
- Sebastien G Bouret
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition Research Center, UMR-S 1172, Lille, 59000, France.
- University of Lille, FHU 1,000 Days for Health, Lille, 59000, France.
| |
Collapse
|
13
|
Aberrant Notch Signaling Pathway as a Potential Mechanism of Central Precocious Puberty. Int J Mol Sci 2022; 23:ijms23063332. [PMID: 35328752 PMCID: PMC8950842 DOI: 10.3390/ijms23063332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023] Open
Abstract
The Notch signaling pathway is highly conserved during evolution. It has been well documented that Notch signaling regulates cell proliferation, migration, and death in the nervous, cardiac, and endocrine systems. The Notch pathway is relatively simple, but its activity is regulated by numerous complex mechanisms. Ligands bind to Notch receptors, inducing their activation and cleavage. Various post-translational processes regulate Notch signaling by affecting the synthesis, secretion, activation, and degradation of Notch pathway-related proteins. Through such post-translational regulatory processes, Notch signaling has versatile effects in many tissues, including the hypothalamus. Recently, several studies have reported that mutations in genes related to the Notch signaling pathway were found in patients with central precocious puberty (CPP). CPP is characterized by the early activation of the hypothalamus–pituitary–gonadal (HPG) axis. Although genetic factors play an important role in CPP development, few associated genetic variants have been identified. Aberrant Notch signaling may be associated with abnormal pubertal development. In this review, we discuss the current knowledge about the role of the Notch signaling pathway in puberty and consider the potential mechanisms underlying CPP.
Collapse
|
14
|
Furigo IC, Dearden L. Mechanisms mediating the impact of maternal obesity on offspring hypothalamic development and later function. Front Endocrinol (Lausanne) 2022; 13:1078955. [PMID: 36619540 PMCID: PMC9813846 DOI: 10.3389/fendo.2022.1078955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
As obesity rates have risen around the world, so to have pregnancies complicated by maternal obesity. Obesity during pregnancy is not only associated with negative health outcomes for the mother and the baby during pregnancy and birth, there is also strong evidence that exposure to maternal obesity causes an increased risk to develop obesity, diabetes and cardiovascular disease later in life. Animal models have demonstrated that increased weight gain in offspring exposed to maternal obesity is usually preceded by increased food intake, implicating altered neuronal control of food intake as a likely area of change. The hypothalamus is the primary site in the brain for maintaining energy homeostasis, which it coordinates by sensing whole body nutrient status and appropriately adjusting parameters including food intake. The development of the hypothalamus is plastic and regulated by metabolic hormones such as leptin, ghrelin and insulin, making it vulnerable to disruption in an obese in utero environment. This review will summarise how the hypothalamus develops, how maternal obesity impacts on structure and function of the hypothalamus in the offspring, and the factors that are altered in an obese in utero environment that may mediate the permanent changes to hypothalamic function in exposed individuals.
Collapse
Affiliation(s)
- Isadora C. Furigo
- Centre for Sport, Exercise and Life Sciences, School of Life Sciences, Coventry University, Coventry, United Kingdom
| | - Laura Dearden
- Metabolic Research Laboratories, Wellcome MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Laura Dearden,
| |
Collapse
|
15
|
Fanis P, Morrou M, Tomazou M, Michailidou K, Spyrou GM, Toumba M, Skordis N, Neocleous V, Phylactou LA. Methylation status of hypothalamic Mkrn3 promoter across puberty. Front Endocrinol (Lausanne) 2022; 13:1075341. [PMID: 36714607 PMCID: PMC9880154 DOI: 10.3389/fendo.2022.1075341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Makorin RING finger protein 3 (MKRN3) is an important factor located on chromosome 15 in the imprinting region associated with Prader-Willi syndrome. Imprinted MKRN3 is expressed in hypothalamic regions essential for the onset of puberty and mutations in the gene have been found in patients with central precocious puberty. The pubertal process is largely controlled by epigenetic mechanisms that include, among other things, DNA methylation at CpG dinucleotides of puberty-related genes. In the present study, we investigated the methylation status of the Mkrn3 promoter in the hypothalamus of the female mouse before, during and after puberty. Initially, we mapped the 32 CpG dinucleotides in the promoter, the 5'UTR and the first 50 nucleotides of the coding region of the Mkrn3 gene. Moreover, we identified a short CpG island region (CpG islet) located within the promoter. Methylation analysis using bisulfite sequencing revealed that CpG dinucleotides were methylated regardless of developmental stage, with the lowest levels of methylation being found within the CpG islet region. In addition, the CpG islet region showed significantly lower methylation levels at the pre-pubertal stage when compared with the pubertal or post-pubertal stage. Finally, in silico analysis of transcription factor binding sites on the Mkrn3 CpG islet identified the recruitment of 29 transcriptional regulators of which 14 were transcriptional repressors. Our findings demonstrate the characterization and differential methylation of the CpG dinucleotides located in the Mkrn3 promoter that could influence the transcriptional activity in pre-pubertal compared to pubertal or post-pubertal period. Further studies are needed to clarify the possible mechanisms and effects of differential methylation of the Mkrn3 promoter.
Collapse
Affiliation(s)
- Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Maria Morrou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marios Tomazou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George M. Spyrou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Meropi Toumba
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Child Endocrine Care, Department of Pediatrics, Aretaeio Hospital, Nicosia, Cyprus
| | - Nicos Skordis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Division of Pediatric Endocrinology, Paedi Center for Specialized Pediatrics, Nicosia, Cyprus
- Medical School, University of Nicosia, Nicosia, Cyprus
| | - Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leonidas A. Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- *Correspondence: Leonidas A. Phylactou,
| |
Collapse
|
16
|
Marczenke M, Sunaga-Franze DY, Popp O, Althaus IW, Sauer S, Mertins P, Christ A, Allen BL, Willnow TE. GAS1 is required for NOTCH-dependent facilitation of SHH signaling in the ventral forebrain neuroepithelium. Development 2021; 148:272617. [PMID: 34698766 PMCID: PMC8627604 DOI: 10.1242/dev.200080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
Growth arrest-specific 1 (GAS1) acts as a co-receptor to patched 1, promoting sonic hedgehog (SHH) signaling in the developing nervous system. GAS1 mutations in humans and animal models result in forebrain and craniofacial malformations, defects ascribed to a function for GAS1 in SHH signaling during early neurulation. Here, we confirm loss of SHH activity in the forebrain neuroepithelium in GAS1-deficient mice and in induced pluripotent stem cell-derived cell models of human neuroepithelial differentiation. However, our studies document that this defect can be attributed, at least in part, to a novel role for GAS1 in facilitating NOTCH signaling, which is essential to sustain a persistent SHH activity domain in the forebrain neuroepithelium. GAS1 directly binds NOTCH1, enhancing ligand-induced processing of the NOTCH1 intracellular domain, which drives NOTCH pathway activity in the developing forebrain. Our findings identify a unique role for GAS1 in integrating NOTCH and SHH signal reception in neuroepithelial cells, and they suggest that loss of GAS1-dependent NOTCH1 activation contributes to forebrain malformations in individuals carrying GAS1 mutations.
Collapse
Affiliation(s)
- Maike Marczenke
- Molecular Physiology, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universitaet Berlin, 12169 Berlin, Germany
| | | | - Oliver Popp
- Proteomics Platform, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Irene W Althaus
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sascha Sauer
- Genomics Platform, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Philipp Mertins
- Proteomics Platform, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Annabel Christ
- Molecular Physiology, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Thomas E Willnow
- Molecular Physiology, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany.,Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
17
|
nr0b1 (DAX1) loss of function in zebrafish causes hypothalamic defects via abnormal progenitor proliferation and differentiation. J Genet Genomics 2021; 49:217-229. [PMID: 34606992 DOI: 10.1016/j.jgg.2021.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022]
Abstract
The nuclear receptor DAX-1 (encoded by the NR0B1 gene) is presented in the hypothalamic tissues in humans and other vertebrates. Human patients with NR0B1 mutations often have hypothalamic-pituitary defects, but the involvement of NR0B1 in hypothalamic development and function is not well understood. Here, we report the disruption of the nr0b1 gene in zebrafish causes abnormal expression of gonadotropins, a reduction in fertilization rate, and an increase in post-fasting food intake, which is indicative of abnormal hypothalamic functions. We find that loss of nr0b1 increases the number of prodynorphin (pdyn)-expressing neurons but decreases the number of pro-opiomelanocortin (pomcb)-expressing neurons in the zebrafish hypothalamic arcuate region (ARC). Further examination reveals that the proliferation of progenitor cells is reduced in the hypothalamus of nr0b1 mutant embryos accompanying with the decreased expression of genes in the Notch signaling pathway. Additionally, the inhibition of Notch signaling in wild-type embryos increases the number of pdyn neurons, mimicking the nr0b1 mutant phenotype. In contrast, ectopic activation of Notch signaling in nr0b1 mutant embryos decreases the number of pdyn neurons. Taken together, our results suggest that nr0b1 regulates neural progenitor proliferation and maintenance to ensure normal hypothalamic neuron development.
Collapse
|
18
|
Gu Y, Yao K, Fu Q. Lens regeneration: scientific discoveries and clinical possibilities. Mol Biol Rep 2021; 48:4911-4923. [PMID: 34143397 DOI: 10.1007/s11033-021-06489-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022]
Abstract
In the process of exploring new methods for cataract treatment, lens regeneration is an ideal strategy for effectively restoring accommodative vision and avoiding postoperative complications and has great clinical potential. Lens regeneration, which is not a simple repetition of lens development, depends on the complex regulatory network comprising the FGF, BMP/TGF-β, Notch, and Wnt signaling pathways. Current research mainly focuses on in situ and in vitro lens regeneration. On the one hand, the possibility of the autologous stem cell in situ regeneration of functional lenses has been confirmed; on the other hand, both embryonic stem cells and induced pluripotent stem cells have been induced into lentoid bodies in vitro which are similar to the natural lens to a certain extent. This article will briefly summarize the regulatory mechanisms of lens development, describe the recent progress of lens regeneration, explore the key molecular signaling pathways, and, more importantly, discuss the prospects and challenges of their clinical applications to provide reference for clinical transformations.
Collapse
Affiliation(s)
- Yuzhou Gu
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang Province, China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang Province, China. .,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China.
| | - Qiuli Fu
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang Province, China. .,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China.
| |
Collapse
|
19
|
de Souza Santos R, Gross AR, Sareen D. Hypothalamus and neuroendocrine diseases: The use of human-induced pluripotent stem cells for disease modeling. HANDBOOK OF CLINICAL NEUROLOGY 2021; 181:337-350. [PMID: 34238469 DOI: 10.1016/b978-0-12-820683-6.00025-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The hypothalamus, which is part of the brain of all vertebrate animals, is considered the link between the central nervous system (CNS) and (i) the endocrine system via the pituitary gland and (ii) with our organs via the autonomic nervous system. It synthesizes and releases neurohormones, which in turn stimulate or inhibit the secretion of other hormones within the CNS, and sends and receives signals to and from the peripheral nervous and endocrine systems. As the brain region responsible for energy homeostasis, the hypothalamus is the key regulator of thermoregulation, hunger and satiety, circadian rhythms, sleep and fatigue, memory and learning, arousal and reproductive cycling, blood pressure, and heart rate and thus orchestrates complex physiological responses in order to maintain metabolic homeostasis. These critical roles implicate the hypothalamus in neuroendocrine disorders such as obesity, diabetes, anorexia nervosa, bulimia, and others. In this chapter, we focus on the use of human-induced pluripotent stem cells (hiPSCs) and their differentiation into hypothalamic neurons in order to model neuroendocrine disorders such as extreme obesity in a dish. To do so, we discuss important steps of human hypothalamus development, neuroendocrine diseases related to the hypothalamus, multiple protocols to differentiate hiPSCs into hypothalamic neurons, and severe obesity modeling in vitro using hiPSCs-derived hypothalamic neurons.
Collapse
Affiliation(s)
- Roberta de Souza Santos
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; Cedars-Sinai Biomanufacturing Center, West Hollywood, CA, United States
| | - Andrew R Gross
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; Cedars-Sinai Biomanufacturing Center, West Hollywood, CA, United States
| | - Dhruv Sareen
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; Cedars-Sinai Biomanufacturing Center, West Hollywood, CA, United States; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States; iPSC Core, David and Janet Polak Foundation Stem Cell Core Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| |
Collapse
|
20
|
Dearden L, Buller S, Furigo IC, Fernandez-Twinn DS, Ozanne SE. Maternal obesity causes fetal hypothalamic insulin resistance and disrupts development of hypothalamic feeding pathways. Mol Metab 2020; 42:101079. [PMID: 32919096 PMCID: PMC7549144 DOI: 10.1016/j.molmet.2020.101079] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
Objective Perinatal exposure to maternal obesity results in predisposition of offspring to develop obesity later in life. Increased weight gain in offspring exposed to maternal obesity is usually associated with hyperphagia, implicating altered central regulation of food intake as a cause. We aimed to define how maternal obesity impacts early development of the hypothalamus to program lasting dysfunction in feeding regulatory pathways. Methods Mice offspring of diet-induced obese mothers were compared to the offspring of lean control mothers. We analysed gene expression in the fetal hypothalamus, alongside neurosphere assays to investigate the effects of maternal obesity on neural progenitor cell proliferation in vitro. Western blotting was used to investigate the insulin signalling pathway in the fetal hypothalamus. Characterisation of cell type and neuropeptide profile in adulthood was linked with analyses of feeding behaviour. Results There was a reduction in the expression of proliferative genes in the fetal hypothalamus of offspring exposed to maternal obesity. This reduction in proliferation was maintained in vitro when hypothalamic neural progenitor cells were grown as neurospheres. Hypothalamic fetal gene expression and neurosphere growth correlated with maternal body weight and insulin levels. Foetuses of obese mothers showed hypothalamic insulin resistance, which may be causative of reduced proliferation. Furthermore, maternal obesity activated the Notch signalling pathway in neonatal offspring hypothalamus, resulting in decreased neurogenesis. Adult offspring of obese mothers displayed an altered ratio of anorexigenic and orexigenic signals in the arcuate nucleus, associated with an inability to maintain energy homeostasis when metabolically challenged. Conclusions These findings show that maternal obesity alters the molecular signature in the developing hypothalamus, which is associated with disrupted growth and development of hypothalamic precursor cells and defective feeding regulation in adulthood. This is the first report of fetal hypothalamic insulin resistance in an obese pregnancy and suggests a mechanism by which maternal obesity causes permanent changes to hypothalamic structure and function. Exposure to maternal obesity reduces hypothalamic neural progenitor cell growth. Maternal obesity activates hypothalamic Notch signalling and reduces neurogenesis. Maternal obesity causes fetal hypothalamic insulin resistance. Maternal obesity alters the ratio of anorexigenic/orexigenic signals in ARC. Changes in food intake precede increased adiposity in offspring of obese dams.
Collapse
Affiliation(s)
- L Dearden
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Hospital, Cambridge, CB20QQ, United Kingdom.
| | - S Buller
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Hospital, Cambridge, CB20QQ, United Kingdom
| | - I C Furigo
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Hospital, Cambridge, CB20QQ, United Kingdom
| | - D S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Hospital, Cambridge, CB20QQ, United Kingdom
| | - S E Ozanne
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Hospital, Cambridge, CB20QQ, United Kingdom
| |
Collapse
|
21
|
Romanov RA, Tretiakov EO, Kastriti ME, Zupancic M, Häring M, Korchynska S, Popadin K, Benevento M, Rebernik P, Lallemend F, Nishimori K, Clotman F, Andrews WD, Parnavelas JG, Farlik M, Bock C, Adameyko I, Hökfelt T, Keimpema E, Harkany T. Molecular design of hypothalamus development. Nature 2020; 582:246-252. [PMID: 32499648 PMCID: PMC7292733 DOI: 10.1038/s41586-020-2266-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 03/05/2020] [Indexed: 12/21/2022]
Abstract
A wealth of specialized neuroendocrine command systems intercalated within the hypothalamus control the most fundamental physiological needs in vertebrates1,2. Nevertheless, we lack a developmental blueprint that integrates the molecular determinants of neuronal and glial diversity along temporal and spatial scales of hypothalamus development3. Here we combine single-cell RNA sequencing of 51,199 mouse cells of ectodermal origin, gene regulatory network (GRN) screens in conjunction with genome-wide association study-based disease phenotyping, and genetic lineage reconstruction to show that nine glial and thirty-three neuronal subtypes are generated by mid-gestation under the control of distinct GRNs. Combinatorial molecular codes that arise from neurotransmitters, neuropeptides and transcription factors are minimally required to decode the taxonomical hierarchy of hypothalamic neurons. The differentiation of γ-aminobutyric acid (GABA) and dopamine neurons, but not glutamate neurons, relies on quasi-stable intermediate states, with a pool of GABA progenitors giving rise to dopamine cells4. We found an unexpected abundance of chemotropic proliferation and guidance cues that are commonly implicated in dorsal (cortical) patterning5 in the hypothalamus. In particular, loss of SLIT-ROBO signalling impaired both the production and positioning of periventricular dopamine neurons. Overall, we identify molecular principles that shape the developmental architecture of the hypothalamus and show how neuronal heterogeneity is transformed into a multimodal neural unit to provide virtually infinite adaptive potential throughout life.
Collapse
Affiliation(s)
- Roman A. Romanov
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
- Department of Neuroscience, Biomedicum D7, Karolinska Institutet,
Solna, Sweden
| | - Evgenii O. Tretiakov
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
| | - Maria Eleni Kastriti
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Biomedicum D6, Karolinska
Institutet, Solna, Sweden
| | - Maja Zupancic
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
| | - Martin Häring
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
| | - Solomiia Korchynska
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
| | - Konstantin Popadin
- Human Genomics of Infection and Immunity, School of Life Sciences,
Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Marco Benevento
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
| | - Patrick Rebernik
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
| | - Francois Lallemend
- Department of Neuroscience, Biomedicum D7, Karolinska Institutet,
Solna, Sweden
| | - Katsuhiko Nishimori
- Deptartment of Obesity and Internal Inflammation, Fukushima Medical
University, Fukushima City, Japan
| | - Frédéric Clotman
- Laboratory of Neural Differentiation, Institute of Neuroscience,
Université Catholique de Louvain, Brussels, Belgium
| | - William D. Andrews
- Department of Cell and Developmental Biology, University College
London, London, United Kingdom
| | - John G. Parnavelas
- Department of Cell and Developmental Biology, University College
London, London, United Kingdom
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy
of Sciences, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna,
Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy
of Sciences, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna,
Vienna, Austria
| | - Igor Adameyko
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Biomedicum D6, Karolinska
Institutet, Solna, Sweden
| | - Tomas Hökfelt
- Department of Neuroscience, Biomedicum D7, Karolinska Institutet,
Solna, Sweden
| | - Erik Keimpema
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
- Department of Neuroscience, Biomedicum D7, Karolinska Institutet,
Solna, Sweden
| |
Collapse
|
22
|
Haddad-Tóvolli R, Altirriba J, Obri A, Sánchez EE, Chivite I, Milà-Guasch M, Ramírez S, Gómez-Valadés AG, Pozo M, Burguet J, Velloso LA, Claret M. Pro-opiomelanocortin (POMC) neuron translatome signatures underlying obesogenic gestational malprogramming in mice. Mol Metab 2020; 36:100963. [PMID: 32283518 PMCID: PMC7152705 DOI: 10.1016/j.molmet.2020.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Maternal unbalanced nutritional habits during embryonic development and perinatal stages perturb hypothalamic neuronal programming of the offspring, thus increasing obesity-associated diabetes risk. However, the underlying molecular mechanisms remain largely unknown. In this study we sought to determine the translatomic signatures associated with pro-opiomelanocortin (POMC) neuron malprogramming in maternal obesogenic conditions. METHODS We used the RiboTag mouse model to specifically profile the translatome of POMC neurons during neonatal (P0) and perinatal (P21) life and its neuroanatomical, functional, and physiological consequences. RESULTS Maternal high-fat diet (HFD) exposure did not interfere with offspring's hypothalamic POMC neuron specification, but significantly impaired their spatial distribution and axonal extension to target areas. Importantly, we established POMC neuron-specific translatome signatures accounting for aberrant neuronal development and axonal growth. These anatomical and molecular alterations caused metabolic dysfunction in early life and adulthood. CONCLUSIONS Our study provides fundamental insights on the molecular mechanisms underlying POMC neuron malprogramming in obesogenic contexts.
Collapse
Affiliation(s)
- Roberta Haddad-Tóvolli
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Jordi Altirriba
- Laboratory of Metabolism, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Arnaud Obri
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Elena Eyre Sánchez
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Iñigo Chivite
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Maria Milà-Guasch
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Sara Ramírez
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Alicia G Gómez-Valadés
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Macarena Pozo
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Jasmine Burguet
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France.
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Brazil.
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain; School of Medicine, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
23
|
Cellular fate decisions in the developing female anteroventral periventricular nucleus are regulated by canonical Notch signaling. Dev Biol 2018; 442:87-100. [PMID: 29885287 DOI: 10.1016/j.ydbio.2018.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/05/2018] [Indexed: 01/20/2023]
Abstract
The hypothalamic anteroventral periventricular nucleus (AVPV) is the major regulator of reproductive function within the hypothalamic-pituitary-gonadal (HPG) axis. Despite an understanding of the function of neuronal subtypes within the AVPV, little is known about the molecular mechanisms regulating their development. Previous work from our laboratory has demonstrated that Notch signaling is required in progenitor cell maintenance and formation of kisspeptin neurons of the arcuate nucleus (ARC) while simultaneously restraining POMC neuron number. Based on these findings, we hypothesized that the Notch signaling pathway may act similarly in the AVPV by promoting development of kisspeptin neurons at the expense of other neuronal subtypes. To address this hypothesis, we utilized a genetic mouse model with a conditional loss of Rbpj in Nkx2.1 expressing cells (Rbpj cKO). We noted an increase in cellular proliferation, as marked by Ki-67, in the hypothalamic ventricular zone (HVZ) in Rbpj cKO mice at E13.5. This corresponded to an increase in general neurogenesis and more TH-positive neurons. Additionally, an increase in OLIG2-positive early oligodendrocytic precursor cells was observed at postnatal day 0 in Rbpj cKO mice. By 5 weeks of age in Rbpj cKO mice, TH-positive cells were readily detected in the AVPV but few kisspeptin neurons were present. To elucidate the direct effects of Notch signaling on neuron and glia differentiation, an in vitro primary hypothalamic neurosphere assay was employed. We demonstrated that treatment with the chemical Notch inhibitor DAPT increased mKi67 and Olig2 mRNA expression while decreasing astroglial Gfap expression, suggesting Notch signaling regulates both proliferation and early glial fate decisions. A modest increase in expression of TH in both the cell soma and neurite extensions was observed after extended culture, suggesting that inhibition of Notch signaling alone is enough to bias progenitors towards a dopaminergic fate. Together, these data suggest that Notch signaling restricts early cellular proliferation and differentiation of neurons and oligodendrocytes both in vivo and in vitro and acts as a fate selector of kisspeptin neurons.
Collapse
|
24
|
Development of neuroendocrine neurons in the mammalian hypothalamus. Cell Tissue Res 2018; 375:23-39. [PMID: 29869716 DOI: 10.1007/s00441-018-2859-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022]
Abstract
The neuroendocrine system consists of a heterogeneous collection of (mostly) neuropeptidergic neurons found in four hypothalamic nuclei and sharing the ability to secrete neurohormones (all of them neuropeptides except dopamine) into the bloodstream. There are, however, abundant hypothalamic non-neuroendocrine neuropeptidergic neurons developing in parallel with the neuroendocrine system, so that both cannot be entirely disentangled. This heterogeneity results from the workings of a network of transcription factors many of which are already known. Olig2 and Fezf2 expressed in the progenitors, acting through mantle-expressed Otp and Sim1, Sim2 and Pou3f2 (Brn2), regulate production of magnocellular and anterior parvocellular neurons. Nkx2-1, Rax, Ascl1, Neurog3 and Dbx1 expressed in the progenitors, acting through mantle-expressed Isl1, Dlx1, Gsx1, Bsx, Hmx2/3, Ikzf1, Nr5a2 (LH-1) and Nr5a1 (SF-1) are responsible for tuberal parvocellular (arcuate nucleus) and other neuropeptidergic neurons. The existence of multiple progenitor domains whose progeny undergoes intricate tangential migrations as one source of complexity in the neuropeptidergic hypothalamus is the focus of much attention. How neurosecretory cells target axons to the medial eminence and posterior hypophysis is gradually becoming clear and exciting progress has been made on the mechanisms underlying neurovascular interface formation. While rat neuroanatomy and targeted mutations in mice have yielded fundamental knowledge about the neuroendocrine system in mammals, experiments on chick and zebrafish are providing key information about cellular and molecular mechanisms. Looking forward, data from every source will be necessary to unravel the ways in which the environment affects neuroendocrine development with consequences for adult health and disease.
Collapse
|
25
|
Zhang JW, Pang B, Zhao Q, Chang Y, Wang YL, Jiang YD, Jing L. Hyperhomocysteinemia induces injury in olfactory bulb neurons by downregulating Hes1 and Hes5 expression. Neural Regen Res 2018; 13:272-279. [PMID: 29557377 PMCID: PMC5879899 DOI: 10.4103/1673-5374.220779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hyperhomocysteinemia has been shown to be associated with neurodegenerative diseases; however, lesions or histological changes and mechanisms underlying homocysteine-induced injury in olfactory bulb neurons remain unclear. In this study, hyperhomocysteinemia was induced in apolipoprotein E-deficient mice with 1.7% methionine. Pathological changes in the olfactory bulb were observed through hematoxylin-eosin and Pischingert staining. Cell apoptosis in the olfactory bulb was determined through terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. Transmission electron microscopy revealed an abnormal ultrastructure of neurons. Furthermore, immunoreactivity and expression of the hairy enhancer of the split 1 (Hes1) and Hes5 were measured using immunohistochemistry, immunofluorescence, and western blot assay. Our results revealed no significant structural abnormality in the olfactory bulb of hyperhomocysteinemic mice. However, the number of TUNEL-positive cells increased in the olfactory bulb, lipofuscin and vacuolization were visible in mitochondria, and the expression of Hes1 and Hes5 decreased. These findings confirm that hyperhomocysteinemia induces injury in olfactory bulb neurons by downregulating Hes1 and Hes5 expression.
Collapse
Affiliation(s)
- Jing-Wen Zhang
- School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region; Institute of Immunopathology, Medical School, Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Bo Pang
- School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Qi Zhao
- School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Yue Chang
- School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Yi-Li Wang
- Institute of Immunopathology, Medical School, Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yi-Deng Jiang
- School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Li Jing
- School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| |
Collapse
|
26
|
Zhang JW, Yan R, Tang YS, Guo YZ, Chang Y, Jing L, Wang YL, Zhang JZ. Hyperhomocysteinemia-induced autophagy and apoptosis with downregulation of hairy enhancer of split 1/5 in cortical neurons in mice. Int J Immunopathol Pharmacol 2017; 30:371-382. [PMID: 29171783 PMCID: PMC5806807 DOI: 10.1177/0394632017740061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
It has been reported that hyperhomocysteinemia (HHcy) is associated with neurodegenerative and cardiovascular diseases. However, little is known about brain histomorphology, neuronal organelles, and hairy enhancer of split (hes) expression under HHcy. In this study, non-HHcy and HHcy induced by high-methionine diet in apolipoprotein E–deficient (Apo E−/−) mice were comparatively investigated. The histomorphology, ultrastructure, autophagosomes, apoptosis, and expression of proteins, HES1, HES5 and P62, were designed to assess the effects of HHcy on brain. The results showed that compared to the non-HHcy mice, the HHcy group had an increase in autophagosomes, vacuolization in mitochondria, and neuron apoptosis; treatment with folate and vitamin B12 reduced the extent of these lesions. However, the elementary histomorphology, the numbers of cortical neurons, and Nissl bodies had no significant difference between the HHcy and the non-HHcy groups or the group treated with folate and vitamin B12. Immunohistochemistry and immunofluorescence demonstrated a decrease in HES1- or HES5-positive neurons in the HHcy group when compared to the non-HHcy groups, wild-type, and Apo E−/− controls, or the HHcy mice with folate and vitamin B12 supplement. Western blots showed that HHcy induced a decreased expression of HES1 and HES5, or P62, in which the expression of HES1 and P62 was elevated by treating with folate and vitamin B12 supplement. These results suggest that HHcy-enhanced brain damage is associated with increased autophagy and neuronal apoptosis in Apo E−/− mice, in which downregulation of hes1 and hes5 is involved.
Collapse
Affiliation(s)
- Jing-Wen Zhang
- 1 Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Immunopathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,2 School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Ru Yan
- 2 School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,3 Heart Centre, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yu-Sheng Tang
- 2 School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Yong-Zhen Guo
- 2 School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Yue Chang
- 2 School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Li Jing
- 2 School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Yi-Li Wang
- 1 Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Immunopathology, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Jian-Zhong Zhang
- 2 School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,4 Department of Pathology, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
27
|
Abstract
The hypothalamus is an evolutionarily conserved brain structure that regulates an organism's basic functions, such as homeostasis and reproduction. Several hypothalamic nuclei and neuronal circuits have been the focus of many studies seeking to understand their role in regulating these basic functions. Within the hypothalamic neuronal populations, the arcuate melanocortin system plays a major role in controlling homeostatic functions. The arcuate pro-opiomelanocortin (POMC) neurons in particular have been shown to be critical regulators of metabolism and reproduction because of their projections to several brain areas both in and outside of the hypothalamus, such as autonomic regions of the brain stem and spinal cord. Here, we review and discuss the current understanding of POMC neurons from their development and intracellular regulators to their physiological functions and pathological dysregulation.
Collapse
Affiliation(s)
- Chitoku Toda
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut 06520; .,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Anna Santoro
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut 06520; .,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Jung Dae Kim
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut 06520; .,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Sabrina Diano
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut 06520; .,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520.,Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520.,Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
28
|
Xie Y, Dorsky RI. Development of the hypothalamus: conservation, modification and innovation. Development 2017; 144:1588-1599. [PMID: 28465334 DOI: 10.1242/dev.139055] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hypothalamus, which regulates fundamental aspects of physiological homeostasis and behavior, is a brain region that exhibits highly conserved anatomy across vertebrate species. Its development involves conserved basic mechanisms of induction and patterning, combined with a more plastic process of neuronal fate specification, to produce brain circuits that mediate physiology and behavior according to the needs of each species. Here, we review the factors involved in the induction, patterning and neuronal differentiation of the hypothalamus, highlighting recent evidence that illustrates how changes in Wnt/β-catenin signaling during development may lead to species-specific form and function of this important brain structure.
Collapse
Affiliation(s)
- Yuanyuan Xie
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Richard I Dorsky
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
29
|
Feng S, Shi T, Qiu J, Yang H, Wu Y, Zhou W, Wang W, Wu H. Notch1 deficiency in postnatal neural progenitor cells in the dentate gyrus leads to emotional and cognitive impairment. FASEB J 2017; 31:4347-4358. [PMID: 28611114 DOI: 10.1096/fj.201700216rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/30/2017] [Indexed: 01/19/2023]
Abstract
It is well known that Notch1 signaling plays a crucial role in embryonic neural development and adult neurogenesis. The latest evidence shows that Notch1 also plays a critical role in synaptic plasticity in mature hippocampal neurons. So far, deeper insights into the function of Notch1 signaling during the different steps of adult neurogenesis are still lacking, and the mechanisms by which Notch1 dysfunction is associated with brain disorders are also poorly understood. In the current study, we found that Notch1 was highly expressed in the adult-born immature neurons in the hippocampal dentate gyrus. Using a genetic approach to selectively ablate Notch1 signaling in late immature precursors in the postnatal hippocampus by cross-breeding doublecortin (DCX)+ neuron-specific proopiomelanocortin (POMC)-α Cre mice with floxed Notch1 mice, we demonstrated a previously unreported pivotal role of Notch1 signaling in survival and function of adult newborn neurons in the dentate gyrus. Moreover, behavioral and functional studies demonstrated that POMC-Notch1-/- mutant mice showed anxiety and depressive-like behavior with impaired synaptic transmission properties in the dentate gyrus. Finally, our mechanistic study showed significantly compromised phosphorylation of cAMP response element-binding protein (CREB) in Notch1 mutants, suggesting that the dysfunction of Notch1 mutants is associated with the disrupted pCREB signaling in postnatally generated immature neurons in the dentate gyrus.-Feng, S., Shi, T., Qiu, J., Yang, H., Wu, Y., Zhou, W., Wang, W., Wu, H. Notch1 deficiency in postnatal neural progenitor cells in the dentate gyrus leads to emotional and cognitive impairment.
Collapse
Affiliation(s)
- Shufang Feng
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tianyao Shi
- Department of Traditional Chinese Medicine (TCM) and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jiangxia Qiu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Haihong Yang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yan Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wenxia Zhou
- Department of Traditional Chinese Medicine (TCM) and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wei Wang
- Department of Orthopedics Research Institute, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China; .,Key Laboratory of Neuroregeneration, Coinnovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
30
|
Bassnett S, Šikić H. The lens growth process. Prog Retin Eye Res 2017; 60:181-200. [PMID: 28411123 DOI: 10.1016/j.preteyeres.2017.04.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 01/17/2023]
Abstract
The factors that regulate the size of organs to ensure that they fit within an organism are not well understood. A simple organ, the ocular lens serves as a useful model with which to tackle this problem. In many systems, considerable variance in the organ growth process is tolerable. This is almost certainly not the case in the lens, which in addition to fitting comfortably within the eyeball, must also be of the correct size and shape to focus light sharply onto the retina. Furthermore, the lens does not perform its optical function in isolation. Its growth, which continues throughout life, must therefore be coordinated with that of other tissues in the optical train. Here, we review the lens growth process in detail, from pioneering clinical investigations in the late nineteenth century to insights gleaned more recently in the course of cell and molecular studies. During embryonic development, the lens forms from an invagination of surface ectoderm. Consequently, the progenitor cell population is located at its surface and differentiated cells are confined to the interior. The interactions that regulate cell fate thus occur within the obligate ellipsoidal geometry of the lens. In this context, mathematical models are particularly appropriate tools with which to examine the growth process. In addition to identifying key growth determinants, such models constitute a framework for integrating cell biological and optical data, helping clarify the relationship between gene expression in the lens and image quality at the retinal plane.
Collapse
Affiliation(s)
- Steven Bassnett
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, USA.
| | - Hrvoje Šikić
- Department of Mathematics, Faculty of Science, University of Zagreb, Croatia
| |
Collapse
|
31
|
Epigenomic and metabolic responses of hypothalamic POMC neurons to gestational nicotine exposure in adult offspring. Genome Med 2016; 8:93. [PMID: 27609221 PMCID: PMC5015242 DOI: 10.1186/s13073-016-0348-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/23/2016] [Indexed: 01/06/2023] Open
Abstract
Background Epidemiological and animal studies have reported that prenatal nicotine exposure (PNE) leads to obesity and type-2 diabetes in offspring. Central leptin-melanocortin signaling via hypothalamic arcuate proopiomelanocortin (POMC) neurons is crucial for the regulation of energy and glucose balance. Furthermore, hypothalamic POMC neurons were recently found to mediate the anorectic effects of nicotine through activation of acetylcholine receptors. Here, we hypothesized that PNE impairs leptin-melanocortinergic regulation of energy balance in first-generation offspring by altering expression of long non-coding RNAs (lncRNAs) putatively regulating development and/or function of hypothalamic POMC neurons. Methods C57BL/6J females were exposed ad libitum to nicotine through drinking water and crossed with C57BL/6J males. Nicotine exposure was sustained during pregnancy and discontinued at parturition. Offspring development was monitored from birth into adulthood. From the age of 8 weeks, central leptin-melanocortin signaling, diabetes, and obesity susceptibility were assessed in male offspring fed a low-fat or high-fat diet for 16 weeks. Nicotine-exposed and non-exposed C57BL/6J females were also crossed with C57BL/6J males expressing the enhanced green fluorescent protein specifically in POMC neurons. Transgenic male offspring were subjected to laser microdissections and RNA sequencing (RNA-seq) analysis of POMC neurons for determination of nicotine-induced gene expression changes and regulatory lncRNA/protein-coding gene interactions. Results Contrary to expectation based on previous studies, PNE did not impair but rather enhanced leptin-melanocortinergic regulation of energy and glucose balance via POMC neurons in offspring. RNA-seq of laser microdissected POMC neurons revealed only one consistent change, upregulation of Gm15851, a lncRNA of yet unidentified function, in nicotine-exposed offspring. RNA-seq further suggested 82 cis-regulatory lncRNA/protein-coding gene interactions, 19 of which involved coding genes regulating neural development and/or function, and revealed expression of several previously unidentified metabolic, neuroendocrine, and neurodevelopment pathways in POMC neurons. Conclusions PNE does not result in obesity and type 2 diabetes but instead enhances leptin-melanocortinergic feeding and body weight regulation via POMC neurons in adult offspring. PNE leads to selective upregulation of Gm15851, a lncRNA, in adult offspring POMC neurons. POMC neurons express several lncRNAs and pathways possibly regulating POMC neuronal development and/or function. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0348-2) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Watanabe K, Nakayama K, Ohta S, Tago K, Boonvisut S, Millings EJ, Fischer SG, LeDuc CA, Leibel RL, Iwamoto S. ZNF70, a novel ILDR2-interacting protein, contributes to the regulation of HES1 gene expression. Biochem Biophys Res Commun 2016; 477:712-716. [DOI: 10.1016/j.bbrc.2016.06.124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/24/2016] [Indexed: 01/20/2023]
|
33
|
Wang L, Egli D, Leibel RL. Efficient Generation of Hypothalamic Neurons from Human Pluripotent Stem Cells. ACTA ACUST UNITED AC 2016; 90:21.5.1-21.5.14. [PMID: 27367166 DOI: 10.1002/cphg.3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The hypothalamus comprises neuronal clusters that are essential for body weight regulation and other physiological functions. Insights into the complex cellular physiology of this region of the brain are critical to understanding the pathogenesis of obesity, but human hypothalamic cells are largely inaccessible for direct study. Here we describe a technique for generation of arcuate-like hypothalamic neurons from human pluripotent stem (hPS) cells. Early activation of SHH signaling and inhibition of BMP and TGFβ signaling, followed by timed inhibition of NOTCH, can efficiently differentiate hPS cells into NKX2.1+ hypothalamic progenitors. Subsequent incubation with BDNF induces the differentiation and maturation of pro-opiomelanocortin and neuropeptide Y neurons, which are major cell types in the arcuate hypothalamus. These neurons have molecular and cellular characteristics consistent with arcuate neurons. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Liheng Wang
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, New York.,Division of Molecular Genetics, Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Dieter Egli
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, New York.,Division of Molecular Genetics, Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York.,New York Stem Cell Foundation Research Institute, New York, New York
| | - Rudolph L Leibel
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, New York.,Division of Molecular Genetics, Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
34
|
Aujla PK, Bogdanovic V, Naratadam GT, Raetzman LT. Persistent expression of activated notch in the developing hypothalamus affects survival of pituitary progenitors and alters pituitary structure. Dev Dyn 2016; 244:921-34. [PMID: 25907274 DOI: 10.1002/dvdy.24283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND As the pituitary gland develops, signals from the hypothalamus are necessary for pituitary induction and expansion. Little is known about the control of cues that regulate early signaling between the two structures. Ligands and receptors of the Notch signaling pathway are found in both the hypothalamus and Rathke's pouch. The downstream Notch effector gene Hes1 is required for proper pituitary formation; however, these effects could be due to the action of Hes1 in the hypothalamus, Rathke's pouch, or both. To determine the contribution of hypothalamic Notch signaling to pituitary organogenesis, we used mice with loss and gain of Notch function within the developing hypothalamus. RESULTS We demonstrate that loss of Notch signaling by conditional deletion of Rbpj in the hypothalamus does not affect expression of Hes1 within the posterior hypothalamus or expression of Hes5. In contrast, expression of activated Notch within the hypothalamus results in ectopic Hes5 expression and increased Hes1 expression, which is sufficient to disrupt pituitary development and postnatal expansion. CONCLUSIONS Taken together, our results indicate that Rbpj-dependent Notch signaling within the developing hypothalamus is not necessary for pituitary development, but persistent Notch signaling and ectopic Hes5 expression in hypothalamic progenitors affects pituitary induction and expansion.
Collapse
Affiliation(s)
- Paven K Aujla
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Vedran Bogdanovic
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - George T Naratadam
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Lori T Raetzman
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
35
|
Abstract
The neuroendocrine hypothalamus is composed of the tuberal and anterodorsal hypothalamus, together with the median eminence/neurohypophysis. It centrally governs wide-ranging physiological processes, including homeostasis of energy balance, circadian rhythms and stress responses, as well as growth and reproductive behaviours. Homeostasis is maintained by integrating sensory inputs and effecting responses via autonomic, endocrine and behavioural outputs, over diverse time-scales and throughout the lifecourse of an individual. Here, we summarize studies that begin to reveal how different territories and cell types within the neuroendocrine hypothalamus are assembled in an integrated manner to enable function, thus supporting the organism's ability to survive and thrive. We discuss how signaling pathways and transcription factors dictate the appearance and regionalization of the hypothalamic primordium, the maintenance of progenitor cells, and their specification and differentiation into neurons. We comment on recent studies that harness such programmes for the directed differentiation of human ES/iPS cells. We summarize how developmental plasticity is maintained even into adulthood and how integration between the hypothalamus and peripheral body is established in the median eminence and neurohypophysis. Analysis of model organisms, including mouse, chick and zebrafish, provides a picture of how complex, yet elegantly coordinated, developmental programmes build glial and neuronal cells around the third ventricle of the brain. Such conserved processes enable the hypothalamus to mediate its function as a central integrating and response-control mediator for the homeostatic processes that are critical to life. Early indications suggest that deregulation of these events may underlie multifaceted pathological conditions and dysfunctional physiology in humans, such as obesity.
Collapse
Affiliation(s)
- Sarah Burbridge
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Iain Stewart
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Marysia Placzek
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
36
|
Biamino E, Di Gregorio E, Belligni EF, Keller R, Riberi E, Gandione M, Calcia A, Mancini C, Giorgio E, Cavalieri S, Pappi P, Talarico F, Fea AM, De Rubeis S, Cirillo Silengo M, Ferrero GB, Brusco A. A novel 3q29 deletion associated with autism, intellectual disability, psychiatric disorders, and obesity. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:290-9. [PMID: 26620927 DOI: 10.1002/ajmg.b.32406] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/12/2015] [Indexed: 12/22/2022]
Abstract
Copy number variation (CNV) has been associated with a variety of neuropsychiatric disorders, including intellectual disability/developmental delay (ID/DD), autism spectrum disorder (ASD), and schizophrenia (SCZ). Often, individuals carrying the same pathogenic CNV display high clinical variability. By array-CGH analysis, we identified a novel familial 3q29 deletion (1.36 Mb), centromeric to the 3q29 deletion region, which manifests with variable expressivity. The deletion was identified in a 3-year-old girl diagnosed with ID/DD and autism and segregated in six family members, all affected by severe psychiatric disorders including schizophrenia, major depression, anxiety disorder, and personality disorder. All individuals carrying the deletion were overweight or obese, and anomalies compatible with optic atrophy were observed in three out of four cases examined. Amongst the 10 genes encompassed by the deletion, the haploinsufficiency of Optic Atrophy 1 (OPA1), associated with autosomal dominant optic atrophy, is likely responsible for the ophthalmological anomalies. We hypothesize that the haploinsufficiency of ATPase type 13A4 (ATP13A4) and/or Hairy/Enhancer of Split Drosophila homolog 1 (HES1) contribute to the neuropsychiatric phenotype, while HES1 deletion might underlie the overweight/obesity. In conclusion, we propose a novel contiguous gene syndrome due to a proximal 3q29 deletion variably associated with autism, ID/DD, psychiatric traits and overweight/obesity.
Collapse
Affiliation(s)
- Elisa Biamino
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | - Eleonora Di Gregorio
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, Italy
| | - Elga Fabia Belligni
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | | | - Evelise Riberi
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | - Marina Gandione
- Department of Neuropsychiatry, University of Torino, Torino, Italy
| | | | - Cecilia Mancini
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Elisa Giorgio
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Simona Cavalieri
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, Italy.,Department of Medical Sciences, University of Torino, Torino, Italy
| | - Patrizia Pappi
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, Italy
| | - Flavia Talarico
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, Italy
| | - Antonio M Fea
- Department of Surgical Sciences, University of Torino, Torino, Italy
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | - Alfredo Brusco
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, Italy.,Department of Medical Sciences, University of Torino, Torino, Italy
| |
Collapse
|
37
|
Rbpj-κ mediated Notch signaling plays a critical role in development of hypothalamic Kisspeptin neurons. Dev Biol 2015; 406:235-46. [PMID: 26318021 DOI: 10.1016/j.ydbio.2015.08.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 02/06/2023]
Abstract
The mammalian arcuate nucleus (ARC) houses neurons critical for energy homeostasis and sexual maturation. Proopiomelanocortin (POMC) and Neuropeptide Y (NPY) neurons function to balance energy intake and Kisspeptin neurons are critical for the onset of puberty and reproductive function. While the physiological roles of these neurons have been well established, their development remains unclear. We have previously shown that Notch signaling plays an important role in cell fate within the ARC of mice. Active Notch signaling prevented neural progenitors from differentiating into feeding circuit neurons, whereas conditional loss of Notch signaling lead to a premature differentiation of these neurons. Presently, we hypothesized that Kisspeptin neurons would similarly be affected by Notch manipulation. To address this, we utilized mice with a conditional deletion of the Notch signaling co-factor Rbpj-κ (Rbpj cKO), or mice persistently expressing the Notch1 intracellular domain (NICD tg) within Nkx2.1 expressing cells of the developing hypothalamus. Interestingly, we found that in both models, a lack of Kisspeptin neurons are observed. This suggests that Notch signaling must be properly titrated for formation of Kisspeptin neurons. These results led us to hypothesize that Kisspeptin neurons of the ARC may arise from a different lineage of intermediate progenitors than NPY neurons and that Notch was responsible for the fate choice between these neurons. To determine if Kisspeptin neurons of the ARC differentiate similarly through a Pomc intermediate, we utilized a genetic model expressing the tdTomato fluorescent protein in all cells that have ever expressed Pomc. We observed some Kisspeptin expressing neurons labeled with the Pomc reporter similar to NPY neurons, suggesting that these distinct neurons can arise from a common progenitor. Finally, we hypothesized that temporal differences leading to premature depletion of progenitors in cKO mice lead to our observed phenotype. Using a BrdU birthdating paradigm, we determined the percentage of NPY and Kisspeptin neurons born on embryonic days 11.5, 12.5, and 13.5. We found no difference in the timing of differentiation of either neuronal subtype, with a majority occurring at e11.5. Taken together, our findings suggest that active Notch signaling is an important molecular switch involved in instructing subpopulations of progenitor cells to differentiate into Kisspeptin neurons.
Collapse
|
38
|
Bedont JL, Newman EA, Blackshaw S. Patterning, specification, and differentiation in the developing hypothalamus. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:445-68. [PMID: 25820448 DOI: 10.1002/wdev.187] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 12/21/2022]
Abstract
Owing to its complex structure and highly diverse cell populations, the study of hypothalamic development has historically lagged behind that of other brain regions. However, in recent years, a greatly expanded understanding of hypothalamic gene expression during development has opened up new avenues of investigation. In this review, we synthesize existing work to present a holistic picture of hypothalamic development from early induction and patterning through nuclear specification and differentiation, with a particular emphasis on determination of cell fate. We will also touch on special topics in the field including the prosomere model, adult neurogenesis, and integration of migratory cells originating outside the hypothalamic neuroepithelium, and how these topics relate to our broader theme.
Collapse
Affiliation(s)
- Joseph L Bedont
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth A Newman
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,High-Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
39
|
Wang L, Meece K, Williams DJ, Lo KA, Zimmer M, Heinrich G, Martin Carli J, Leduc CA, Sun L, Zeltser LM, Freeby M, Goland R, Tsang SH, Wardlaw SL, Egli D, Leibel RL. Differentiation of hypothalamic-like neurons from human pluripotent stem cells. J Clin Invest 2015; 125:796-808. [PMID: 25555215 DOI: 10.1172/jci79220] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/20/2014] [Indexed: 12/29/2022] Open
Abstract
The hypothalamus is the central regulator of systemic energy homeostasis, and its dysfunction can result in extreme body weight alterations. Insights into the complex cellular physiology of this region are critical to the understanding of obesity pathogenesis; however, human hypothalamic cells are largely inaccessible for direct study. Here, we developed a protocol for efficient generation of hypothalamic neurons from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) obtained from patients with monogenetic forms of obesity. Combined early activation of sonic hedgehog signaling followed by timed NOTCH inhibition in human ESCs/iPSCs resulted in efficient conversion into hypothalamic NKX2.1+ precursors. Application of a NOTCH inhibitor and brain-derived neurotrophic factor (BDNF) further directed the cells into arcuate nucleus hypothalamic-like neurons that express hypothalamic neuron markers proopiomelanocortin (POMC), neuropeptide Y (NPY), agouti-related peptide (AGRP), somatostatin, and dopamine. These hypothalamic-like neurons accounted for over 90% of differentiated cells and exhibited transcriptional profiles defined by a hypothalamic-specific gene expression signature that lacked pituitary markers. Importantly, these cells displayed hypothalamic neuron characteristics, including production and secretion of neuropeptides and increased p-AKT and p-STAT3 in response to insulin and leptin. Our results suggest that these hypothalamic-like neurons have potential for further investigation of the neurophysiology of body weight regulation and evaluation of therapeutic targets for obesity.
Collapse
|
40
|
Ware M, Hamdi-Rozé H, Dupé V. Notch signaling and proneural genes work together to control the neural building blocks for the initial scaffold in the hypothalamus. Front Neuroanat 2014; 8:140. [PMID: 25520625 PMCID: PMC4251447 DOI: 10.3389/fnana.2014.00140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/10/2014] [Indexed: 01/25/2023] Open
Abstract
The vertebrate embryonic prosencephalon gives rise to the hypothalamus, which plays essential roles in sensory information processing as well as control of physiological homeostasis and behavior. While patterning of the hypothalamus has received much attention, initial neurogenesis in the developing hypothalamus has mostly been neglected. The first differentiating progenitor cells of the hypothalamus will give rise to neurons that form the nucleus of the tract of the postoptic commissure (nTPOC) and the nucleus of the mammillotegmental tract (nMTT). The formation of these neuronal populations has to be highly controlled both spatially and temporally as these tracts will form part of the ventral longitudinal tract (VLT) and act as a scaffold for later, follower axons. This review will cumulate and summarize the existing data available describing initial neurogenesis in the vertebrate hypothalamus. It is well-known that the Notch signaling pathway through the inhibition of proneural genes is a key regulator of neurogenesis in the vertebrate central nervous system. It has only recently been proposed that loss of Notch signaling in the developing chick embryo causes an increase in the number of neurons in the hypothalamus, highlighting an early function of the Notch pathway during hypothalamus formation. Further analysis in the chick and mouse hypothalamus confirms the expression of Notch components and Ascl1 before the appearance of the first differentiated neurons. Many newly identified proneural target genes were also found to be expressed during neuronal differentiation in the hypothalamus. Given the critical role that hypothalamic neural circuitry plays in maintaining homeostasis, it is particularly important to establish the targets downstream of this Notch/proneural network.
Collapse
Affiliation(s)
- Michelle Ware
- Institut de Génétique et Développement de Rennes, Faculté de Médecine, CNRS UMR6290, Université de Rennes 1 Rennes, France
| | - Houda Hamdi-Rozé
- Institut de Génétique et Développement de Rennes, Faculté de Médecine, CNRS UMR6290, Université de Rennes 1 Rennes, France
| | - Valérie Dupé
- Institut de Génétique et Développement de Rennes, Faculté de Médecine, CNRS UMR6290, Université de Rennes 1 Rennes, France
| |
Collapse
|
41
|
MacKay H, Abizaid A. Embryonic development of the hypothalamic feeding circuitry: Transcriptional, nutritional, and hormonal influences. Mol Metab 2014; 3:813-22. [PMID: 25506547 PMCID: PMC4264037 DOI: 10.1016/j.molmet.2014.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 08/28/2014] [Accepted: 09/04/2014] [Indexed: 11/22/2022] Open
Abstract
Background Embryonic neurogenesis and differentiation in the hypothalamic feeding circuitry is under the control of a variety of diffused morphogens and intrinsic transcription factors, leading to the unique structural and functional characteristics of each nucleus. Scope of review The transcriptional regulation of the development of feeding neuroendocrine systems during the period of embryonic neurogenesis and differentiation will be reviewed here, with a special emphasis on genetic and environmental manipulations that yield an adverse metabolic phenotype. Major conclusions Emerging data suggest that developmental mechanisms can be perturbed not only by genetic manipulation, but also by manipulations to maternal nutrition during the gestational period, leading to long-lasting behavioral, neurobiological, and metabolic consequences. Leptin is neurotrophic in the embryonic brain, and given that it varies in proportion to maternal energy balance, may mediate these effects through an interaction with the mechanisms of hypothalamic development.
Collapse
Affiliation(s)
- Harry MacKay
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| |
Collapse
|
42
|
Amstalden M, Cardoso RC, Alves BRC, Williams GL. Reproduction Symposium: hypothalamic neuropeptides and the nutritional programming of puberty in heifers. J Anim Sci 2014; 92:3211-22. [PMID: 24894003 DOI: 10.2527/jas.2014-7808] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nutrition during the juvenile period has a major impact on timing reproductive maturity in heifers. Restricted growth delays puberty, whereas elevated BW gain advances the onset of puberty. The initiation of high-frequency episodic release of GnRH and, consequently, LH during the peripubertal period is crucial for maturation of the reproductive axis and establishment of normal estrous cycles. Nutritional signals are perceived by metabolic-sensing cells in the hypothalamus, which interact with estradiol-receptive neurons to regulate the secretory activity of GnRH neurons. The orexigenic peptide, neuropeptide Y (NPY), and the anorexigenic peptide derived from the proopiomelanocortin (POMC) gene, melanocyte-stimulating hormone α (αMSH), are believed to be major afferent pathways that transmit inhibitory (NPY) and excitatory (αMSH) inputs to GnRH neurons. The neuropeptide kisspeptin is considered a major stimulator of GnRH secretion and has been shown to mediate estradiol's effect on GnRH neuronal activity. Kisspeptin may also integrate the neuronal pathways mediating the metabolic and gonadal steroid hormone control of gonadotropin secretion. Recent studies in our laboratories indicate that functional and structural changes in the pathways involving NPY, POMC, and kisspeptin neurons occur in response to high rates of BW gain during the juvenile period in heifers. Changes include regulation of expression in NPY, POMC, and KISS1 and plasticity in the neuronal projections to GnRH neurons and within the neuronal network comprising these cells. Moreover, an intricate pattern of differential gene expression in the arcuate nucleus of the hypothalamus occurs in response to feeding high concentrate diets that promote elevated BW gain. Genes involved include those controlling feeding intake and cell metabolism, neuronal growth and remodeling, and synaptic transmission. Characterizing the cellular pathways and molecular networks involved in the mechanisms that control the timing of pubertal onset will assist in improving existing strategies and facilitate the development of novel approaches to program puberty in heifers. These include the use of diets that elevate BW gain during strategic periods of prepubertal development.
Collapse
Affiliation(s)
- M Amstalden
- Department of Animal Science, Texas A&M University, College Station 77843
| | - R C Cardoso
- Department of Animal Science, Texas A&M University, College Station 77843 Animal Reproduction Laboratory, Texas A&M AgriLife Research, Beeville 78102
| | - B R C Alves
- Department of Animal Science, Texas A&M University, College Station 77843
| | - G L Williams
- Department of Animal Science, Texas A&M University, College Station 77843 Animal Reproduction Laboratory, Texas A&M AgriLife Research, Beeville 78102
| |
Collapse
|
43
|
Kovacs GG, Adle-Biassette H, Milenkovic I, Cipriani S, van Scheppingen J, Aronica E. Linking pathways in the developing and aging brain with neurodegeneration. Neuroscience 2014; 269:152-72. [PMID: 24699227 DOI: 10.1016/j.neuroscience.2014.03.045] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/21/2014] [Accepted: 03/21/2014] [Indexed: 12/12/2022]
Abstract
The molecular and cellular mechanisms, which coordinate the critical stages of brain development to reach a normal structural organization with appropriate networks, are progressively being elucidated. Experimental and clinical studies provide evidence of the occurrence of developmental alterations induced by genetic or environmental factors leading to the formation of aberrant networks associated with learning disabilities. Moreover, evidence is accumulating that suggests that also late-onset neurological disorders, even Alzheimer's disease, might be considered disorders of aberrant neural development with pathological changes that are set up at early stages of development before the appearance of the symptoms. Thus, evaluating proteins and pathways that are important in age-related neurodegeneration in the developing brain together with the characterization of mechanisms important during brain development with relevance to brain aging are of crucial importance. In the present review we focus on (1) aspects of neurogenesis with relevance to aging; (2) neurodegenerative disease (NDD)-associated proteins/pathways in the developing brain; and (3) further pathways of the developing or neurodegenerating brains that show commonalities. Elucidation of complex pathogenetic routes characterizing the earliest stage of the detrimental processes that result in pathological aging represents an essential first step toward a therapeutic intervention which is able to reverse these pathological processes and prevent the onset of the disease. Based on the shared features between pathways, we conclude that prevention of NDDs of the elderly might begin during the fetal and childhood life by providing the mothers and their children a healthy environment for the fetal and childhood development.
Collapse
Affiliation(s)
- G G Kovacs
- Institute of Neurology, Medical University of Vienna, Austria.
| | - H Adle-Biassette
- Inserm U1141, F-75019 Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 676, F-75019 Paris, France; Department of Pathology, Lariboisière Hospital, APHP, Paris, France
| | - I Milenkovic
- Institute of Neurology, Medical University of Vienna, Austria
| | | | - J van Scheppingen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| | - E Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, The Netherlands; SEIN - Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| |
Collapse
|
44
|
Persson-Augner D, Lee YW, Tovar S, Dieguez C, Meister B. Delta-like 1 homologue (DLK1) protein in neurons of the arcuate nucleus that control weight homeostasis and effect of fasting on hypothalamic DLK1 mRNA. Neuroendocrinology 2014; 100:209-20. [PMID: 25342302 DOI: 10.1159/000369069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/14/2014] [Indexed: 11/19/2022]
Abstract
Delta-like 1 homologue (DLK1; also called preadipocyte factor 1) is an epidermal growth factor repeat-containing transmembrane protein that is cleaved by tumor necrosis factor-α-converting enzyme to generate a biologically active soluble form. DLK1 is involved in the differentiation of several cell types, including adipocytes. Lack of the dlk1 gene results in adiposity, and polymorphism within the gene encoding DLK1 is associated with human obesity. The dlk1 gene is expressed in restricted areas of the adult brain, with an enrichment of cell bodies expressing DLK1 mRNA in the hypothalamus. Antibodies to DLK1 were used to study the cellular localization and chemical identity of DLK1-immunoreactive neuronal cell bodies in rat hypothalamus. DLK1 immunoreactivity was demonstrated in the cell soma and dendrites of cell bodies in the suprachiasmatic, supraoptic, paraventricular, dorsomedial, arcuate nuclei and in the perifornical/lateral hypothalamic area. In the arcuate nucleus (Arc), DLK1 immunoreactivity was mainly seen in many neurons of the ventromedial and to a lesser extent in its ventrolateral division. Double labeling showed that 93.7% of orexigenic agouti-related peptide (AgRP) and 94.1% of neuropeptide Y (NPY) neurons located in the ventromedial part of the Arc were DLK1 positive, whereas 36.1% of anorexigenic pro-opiomelanocortin and 34.6% of cocaine- and amphetamine-regulated transcript neurons of the Arc contained DLK1 immunoreactivity. DLK1 mRNA was downregulated in the hypothalamus of fasted animals. Presence of DLK1 in the majority of orexigenic Arc NPY/AgRP neurons and regulation of DLK1 mRNA by nutritional challenge suggest that DLK1 has a role in hypothalamic regulation of body weight control. © 2014 S. Karger AG, Basel.
Collapse
|
45
|
Ratié L, Ware M, Barloy-Hubler F, Romé H, Gicquel I, Dubourg C, David V, Dupé V. Novel genes upregulated when NOTCH signalling is disrupted during hypothalamic development. Neural Dev 2013; 8:25. [PMID: 24360028 PMCID: PMC3880542 DOI: 10.1186/1749-8104-8-25] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/10/2013] [Indexed: 12/11/2022] Open
Abstract
Background The generation of diverse neuronal types and subtypes from multipotent progenitors during development is crucial for assembling functional neural circuits in the adult central nervous system. It is well known that the Notch signalling pathway through the inhibition of proneural genes is a key regulator of neurogenesis in the vertebrate central nervous system. However, the role of Notch during hypothalamus formation along with its downstream effectors remains poorly defined. Results Here, we have transiently blocked Notch activity in chick embryos and used global gene expression analysis to provide evidence that Notch signalling modulates the generation of neurons in the early developing hypothalamus by lateral inhibition. Most importantly, we have taken advantage of this model to identify novel targets of Notch signalling, such as Tagln3 and Chga, which were expressed in hypothalamic neuronal nuclei. Conclusions These data give essential advances into the early generation of neurons in the hypothalamus. We demonstrate that inhibition of Notch signalling during early development of the hypothalamus enhances expression of several new markers. These genes must be considered as important new targets of the Notch/proneural network.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Valérie Dupé
- Institut de Génétique et Développement de Rennes, CNRS UMR6290, Université de Rennes 1, IFR140 GFAS, Faculté de Médecine, Rennes, France.
| |
Collapse
|