1
|
Layous M, Gildor T, Nehrer T, Qassem A, Wolfenson H, Ben-Tabou de-Leon S. A mechanosensitive circuit of FAK, ROCK, and ERK controls biomineral growth and morphology in the sea urchin embryo. Proc Natl Acad Sci U S A 2025; 122:e2408628121. [PMID: 39739788 PMCID: PMC11725891 DOI: 10.1073/pnas.2408628121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/01/2024] [Indexed: 01/02/2025] Open
Abstract
Biomineralization is the utilization of different minerals by a vast array of organisms to form hard tissues and shape them in various forms. Within this diversity, a common feature of all mineralized tissues is their high stiffness, implying that mechanosensing could be commonly used in biomineralization. Yet, the role of mechanosensing in biomineralization is far from clear. Here, we use the sea urchin larval skeletogenesis to investigate the role of substrate stiffness and focal adhesion kinase (FAK) in biomineralization. We demonstrate that substrate stiffness alters spicule morphology and growth, indicating a mechanosensitive response during skeletogenesis. We show that active FAK, F-actin, and vinculin are enriched around the spicules, indicating the formation of focal adhesion complexes and suggesting that the cells sense the mechanical properties of the biomineral. Furthermore, we find that FAK activity is regulated by Rho-associated protein kinase (ROCK) and is crucial for skeletal growth and normal branching. FAK and ROCK activate extracellular signal-regulated kinase (ERK), which regulates skeletogenic gene expression at the tips of the spicules. Thus, the FAK-ROCK-ERK circuit seems to provide essential mechanical feedback on spicule elongation to the skeletogenic gene regulatory network, enabling skeletal growth. Remarkably, the same factors govern mammalian osteoblast differentiation in vitro and pathological calcification in vivo. Thus, this study highlights a common mechanotransduction pathway in biomineralization that was probably independently co-opted across different organisms to shape mineralized structures in metazoans.
Collapse
Affiliation(s)
- Majed Layous
- Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa3498838, Israel
| | - Tsvia Gildor
- Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa3498838, Israel
| | - Tovah Nehrer
- Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa3498838, Israel
| | - Areen Qassem
- Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa3498838, Israel
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion, Haifa3525433, Israel
| | - Smadar Ben-Tabou de-Leon
- Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa3498838, Israel
| |
Collapse
|
2
|
Lion AT, Bodine SM, McCutcheon KR, Ghogale M, Chandragiri S, Abayawardena D, Shrestha BD, Descoteaux A, Alvarez K, Balkman JA, Cocke B, Wikramanayake AH, Schlezinger J, Wong JY, Prakash VN, Bradham CA. PFAS Compounds PFOA and Gen X are Teratogenic to Sea Urchin Embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624751. [PMID: 39605628 PMCID: PMC11601578 DOI: 10.1101/2024.11.21.624751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Per-and polyfluorinated substances (PFAS) are synthetic chemicals that are used to make fluoropolymer coatings found in many products, such as non-stick pans, clothing, cosmetics, and food packaging. These highly persistent molecules are known as "forever chemicals" since they neither degrade environmentally nor break down enzymatically within biological systems. PFAS compounds readily contaminate water sources, and as a result, certain PFAS molecules have bioaccumulated in exposed species including humans. The purpose of this study was to define the effect of two PFAS molecules, the ostensibly more toxic perfluorooctanoic acid (PFOA) and the more recent, reportedly safer chemical hexafluoropropylene oxide dimer acid (Gen X), on the development of Lytechinus variegatus sea urchin embryos. We examined the effects of PFOA and Gen X on development and patterning using morphological analysis, immunostaining, HCR-FISH, and Particle Image Velocimetry (PIV). The results show that both PFAS compounds are teratogenic to sea urchin embryos. PFOA and Gen X each function at different intervals during development and provoke distinct phenotypic and gene expression outcomes. Despite beliefs that Gen X would be a safer alternative, our findings indicate that Gen X has earlier and more severe effects on endomesoderm and dorsal-ventral axis specification, neural development and function, and pattern formation compared to PFOA. These results illustrate the dangerous teratogenic potential of environmentally accumulating PFAS like Gen X, underscoring the negative ecological implications that accompany continuing commercial and industrial use of PFAS in the absence of remediation strategies.
Collapse
Affiliation(s)
- Alexandra T. Lion
- Molecular Biology, Cell Biology and Biochemistry Program, Boston University, Boston MA, USA
| | | | | | - Mayank Ghogale
- Bioinformatics Program, Boston University, Boston MA, USA
| | | | | | | | - Abigail Descoteaux
- Molecular Biology, Cell Biology and Biochemistry Program, Boston University, Boston MA, USA
- Biological Design Center, College of Engineering, Boston University, Boston MA, USA
| | - Kathryn Alvarez
- Department of Physics, University of Miami, Coral Gables FL, USA
| | | | - Breelyn Cocke
- Department of Physics, University of Miami, Coral Gables FL, USA
| | | | | | - Joyce Y. Wong
- Department of Biomedical Engineering, Boston University, Boston MA, USA
| | - Vivek N. Prakash
- Department of Physics, University of Miami, Coral Gables FL, USA
- Department of Biology, University of Miami, Coral Gables FL, USA
- Department of Marine Biology and Ecology, University of Miami, Miami FL, USA
| | - Cynthia A. Bradham
- Molecular Biology, Cell Biology and Biochemistry Program, Boston University, Boston MA, USA
- Biology Department, Boston University, Boston MA, USA
- Bioinformatics Program, Boston University, Boston MA, USA
- Biological Design Center, College of Engineering, Boston University, Boston MA, USA
| |
Collapse
|
3
|
Valencia JE, Peter IS. Combinatorial regulatory states define cell fate diversity during embryogenesis. Nat Commun 2024; 15:6841. [PMID: 39122679 PMCID: PMC11315938 DOI: 10.1038/s41467-024-50822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Cell fate specification occurs along invariant species-specific trajectories that define the animal body plan. This process is controlled by gene regulatory networks that regulate the expression of the limited set of transcription factors encoded in animal genomes. Here we globally assess the spatial expression of ~90% of expressed transcription factors during sea urchin development from embryo to larva to determine the activity of gene regulatory networks and their regulatory states during cell fate specification. We show that >200 embryonically expressed transcription factors together define >70 cell fates that recapitulate the morphological and functional organization of this organism. Most cell fate-specific regulatory states consist of ~15-40 transcription factors with similarity particularly among functionally related cell types regardless of developmental origin. Temporally, regulatory states change continuously during development, indicating that progressive changes in regulatory circuit activity determine cell fate specification. We conclude that the combinatorial expression of transcription factors provides molecular definitions that suffice for the unique specification of cell states in time and space during embryogenesis.
Collapse
Affiliation(s)
- Jonathan E Valencia
- Division of Biology and Biological Engineering, MC156-29, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Isabelle S Peter
- Division of Biology and Biological Engineering, MC156-29, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
4
|
Goloe D, Gildor T, Ben-Tabou de-Leon S. Expression and Transcriptional Targets of TGFβ-RII in Paracentrotus lividus Larval Skeletogenesis. Genesis 2024; 62:e23614. [PMID: 39139086 DOI: 10.1002/dvg.23614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024]
Abstract
Organisms from the five kingdoms of life use minerals to harden their tissues and make teeth, shells and skeletons, in the process of biomineralization. The sea urchin larval skeleton is an excellent system to study the biological regulation of biomineralization and its evolution. The gene regulatory network (GRN) that controls sea urchin skeletogenesis is known in great details and shows similarity to the GRN that controls vertebrates' vascularization while it is quite distinct from the GRN that drives vertebrates' bone formation. Yet, transforming growth factor beta (TGF-β) signaling regulates both sea urchin and vertebrates' skeletogenesis. Here, we study the upstream regulation and identify transcriptional targets of TGF-β in the Mediterranean Sea urchin species, Paracentrotus lividus. TGF-βRII is transiently active in the skeletogenic cells downstream of vascular endothelial growth factor (VEGF) signaling, in P. lividus. Continuous perturbation of TGF-βRII activity significantly impairs skeletal elongation and the expression of key skeletogenic genes. Perturbation of TGF-βRII after skeletal initiation leads to a delay in skeletal elongation and minor changes in gene expression. TGF-β targets are distinct from its transcriptional targets during vertebrates' bone formation, suggesting that the role of TGF-β in biomineralization in these two phyla results from convergent evolution.
Collapse
Affiliation(s)
- Daniel Goloe
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Tsvia Gildor
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Smadar Ben-Tabou de-Leon
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
5
|
Hijaze E, Gildor T, Seidel R, Layous M, Winter M, Bertinetti L, Politi Y, Ben-Tabou de-Leon S. ROCK and the actomyosin network control biomineral growth and morphology during sea urchin skeletogenesis. eLife 2024; 12:RP89080. [PMID: 38573316 PMCID: PMC10994658 DOI: 10.7554/elife.89080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Biomineralization had apparently evolved independently in different phyla, using distinct minerals, organic scaffolds, and gene regulatory networks (GRNs). However, diverse eukaryotes from unicellular organisms, through echinoderms to vertebrates, use the actomyosin network during biomineralization. Specifically, the actomyosin remodeling protein, Rho-associated coiled-coil kinase (ROCK) regulates cell differentiation and gene expression in vertebrates' biomineralizing cells, yet, little is known on ROCK's role in invertebrates' biomineralization. Here, we reveal that ROCK controls the formation, growth, and morphology of the calcite spicules in the sea urchin larva. ROCK expression is elevated in the sea urchin skeletogenic cells downstream of the Vascular Endothelial Growth Factor (VEGF) signaling. ROCK inhibition leads to skeletal loss and disrupts skeletogenic gene expression. ROCK inhibition after spicule formation reduces the spicule elongation rate and induces ectopic spicule branching. Similar skeletogenic phenotypes are observed when ROCK is inhibited in a skeletogenic cell culture, indicating that these phenotypes are due to ROCK activity specifically in the skeletogenic cells. Reduced skeletal growth and enhanced branching are also observed under direct perturbations of the actomyosin network. We propose that ROCK and the actomyosin machinery were employed independently, downstream of distinct GRNs, to regulate biomineral growth and morphology in Eukaryotes.
Collapse
Affiliation(s)
- Eman Hijaze
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of HaifaHaifaIsrael
| | - Tsvia Gildor
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of HaifaHaifaIsrael
| | - Ronald Seidel
- B CUBE Center for Molecular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Majed Layous
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of HaifaHaifaIsrael
| | - Mark Winter
- Department of Electrical Engineering, Computer Science and Mathematics, Technische Universiteit DelftDelftNetherlands
| | - Luca Bertinetti
- B CUBE Center for Molecular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Yael Politi
- B CUBE Center for Molecular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Smadar Ben-Tabou de-Leon
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of HaifaHaifaIsrael
| |
Collapse
|
6
|
Sampilo NF, Song JL. microRNA-1 regulates sea urchin skeletogenesis by directly targeting skeletogenic genes and modulating components of signaling pathways. Dev Biol 2024; 508:123-137. [PMID: 38290645 PMCID: PMC10985635 DOI: 10.1016/j.ydbio.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
microRNAs are evolutionarily conserved non-coding RNAs that direct post-transcriptional regulation of target transcripts. In vertebrates, microRNA-1 (miR-1) is expressed in muscle and has been found to play critical regulatory roles in vertebrate angiogenesis, a process that has been proposed to be analogous to sea urchin skeletogenesis. Results indicate that both miR-1 inhibitor and miR-1 mimic-injected larvae have significantly less F-actin enriched circumpharyngeal muscle fibers and fewer gut contractions. In addition, miR-1 regulates the positioning of skeletogenic primary mesenchyme cells (PMCs) and skeletogenesis of the sea urchin embryo. Interestingly, the gain-of-function of miR-1 leads to more severe PMC patterning and skeletal branching defects than its loss-of-function. The results suggest that miR-1 directly suppresses Ets1/2, Tbr, and VegfR7 of the skeletogenic gene regulatory network, and Nodal, and Wnt1 signaling components. This study identifies potential targets of miR-1 that impacts skeletogenesis and muscle formation and contributes to a deeper understanding of miR-1's function during development.
Collapse
Affiliation(s)
- Nina Faye Sampilo
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
7
|
Jessop AL, Millsteed AJ, Kirkensgaard JJK, Shaw J, Clode PL, Schröder-Turk GE. Composite material in the sea urchin Cidaris rugosa: ordered and disordered micrometre-scale bicontinuous geometries. J R Soc Interface 2024; 21:20230597. [PMID: 38471532 PMCID: PMC10932713 DOI: 10.1098/rsif.2023.0597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
The sponge-like biomineralized calcite materials found in echinoderm skeletons are of interest in terms of both structure formation and biological function. Despite their crystalline atomic structure, they exhibit curved interfaces that have been related to known triply periodic minimal surfaces. Here, we investigate the endoskeleton of the sea urchin Cidaris rugosa that has long been known to form a microstructure related to the Primitive surface. Using X-ray tomography, we find that the endoskeleton is organized as a composite material consisting of domains of bicontinuous microstructures with different structural properties. We describe, for the first time, the co-occurrence of ordered single Primitive and single Diamond structures and of a disordered structure within a single skeletal plate. We show that these structures can be distinguished by structural properties including solid volume fraction, trabeculae width and, to a lesser extent, interface area and mean curvature. In doing so, we present a robust method that extracts interface areas and curvature integrals from voxelized datasets using the Steiner polynomial for parallel body volumes. We discuss these very large-scale bicontinuous structures in the context of their function, formation and evolution.
Collapse
Affiliation(s)
- Anna-Lee Jessop
- School of Mathematics, Statistics, Chemistry and Physics, Murdoch University, Murdoch, Australia
| | - Allan J. Millsteed
- School of Mathematics, Statistics, Chemistry and Physics, Murdoch University, Murdoch, Australia
| | - Jacob J. K. Kirkensgaard
- Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
- Department of Food Science, University of Copenhagen, Kobenhavn, Denmark
| | - Jeremy Shaw
- Centre for Microscopy, Characterisation, and Analysis, University of Western Australia, Perth, Australia
| | - Peta L. Clode
- Centre for Microscopy, Characterisation, and Analysis, University of Western Australia, Perth, Australia
- School of Biological Sciences, University of Western Australia, Perth, Australia
| | - Gerd E. Schröder-Turk
- School of Mathematics, Statistics, Chemistry and Physics, Murdoch University, Murdoch, Australia
- Research School of Physics, The Australian National University, Canberra, Australia
| |
Collapse
|
8
|
Khor JM, Guerrero-Santoro J, Ettensohn CA. Molecular compartmentalization in a syncytium: restricted mobility of proteins within the sea urchin skeletogenic mesenchyme. Development 2023; 150:dev201804. [PMID: 37902109 DOI: 10.1242/dev.201804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023]
Abstract
Multinucleated cells, or syncytia, are found in diverse taxa. Their biological function is often associated with the compartmentalization of biochemical or cellular activities within the syncytium. How such compartments are generated and maintained is poorly understood. The sea urchin embryonic skeleton is secreted by a syncytium, and local patterns of skeletal growth are associated with distinct sub-domains of gene expression within the syncytium. For such molecular compartments to be maintained and to control local patterns of skeletal growth: (1) the mobility of TFs must be restricted to produce stable differences in the transcriptional states of nuclei within the syncytium; and (2) the mobility of biomineralization proteins must also be restricted to produce regional differences in skeletal growth. To test these predictions, we expressed fluorescently tagged forms of transcription factors and biomineralization proteins in sub-domains of the skeletogenic syncytium. We found that both classes of proteins have restricted mobility within the syncytium and identified motifs that limit their mobility. Our findings have general implications for understanding the functional and molecular compartmentalization of syncytia.
Collapse
Affiliation(s)
- Jian Ming Khor
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15218, USA
| | - Jennifer Guerrero-Santoro
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15218, USA
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15218, USA
| |
Collapse
|
9
|
Descoteaux AE, Zuch DT, Bradham CA. Polychrome labeling reveals skeletal triradiate and elongation dynamics and abnormalities in patterning cue-perturbed embryos. Dev Biol 2023; 498:1-13. [PMID: 36948411 DOI: 10.1016/j.ydbio.2023.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023]
Abstract
The larval skeleton of the sea urchin Lytechinus variegatus is an ideal model system for studying skeletal patterning; however, our understanding of the etiology of skeletal patterning in sea urchin larvae is limited due to the lack of approaches to live-image skeleton formation. Calcium-binding fluorochromes have been used to study the temporal dynamics of bone growth and healing. To date, only calcein green has been used in sea urchin larvae to fluorescently label the larval skeleton. Here, we optimize labeling protocols for two additional calcium-binding fluorochromes: xylenol orange and calcein blue- and demonstrate that these fluorochromes can be used individually or in nested pulse-chase experiments to understand the temporal dynamics of skeletogenesis and patterning. Using a pulse-chase approach, we show that the initiation of skeletogenesis begins around 15 h post fertilization. We also assess the timing of triradiate formation in embryos treated with a range of patterning perturbagens and demonstrate that triradiate formation is delayed and asynchronous in embryos ventralized via treatment with either nickel or chlorate. Finally, we measure the extent of fluorochrome incorporation in triple-labeled embryos to determine the elongation rate of numerous skeletal elements throughout early skeletal patterning and compare this to the rate of skeletal growth in embryos treated with axitinib to inhibit VEGFR. We find that skeletal elements elongate much more slowly in axitinib-treated embryos, and that axitinib treatment is sufficient to induce abnormal orientation of the triradiates.
Collapse
Affiliation(s)
- Abigail E Descoteaux
- Department of Biology, Boston University, Boston, MA, 02215, United States; Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA, 02215, United States; Biological Design Center, Boston University, Boston, MA, 02215, United States
| | - Daniel T Zuch
- Department of Biology, Boston University, Boston, MA, 02215, United States; Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA, 02215, United States
| | - Cynthia A Bradham
- Department of Biology, Boston University, Boston, MA, 02215, United States; Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA, 02215, United States; Biological Design Center, Boston University, Boston, MA, 02215, United States; Program in Bioinformatics, Boston University, Boston, MA, 02215, United States.
| |
Collapse
|
10
|
Kalachev AV, Tankovich AE. The dopamine effect on sea urchin larvae depends on their age. Dev Growth Differ 2023; 65:120-131. [PMID: 36645274 DOI: 10.1111/dgd.12839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/18/2022] [Accepted: 01/10/2023] [Indexed: 01/17/2023]
Abstract
Activation of the dopamine type-D2 receptor in late gastrula of sea urchins is known to decrease the growth rate of post-oral arms of larvae, and, as a result, the phenotype of these larvae mimics that of larvae developing in the abundance of food. Our data indicate that the effect of dopamine on sea urchin larvae is stage-dependent. In our experiment, the early four-armed plutei (96 hours post fertilization, hpf) of Strongylocentrotus intermedius had substantially shorter post-oral arms if they developed from the larvae treated with dopamine at the early pluteus stage (48 hpf), when they had already formed the first dopaminergic neurons, as compared to the plutei from the larvae treated with dopamine at the mid to late gastrula stage (24 hpf), when they did not have any neurons yet. The pre-treatment of larvae in 6-hydroxydopamine, a neurotoxic analog of dopamine that specifically disrupts activity of dopaminergic neurons, prevented the development of the short post-oral arms phenotype in larvae. These results confirm the assumption that dopaminergic neurons play an important role in the development of the short post-oral arms phenotype in sea urchin larvae. Another finding of our study is that the dopamine treatment also affects the growth of the body rods and the overall larval body growth. Based on these observations, we suggest researchers to carefully select the developmental stage, pharmacological agents, and incubation time for experimental manipulation of sea urchin larvae phenotypes through dopaminergic nervous system.
Collapse
Affiliation(s)
- Alexander V Kalachev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Alina E Tankovich
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
11
|
Rodríguez-Sastre N, Shapiro N, Hawkins DY, Lion AT, Peyreau M, Correa AE, Dionne K, Bradham CA. Ethanol exposure perturbs sea urchin development and disrupts developmental timing. Dev Biol 2023; 493:89-102. [PMID: 36368523 DOI: 10.1016/j.ydbio.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Ethanol is a known vertebrate teratogen that causes craniofacial defects as a component of fetal alcohol syndrome (FAS). Our results show that sea urchin embryos treated with ethanol similarly show broad skeletal patterning defects, potentially analogous to the defects associated with FAS. The sea urchin larval skeleton is a simple patterning system that involves only two cell types: the primary mesenchymal cells (PMCs) that secrete the calcium carbonate skeleton and the ectodermal cells that provide migratory, positional, and differentiation cues for the PMCs. Perturbations in RA biosynthesis and Hh signaling pathways are thought to be causal for the FAS phenotype in vertebrates. Surprisingly, our results indicate that these pathways are not functionally relevant for the teratogenic effects of ethanol in developing sea urchins. We found that developmental morphology as well as the expression of some ectodermal and PMC genes was delayed by ethanol exposure. Temporal transcriptome analysis revealed significant impacts of ethanol on signaling and metabolic gene expression, and a disruption in the timing of GRN gene expression that includes both delayed and precocious gene expression throughout the specification network. We conclude that the skeletal patterning perturbations in ethanol-treated embryos likely arise from a loss of temporal synchrony within and between the instructive and responsive tissues.
Collapse
Affiliation(s)
| | | | | | - Alexandra T Lion
- Biology Department, Boston University, Boston, MA, USA; MCBB Program, Boston University, Boston, MA, USA
| | | | - Andrea E Correa
- Universidad de Puerto Rico-Recinto Aguadilla, Puerto Rico, USA
| | | | - Cynthia A Bradham
- Biology Department, Boston University, Boston, MA, USA; MCBB Program, Boston University, Boston, MA, USA; Biological Design Center, Boston University, Boston, MA, USA.
| |
Collapse
|
12
|
Khor JM, Ettensohn CA. An optimized Tet-On system for conditional control of gene expression in sea urchins. Development 2023; 150:dev201373. [PMID: 36607745 PMCID: PMC10108607 DOI: 10.1242/dev.201373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/28/2022] [Indexed: 01/07/2023]
Abstract
Sea urchins and other echinoderms are important experimental models for studying developmental processes. The lack of approaches for conditional gene perturbation, however, has made it challenging to investigate the late developmental functions of genes that have essential roles during early embryogenesis and genes that have diverse functions in multiple tissues. The doxycycline-controlled Tet-On system is a widely used molecular tool for temporally and spatially regulated transgene expression. Here, we optimized the Tet-On system to conditionally induce gene expression in sea urchin embryos. Using this approach, we explored the roles the MAPK signaling plays in skeletogenesis by expressing genes that perturb the pathway specifically in primary mesenchyme cells during later stages of development. We demonstrated the wide utility of the Tet-On system by applying it to a second sea urchin species and in cell types other than the primary mesenchyme cells. Our work provides a robust and flexible platform for the spatiotemporal regulation of gene expression in sea urchins, which will considerably enhance the utility of this prominent model system.
Collapse
Affiliation(s)
- Jian Ming Khor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Charles A. Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
13
|
The evolution of neurosensation provides opportunities and constraints for phenotypic plasticity. Sci Rep 2022; 12:11883. [PMID: 35831328 PMCID: PMC9279360 DOI: 10.1038/s41598-022-15583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/27/2022] [Indexed: 11/08/2022] Open
Abstract
Phenotypic plasticity is widely regarded as important for enabling species resilience to environmental change and for species evolution. However, insight into the complex mechanisms by which phenotypic plasticity evolves in nature is limited by our ability to reconstruct evolutionary histories of plasticity. By using part of the molecular mechanism, we were able to trace the evolution of pre-feeding phenotypic plasticity across the class Echinoidea and identify the origin of plasticity at the base of the regular urchins. The neurosensory foundation for plasticity was ancestral within the echinoids. However, coincident development of the plastic trait and the neurosensory system was not achieved until the regular urchins, likely due to pleiotropic effects and linkages between the two colocalized systems. Plasticity continues to evolve within the urchins with numerous instances of losses associated with loss of sensory abilities and neurons, consistent with a cost of maintaining these capabilities. Thus, evidence was found for the neurosensory system providing opportunities and constraints to the evolution of phenotypic plasticity.
Collapse
|
14
|
Tarsis K, Gildor T, Morgulis M, Ben-Tabou de-Leon S. Distinct regulatory states control the elongation of individual skeletal rods in the sea urchin embryo. Dev Dyn 2022; 251:1322-1339. [PMID: 35403290 PMCID: PMC9543741 DOI: 10.1002/dvdy.474] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 11/09/2022] Open
Abstract
Background Understanding how gene regulatory networks (GRNs) control developmental progression is a key to the mechanistic understanding of morphogenesis. The sea urchin larval skeletogenesis provides an excellent platform to tackle this question. In the early stages of sea urchin skeletogenesis, skeletogenic genes are uniformly expressed in the skeletogenic lineage. Yet, during skeletal elongation, skeletogenic genes are expressed in distinct spatial sub‐domains. The regulation of differential gene expression during late skeletogenesis is not well understood. Results Here we reveal the dynamic expression of the skeletogenic regulatory genes that define a specific regulatory state for each pair of skeletal rods, in the sea urchin Paracentrotus lividus. The vascular endothelial growth factor (VEGF) signaling, essential for skeleton formation, specifically controls the migration of cells that form the postoral and distal anterolateral skeletogenic rods. VEGF signaling also controls the expression of regulatory genes in cells at the tips of the postoral rods, including the transcription factors Pitx1 and MyoD1. Pitx1 activity is required for normal skeletal elongation and for the expression of some of VEGF target genes. Conclusions Our study illuminates the fine‐tuning of the regulatory system during the transition from early to late skeletogenesis that gives rise to rod‐specific regulatory states. The skeletogenic transcription factors form specific regulatory states in various skeletogenic sub‐populations. Late VEGF signaling controls the regulatory states at the tips of the post‐oral and anterolateral skeletal rods. VEGF signaling controls the expression of the transcription factors, MyoD1 and Pitx1. Pitx1 activity is required for normal skeletal elongation and for the expression of some of VEGF target genes.
Collapse
Affiliation(s)
- Kristina Tarsis
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Tsvia Gildor
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Miri Morgulis
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Smadar Ben-Tabou de-Leon
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
15
|
Ettensohn CA, Guerrero-Santoro J, Khor JM. Lessons from a transcription factor: Alx1 provides insights into gene regulatory networks, cellular reprogramming, and cell type evolution. Curr Top Dev Biol 2022; 146:113-148. [PMID: 35152981 DOI: 10.1016/bs.ctdb.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The skeleton-forming cells of sea urchins and other echinoderms have been studied by developmental biologists as models of cell specification and morphogenesis for many decades. The gene regulatory network (GRN) deployed in the embryonic skeletogenic cells of euechinoid sea urchins is one of the best understood in any developing animal. Recent comparative studies have leveraged the information contained in this GRN, bringing renewed attention to the diverse patterns of skeletogenesis within the phylum and the evolutionary basis for this diversity. The homeodomain-containing transcription factor, Alx1, was originally shown to be a core component of the skeletogenic GRN of the sea urchin embryo. Alx1 has since been found to be key regulator of skeletal cell identity throughout the phylum. As such, Alx1 is currently serving as a lens through which multiple developmental processes are being investigated. These include not only GRN organization and evolution, but also cell reprogramming, cell type evolution, and the gene regulatory control of morphogenesis. This review summarizes our current state of knowledge concerning Alx1 and highlights the insights it is yielding into these important developmental and evolutionary processes.
Collapse
Affiliation(s)
- Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States.
| | | | - Jian Ming Khor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
16
|
Abstract
Larvae of sea urchins have a population of conspicuous pigmented cells embedded in the outer surface epithelium. Pigment cells are a distinct mesodermal lineage that gives rise to a key component of the larval immune system. During cleavage, signaling from adjacent cells influences a small crescent of cells to initiate a network of genetic interactions that prepare the cells for morphogenesis and specializes them as immunocytes. The cells become active during gastrulation, detach from the epithelium, migrate through the blastocoel, and insert into the ectoderm where they complete their differentiation. Studies of pigment cell development have helped establish how cellular signaling controls networks of genetic interactions that bring about morphogenesis and differentiation. This review summarizes studies of pigment cell development and concludes that pigment cells are an excellent experimental model. Pigment cells provide several opportunities to further test and refine our understanding of the molecular basis of cellular development.
Collapse
Affiliation(s)
- Robert D Burke
- Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
17
|
The Evolution of Biomineralization through the Co-Option of Organic Scaffold Forming Networks. Cells 2022; 11:cells11040595. [PMID: 35203246 PMCID: PMC8870065 DOI: 10.3390/cells11040595] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/05/2022] Open
Abstract
Biomineralization is the process in which organisms use minerals to generate hard structures like teeth, skeletons and shells. Biomineralization is proposed to have evolved independently in different phyla through the co-option of pre-existing developmental programs. Comparing the gene regulatory networks (GRNs) that drive biomineralization in different species could illuminate the molecular evolution of biomineralization. Skeletogenesis in the sea urchin embryo was extensively studied and the underlying GRN shows high conservation within echinoderms, larval and adult skeletogenesis. The organic scaffold in which the calcite skeletal elements form in echinoderms is a tubular compartment generated by the syncytial skeletogenic cells. This is strictly different than the organic cartilaginous scaffold that vertebrates mineralize with hydroxyapatite to make their bones. Here I compare the GRNs that drive biomineralization and tubulogenesis in echinoderms and in vertebrates. The GRN that drives skeletogenesis in the sea urchin embryo shows little similarity to the GRN that drives bone formation and high resemblance to the GRN that drives vertebrates’ vascular tubulogenesis. On the other hand, vertebrates’ bone-GRNs show high similarity to the GRNs that operate in the cells that generate the cartilage-like tissues of basal chordate and invertebrates that do not produce mineralized tissue. These comparisons suggest that biomineralization in deuterostomes evolved through the phylum specific co-option of GRNs that control distinct organic scaffolds to mineralization.
Collapse
|
18
|
Chang WL, Su YH. Zygotic hypoxia-inducible factor alpha regulates spicule elongation in the sea urchin embryo. Dev Biol 2022; 484:63-74. [DOI: 10.1016/j.ydbio.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/28/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
|
19
|
Yamazaki A, Yamakawa S, Morino Y, Sasakura Y, Wada H. Gene regulation of adult skeletogenesis in starfish and modifications during gene network co-option. Sci Rep 2021; 11:20111. [PMID: 34635691 PMCID: PMC8505446 DOI: 10.1038/s41598-021-99521-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
The larval skeleton of the echinoderm is believed to have been acquired through co-option of a pre-existing gene regulatory network (GRN); that is, the mechanism for adult skeleton formation in the echinoderm was deployed in early embryogenesis during echinoderm diversification. To explore the evolutionary changes that occurred during co-option, we examined the mechanism for adult skeletogenesis using the starfish Patiria pectinifera. Expression patterns of skeletogenesis-related genes (vegf, vegfr, ets1/2, erg, alx1, ca1, and clect) suggest that adult skeletogenic cells develop from the posterior coelom after the start of feeding. Treatment with inhibitors and gene knockout using transcription activator-like effector nucleases (TALENs) suggest that the feeding-nutrient sensing pathway activates Vegf signaling via target of rapamycin (TOR) activity, leading to the activation of skeletogenic regulatory genes in starfish. In the larval skeletogenesis of sea urchins, the homeobox gene pmar1 activates skeletogenic regulatory genes, but in starfish, localized expression of the pmar1-related genes phbA and phbB was not detected during the adult skeleton formation stage. Based on these data, we provide a model for the adult skeletogenic GRN in the echinoderm and propose that the upstream regulatory system changed from the feeding-TOR-Vegf pathway to a homeobox gene-system during co-option of the skeletogenic GRN.
Collapse
Affiliation(s)
- Atsuko Yamazaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Shumpei Yamakawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yoshiaki Morino
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, 415-0025, Japan
| | - Hiroshi Wada
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
20
|
Gildor T, Winter MR, Layous M, Hijaze E, Ben-Tabou de-Leon S. The biological regulation of sea urchin larval skeletogenesis - From genes to biomineralized tissue. J Struct Biol 2021; 213:107797. [PMID: 34530133 DOI: 10.1016/j.jsb.2021.107797] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Biomineralization is the process in which soft organic tissues use minerals to produce shells, skeletons and teeth for various functions such as protection and physical support. The ability of the cells to control the time and place of crystal nucleation as well as crystal orientation and stiffness is far beyond the state-of-the art of human technologies. Thus, understanding the biological control of biomineralization will promote our understanding of embryo development as well as provide novel approaches for material engineering. Sea urchin larval skeletogenesis offers an excellent platform for functional analyses of both the molecular control system and mineral uptake and deposition. Here we describe the current understanding of the genetic, molecular and cellular processes that underlie sea urchin larval skeletogenesis. We portray the regulatory genes that define the specification of the skeletogenic cells and drive the various morphogenetic processes that occur in the skeletogenic lineage, including: epithelial to mesenchymal transition, cell migration, spicule cavity formation and mineral deposition into the spicule cavity. We describe recent characterizations of the size, motion and mineral concentration of the calcium-bearing vesicles in the skeletogenic cells. We review the distinct specification states within the skeletogenic lineage that drive localized skeletal growth at the tips of the spicules. Finally, we discuss the surprising similarity between the regulatory network and cellular processes that drive sea urchin skeletogenesis and those that control vertebrate vascularization. Overall, we illustrate the novel insights on the biological regulation and evolution of biomineralization, gained from studies of the sea urchin larval skeletogenesis.
Collapse
Affiliation(s)
- Tsvia Gildor
- Marine Biology Department, Charney School of Marine Sciences, the University of Haifa, Haifa, Israel
| | - Mark R Winter
- Marine Biology Department, Charney School of Marine Sciences, the University of Haifa, Haifa, Israel
| | - Majed Layous
- Marine Biology Department, Charney School of Marine Sciences, the University of Haifa, Haifa, Israel
| | - Eman Hijaze
- Marine Biology Department, Charney School of Marine Sciences, the University of Haifa, Haifa, Israel
| | - Smadar Ben-Tabou de-Leon
- Marine Biology Department, Charney School of Marine Sciences, the University of Haifa, Haifa, Israel.
| |
Collapse
|
21
|
Czarkwiani A, Dylus DV, Carballo L, Oliveri P. FGF signalling plays similar roles in development and regeneration of the skeleton in the brittle star Amphiura filiformis. Development 2021; 148:dev180760. [PMID: 34042967 PMCID: PMC8180256 DOI: 10.1242/dev.180760] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 04/13/2021] [Indexed: 12/16/2022]
Abstract
Regeneration as an adult developmental process is in many aspects similar to embryonic development. Although many studies point out similarities and differences, no large-scale, direct and functional comparative analyses between development and regeneration of a specific cell type or structure in one animal exist. Here, we use the brittle star Amphiura filiformis to characterise the role of the FGF signalling pathway during skeletal development in embryos and arm regeneration. In both processes, we find ligands expressed in ectodermal cells that flank underlying skeletal mesenchymal cells, which express the receptors. Perturbation of FGF signalling showed inhibited skeleton formation in both embryogenesis and regeneration, without affecting other key developmental processes. Differential transcriptome analysis finds mostly differentiation genes rather than transcription factors to be downregulated in both contexts. Moreover, comparative gene analysis allowed us to discover brittle star-specific differentiation genes. In conclusion, our results show that the FGF pathway is crucial for skeletogenesis in the brittle star, as in other deuterostomes, and provide evidence for the re-deployment of a developmental gene regulatory module during regeneration.
Collapse
Affiliation(s)
- Anna Czarkwiani
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - David V. Dylus
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
- Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology, University College London, London WC1E 6BT, UK
| | - Luisana Carballo
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
- Centre for Life's Origin and Evolution (CLOE), University College London, London WC1E 6BT, UK
| |
Collapse
|
22
|
Layous M, Khalaily L, Gildor T, Ben-Tabou de-Leon S. The tolerance to hypoxia is defined by a time-sensitive response of the gene regulatory network in sea urchin embryos. Development 2021; 148:dev.195859. [PMID: 33795230 PMCID: PMC8077511 DOI: 10.1242/dev.195859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
Deoxygenation, the reduction of oxygen level in the oceans induced by global warming and anthropogenic disturbances, is a major threat to marine life. This change in oxygen level could be especially harmful to marine embryos that use endogenous hypoxia and redox gradients as morphogens during normal development. Here, we show that the tolerance to hypoxic conditions changes between different developmental stages of the sea urchin embryo, possibly due to the structure of the gene regulatory networks (GRNs). We demonstrate that during normal development, the bone morphogenetic protein (BMP) pathway restricts the activity of the vascular endothelial growth factor (VEGF) pathway to two lateral domains and this restriction controls proper skeletal patterning. Hypoxia applied during early development strongly perturbs the activity of Nodal and BMP pathways that affect the VEGF pathway, dorsal-ventral (DV) and skeletogenic patterning. These pathways are largely unaffected by hypoxia applied after DV-axis formation. We propose that the use of redox and hypoxia as morphogens makes the sea urchin embryo highly sensitive to environmental hypoxia during early development, but the GRN structure provides higher tolerance to hypoxia at later stages. Summary: The use of hypoxia and redox gradients as morphogens makes sea urchin early development sensitive to environmental hypoxia. This sensitivity decreases later, possibly due to the gene regulatory network structure.
Collapse
Affiliation(s)
- Majed Layous
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 31905, Israel
| | - Lama Khalaily
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 31905, Israel
| | - Tsvia Gildor
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 31905, Israel
| | - Smadar Ben-Tabou de-Leon
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 31905, Israel
| |
Collapse
|
23
|
Sampilo NF, Stepicheva NA, Song JL. microRNA-31 regulates skeletogenesis by direct suppression of Eve and Wnt1. Dev Biol 2021; 472:98-114. [PMID: 33484703 PMCID: PMC7956219 DOI: 10.1016/j.ydbio.2021.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 11/22/2022]
Abstract
microRNAs (miRNAs) play a critical role in a variety of biological processes, including embryogenesis and the physiological functions of cells. Evolutionarily conserved microRNA-31 (miR-31) has been found to be involved in cancer, bone formation, and lymphatic development. We previously discovered that, in the sea urchin, miR-31 knockdown (KD) embryos have shortened dorsoventral connecting rods, mispatterned skeletogenic primary mesenchyme cells (PMCs) and shifted and expanded Vegf3 expression domain. Vegf3 itself does not contain miR-31 binding sites; however, we identified its upstream regulators Eve and Wnt1 to be directly suppressed by miR-31. Removal of miR-31's suppression of Eve and Wnt1 resulted in skeletal and PMC patterning defects, similar to miR-31 KD phenotypes. Additionally, removal of miR-31's suppression of Eve and Wnt1 results in an expansion and anterior shift in expression of Veg1 ectodermal genes, including Vegf3 in the blastulae. This indicates that miR-31 indirectly regulates Vegf3 expression through directly suppressing Eve and Wnt1. Furthermore, removing miR-31 suppression of Eve is sufficient to cause skeletogenic defects, revealing a novel regulatory role of Eve in skeletogenesis and PMC patterning. Overall, this study provides a proposed molecular mechanism of miR-31's regulation of skeletogenesis and PMC patterning through its cross-regulation of a Wnt signaling ligand and a transcription factor of the endodermal and ectodermal gene regulatory network.
Collapse
Affiliation(s)
- Nina Faye Sampilo
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Nadezda A Stepicheva
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
24
|
Bardhan A, Deiters A, Ettensohn CA. Conditional gene knockdowns in sea urchins using caged morpholinos. Dev Biol 2021; 475:21-29. [PMID: 33684434 DOI: 10.1016/j.ydbio.2021.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 12/01/2022]
Abstract
Echinoderms are important experimental models for analyzing embryonic development, but a lack of spatial and temporal control over gene perturbations has hindered developmental studies using these animals. Morpholino antisense oligonucleotides (MOs) have been used successfully by the echinoderm research community for almost two decades, and MOs remain the most widely used tool for acute gene knockdowns in these organisms. Echinoderm embryos develop externally and are optically transparent, making them ideally-suited to many light-based approaches for analyzing and manipulating development. Studies using zebrafish embryos have demonstrated the effectiveness of photoactivatable (caged) MOs for conditional gene knockdowns. Here we show that caged MOs, synthesized using nucleobase-caged monomers, provide light-regulated control over gene expression in sea urchin embryos. Our work provides the first robust approach for conditional gene silencing in this prominent model system.
Collapse
Affiliation(s)
- Anirban Bardhan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
25
|
Winter MR, Morgulis M, Gildor T, Cohen AR, Ben-Tabou de-Leon S. Calcium-vesicles perform active diffusion in the sea urchin embryo during larval biomineralization. PLoS Comput Biol 2021; 17:e1008780. [PMID: 33617532 PMCID: PMC7932551 DOI: 10.1371/journal.pcbi.1008780] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 03/04/2021] [Accepted: 02/08/2021] [Indexed: 11/18/2022] Open
Abstract
Biomineralization is the process by which organisms use minerals to harden their tissues and provide them with physical support. Biomineralizing cells concentrate the mineral in vesicles that they secret into a dedicated compartment where crystallization occurs. The dynamics of vesicle motion and the molecular mechanisms that control it, are not well understood. Sea urchin larval skeletogenesis provides an excellent platform for investigating the kinetics of mineral-bearing vesicles. Here we used lattice light-sheet microscopy to study the three-dimensional (3D) dynamics of calcium-bearing vesicles in the cells of normal sea urchin embryos and of embryos where skeletogenesis is blocked through the inhibition of Vascular Endothelial Growth Factor Receptor (VEGFR). We developed computational tools for displaying 3D-volumetric movies and for automatically quantifying vesicle dynamics. Our findings imply that calcium vesicles perform an active diffusion motion in both, calcifying (skeletogenic) and non-calcifying (ectodermal) cells of the embryo. The diffusion coefficient and vesicle speed are larger in the mesenchymal skeletogenic cells compared to the epithelial ectodermal cells. These differences are possibly due to the distinct mechanical properties of the two tissues, demonstrated by the enhanced f-actin accumulation and myosinII activity in the ectodermal cells compared to the skeletogenic cells. Vesicle motion is not directed toward the biomineralization compartment, but the vesicles slow down when they approach it, and probably bind for mineral deposition. VEGFR inhibition leads to an increase of vesicle volume but hardly changes vesicle kinetics and doesn’t affect f-actin accumulation and myosinII activity. Thus, calcium vesicles perform an active diffusion motion in the cells of the sea urchin embryo, with diffusion length and speed that inversely correlate with the strength of the actomyosin network. Overall, our studies provide an unprecedented view of calcium vesicle 3D-dynamics and point toward cytoskeleton remodeling as an important effector of the motion of mineral-bearing vesicles. Biomineralization is a widespread, fundamental process by which organisms use minerals to harden their tissues. Mineral-bearing vesicles were observed in biomineralizing cells and play an essential role in biomineralization, yet little is known about their three-dimensional (3D) dynamics. Here we quantify 3D-vesicle-dynamics during calcite skeleton formation in sea urchin larvae, using lattice-light-sheet microscopy. We discover that calcium vesicles perform a diffusive motion in both calcifying and non-calcifying cells of the embryo. The diffusion coefficient and vesicle speed are higher in the mesenchymal skeletogenic cells compared to the epithelial ectodermal cells. This difference is possibly due to the higher rigidity of the ectodermal cells as demonstrated by the enhanced signal of f-actin and myosinII activity in these cells compared to the skeletogenic cells. The motion of the vesicles in the skeletogenic cells, is not directed toward the biomineralization compartment but the vesicles slow down near it, possibly to deposit their content. Blocking skeletogenesis through the inhibition of Vascular Endothelial Growth Factor Receptor (VEGFR), increases vesicle volume but doesn’t change the diffusion mode and the cytoskeleton markers in the cells. Our studies reveal the active diffusive motion of mineral bearing vesicles that is apparently defined by the mechanical properties of the cells.
Collapse
Affiliation(s)
- Mark R. Winter
- Marine Biology Department, Charney School of Marine Sciences, the University of Haifa, Haifa, Israel
- * E-mail: (MRW); (SBD)
| | - Miri Morgulis
- Marine Biology Department, Charney School of Marine Sciences, the University of Haifa, Haifa, Israel
| | - Tsvia Gildor
- Marine Biology Department, Charney School of Marine Sciences, the University of Haifa, Haifa, Israel
| | - Andrew R. Cohen
- Dept of Electrical Engineering, Drexel University, Pennsylvania, United States of America
| | - Smadar Ben-Tabou de-Leon
- Marine Biology Department, Charney School of Marine Sciences, the University of Haifa, Haifa, Israel
- * E-mail: (MRW); (SBD)
| |
Collapse
|
26
|
Morgulis M, Winter MR, Shternhell L, Gildor T, Ben-Tabou de-Leon S. VEGF signaling activates the matrix metalloproteinases, MmpL7 and MmpL5 at the sites of active skeletal growth and MmpL7 regulates skeletal elongation. Dev Biol 2021; 473:80-89. [PMID: 33577829 DOI: 10.1016/j.ydbio.2021.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/20/2022]
Abstract
Organisms can uptake minerals, shape them in different forms and generate teeth, skeletons or shells that support and protect them. Mineral uptake, trafficking and nucleation are tightly regulated by the biomineralizing cells through networks of specialized proteins. Specifically, matrix metalloproteases (MMPs) digest various extracellular substrates and allow for mineralization in the vertebrates' teeth and bones, but little is known about their role in invertebrates' systems. The sea urchin embryo provides an excellent invertebrate model for genetic and molecular studies of biomineralization. MMP inhibition prevents the growth of the calcite spicules of the sea urchin larval skeleton, however, the molecular mechanisms and genes that underlie this response are not well understood. Here we study the spatial expression and regulation of two membrane type MMPs that were found to be occluded in the sea urchin spicules, Pl-MmpL7 and Pl-MmpL5, and investigate the function of Pl-MmpL7 in skeletogenesis. The inhibition of MMPs does not change the volume of the calcium vesicles in the skeletogenic cells. The expression of Pl-MmpL7 and Pl-MmpL5 is regulated by the Vascular Endothelial Growth Factor (VEGF) signaling, from the time of skeleton initiation and on. The expression of these genes is localized to the subsets of skeletogenic cells where active spicule growth occurs throughout skeletogenesis. Downregulation of Pl-MmpL7 expression delays the growth of the skeletal rods and in some cases, strongly perturbs skeletal shape. The localized expression of Pl-MmpL7 and Pl-MmpL5 to the active growth zone and the effect of Pl-MmpL7 perturbations on skeletal growth, suggest that these genes are essential for normal spicule elongation in the sea urchin embryo.
Collapse
Affiliation(s)
- Miri Morgulis
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 31905, Israel
| | - Mark R Winter
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 31905, Israel
| | - Ligal Shternhell
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 31905, Israel
| | - Tsvia Gildor
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 31905, Israel
| | - Smadar Ben-Tabou de-Leon
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 31905, Israel.
| |
Collapse
|
27
|
Kahil K, Varsano N, Sorrentino A, Pereiro E, Rez P, Weiner S, Addadi L. Cellular pathways of calcium transport and concentration toward mineral formation in sea urchin larvae. Proc Natl Acad Sci U S A 2020; 117:30957-30965. [PMID: 33229583 PMCID: PMC7733801 DOI: 10.1073/pnas.1918195117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sea urchin larvae have an endoskeleton consisting of two calcitic spicules. The primary mesenchyme cells (PMCs) are the cells that are responsible for spicule formation. PMCs endocytose sea water from the larval internal body cavity into a network of vacuoles and vesicles, where calcium ions are concentrated until they precipitate in the form of amorphous calcium carbonate (ACC). The mineral is subsequently transferred to the syncytium, where the spicule forms. Using cryo-soft X-ray microscopy we imaged intracellular calcium-containing particles in the PMCs and acquired Ca-L2,3 X-ray absorption near-edge spectra of these Ca-rich particles. Using the prepeak/main peak (L2'/ L2) intensity ratio, which reflects the atomic order in the first Ca coordination shell, we determined the state of the calcium ions in each particle. The concentration of Ca in each of the particles was also determined by the integrated area in the main Ca absorption peak. We observed about 700 Ca-rich particles with order parameters, L2'/ L2, ranging from solution to hydrated and anhydrous ACC, and with concentrations ranging between 1 and 15 M. We conclude that in each cell the calcium ions exist in a continuum of states. This implies that most, but not all, water is expelled from the particles. This cellular process of calcium concentration may represent a widespread pathway in mineralizing organisms.
Collapse
Affiliation(s)
- Keren Kahil
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Neta Varsano
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Andrea Sorrentino
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain
| | - Eva Pereiro
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain
| | - Peter Rez
- Department of Physics, Arizona State University, Tempe, AZ 85287
| | - Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Lia Addadi
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel;
| |
Collapse
|
28
|
Khor JM, Ettensohn CA. Transcription Factors of the Alx Family: Evolutionarily Conserved Regulators of Deuterostome Skeletogenesis. Front Genet 2020; 11:569314. [PMID: 33329706 PMCID: PMC7719703 DOI: 10.3389/fgene.2020.569314] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Members of the alx gene family encode transcription factors that contain a highly conserved Paired-class, DNA-binding homeodomain, and a C-terminal OAR/Aristaless domain. Phylogenetic and comparative genomic studies have revealed complex patterns of alx gene duplications during deuterostome evolution. Remarkably, alx genes have been implicated in skeletogenesis in both echinoderms and vertebrates. In this review, we provide an overview of current knowledge concerning alx genes in deuterostomes. We highlight their evolutionarily conserved role in skeletogenesis and draw parallels and distinctions between the skeletogenic gene regulatory circuitries of diverse groups within the superphylum.
Collapse
Affiliation(s)
- Jian Ming Khor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
29
|
Lee JR, Kuo DH. Netrin expressed by the ventral ectoderm lineage guides mesoderm migration in epibolic gastrulation of the leech. Dev Biol 2020; 463:39-52. [PMID: 32360631 DOI: 10.1016/j.ydbio.2020.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/24/2020] [Accepted: 04/17/2020] [Indexed: 11/19/2022]
Abstract
Netrin is a remarkably conserved midline landmark, serving as a chemotactic factor that organizes the bilateral neural architecture in the post-gastrula bilaterian embryos. Netrin signal also guides cell migration in many other neural and non-neural organogenesis events in later developmental stages but has never been found to participate in gastrulation - the earliest cell migration in metazoan embryogenesis. Here, we found that the netrin signaling molecules and their receptors are expressed during gastrulation of the leech Helobdella. Intriguingly, Hau-netrin-1 was expressed in the N lineage, which gives rise in part to the ventral midline of ectoderm, at the onset of gastrulation. We demonstrated that the N lineage is required for the entrance of mesoderm into the germinal band and that misexpression of Hau-netrin-1 in early gastrulation prevented mesoderm from entering the germinal band. Together, these results suggested that Hau-netrin-1 secreted by the N lineage guides mesoderm migration during germinal band assembly. Furthermore, ectopic expression of Hau-netrin-1 after the completion of germinal band assembly disrupted the epibolic migration of the germinal bands in a later stage of gastrulation. Thus, Hau-netrin-1 is likely involved in two distinct events in sequential stages of leech gastrulation: the assembly of germinal bands in early gastrulation and their epibolic migration in mid-gastrulation. Given that the leech netrin is expressed in the precursor cells of the ventral midline during gastrulation, we propose that a heterochronic change from the midline netrin expression had taken place in the evolution of a novel mode of gastrulation in the directly developing leech embryos.
Collapse
Affiliation(s)
- Jun-Ru Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan; Present Address: Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Dian-Han Kuo
- Department of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
30
|
Ettensohn CA. The gene regulatory control of sea urchin gastrulation. Mech Dev 2020; 162:103599. [PMID: 32119908 DOI: 10.1016/j.mod.2020.103599] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
The cell behaviors associated with gastrulation in sea urchins have been well described. More recently, considerable progress has been made in elucidating gene regulatory networks (GRNs) that underlie the specification of early embryonic territories in this experimental model. This review integrates information from these two avenues of work. I discuss the principal cell movements that take place during sea urchin gastrulation, with an emphasis on molecular effectors of the movements, and summarize our current understanding of the gene regulatory circuitry upstream of those effectors. A case is made that GRN biology can provide a causal explanation of gastrulation, although additional analysis is needed at several levels of biological organization in order to provide a deeper understanding of this complex morphogenetic process.
Collapse
Affiliation(s)
- Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA 15213, USA.
| |
Collapse
|
31
|
Lichitsky BV, Komogortsev AN, Dudinov AA, Krayushkin MM, Khodot EN, Samet AV, Silyanova EA, Konyushkin LD, Karpov AS, Gorses D, Radimerski T, Semenova MN, Kiselyov AS, Semenov VV. Benzimidazolyl-pyrazolo[3,4- b]pyridinones, Selective Inhibitors of MOLT-4 Leukemia Cell Growth and Sea Urchin Embryo Spiculogenesis: Target Quest. ACS COMBINATORIAL SCIENCE 2019; 21:805-816. [PMID: 31689077 DOI: 10.1021/acscombsci.9b00135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1,3-Substituted pyrazolo[3,4-b]pyridinones 11-18 were synthesized by a three-component condensation of Meldrum's acid with aryl aldehydes and 1,3-substituted 5-aminopyrazoles. Their biological activity was evaluated using the in vivo phenotypic sea urchin embryo assay and the in vitro cytotoxicity screen against human cancer cell lines. In the sea urchin embryo model, 1-benzimidazolyl-pyrazolo[3,4-b]pyridinones 11 caused inhibition of hatching and spiculogenesis at sub-micromolar concentrations. These compounds also selectively and potently inhibited growth of the MOLT-4 leukemia cell line. Subsequent structure-activity relationship studies determined the benzimidazolyl fragment as an essential pharmacophore for both effects. We applied numerous techniques for target identification. A preliminary QSAR target identification search did not result in tangible leads. Attempts to prepare a relevant photoaffinity probe that retained potency in both assays were not successful. Compounds 11 were further characterized for their activity in a wild-type versus Notch-mutant leukemia cell lines, and in in vitro panels of kinases and matrix metalloproteinases. Using a series of diverse modulators of spiculogenesis as standards, we excluded multiple signaling networks including Notch, Wnt/β-catenin, receptor tyrosine kinases (VEGF/VEGFR, FGF/FGFR), PI3K, and Raf-MEK-ERK as possible targets of 11. On the other hand, matrix metalloproteinase-9/hatching enzyme was identified as one potential target.
Collapse
Affiliation(s)
- Boris V. Lichitsky
- N. D. Zelinsky Institute of Organic Chemistry, RAS, Leninsky Prospect, 47, 119991 Moscow, Russian Federation
| | - Andrey N. Komogortsev
- N. D. Zelinsky Institute of Organic Chemistry, RAS, Leninsky Prospect, 47, 119991 Moscow, Russian Federation
| | - Arkady A. Dudinov
- N. D. Zelinsky Institute of Organic Chemistry, RAS, Leninsky Prospect, 47, 119991 Moscow, Russian Federation
| | - Mikhail M. Krayushkin
- N. D. Zelinsky Institute of Organic Chemistry, RAS, Leninsky Prospect, 47, 119991 Moscow, Russian Federation
| | - Evgenii N. Khodot
- N. D. Zelinsky Institute of Organic Chemistry, RAS, Leninsky Prospect, 47, 119991 Moscow, Russian Federation
| | - Alexander V. Samet
- N. D. Zelinsky Institute of Organic Chemistry, RAS, Leninsky Prospect, 47, 119991 Moscow, Russian Federation
| | - Eugenia A. Silyanova
- N. D. Zelinsky Institute of Organic Chemistry, RAS, Leninsky Prospect, 47, 119991 Moscow, Russian Federation
| | - Leonid D. Konyushkin
- N. D. Zelinsky Institute of Organic Chemistry, RAS, Leninsky Prospect, 47, 119991 Moscow, Russian Federation
| | - Alexei S. Karpov
- Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | - Delphine Gorses
- Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | - Thomas Radimerski
- Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | - Marina N. Semenova
- N. K. Kol’tsov Institute of Developmental Biology, RAS, Vavilov Street, 26, 119334 Moscow, Russian Federation
| | - Alex S. Kiselyov
- Myocea, Inc., 9833 Pacific Heights Blvd., San Diego, California 92121, United States
| | - Victor V. Semenov
- N. D. Zelinsky Institute of Organic Chemistry, RAS, Leninsky Prospect, 47, 119991 Moscow, Russian Federation
| |
Collapse
|
32
|
Hogan JD, Keenan JL, Luo L, Ibn-Salem J, Lamba A, Schatzberg D, Piacentino ML, Zuch DT, Core AB, Blumberg C, Timmermann B, Grau JH, Speranza E, Andrade-Navarro MA, Irie N, Poustka AJ, Bradham CA. The developmental transcriptome for Lytechinus variegatus exhibits temporally punctuated gene expression changes. Dev Biol 2019; 460:139-154. [PMID: 31816285 DOI: 10.1016/j.ydbio.2019.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Abstract
Embryonic development is arguably the most complex process an organism undergoes during its lifetime, and understanding this complexity is best approached with a systems-level perspective. The sea urchin has become a highly valuable model organism for understanding developmental specification, morphogenesis, and evolution. As a non-chordate deuterostome, the sea urchin occupies an important evolutionary niche between protostomes and vertebrates. Lytechinus variegatus (Lv) is an Atlantic species that has been well studied, and which has provided important insights into signal transduction, patterning, and morphogenetic changes during embryonic and larval development. The Pacific species, Strongylocentrotus purpuratus (Sp), is another well-studied sea urchin, particularly for gene regulatory networks (GRNs) and cis-regulatory analyses. A well-annotated genome and transcriptome for Sp are available, but similar resources have not been developed for Lv. Here, we provide an analysis of the Lv transcriptome at 11 timepoints during embryonic and larval development. Temporal analysis suggests that the gene regulatory networks that underlie specification are well-conserved among sea urchin species. We show that the major transitions in variation of embryonic transcription divide the developmental time series into four distinct, temporally sequential phases. Our work shows that sea urchin development occurs via sequential intervals of relatively stable gene expression states that are punctuated by abrupt transitions.
Collapse
Affiliation(s)
- John D Hogan
- Program in Bioinformatics, Boston University, Boston, MA, USA
| | | | - Lingqi Luo
- Program in Bioinformatics, Boston University, Boston, MA, USA
| | - Jonas Ibn-Salem
- Evolution and Development Group, Max-Planck Institute for Molecular Genetics, Berlin, Germany; Faculty of Biology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Arjun Lamba
- Biology Department, Boston University, Boston, MA, USA
| | | | - Michael L Piacentino
- Program in Molecular and Cellular Biology and Biochemistry, Boston University, Boston, MA, USA
| | - Daniel T Zuch
- Program in Molecular and Cellular Biology and Biochemistry, Boston University, Boston, MA, USA
| | - Amanda B Core
- Biology Department, Boston University, Boston, MA, USA
| | | | - Bernd Timmermann
- Sequencing Core Facility, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - José Horacio Grau
- Dahlem Centre for Genome Research and Medical Systems Biology, Environmental and Phylogenomics Group, Berlin, Germany; Museum für Naturkunde Berlin, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Emily Speranza
- Program in Bioinformatics, Boston University, Boston, MA, USA
| | | | - Naoki Irie
- Department of Biological Sciences, University of Tokyo, Tokyo, Japan
| | - Albert J Poustka
- Evolution and Development Group, Max-Planck Institute for Molecular Genetics, Berlin, Germany; Dahlem Centre for Genome Research and Medical Systems Biology, Environmental and Phylogenomics Group, Berlin, Germany
| | - Cynthia A Bradham
- Program in Bioinformatics, Boston University, Boston, MA, USA; Biology Department, Boston University, Boston, MA, USA; Program in Molecular and Cellular Biology and Biochemistry, Boston University, Boston, MA, USA.
| |
Collapse
|
33
|
Ettensohn CA, Adomako-Ankomah A. The evolution of a new cell type was associated with competition for a signaling ligand. PLoS Biol 2019; 17:e3000460. [PMID: 31532765 PMCID: PMC6768484 DOI: 10.1371/journal.pbio.3000460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/30/2019] [Accepted: 09/05/2019] [Indexed: 11/29/2022] Open
Abstract
There is presently a very limited understanding of the mechanisms that underlie the evolution of new cell types. The skeleton-forming primary mesenchyme cells (PMCs) of euechinoid sea urchins, derived from the micromeres of the 16-cell embryo, are an example of a recently evolved cell type. All adult echinoderms have a calcite-based endoskeleton, a synapomorphy of the Ambulacraria. Only euechinoids have a micromere-PMC lineage, however, which evolved through the co-option of the adult skeletogenic program into the embryo. During normal development, PMCs alone secrete the embryonic skeleton. Other mesoderm cells, known as blastocoelar cells (BCs), have the potential to produce a skeleton, but a PMC-derived signal ordinarily prevents these cells from expressing a skeletogenic fate and directs them into an alternative developmental pathway. Recently, it was shown that vascular endothelial growth factor (VEGF) signaling plays an important role in PMC differentiation and is part of a conserved program of skeletogenesis among echinoderms. Here, we report that VEGF signaling, acting through ectoderm-derived VEGF3 and its cognate receptor, VEGF receptor (VEGFR)-10-Ig, is also essential for the deployment of the skeletogenic program in BCs. This VEGF-dependent program includes the activation of aristaless-like homeobox 1 (alx1), a conserved transcriptional regulator of skeletogenic specification across echinoderms and an example of a “terminal selector” gene that controls cell identity. We show that PMCs control BC fate by sequestering VEGF3, thereby preventing activation of alx1 and the downstream skeletogenic network in BCs. Our findings provide an example of the regulation of early embryonic cell fates by direct competition for a secreted signaling ligand, a developmental mechanism that has not been widely recognized. Moreover, they reveal that a novel cell type evolved by outcompeting other embryonic cell lineages for an essential signaling ligand that regulates the expression of a gene controlling cell identity. How do new cell types evolve? This study shows that mesoderm cells in sea urchin embryos diversified, at least in part, through a heterochronic shift in the expression of a key transcription factor, which led to competition for a signaling ligand and subsequent gene regulatory independence of the two cell types.
Collapse
Affiliation(s)
- Charles A. Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Ashrifia Adomako-Ankomah
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
34
|
PI3K inhibition highlights new molecular interactions involved in the skeletogenesis of Paracentrotus lividus embryos. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118558. [PMID: 31525406 DOI: 10.1016/j.bbamcr.2019.118558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 02/02/2023]
Abstract
The sea urchin embryo develops a well-defined biomineralized endoskeleton, synthesized exclusively by the skeletogenic cells, supported by ectodermal cues for the correct skeleton patterning. The biomineralization process is tightly regulated via a hierarchical order of gene expression, including transcription and growth factors, biomineralization proteins. Recently, the role of kinases and intracellular signaling pathways in sea urchin skeletogenesis has been addressed, although the downstream components still remain unknown. In this study, we investigated the role of phosphatidylinositide 3-kinase (PI3K)-mediated signaling pathway in Paracentrotus lividus, to identify its genes/proteins targets. The effects of LY294002 (LY), a PI3K-specific inhibitor, were evaluated at morphological and molecular levels. Treatment with 40 μM LY from the blastula stage completely blocked skeleton deposition, which was reversed by wash out experiments. Besides, LY caused a slight delay in the tripartite gut development. Despite the skeleton absence, a few skeleton-specific proteins/mRNAs were regularly expressed and localized in LY-treated embryos, as shown for MSP130 and SM50 by immunofluorescence and in situ hybridization experiments. QPCR analyses showed that LY differently affected the expression of genes coding for other biomineralization proteins, transcription and growth factors. SM30 and carbonic anhydrase expression was severely downregulated, while almost all the transcription factors analyzed were upregulated. Based on the present results and in silico analyses, we propose an "interactomic" model simulating PI3K connections in P. lividus embryos. Our findings define a novel regulatory step in the embryonic skeletogenesis, and provide valuable molecular data for further studies on the role of PI3K signaling in invertebrate biomineralization.
Collapse
|
35
|
Khor JM, Guerrero-Santoro J, Ettensohn CA. Genome-wide identification of binding sites and gene targets of Alx1, a pivotal regulator of echinoderm skeletogenesis. Development 2019; 146:dev.180653. [PMID: 31331943 DOI: 10.1242/dev.180653] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/09/2019] [Indexed: 01/25/2023]
Abstract
Alx1 is a conserved regulator of skeletogenesis in echinoderms and evolutionary changes in Alx1 sequence and expression have played a pivotal role in modifying programs of skeletogenesis within the phylum. Alx1 regulates a large suite of effector genes that control the morphogenetic behaviors and biomineral-forming activities of skeletogenic cells. To better understand the gene regulatory control of skeletogenesis by Alx1, we used genome-wide ChIP-seq to identify Alx1-binding sites and direct gene targets. Our analysis revealed that many terminal differentiation genes receive direct transcriptional inputs from Alx1. In addition, we found that intermediate transcription factors previously shown to be downstream of Alx1 all receive direct inputs from Alx1. Thus, Alx1 appears to regulate effector genes by indirect, as well as direct, mechanisms. We tested 23 high-confidence ChIP-seq peaks using GFP reporters and identified 18 active cis-regulatory modules (CRMs); this represents a high success rate for CRM discovery. Detailed analysis of a representative CRM confirmed that a conserved, palindromic Alx1-binding site was essential for expression. Our work significantly advances our understanding of the gene regulatory circuitry that controls skeletogenesis in sea urchins and provides a framework for evolutionary studies.
Collapse
Affiliation(s)
- Jian Ming Khor
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Jennifer Guerrero-Santoro
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
36
|
Possible cooption of a VEGF-driven tubulogenesis program for biomineralization in echinoderms. Proc Natl Acad Sci U S A 2019; 116:12353-12362. [PMID: 31152134 DOI: 10.1073/pnas.1902126116] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Biomineralization is the process by which living organisms use minerals to form hard structures that protect and support them. Biomineralization is believed to have evolved rapidly and independently in different phyla utilizing preexisting components. The mechanistic understanding of the regulatory networks that drive biomineralization and their evolution is far from clear. Sea urchin skeletogenesis is an excellent model system for studying both gene regulation and mineral uptake and deposition. The sea urchin calcite spicules are formed within a tubular cavity generated by the skeletogenic cells controlled by vascular endothelial growth factor (VEGF) signaling. The VEGF pathway is essential for biomineralization in echinoderms, while in many other phyla, across metazoans, it controls tubulogenesis and vascularization. Despite the critical role of VEGF signaling in sea urchin spiculogenesis, the downstream program it activates was largely unknown. Here we study the cellular and molecular machinery activated by the VEGF pathway during sea urchin spiculogenesis and reveal multiple parallels to the regulation of vertebrate vascularization. Human VEGF rescues sea urchin VEGF knockdown, vesicle deposition into an internal cavity plays a significant role in both systems, and sea urchin VEGF signaling activates hundreds of genes, including biomineralization and interestingly, vascularization genes. Moreover, five upstream transcription factors and three signaling genes that drive spiculogenesis are homologous to vertebrate factors that control vascularization. Overall, our findings suggest that sea urchin spiculogenesis and vertebrate vascularization diverged from a common ancestral tubulogenesis program, broadly adapted for vascularization and specifically coopted for biomineralization in the echinoderm phylum.
Collapse
|
37
|
Moreno B, DiCorato A, Park A, Mobilia K, Knapp R, Bleher R, Wilke C, Alvares K, Joester D. Culture of and experiments with sea urchin embryo primary mesenchyme cells. Methods Cell Biol 2019; 150:293-330. [PMID: 30777181 PMCID: PMC8273911 DOI: 10.1016/bs.mcb.2019.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Skeletogenesis in the sea urchin embryo gives rise to a pair of intricate endoskeletal spicules. Deposition of these skeletal elements in the early larva is the outcome of a morphogenetic program that begins with maternal inputs in the early zygote and results in the specification of the large micromere-primary mesenchyme cell (PMC) lineage. PMCs are of considerable interest as a model system, not only to dissect the mechanism of specific developmental processes, but also to investigate their evolution and the unrivaled level of control over the formation of a graded, mechanically robust, yet single crystalline biomineral. The ability to study gene regulatory circuits, cellular behavior, signaling pathways, and molecular players involved in biomineralization is significantly boosted by the high level of autonomy of PMCs. In fact, in the presence of horse serum, micromeres differentiate into PMCs and produce spicules in vitro, separated from the embryonic milieu. PMC culture eliminates indirect effects that can complicate the interpretation of experiments in vivo, offers superior spatiotemporal control, enables PMC-specific readouts, and is compatible with most imaging and characterization techniques. In this chapter, we provide an updated protocol, based on the pioneering work by Okazaki and Wilt, for the isolation of micromeres and subsequent culture of PMCs, as well as protocols for fixation and staining for fluorescent microscopy, preparation of cell cultures for electron microscopy, and the isolation of RNA.
Collapse
Affiliation(s)
- Bradley Moreno
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
| | - Allessandra DiCorato
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
| | - Alexander Park
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
| | - Kellen Mobilia
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
| | - Regina Knapp
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
| | - Reiner Bleher
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
| | - Charlene Wilke
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
| | - Keith Alvares
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
| | - Derk Joester
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States.
| |
Collapse
|
38
|
Sampilo NF, Stepicheva NA, Zaidi SAM, Wang L, Wu W, Wikramanayake A, Song JL. Inhibition of microRNA suppression of Dishevelled results in Wnt pathway-associated developmental defects in sea urchin. Development 2018; 145:dev167130. [PMID: 30389855 PMCID: PMC6288383 DOI: 10.1242/dev.167130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/29/2018] [Indexed: 11/20/2022]
Abstract
MicroRNAs (miRNAs) are highly conserved, small non-coding RNAs that regulate gene expressions by binding to the 3' untranslated region of target mRNAs thereby silencing translation. Some miRNAs are key regulators of the Wnt signaling pathways, which impact developmental processes. This study investigates miRNA regulation of different isoforms of Dishevelled (Dvl/Dsh), which encode a key component in the Wnt signaling pathway. The sea urchin Dvl mRNA isoforms have similar spatial distribution in early development, but one isoform is distinctively expressed in the larval ciliary band. We demonstrated that Dvl isoforms are directly suppressed by miRNAs. By blocking miRNA suppression of Dvl isoforms, we observed dose-dependent defects in spicule length, patterning of the primary mesenchyme cells, gut morphology, and cilia. These defects likely result from increased Dvl protein levels, leading to perturbation of Wnt-dependent signaling pathways and additional Dvl-mediated processes. We further demonstrated that overexpression of Dvl isoforms recapitulated some of the Dvl miRNATP-induced phenotypes. Overall, our results indicate that miRNA suppression of Dvl isoforms plays an important role in ensuring proper development and function of primary mesenchyme cells and cilia.
Collapse
Affiliation(s)
- Nina Faye Sampilo
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Nadezda A Stepicheva
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | - Lingyu Wang
- Department of Biology, University of Miami, Coral Gables, FL 33124, USA
| | - Wei Wu
- Department of Biology, University of Miami, Coral Gables, FL 33124, USA
| | | | - Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
39
|
Shashikant T, Khor JM, Ettensohn CA. From genome to anatomy: The architecture and evolution of the skeletogenic gene regulatory network of sea urchins and other echinoderms. Genesis 2018; 56:e23253. [PMID: 30264451 PMCID: PMC6294693 DOI: 10.1002/dvg.23253] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/14/2018] [Accepted: 09/23/2018] [Indexed: 01/19/2023]
Abstract
The skeletogenic gene regulatory network (GRN) of sea urchins and other echinoderms is one of the most intensively studied transcriptional networks in any developing organism. As such, it serves as a preeminent model of GRN architecture and evolution. This review summarizes our current understanding of this developmental network. We describe in detail the most comprehensive model of the skeletogenic GRN, one developed for the euechinoid sea urchin Strongylocentrotus purpuratus, including its initial deployment by maternal inputs, its elaboration and stabilization through regulatory gene interactions, and its control of downstream effector genes that directly drive skeletal morphogenesis. We highlight recent comparative studies that have leveraged the euechinoid GRN model to examine the evolution of skeletogenic programs in diverse echinoderms, studies that have revealed both conserved and divergent features of skeletogenesis within the phylum. Last, we summarize the major insights that have emerged from analysis of the structure and evolution of the echinoderm skeletogenic GRN and identify key, unresolved questions as a guide for future work.
Collapse
Affiliation(s)
- Tanvi Shashikant
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Jian Ming Khor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
40
|
Sepúlveda-Ramírez SP, Toledo-Jacobo L, Henson JH, Shuster CB. Cdc42 controls primary mesenchyme cell morphogenesis in the sea urchin embryo. Dev Biol 2018; 437:140-151. [PMID: 29555242 PMCID: PMC5973877 DOI: 10.1016/j.ydbio.2018.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/05/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022]
Abstract
In the sea urchin embryo, gastrulation is characterized by the ingression and directed cell migration of primary mesenchyme cells (PMCs), as well as the primary invagination and convergent extension of the endomesoderm. Like all cell shape changes, individual and collective cell motility is orchestrated by Rho family GTPases and their modulation of the actomyosin cytoskeleton. And while endomesoderm specification has been intensively studied in echinoids, much less is known about the proximate regulators driving cell motility. Toward these ends, we employed anti-sense morpholinos, mutant alleles and pharmacological inhibitors to assess the role of Cdc42 during sea urchin gastrulation. While inhibition of Cdc42 expression or activity had only mild effects on PMC ingression, PMC migration, alignment and skeletogenesis were disrupted in the absence of Cdc42, as well as elongation of the archenteron. PMC migration and patterning of the larval skeleton relies on the extension of filopodia, and Cdc42 was required for filopodia in vivo as well as in cultured PMCs. Lastly, filopodial extension required both Arp2/3 and formin actin-nucleating factors, supporting models of filopodial nucleation observed in other systems. Together, these results suggest that Cdc42 plays essential roles during PMC cell motility and organogenesis.
Collapse
Affiliation(s)
- Silvia P Sepúlveda-Ramírez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, United States; University of Washington Friday Harbor Laboratories, Friday Harbor, WA 98250, United States
| | - Leslie Toledo-Jacobo
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, United States; University of Washington Friday Harbor Laboratories, Friday Harbor, WA 98250, United States
| | - John H Henson
- University of Washington Friday Harbor Laboratories, Friday Harbor, WA 98250, United States; Department of Biology, Dickinson College, Carlisle, PA 17013, United States
| | - Charles B Shuster
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, United States; University of Washington Friday Harbor Laboratories, Friday Harbor, WA 98250, United States.
| |
Collapse
|
41
|
Shashikant T, Khor JM, Ettensohn CA. Global analysis of primary mesenchyme cell cis-regulatory modules by chromatin accessibility profiling. BMC Genomics 2018; 19:206. [PMID: 29558892 PMCID: PMC5859501 DOI: 10.1186/s12864-018-4542-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/13/2018] [Indexed: 12/11/2022] Open
Abstract
Background The developmental gene regulatory network (GRN) that underlies skeletogenesis in sea urchins and other echinoderms is a paradigm of GRN structure, function, and evolution. This transcriptional network is deployed selectively in skeleton-forming primary mesenchyme cells (PMCs) of the early embryo. To advance our understanding of this model developmental GRN, we used genome-wide chromatin accessibility profiling to identify and characterize PMC cis-regulatory modules (CRMs). Results ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) analysis of purified PMCs provided a global picture of chromatin accessibility in these cells. We used both ATAC-seq and DNase-seq (DNase I hypersensitive site sequencing) to identify > 3000 sites that exhibited increased accessibility in PMCs relative to other embryonic cell lineages, and provide both computational and experimental evidence that a large fraction of these sites represent bona fide skeletogenic CRMs. Putative PMC CRMs were preferentially located near genes differentially expressed by PMCs and consensus binding sites for two key transcription factors in the PMC GRN, Alx1 and Ets1, were enriched in these CRMs. Moreover, a high proportion of candidate CRMs drove reporter gene expression specifically in PMCs in transgenic embryos. Surprisingly, we found that PMC CRMs were partially open in other embryonic lineages and exhibited hyperaccessibility as early as the 128-cell stage. Conclusions Our work provides a comprehensive picture of chromatin accessibility in an early embryonic cell lineage. By identifying thousands of candidate PMC CRMs, we significantly enhance the utility of the sea urchin skeletogenic network as a general model of GRN architecture and evolution. Our work also shows that differential chromatin accessibility, which has been used for the high-throughput identification of enhancers in differentiated cell types, is a powerful approach for the identification of CRMs in early embryonic cells. Lastly, we conclude that in the sea urchin embryo, CRMs that control the cell type-specific expression of effector genes are hyperaccessible several hours in advance of gene activation. Electronic supplementary material The online version of this article (10.1186/s12864-018-4542-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tanvi Shashikant
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Jian Ming Khor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
42
|
Erkenbrack EM, Petsios E. A Conserved Role for VEGF Signaling in Specification of Homologous Mesenchymal Cell Types Positioned at Spatially Distinct Developmental Addresses in Early Development of Sea Urchins. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:423-432. [PMID: 28544452 DOI: 10.1002/jez.b.22743] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/04/2017] [Accepted: 04/05/2017] [Indexed: 11/06/2022]
Abstract
Comparative studies of early development in echinoderms are revealing the tempo and mode of alterations to developmental gene regulatory networks and to the cell types they specify. In euechinoid sea urchins, skeletogenic mesenchyme (SM) ingresses prior to gastrulation at the vegetal pole and aligns into a ring-like array with two bilateral pockets of cells, the sites where spiculogenesis will later occur. In cidaroid sea urchins, the anciently diverged sister clade to euechinoid sea urchins, a homologous SM cell type ingresses later in development, after gastrulation has commenced, and consequently at a distinct developmental address. Thus, a heterochronic shift of ingression of the SM cell type occurred in one of the echinoid lineages. In euechinoids, specification and migration of SM are facilitated by vascular endothelial growth factor (VEGF) signaling. We describe spatiotemporal expression of vegf and vegfr and experimental manipulations targeting VEGF signaling in the cidaroid Eucidaris tribuloides. Spatially, vegf and vegfr mRNA localizes similarly as in euechinoids, suggesting conserved deployment in echinoids despite their spatially distinct development addresses of ingression. Inhibition of VEGF signaling in E. tribuloides suggests its role in SM specification is conserved in echinoids. Temporal discrepancies between the onset of vegf expression and SM ingression likely result in previous observations of SM "random wandering" behavior. Our results indicate that, although the SM cell type in echinoids ingresses into distinct developmental landscapes, it retains a signaling mechanism that restricts their spatial localization to a conserved developmental address where spiculogenesis later occurs.
Collapse
Affiliation(s)
- Eric M Erkenbrack
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California.,Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut
| | - Elizabeth Petsios
- Department of Earth Sciences, University of Southern California, Los Angeles, California
| |
Collapse
|
43
|
Stepicheva NA, Dumas M, Kobi P, Donaldson JG, Song JL. The small GTPase Arf6 regulates sea urchin morphogenesis. Differentiation 2017; 95:31-43. [PMID: 28188999 DOI: 10.1016/j.diff.2017.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/08/2016] [Accepted: 01/26/2017] [Indexed: 12/31/2022]
Abstract
The small GTPase Arf6 is a conserved protein that is expressed in all metazoans. Arf6 remodels cytoskeletal actin and mediates membrane protein trafficking between the plasma membrane in its active form and endosomal compartments in its inactive form. While a rich knowledge exists for the cellular functions of Arf6, relatively little is known about its physiological role in development. This study examines the function of Arf6 in mediating cellular morphogenesis in early development. We dissect the function of Arf6 with a loss-of-function morpholino and constitutively active Arf6-Q67L construct. We focus on the two cell types that undergo active directed migration: the primary mesenchyme cells (PMCs) that give rise to the sea urchin skeleton and endodermal cells that form the gut. Our results indicate that Arf6 plays an important role in skeleton formation and PMC migration, in part due to its ability to remodel actin. We also found that embryos injected with Arf6 morpholino have gastrulation defects and embryos injected with constitutively active Arf6 have endodermal cells detached from the gut epithelium with decreased junctional cadherin staining, indicating that Arf6 may mediate the recycling of cadherin. Thus, Arf6 impacts cells that undergo coordinated movement to form embryonic structures in the developing embryo.
Collapse
Affiliation(s)
- Nadezda A Stepicheva
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | - Megan Dumas
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | - Priscilla Kobi
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | - Julie G Donaldson
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
44
|
Sun Z, Ettensohn CA. TGF-β sensu stricto signaling regulates skeletal morphogenesis in the sea urchin embryo. Dev Biol 2016; 421:149-160. [PMID: 27955944 DOI: 10.1016/j.ydbio.2016.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
Abstract
Cell-cell signaling plays a prominent role in the formation of the embryonic skeleton of sea urchins, but the mechanisms are poorly understood. In the present study, we uncover an essential role for TGF-β sensu stricto signaling in this process. We show that TgfbrtII, a type II receptor dedicated to signaling through TGF-β sensu stricto, is expressed selectively in skeletogenic primary mesenchyme cells (PMCs) during skeleton formation. Morpholino (MO) knockdowns and studies with a specific TgfbrtII inhibitor (ITD-1) in both S. purpuratus and Lytechinus variegatus embryos show that this receptor is required for biomineral deposition. We provide pharmacological evidence that Alk4/5/7 is the cognate TGF-β type I receptor that pairs with TgfbrtII and show by inhibitor treatments of isolated micromeres cultured in vitro that both Alk4/5/7 and TgfbrtII function cell-autonomously in PMCs. Gene expression and gene knockdown studies suggest that TGF-β sensu stricto may be the ligand that interacts with TgfbrtII and support the view that this TGF-β superfamily ligand provides an essential, permissive cue for skeletogenesis, although it is unlikely to provide spatial patterning information. Taken together, our findings reveal that this model morphogenetic process involves an even more diverse suite of cell signaling pathways than previously appreciated and show that PMCs integrate a complex set of both generalized and spatially localized cues in assembling the endoskeleton.
Collapse
Affiliation(s)
- Zhongling Sun
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States.
| |
Collapse
|
45
|
Ettensohn CA, Dey D. KirrelL, a member of the Ig-domain superfamily of adhesion proteins, is essential for fusion of primary mesenchyme cells in the sea urchin embryo. Dev Biol 2016; 421:258-270. [PMID: 27866905 DOI: 10.1016/j.ydbio.2016.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 11/25/2022]
Abstract
In the sea urchin embryo, primary mesenchyme cells (PMCs) adhere to one another and fuse via filopodia, forming cable-like structures within which skeletal rods are deposited. Although this process was first described more than a century ago, molecules that participate in PMC adhesion and fusion have not been identified. Here we show that KirrelL, a PMC-specific, Ig domain-containing transmembrane protein, is essential for PMC fusion, probably by mediating filopodial adhesions that are a pre-requisite for subsequent membrane fusion. We show that KirrelL is not required for PMC specification, migration, or for direct filopodial contacts between PMCs. In the absence of KirrelL, however, filopodial contacts do not result in fusion. kirrelL is a member of a family of closely related, intronless genes that likely arose through an echinoid-specific gene expansion, possibly via retrotransposition. Our findings are significant in that they establish a direct linkage between the transcriptional network deployed in the PMC lineage and an effector molecule required for a critically important PMC morphogenetic process. In addition, our results point to a conserved role for Ig domain-containing adhesion proteins in facilitating cell fusion in both muscle and non-muscle cell lineages during animal development.
Collapse
Affiliation(s)
- Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States.
| | - Debleena Dey
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States
| |
Collapse
|
46
|
STEPICHEVA NADEZDAA, SONG JIAL. Function and regulation of microRNA-31 in development and disease. Mol Reprod Dev 2016; 83:654-74. [PMID: 27405090 PMCID: PMC6040227 DOI: 10.1002/mrd.22678] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/29/2016] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that orchestrate numerous cellular processes both under normal physiological conditions as well as in diseases. This review summarizes the functional roles and transcriptional regulation of the highly evolutionarily conserved miRNA, microRNA-31 (miR-31). miR-31 is an important regulator of embryonic implantation, development, bone and muscle homeostasis, and immune system function. Its own regulation is disrupted during the onset and progression of cancer and autoimmune disorders such as psoriasis and systemic lupus erythematosus. Limited studies suggest that miR-31 is transcriptionally regulated by epigenetics, such as methylation and acetylation, as well as by a number of transcription factors. Overall, miR-31 regulates diverse cellular and developmental processes by targeting genes involved in cell proliferation, apoptosis, cell differentiation, and cell motility. Mol. Reprod. Dev. 83: 654-674, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - JIA L. SONG
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| |
Collapse
|
47
|
Czarkwiani A, Ferrario C, Dylus DV, Sugni M, Oliveri P. Skeletal regeneration in the brittle star Amphiura filiformis. Front Zool 2016; 13:18. [PMID: 27110269 PMCID: PMC4841056 DOI: 10.1186/s12983-016-0149-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/12/2016] [Indexed: 12/17/2022] Open
Abstract
Background Brittle stars regenerate their whole arms post-amputation. Amphiura filiformis can now be used for molecular characterization of arm regeneration due to the availability of transcriptomic data. Previous work showed that specific developmental transcription factors known to take part in echinoderm skeletogenesis are expressed during adult arm regeneration in A. filiformis; however, the process of skeleton formation remained poorly understood. Here, we present the results of an in-depth microscopic analysis of skeletal morphogenesis during regeneration, using calcein staining, EdU labeling and in situ hybridization. Results To better compare different samples, we propose a staging system for the early A. filiformis arm regeneration stages based on morphological landmarks identifiable in living animals and supported by histological analysis. We show that the calcified spicules forming the endoskeleton first appear very early during regeneration in the dermal layer of regenerates. These spicules then mature into complex skeletal elements of the differentiated arm during late regeneration. The mesenchymal cells in the dermal area express the skeletal marker genes Afi-c-lectin, Afi-p58b and Afi-p19; however, EdU labeling shows that these dermal cells do not proliferate. Conclusions A. filiformis arms regenerate through a consistent set of developmental stages using a distalization-intercalation mode, despite variability in regeneration rate. Skeletal elements form in a mesenchymal cell layer that does not proliferate and thus must be supplied from a different source. Our work provides the basis for future cellular and molecular studies of skeleton regeneration in brittle stars. Electronic supplementary material The online version of this article (doi:10.1186/s12983-016-0149-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Czarkwiani
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Cinzia Ferrario
- Department of Biosciences, University of Milan, Milan, Italy
| | - David Viktor Dylus
- Department of Genetics, Evolution and Environment, University College London, London, UK ; Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology, University College London, London, UK ; Present address: Department of Ecology and Evolution & Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Michela Sugni
- Department of Biosciences, University of Milan, Milan, Italy
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, London, UK ; Research Department of Genetics, Evolution and Environment, University College London, Room 426, Darwin Building, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
48
|
Piacentino ML, Chung O, Ramachandran J, Zuch DT, Yu J, Conaway EA, Reyna AE, Bradham CA. Zygotic LvBMP5-8 is required for skeletal patterning and for left–right but not dorsal–ventral specification in the sea urchin embryo. Dev Biol 2016; 412:44-56. [DOI: 10.1016/j.ydbio.2016.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/31/2016] [Accepted: 02/18/2016] [Indexed: 01/25/2023]
|
49
|
Martik ML, Lyons DC, McClay DR. Developmental gene regulatory networks in sea urchins and what we can learn from them. F1000Res 2016; 5. [PMID: 26962438 PMCID: PMC4765714 DOI: 10.12688/f1000research.7381.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2016] [Indexed: 12/21/2022] Open
Abstract
Sea urchin embryos begin zygotic transcription shortly after the egg is fertilized. Throughout the cleavage stages a series of transcription factors are activated and, along with signaling through a number of pathways, at least 15 different cell types are specified by the beginning of gastrulation. Experimentally, perturbation of contributing transcription factors, signals and receptors and their molecular consequences enabled the assembly of an extensive gene regulatory network model. That effort, pioneered and led by Eric Davidson and his laboratory, with many additional insights provided by other laboratories, provided the sea urchin community with a valuable resource. Here we describe the approaches used to enable the assembly of an advanced gene regulatory network model describing molecular diversification during early development. We then provide examples to show how a relatively advanced authenticated network can be used as a tool for discovery of how diverse developmental mechanisms are controlled and work.
Collapse
Affiliation(s)
- Megan L Martik
- Biology Department, Duke University, Durham, North Carolina, 27708, USA
| | - Deirdre C Lyons
- Biology Department, Duke University, Durham, North Carolina, 27708, USA
| | - David R McClay
- Biology Department, Duke University, Durham, North Carolina, 27708, USA
| |
Collapse
|
50
|
Koga H, Fujitani H, Morino Y, Miyamoto N, Tsuchimoto J, Shibata TF, Nozawa M, Shigenobu S, Ogura A, Tachibana K, Kiyomoto M, Amemiya S, Wada H. Experimental Approach Reveals the Role of alx1 in the Evolution of the Echinoderm Larval Skeleton. PLoS One 2016; 11:e0149067. [PMID: 26866800 PMCID: PMC4750990 DOI: 10.1371/journal.pone.0149067] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/27/2016] [Indexed: 11/19/2022] Open
Abstract
Over the course of evolution, the acquisition of novel structures has ultimately led to wide variation in morphology among extant multicellular organisms. Thus, the origins of genetic systems for new morphological structures are a subject of great interest in evolutionary biology. The larval skeleton is a novel structure acquired in some echinoderm lineages via the activation of the adult skeletogenic machinery. Previously, VEGF signaling was suggested to have played an important role in the acquisition of the larval skeleton. In the present study, we compared expression patterns of Alx genes among echinoderm classes to further explore the factors involved in the acquisition of a larval skeleton. We found that the alx1 gene, originally described as crucial for sea urchin skeletogenesis, may have also played an essential role in the evolution of the larval skeleton. Unlike those echinoderms that have a larval skeleton, we found that alx1 of starfish was barely expressed in early larvae that have no skeleton. When alx1 overexpression was induced via injection of alx1 mRNA into starfish eggs, the expression patterns of certain genes, including those possibly involved in skeletogenesis, were altered. This suggested that a portion of the skeletogenic program was induced solely by alx1. However, we observed no obvious external phenotype or skeleton. We concluded that alx1 was necessary but not sufficient for the acquisition of the larval skeleton, which, in fact, requires several genetic events. Based on these results, we discuss how the larval expression of alx1 contributed to the acquisition of the larval skeleton in the putative ancestral lineage of echinoderms.
Collapse
Affiliation(s)
- Hiroyuki Koga
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Haruka Fujitani
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yoshiaki Morino
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Norio Miyamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Jun Tsuchimoto
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | | | - Masafumi Nozawa
- Center for Information Biology, National Institute of Genetics, Mishima, Japan
- Department of Genetics, The Graduate University for Advanced Studies, Mishima, Japan
| | - Shuji Shigenobu
- National Institute for Basic Biology, Okazaki, Japan
- School of Life Science, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Atsushi Ogura
- Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Kazunori Tachibana
- Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama, Japan
| | - Masato Kiyomoto
- Marine and Coastal Research Center, Ochanomizu University, Tateyama, Japan
| | - Shonan Amemiya
- Marine and Coastal Research Center, Ochanomizu University, Tateyama, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- Research and Education Center of Natural Sciences, Keio University, Yokohama, Japan
| | - Hiroshi Wada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|