1
|
He Z, Yan RG, Shang QB, Yang QE. Transcriptomic dynamics and cell-to-cell communication during the transition of prospermatogonia to spermatogonia revealed at single-cell resolution. BMC Genomics 2025; 26:58. [PMID: 39838296 PMCID: PMC11748353 DOI: 10.1186/s12864-025-11244-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Spermatogonia are essential for the continual production of sperm and regeneration of the entire spermatogenic lineage after injury. In mammals, spermatogonia are formed in the neonatal testis from prospermatogonia (also termed gonocytes), which are established from primordial germ cells during fetal development. Currently, the molecular regulation of the prospermatogonial to spermatogonia transition is not fully understood. RESULTS In this study, we examined the gene expression patterns of prospermatogonia, spermatogonia and testicular somatic cells at 4 different stages, including embryonic day (E) 12.5, E17.5 and postnatal days (P) 1 and 6, using single-cell RNA sequencing (scRNA-seq). We identified 5 different molecular states in the prospermogonial population and revealed gene expression dynamics in corresponding testicular somatic cells. Specifically, we found that prospermatogonia mainly receive signals, while Leydig cells and peritubular myoid cells are the mediators for transmitting signals, indicating their potential roles in regulating the development and differentiation of prospermatogonia. Transcription regulon analyses revealed the involvement of basic helix-loop-helix (bHLH) transcription factors in directing prospermogonial fate decisions. We then disrupted this transcription network by ectopic expression of inhibitor of differentiation 2 (Id2), which is a negative regulator of bHLH transcription factors. The overexpression of Id2 in prospermatogonia caused severe defects in the progression of prospermatogonia to spermatogonia. CONCLUSION Together, these findings provide a crucial dataset for dissecting key genes that direct the establishment of the foundational spermatogonial pool and the fate transitions of different somatic cell lineages in the testis during fetal and neonatal periods of development.
Collapse
Affiliation(s)
- Zhen He
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
| | - Rong-Ge Yan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
| | - Qin-Bang Shang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China.
| |
Collapse
|
2
|
He CM, Zhang D, He Z. Gene regulation and signaling transduction in mediating the self-renewal, differentiation, and apoptosis of spermatogonial stem cells. Asian J Androl 2025; 27:4-12. [PMID: 39162186 PMCID: PMC11784953 DOI: 10.4103/aja202464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/04/2024] [Indexed: 08/21/2024] Open
Abstract
ABSTRACT Infertility has become one of the most serious diseases worldwide, and 50% of this disease can be attributed to male-related factors. Spermatogenesis, by definition, is a complex process by which spermatogonial stem cells (SSCs) self-renew to maintain stem cell population within the testes and differentiate into mature spermatids. It is of great significance to uncover gene regulation and signaling pathways that are involved in the fate determinations of SSCs with aims to better understand molecular mechanisms underlying human spermatogenesis and identify novel targets for gene therapy of male infertility. Significant achievement has recently been made in demonstrating the signaling molecules and pathways mediating the fate decisions of mammalian SSCs. In this review, we address key gene regulation and crucial signaling transduction pathways in controlling the self-renewal, differentiation, and apoptosis of SSCs, and we illustrate the networks of genes and signaling pathways in SSC fate determinations. We also highlight perspectives and future directions in SSC regulation by genes and their signaling pathways. This review could provide novel insights into the genetic regulation of normal and abnormal spermatogenesis and offer molecular targets to develop new approaches for gene therapy of male infertility.
Collapse
Affiliation(s)
- Cai-Mei He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Changsha 410013, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
- Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha 410013, China
| | - Dong Zhang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Changsha 410013, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
- Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha 410013, China
| | - Zuping He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Changsha 410013, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
- Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha 410013, China
| |
Collapse
|
3
|
Zheng T, Fok EKL. The Biology and Regulation of Spermatogonial Stem Cells in the Niche. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:333-354. [PMID: 40301263 DOI: 10.1007/978-3-031-82990-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Spermatogenesis, the process responsible for the daily production of millions of sperm, originates from spermatogonial stem cells (SSCs). Dysregulation of spermatogenesis is a major contributing factor to male infertility. Additionally, cryopreservation of SSCs followed by transplantation is a viable approach to restore spermatogenesis after sterilizing treatments such as chemotherapy and radiotherapy for cancer treatment. Therefore, investigating the biology and regulatory mechanisms involved in maintaining SSCs will provide valuable insights into the etiology of male fertility disorders and inform clinical strategies for fertility preservation and restoration. In this chapter, we will review the origin of SSCs, their biological and functional properties, and the various types of cells that contribute to the SSC niche. Additionally, we will discuss the regulation of SSC self-renewal and differentiation by niche factors, cell-cell and cell-extracellular matrix interactions, intrinsic gene regulation, and emerging intercellular communication mechanisms.
Collapse
Affiliation(s)
- Tingting Zheng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ellis Kin Lam Fok
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR, China.
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Chengdu, PR, China.
| |
Collapse
|
4
|
Zou D, Li K, Su L, Liu J, Lu Y, Huang R, Li M, Mang X, Geng Q, Li P, Tang J, Yu Z, Zhang Z, Chen D, Miao S, Yu J, Yan W, Song W. DDX20 is required for cell-cycle reentry of prospermatogonia and establishment of spermatogonial stem cell pool during testicular development in mice. Dev Cell 2024; 59:1707-1723.e8. [PMID: 38657611 DOI: 10.1016/j.devcel.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 01/29/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
RNA-binding proteins (RBPs), as key regulators of mRNA fate, are abundantly expressed in the testis. However, RBPs associated with human male infertility remain largely unknown. Through bioinformatic analyses, we identified 62 such RBPs, including an evolutionarily conserved RBP, DEAD-box helicase 20 (DDX20). Male germ-cell-specific inactivation of Ddx20 at E15.5 caused T1-propsermatogonia (T1-ProSG) to fail to reenter cell cycle during the first week of testicular development in mice. Consequently, neither the foundational spermatogonial stem cell (SSC) pool nor progenitor spermatogonia were ever formed in the knockout testes. Mechanistically, DDX20 functions to control the translation of its target mRNAs, many of which encode cell-cycle-related regulators, by interacting with key components of the translational machinery in prospermatogonia. Our data demonstrate a previously unreported function of DDX20 as a translational regulator of critical cell-cycle-related genes, which is essential for cell-cycle reentry of T1-ProSG and formation of the SSC pool.
Collapse
Affiliation(s)
- Dingfeng Zou
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Kai Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Luying Su
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Yan Lu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Rong Huang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Mengzhen Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Xinyu Mang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Qi Geng
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Pengyu Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Jielin Tang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Zhixin Yu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Zexuan Zhang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Dingyao Chen
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Jia Yu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China; The Institute of Blood Transfusion, Chinese Academy of Medical Sciences, and Peking Union Medical College, Chengdu 610052, China.
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA; Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
5
|
Bush SJ, Nikola R, Han S, Suzuki S, Yoshida S, Simons BD, Goriely A. Adult Human, but Not Rodent, Spermatogonial Stem Cells Retain States with a Foetal-like Signature. Cells 2024; 13:742. [PMID: 38727278 PMCID: PMC11083513 DOI: 10.3390/cells13090742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Spermatogenesis involves a complex process of cellular differentiation maintained by spermatogonial stem cells (SSCs). Being critical to male reproduction, it is generally assumed that spermatogenesis starts and ends in equivalent transcriptional states in related species. Based on single-cell gene expression profiling, it has been proposed that undifferentiated human spermatogonia can be subclassified into four heterogenous subtypes, termed states 0, 0A, 0B, and 1. To increase the resolution of the undifferentiated compartment and trace the origin of the spermatogenic trajectory, we re-analysed the single-cell (sc) RNA-sequencing libraries of 34 post-pubescent human testes to generate an integrated atlas of germ cell differentiation. We then used this atlas to perform comparative analyses of the putative SSC transcriptome both across human development (using 28 foetal and pre-pubertal scRNA-seq libraries) and across species (including data from sheep, pig, buffalo, rhesus and cynomolgus macaque, rat, and mouse). Alongside its detailed characterisation, we show that the transcriptional heterogeneity of the undifferentiated spermatogonial cell compartment varies not only between species but across development. Our findings associate 'state 0B' with a suppressive transcriptomic programme that, in adult humans, acts to functionally oppose proliferation and maintain cells in a ready-to-react state. Consistent with this conclusion, we show that human foetal germ cells-which are mitotically arrested-can be characterised solely as state 0B. While germ cells with a state 0B signature are also present in foetal mice (and are likely conserved at this stage throughout mammals), they are not maintained into adulthood. We conjecture that in rodents, the foetal-like state 0B differentiates at birth into the renewing SSC population, whereas in humans it is maintained as a reserve population, supporting testicular homeostasis over a longer reproductive lifespan while reducing mutagenic load. Together, these results suggest that SSCs adopt differing evolutionary strategies across species to ensure fertility and genome integrity over vastly differing life histories and reproductive timeframes.
Collapse
Affiliation(s)
- Stephen J. Bush
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Rafail Nikola
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Seungmin Han
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Shinnosuke Suzuki
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Benjamin D. Simons
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Wellcome—MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Science, University of Cambridge, Cambridge CB3 0WA, UK
| | - Anne Goriely
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
- NIHR Biomedical Research Centre, Oxford OX3 7JX, UK
| |
Collapse
|
6
|
Li S, Yan RG, Gao X, He Z, Wu SX, Wang YJ, Zhang YW, Tao HP, Zhang XN, Jia GX, Yang QE. Single-cell transcriptome analyses reveal critical regulators of spermatogonial stem cell fate transitions. BMC Genomics 2024; 25:138. [PMID: 38310206 PMCID: PMC10837949 DOI: 10.1186/s12864-024-10072-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/31/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Spermatogonial stem cells (SSCs) are the foundation cells for continual spermatogenesis and germline regeneration in mammals. SSC activities reside in the undifferentiated spermatogonial population, and currently, the molecular identities of SSCs and their committed progenitors remain unclear. RESULTS We performed single-cell transcriptome analysis on isolated undifferentiated spermatogonia from mice to decipher the molecular signatures of SSC fate transitions. Through comprehensive analysis, we delineated the developmental trajectory and identified candidate transcription factors (TFs) involved in the fate transitions of SSCs and their progenitors in distinct states. Specifically, we characterized the Asingle spermatogonial subtype marked by the expression of Eomes. Eomes+ cells contained enriched transplantable SSCs, and more than 90% of the cells remained in the quiescent state. Conditional deletion of Eomes in the germline did not impact steady-state spermatogenesis but enhanced SSC regeneration. Forced expression of Eomes in spermatogenic cells disrupted spermatogenesis mainly by affecting the cell cycle progression of undifferentiated spermatogonia. After injury, Eomes+ cells re-enter the cell cycle and divide to expand the SSC pool. Eomes+ cells consisted of 7 different subsets of cells at single-cell resolution, and genes enriched in glycolysis/gluconeogenesis and the PI3/Akt signaling pathway participated in the SSC regeneration process. CONCLUSIONS In this study, we explored the molecular characteristics and critical regulators of subpopulations of undifferentiated spermatogonia. The findings of the present study described a quiescent SSC subpopulation, Eomes+ spermatogonia, and provided a dynamic transcriptional map of SSC fate determination.
Collapse
Affiliation(s)
- Shuang Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Medical Technology, Luoyang Polytechnic, Luoyang, Henan, 471000, China
| | - Rong-Ge Yan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen He
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Xin Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Jun Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Wen Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hai-Ping Tao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Na Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gong-Xue Jia
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810001, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810001, China.
| |
Collapse
|
7
|
Wang Z, Jin C, Li P, Li Y, Tang J, Yu Z, Jiao T, Ou J, Wang H, Zou D, Li M, Mang X, Liu J, Lu Y, Li K, Zhang N, Yu J, Miao S, Wang L, Song W. Identification of quiescent FOXC2 + spermatogonial stem cells in adult mammals. eLife 2023; 12:RP85380. [PMID: 37610429 PMCID: PMC10446825 DOI: 10.7554/elife.85380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
In adult mammals, spermatogenesis embodies the complex developmental process from spermatogonial stem cells (SSCs) to spermatozoa. At the top of this developmental hierarchy lie a series of SSC subpopulations. Their individual identities as well as the relationships with each other, however, remain largely elusive. Using single-cell analysis and lineage tracing, we discovered both in mice and humans the quiescent adult SSC subpopulation marked specifically by forkhead box protein C2 (FOXC2). All spermatogenic progenies can be derived from FOXC2+ SSCs and the ablation of FOXC2+ SSCs led to the depletion of the undifferentiated spermatogonia pool. During germline regeneration, FOXC2+ SSCs were activated and able to completely restore the process. Germ cell-specific Foxc2 knockout resulted in an accelerated exhaustion of SSCs and eventually led to male infertility. Furthermore, FOXC2 prompts the expressions of negative regulators of cell cycle thereby ensures the SSCs reside in quiescence. Thus, this work proposes that the quiescent FOXC2+ SSCs are essential for maintaining the homeostasis and regeneration of spermatogenesis in adult mammals.
Collapse
Affiliation(s)
- Zhipeng Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Cheng Jin
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Pengyu Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yiran Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jielin Tang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhixin Yu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tao Jiao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jinhuan Ou
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Han Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Dingfeng Zou
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Mengzhen Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xinyu Mang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yan Lu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Kai Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ning Zhang
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Jia Yu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Linfang Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
8
|
da Rocha ST, Lin SP, Youngson NA. Editorial: Legacies of epigenetic perturbations. Front Cell Dev Biol 2023; 11:1228115. [PMID: 37384254 PMCID: PMC10295125 DOI: 10.3389/fcell.2023.1228115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023] Open
Affiliation(s)
- Simão Teixeira da Rocha
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Shau-Ping Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Bachelor Program of Biotechnology and Food Nutrition, National Taiwan University, Taipei, Taiwan
- Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Neil A. Youngson
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
- Centre for Reproductive Health, Department of Molecular and Translational Science, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| |
Collapse
|
9
|
Ribeiro J, Crossan GP. GCNA is a histone binding protein required for spermatogonial stem cell maintenance. Nucleic Acids Res 2023; 51:4791-4813. [PMID: 36919611 PMCID: PMC10250205 DOI: 10.1093/nar/gkad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/01/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Recycling and de-novo deposition of histones during DNA replication is a critical challenge faced by eukaryotic cells and is coordinated by histone chaperones. Spermatogenesis is highly regulated sophisticated process necessitating not only histone modification but loading of testis specific histone variants. Here, we show that Germ Cell Nuclear Acidic protein (GCNA), a germ cell specific protein in adult mice, can bind histones and purified GCNA exhibits histone chaperone activity. GCNA associates with the DNA replication machinery and supports progression through S-phase in murine undifferentiated spermatogonia (USGs). Whilst GCNA is dispensable for embryonic germ cell development, it is required for the maintenance of the USG pool and for long-term production of sperm. Our work describes the role of a germ cell specific histone chaperone in USGs maintenance in mice. These findings provide a mechanistic basis for the male infertility observed in patients carrying GCNA mutations.
Collapse
|
10
|
Moreno Acosta OD, Boan AF, Hattori RS, Fernandino JI. Notch pathway is required for protection against heat stress in spermatogonial stem cells in medaka. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:487-500. [PMID: 37126120 DOI: 10.1007/s10695-023-01200-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 04/20/2023] [Indexed: 05/25/2023]
Abstract
Gamete production is a fundamental process for reproduction; however, exposure to stress, such as increased environmental temperature, can decrease or even interrupt this process, affecting fertility. Thus, the survival of spermatogonial stem cells (SSCs) is crucial for the recovery of spermatogenesis upon stressful situations. Here, we show that the Notch pathway is implicated in such survival, by protecting the SSCs against thermal stress. First, we corroborated the impairment of spermatogenesis under heat stress in medaka, observing an arrest in metaphase I at 10 days of heat treatment, an increase in the number of spermatocytes, and downregulation of ndrg1b and sycp3. In addition, at 30 days of treatment, an interruption of spermatogenesis was observed with a strong loss of spermatocytes and spermatids. Then, the exposure of adult males to thermal stress condition induced apoptosis mainly in spermatogenic and supporting somatic cells, with the exception of the germinal region, where SSCs are located. Concomitantly, the Notch pathway-related genes were upregulated, including the ligands (dll4, jag1-2) and receptors (notch1a-3). Moreover, during thermal stress presenilin enhancer-2 (pen-2), the catalytic subunit of γ-secretase complex of the Notch pathway was restricted to the germinal region of the medaka testis, observed in somatic cells surrounding type A spermatogonia (SGa). The importance of Notch pathway was further supported by an ex vivo approach, in which the inhibition of this pathway activity induced a loss of SSCs. Overall, this study supports the importance of Notch pathways for the protection of SSCs under chronic thermal stress.
Collapse
Affiliation(s)
- Omar D Moreno Acosta
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomus, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomus, Argentina
| | - Agustín F Boan
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomus, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomus, Argentina
| | - Ricardo S Hattori
- Salmonid Experimental Station at Campos Do Jordão, UPD-CJ, Sao Paulo Fisheries Institute (APTA/SAA), Campos Do Jordao, Brazil
| | - Juan Ignacio Fernandino
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomus, Argentina.
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomus, Argentina.
| |
Collapse
|
11
|
Campbell KM, Xu Y, Patel C, Rayl JM, Zomer HD, Osuru HP, Pratt M, Pramoonjago P, Timken M, Miller LM, Ralph A, Storey KM, Peng Y, Drnevich J, Lagier-Tourenne C, Wong PC, Qiao H, Reddi PP. Loss of TDP-43 in male germ cells causes meiotic failure and impairs fertility in mice. J Biol Chem 2021; 297:101231. [PMID: 34599968 PMCID: PMC8569592 DOI: 10.1016/j.jbc.2021.101231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
Meiotic arrest is a common cause of human male infertility, but the causes of this arrest are poorly understood. Transactive response DNA-binding protein of 43 kDa (TDP-43) is highly expressed in spermatocytes in the preleptotene and pachytene stages of meiosis. TDP-43 is linked to several human neurodegenerative disorders wherein its nuclear clearance accompanied by cytoplasmic aggregates underlies neurodegeneration. Exploring the functional requirement for TDP-43 for spermatogenesis for the first time, we show here that conditional KO (cKO) of the Tardbp gene (encoding TDP-43) in male germ cells of mice leads to reduced testis size, depletion of germ cells, vacuole formation within the seminiferous epithelium, and reduced sperm production. Fertility trials also indicated severe subfertility. Spermatocytes of cKO mice showed failure to complete prophase I of meiosis with arrest at the midpachytene stage. Staining of synaptonemal complex protein 3 and γH2AX, markers of the meiotic synaptonemal complex and DNA damage, respectively, and super illumination microscopy revealed nonhomologous pairing and synapsis defects. Quantitative RT-PCR showed reduction in the expression of genes critical for prophase I of meiosis, including Spo11 (initiator of meiotic double-stranded breaks), Rec8 (meiotic recombination protein), and Rad21L (RAD21-like, cohesin complex component), as well as those involved in the retinoic acid pathway critical for entry into meiosis. RNA-Seq showed 1036 upregulated and 1638 downregulated genes (false discovery rate <0.05) in the Tardbp cKO testis, impacting meiosis pathways. Our work reveals a crucial role for TDP-43 in male meiosis and suggests that some forms of meiotic arrest seen in infertile men may result from the loss of function of TDP-43.
Collapse
Affiliation(s)
- Kaitlyn M Campbell
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Yiding Xu
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Chintan Patel
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jeremy M Rayl
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Helena D Zomer
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Hari Prasad Osuru
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Michael Pratt
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Patcharin Pramoonjago
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Madeline Timken
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Lyndzi M Miller
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Abigail Ralph
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kathryn M Storey
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Yiheng Peng
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jenny Drnevich
- High-Performance Biological Computing (HPCBio) Group, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Clotilde Lagier-Tourenne
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Philip C Wong
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Prabhakara P Reddi
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
12
|
Wieckowski M, Ranga S, Moison D, Messiaen S, Abdallah S, Granon S, Habert R, Rouiller-Fabre V, Livera G, Guerquin MJ. Unexpected Interacting Effects of Physical (Radiation) and Chemical (Bisphenol A) Treatments on Male Reproductive Functions in Mice. Int J Mol Sci 2021; 22:ijms222111808. [PMID: 34769238 PMCID: PMC8584123 DOI: 10.3390/ijms222111808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/19/2022] Open
Abstract
For decades, numerous chemical pollutants have been described to interfere with endogenous hormone metabolism/signaling altering reproductive functions. Among these endocrine disrupting substances, Bisphenol A (BPA), a widely used compound, is known to negatively impact germ and somatic cells in the testis. Physical agents, such as ionizing radiation, were also described to perturb spermatogenesis. Despite the fact that we are constantly exposed to numerous environmental chemical and physical compounds, very few studies explore the impact of combined exposure to chemical and physical pollutants on reproductive health. The aim of this study was to describe the impact of fetal co-exposure to BPA and IR on testicular function in mice. We exposed pregnant mice to 10 µM BPA (corresponding to 0.5 mg/kg/day) in drinking water from 10.5 dpc until birth, and we irradiated mice with 0.2 Gy (γ-ray, RAD) at 12.5 days post-conception. Co-exposure to BPA and γ-ray induces DNA damage in fetal germ cells in an additive manner, leading to a long-lasting decrease in germ cell abundance. We also observed significant alteration of adult steroidogenesis by RAD exposure independently of the BPA exposure. This is illustrated by the downregulation of steroidogenic genes and the decrease of the number of adult Leydig cells. As a consequence, courtship behavior is modified, and male ultrasonic vocalizations associated with courtship decreased. In conclusion, this study provides evidence for the importance of broadening the concept of endocrine disruptors to include physical agents, leading to a reevaluation of risk management and regulatory decisions.
Collapse
Affiliation(s)
- Margaux Wieckowski
- Laboratory of Development of the Gonads, UMR-008 Genetic Stability Stem Cells and Radiations, Université de Paris, 92265 Fontenay-aux-Roses, France; (M.W.); (S.R.); (D.M.); (S.M.); (S.A.); (R.H.); (V.R.-F.)
- Université Paris Saclay, CEA/DRF/IBFJ/IRCM, 98 Route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Stéphanie Ranga
- Laboratory of Development of the Gonads, UMR-008 Genetic Stability Stem Cells and Radiations, Université de Paris, 92265 Fontenay-aux-Roses, France; (M.W.); (S.R.); (D.M.); (S.M.); (S.A.); (R.H.); (V.R.-F.)
- Université Paris Saclay, CEA/DRF/IBFJ/IRCM, 98 Route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Delphine Moison
- Laboratory of Development of the Gonads, UMR-008 Genetic Stability Stem Cells and Radiations, Université de Paris, 92265 Fontenay-aux-Roses, France; (M.W.); (S.R.); (D.M.); (S.M.); (S.A.); (R.H.); (V.R.-F.)
- Université Paris Saclay, CEA/DRF/IBFJ/IRCM, 98 Route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Sébastien Messiaen
- Laboratory of Development of the Gonads, UMR-008 Genetic Stability Stem Cells and Radiations, Université de Paris, 92265 Fontenay-aux-Roses, France; (M.W.); (S.R.); (D.M.); (S.M.); (S.A.); (R.H.); (V.R.-F.)
- Université Paris Saclay, CEA/DRF/IBFJ/IRCM, 98 Route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Sonia Abdallah
- Laboratory of Development of the Gonads, UMR-008 Genetic Stability Stem Cells and Radiations, Université de Paris, 92265 Fontenay-aux-Roses, France; (M.W.); (S.R.); (D.M.); (S.M.); (S.A.); (R.H.); (V.R.-F.)
- Université Paris Saclay, CEA/DRF/IBFJ/IRCM, 98 Route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Sylvie Granon
- Neuroscience Paris-Saclay Institute (Neuro-PSI), CNRS UMR 9197, Paris-Sud University, 91400 Saclay, France;
- Paris-Saclay University, 91405 Orsay, France
| | - René Habert
- Laboratory of Development of the Gonads, UMR-008 Genetic Stability Stem Cells and Radiations, Université de Paris, 92265 Fontenay-aux-Roses, France; (M.W.); (S.R.); (D.M.); (S.M.); (S.A.); (R.H.); (V.R.-F.)
- Université Paris Saclay, CEA/DRF/IBFJ/IRCM, 98 Route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Virginie Rouiller-Fabre
- Laboratory of Development of the Gonads, UMR-008 Genetic Stability Stem Cells and Radiations, Université de Paris, 92265 Fontenay-aux-Roses, France; (M.W.); (S.R.); (D.M.); (S.M.); (S.A.); (R.H.); (V.R.-F.)
- Université Paris Saclay, CEA/DRF/IBFJ/IRCM, 98 Route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Gabriel Livera
- Laboratory of Development of the Gonads, UMR-008 Genetic Stability Stem Cells and Radiations, Université de Paris, 92265 Fontenay-aux-Roses, France; (M.W.); (S.R.); (D.M.); (S.M.); (S.A.); (R.H.); (V.R.-F.)
- Université Paris Saclay, CEA/DRF/IBFJ/IRCM, 98 Route du Panorama, 92265 Fontenay-aux-Roses, France
- Correspondence: (G.L.); (M.-J.G.)
| | - Marie-Justine Guerquin
- Laboratory of Development of the Gonads, UMR-008 Genetic Stability Stem Cells and Radiations, Université de Paris, 92265 Fontenay-aux-Roses, France; (M.W.); (S.R.); (D.M.); (S.M.); (S.A.); (R.H.); (V.R.-F.)
- Université Paris Saclay, CEA/DRF/IBFJ/IRCM, 98 Route du Panorama, 92265 Fontenay-aux-Roses, France
- Correspondence: (G.L.); (M.-J.G.)
| |
Collapse
|
13
|
Busulfan Suppresses Autophagy in Mouse Spermatogonial Progenitor Cells via mTOR of AKT and p53 Signaling Pathways. Stem Cell Rev Rep 2021; 16:1242-1255. [PMID: 32839922 DOI: 10.1007/s12015-020-10027-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In testis, a rare undifferentiated germ cell population with the capacity to regenerate robustly and support spermatogenesis, is defined as spermatogonial progenitor cells (SPCs) population. As a widely used drug for tumor therapy or bone marrow transplantation, busulfan has a severe side effect on SPCs population and causes a consequent infertility. Recently, accumulating evidence revealed the protective role of autophagy in stem cell maintenance under exogenous stress. To better understand the role of autophagy in SPCs fates, we investigated the potential function of autophagy in SPCs under busulfan stress, and found that treatment of busulfan induced the formation of autophagic vesicles and autophagosomes in mouse SPCs. Subsequently, a connection of autophagy and SPCs maintenance and survival was demonstrated in a dose-dependent manner. Moreover, mTOR was identified as an essential factor for autophagy in SPCs with a complicated mechanism: (1) mTOR is phosphorylated by AKT to activate its target genes, p70s6 kinase, resulting in the inhibition of autophagy during short-term busulfan treatment. (2) mTOR mediates autophagy with p53 together, to regulate the fate of SPCs. Collectively, observations from this study indicate that moderate autophagy effectively protects SPCs from the stress of chemotherapy, which may provide an important hint for fertility protection in clinic.
Collapse
|
14
|
Wu J, Liu LL, Cao M, Hu A, Hu D, Luo Y, Wang H, Zhong JN. DNA methylation plays important roles in retinal development and diseases. Exp Eye Res 2021; 211:108733. [PMID: 34418429 DOI: 10.1016/j.exer.2021.108733] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
DNA methylation is important in developing and post-mitotic cells in various tissues. Recent studies have shown that DNA methylation is highly dynamic, and plays important roles during retinal development and aging. In addition, the dynamic regulation of DNA methylation is involved in the occurrence and development of age-related macular degeneration and diabetic retinopathy and shows potential in disease diagnoses and prognoses. This review introduces the epigenetic concepts of DNA methylation and demethylation with an emphasis on their regulatory roles in retinal development and related diseases. Moreover, we propose exciting ideas such as its crosstalk with other epigenetic modifications and retinal regeneration, to provide a potential direction for understanding retinal diseases from the epigenetic perspective.
Collapse
Affiliation(s)
- Jing Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China; Department of Ophthalmology, Lishui Municipal Central Hospital, Lishui, 323000, Zhejiang Province, China
| | - Lin-Lin Liu
- Department of Ophthalmology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Miao Cao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China; Department of Ophthalmology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Ang Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Die Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China; Department of Ophthalmology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Yan Luo
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Hui Wang
- Department of Ophthalmology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China.
| | - Jia-Ning Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China.
| |
Collapse
|
15
|
Gadomsky L, Dos Santos Guilherme M, Winkler J, van der Kooij MA, Hartmann T, Grimm M, Endres K. Elevated Testosterone Level and Urine Scent Marking in Male 5xFAD Alzheimer Model Mice. Curr Alzheimer Res 2021; 17:80-92. [PMID: 32065104 DOI: 10.2174/1567205017666200217105537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Function of the Amyloid Precursor Protein (AβPP) and its various cleavage products still is not unraveled down to the last detail. While its role as a source of the neurotoxic Amyloid beta (Aβ) peptides in Alzheimer's Disease (AD) is undisputed and its property as a cell attachment protein is intriguing, while functions outside the neuronal context are scarcely investigated. This is particularly noteworthy because AβPP has a ubiquitous expression profile and its longer isoforms, AβPP750 and 770, are found in various tissues outside the brain and in non-neuronal cells. OBJECTIVE Here, we aimed at analyzing the 5xFAD Alzheimer's disease mouse model in regard to male sexual function. The transgenes of this mouse model are regulated by Thy1 promoter activity and Thy1 is expressed in testes, e.g. by Sertoli cells. This allows speculation about an influence on sexual behavior. METHODS We analyzed morphological as well as biochemical properties of testicular tissue from 5xFAD mice and wild type littermates and testosterone levels in serum, testes and the brain. Sexual behavior was assessed by a urine scent marking test at different ages for both groups. RESULTS While sperm number, testes weight and morphological phenotypes of sperms were nearly indistinguishable from those of wild type littermates, testicular testosterone levels were significantly increased in the AD model mice. This was accompanied by elevated and prolonged sexual interest as displayed within the urine scent marking test. CONCLUSION We suggest that overexpression of AβPP, which mostly is used to mimic AD in model mice, also affects male sexual behavior as assessed additional by the Urine Scent Marking (USM) test. The elevated testosterone levels might have an additional impact on central nervous system androgen receptors and also have to be considered when assessing learning and memory capabilities.
Collapse
Affiliation(s)
- Lisa Gadomsky
- Department of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg- University, Mainz, Germany
| | - Malena Dos Santos Guilherme
- Department of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg- University, Mainz, Germany
| | - Jakob Winkler
- German Institute for Dementia Prevention (GIDP), Neurodegeneration and Neurobiology, Saarland University, Homburg/Saar, Germany and Experimental Neurology, Saarland University, Homburg/Saar, Germany
| | - Michael A van der Kooij
- Department of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg- University, Mainz, Germany
| | - Tobias Hartmann
- German Institute for Dementia Prevention (GIDP), Neurodegeneration and Neurobiology, Saarland University, Homburg/Saar, Germany and Experimental Neurology, Saarland University, Homburg/Saar, Germany
| | - Marcus Grimm
- German Institute for Dementia Prevention (GIDP), Neurodegeneration and Neurobiology, Saarland University, Homburg/Saar, Germany and Experimental Neurology, Saarland University, Homburg/Saar, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg- University, Mainz, Germany
| |
Collapse
|
16
|
Boyer A, Zhang X, Levasseur A, Abou Nader N, St-Jean G, Nagano MC, Boerboom D. Constitutive activation of CTNNB1 results in a loss of spermatogonial stem cell activity in mice. PLoS One 2021; 16:e0251911. [PMID: 34015032 PMCID: PMC8136708 DOI: 10.1371/journal.pone.0251911] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/05/2021] [Indexed: 01/15/2023] Open
Abstract
Spermatogenesis requires that a careful balance be maintained between the self-renewal of spermatogonial stem cells (SSCs) and their commitment to the developmental pathway through which they will differentiate into spermatozoa. Recently, a series of studies employing various in vivo and in vitro models have suggested a role of the wingless-related MMTV integration site gene family/beta-catenin (WNT/CTNNB1) pathway in determining the fate of SSCs. However, conflicting data have suggested that CTNNB1 signaling may either promote SSC self-renewal or differentiation. Here, we studied the effects of sustained CTNNB1 signaling in SSCs using the Ctnnb1tm1Mmt/+; Ddx4-CreTr/+ (ΔCtnnb1) mouse model, in which a stabilized form of CTNNB1 is expressed in all germ cells. ΔCtnnb1 mice were found to have reduced testis weights and partial germ cell loss by 4 months of age. Germ cell transplantation assays showed a 49% reduction in total functional SSC numbers in 8 month-old transgenic mice. In vitro, Thy1-positive undifferentiated spermatogonia from ΔCtnnb1 mice formed 57% fewer clusters, which was associated with decreased cell proliferation. A reduction in mRNA levels of genes associated with SSC maintenance (Bcl6b, Gfra1, Plzf) and increased levels for markers associated with progenitor and differentiating spermatogonia (Kit, Rarg, Sohlh1) were detected in these cluster cells. Furthermore, RNAseq performed on these clusters revealed a network of more than 900 genes regulated by CTNNB1, indicating that CTNNB1 is an important regulator of spermatogonial fate. Together, our data support the notion that CTNNB1 signaling promotes the transition of SSCs to undifferentiated progenitor spermatogonia at the expense of their self-renewal.
Collapse
Affiliation(s)
- Alexandre Boyer
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Xiangfan Zhang
- Department of Obstetrics and Gynecology, Division of Reproductive Biology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Adrien Levasseur
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Nour Abou Nader
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Guillaume St-Jean
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Makoto C. Nagano
- Department of Obstetrics and Gynecology, Division of Reproductive Biology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Derek Boerboom
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- * E-mail:
| |
Collapse
|
17
|
Yang CY, Lu RJH, Lee MK, Hsiao FSH, Yen YP, Cheng CC, Hsu PS, Tsai YT, Chen SK, Liu IH, Chen PY, Lin SP. Transcriptome Analysis of Dnmt3l Knock-Out Mice Derived Multipotent Mesenchymal Stem/Stromal Cells During Osteogenic Differentiation. Front Cell Dev Biol 2021; 9:615098. [PMID: 33718357 PMCID: PMC7947861 DOI: 10.3389/fcell.2021.615098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/01/2021] [Indexed: 01/01/2023] Open
Abstract
Multipotent mesenchymal stem/stromal cells (MSCs) exhibit great potential for cell-based therapy. Proper epigenomic signatures in MSCs are important for the maintenance and the subsequent differentiation potential. The DNA methyltransferase 3-like (DNMT3L) that was mainly expressed in the embryonic stem (ES) cells and the developing germ cells plays an important role in shaping the epigenetic landscape. Here, we report the reduced colony forming ability and impaired in vitro osteogenesis in Dnmt3l-knockout-mice-derived MSCs (Dnmt3l KO MSCs). By comparing the transcriptome between undifferentiated Dnmt3l KO MSCs and the MSCs from the wild-type littermates, some of the differentially regulated genes (DEGs) were found to be associated with bone-morphology-related phenotypes. On the third day of osteogenic induction, differentiating Dnmt3l KO MSCs were enriched for genes associated with nucleosome structure, peptide binding and extracellular matrix modulation. Differentially expressed transposable elements in many subfamilies reflected the change of corresponding regional epigenomic signatures. Interestingly, DNMT3L protein is not expressed in cultured MSCs. Therefore, the observed defects in Dnmt3l KO MSCs are unlikely a direct effect from missing DNMT3L in this cell type; instead, we hypothesized them as an outcome of the pre-deposited epigenetic signatures from the DNMT3L-expressing progenitors. We observed that 24 out of the 107 upregulated DEGs in Dnmt3l KO MSCs were hypermethylated in their gene bodies of DNMT3L knock-down ES cells. Among these 24 genes, some were associated with skeletal development or homeostasis. However, we did not observe reduced bone development, or reduced bone density through aging in vivo. The stronger phenotype in vitro suggested the involvement of potential spreading and amplification of the pre-deposited epigenetic defects over passages, and the contribution of oxidative stress during in vitro culture. We demonstrated that transient deficiency of epigenetic co-factor in ES cells or progenitor cells caused compromised property in differentiating cells much later. In order to facilitate safer practice in cell-based therapy, we suggest more in-depth examination shall be implemented for cells before transplantation, even on the epigenetic level, to avoid long-term risk afterward.
Collapse
Affiliation(s)
- Chih-Yi Yang
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Rita Jui-Hsien Lu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Department of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Ming-Kang Lee
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Felix Shih-Hsian Hsiao
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan
| | - Ya-Ping Yen
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chun-Chun Cheng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Pu-Sheng Hsu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yi-Tzang Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shih-Kuo Chen
- Department of Life Sciences, National Taiwan University, Taipei, Taiwan
| | - I-Hsuan Liu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.,Center for Systems Biology, National Taiwan University, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
18
|
Chang WF, Peng M, Hsu J, Xu J, Cho HC, Hsieh-Li HM, Liu JL, Lu CH, Sung LY. Effects of Survival Motor Neuron Protein on Germ Cell Development in Mouse and Human. Int J Mol Sci 2021; 22:ijms22020661. [PMID: 33440839 PMCID: PMC7827477 DOI: 10.3390/ijms22020661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 11/24/2022] Open
Abstract
Survival motor neuron (SMN) is ubiquitously expressed in many cell types and its encoding gene, survival motor neuron 1 gene (SMN1), is highly conserved in various species. SMN is involved in the assembly of RNA spliceosomes, which are important for pre-mRNA splicing. A severe neurogenic disease, spinal muscular atrophy (SMA), is caused by the loss or mutation of SMN1 that specifically occurred in humans. We previously reported that SMN plays roles in stem cell biology in addition to its roles in neuron development. In this study, we investigated whether SMN can improve the propagation of spermatogonia stem cells (SSCs) and facilitate the spermatogenesis process. In in vitro culture, SSCs obtained from SMA model mice showed decreased growth rate accompanied by significantly reduced expression of spermatogonia marker promyelocytic leukemia zinc finger (PLZF) compared to those from heterozygous and wild-type littermates; whereas SMN overexpressed SSCs showed enhanced cell proliferation and improved potency. In vivo, the superior ability of homing and complete performance in differentiating progeny was shown in SMN overexpressed SSCs in host seminiferous tubule of transplant experiments compared to control groups. To gain insights into the roles of SMN in clinical infertility, we derived human induced pluripotent stem cells (hiPSCs) from azoospermia patients (AZ-hiPSCs) and from healthy control (ct-hiPSCs). Despite the otherwise comparable levels of hallmark iPCS markers, lower expression level of SMN1 was found in AZ-hiPSCs compared with control hiPSCs during in vitro primordial germ cell like cells (PGCLCs) differentiation. On the other hand, overexpressing hSMN1 in AZ-hiPSCs led to increased level of pluripotent markers such as OCT4 and KLF4 during PGCLC differentiation. Our work reveal novel roles of SMN in mammalian spermatogenesis and suggest new therapeutic targets for azoospermia treatment.
Collapse
Affiliation(s)
- Wei-Fang Chang
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; (W.-F.C.); (M.P.); (J.H.)
| | - Min Peng
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; (W.-F.C.); (M.P.); (J.H.)
| | - Jing Hsu
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; (W.-F.C.); (M.P.); (J.H.)
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA;
| | - Huan-Chieh Cho
- Animal Resource Center, National Taiwan University, Taipei 106, Taiwan;
| | - Hsiu-Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan;
| | - Ji-Long Liu
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK;
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chung-Hao Lu
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 105, Taiwan
- Correspondence: (C.-H.L.); (L.-Y.S.)
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; (W.-F.C.); (M.P.); (J.H.)
- Animal Resource Center, National Taiwan University, Taipei 106, Taiwan;
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Correspondence: (C.-H.L.); (L.-Y.S.)
| |
Collapse
|
19
|
Zhou S, Feng S, Qin W, Wang X, Tang Y, Yuan S. Epigenetic Regulation of Spermatogonial Stem Cell Homeostasis: From DNA Methylation to Histone Modification. Stem Cell Rev Rep 2020; 17:562-580. [PMID: 32939648 DOI: 10.1007/s12015-020-10044-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2020] [Indexed: 12/27/2022]
Abstract
Spermatogonial stem cells(SSCs)are the ultimate germline stem cells with the potential of self-renewal and differentiation, and a dynamic balance of SSCs play an essential role in spermatogenesis. During the gene expression process, genomic DNA and nuclear protein, working together, contribute to SSC homeostasis. Recently, emerging studies have shown that epigenome-related molecules such as chromatin modifiers play an important role in SSC homeostasis through regulating target gene expression. Here, we focus on two types of epigenetic events, including DNA methylation and histone modification, and summarize their function in SSC homeostasis. Understanding the molecular mechanism during SSC homeostasis will promote the recognition of epigenetic biomarkers in male infertility, and bring light into therapies of infertile patients.Graphical Abstract.
Collapse
Affiliation(s)
- Shumin Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Shenglei Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, 510500, Guangzhou, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Yunge Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, 510500, Guangzhou, China.
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China. .,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
20
|
Chang WF, Xu J, Lin TY, Hsu J, Hsieh-Li HM, Hwu YM, Liu JL, Lu CH, Sung LY. Survival Motor Neuron Protein Participates in Mouse Germ Cell Development and Spermatogonium Maintenance. Int J Mol Sci 2020; 21:ijms21030794. [PMID: 31991812 PMCID: PMC7037566 DOI: 10.3390/ijms21030794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
Abstract
The defective human survival motor neuron 1 (SMN1) gene leads to spinal muscular atrophy (SMA), the most common genetic cause of infant mortality. We previously reported that loss of SMN results in rapid differentiation of Drosophila germline stem cells and mouse embryonic stem cells (ESCs), indicating that SMN also plays important roles in germ cell development and stem cell biology. Here, we show that in healthy mice, SMN is highly expressed in the gonadal tissues, prepubertal spermatogonia, and adult spermatocytes, whereas low SMN expression is found in differentiated spermatid and sperm. In SMA-like mice, the growth of testis tissues is retarded, accompanied with gamete development abnormalities and loss of the spermatogonia-specific marker. Consistently, knockdown of Smn1 in spermatogonial stem cells (SSCs) leads to a compromised regeneration capacity in vitro and in vivo in transplantation experiments. In SMA-like mice, apoptosis and accumulation of the R-loop structure were significantly elevated, indicating that SMN plays a critical role in the survival of male germ cells. The present work demonstrates that SMN, in addition to its critical roles in neuronal development, participates in mouse germ cell and spermatogonium maintenance.
Collapse
Affiliation(s)
- Wei-Fang Chang
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; (W.-F.C.); (T.-Y.L.); (J.H.)
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA;
| | - Tzu-Ying Lin
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; (W.-F.C.); (T.-Y.L.); (J.H.)
| | - Jing Hsu
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; (W.-F.C.); (T.-Y.L.); (J.H.)
| | - Hsiu-Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan;
| | - Yuh-Ming Hwu
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 10449, Taiwan;
- Department of Obstetrics and Gynecology, Mackay Medical College, New Taipei City 252, Taiwan
- Department of Obstetrics and Gynecology, Mackay Junior College of Medicine, Nursing, and Management, Taipei 11260, Taiwan
| | - Ji-Long Liu
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 2JD, UK;
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Chung-Hao Lu
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 10449, Taiwan;
- Correspondence: (C.-H.L.); (L.-Y.S.)
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; (W.-F.C.); (T.-Y.L.); (J.H.)
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Animal Resource Center, National Taiwan University, Taipei 106, Taiwan
- Correspondence: (C.-H.L.); (L.-Y.S.)
| |
Collapse
|
21
|
Qi L, Li J, Le W, Zhang J. Low-dose ionizing irradiation triggers apoptosis of undifferentiated spermatogonia in vivo and in vitro. Transl Androl Urol 2019; 8:591-600. [PMID: 32038955 DOI: 10.21037/tau.2019.10.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background The present study aimed to investigate the mechanism of low-dose ionizing radiation (IR) induced apoptosis of undifferentiated spermatogonia in vivo and in vitro. Methods Following 50 mGy IR, testicular tissues were collected from the adult DBA/2 mice at 1, 2 and 24 h; mice in the control group received pseudo-irradiation. Immunofluorescence (IF) staining and TUNEL were performed to assess DNA damage and apoptosis, respectively, in the irradiated testicular tissues. Furthermore, the spermatogonia were also irradiated in vitro, and the expression of apoptosis-related proteins was detected by Western blotting. TUNEL and flow cytometry were applied to assess cell apoptosis. Results γH2AX (a marker of DNA damage) was up-regulated in the seminiferous tubules at 1 and 2 h after IR, but it was reduced following the DNA repair. This was consistent with the finding that apoptosis of germline cells was present in the seminiferous tubules after IR, especially at 1 h (IF and TUNEL). Apoptosis was also present in the PLZF(+) spermatogonia, particularly at 1 h after IR. Apoptotic cells decreased with the increase in DNA repair time after IR. Moreover, the caspase-3 protein was expressed in the undifferentiated spermatogonia following IR. The expression of caspase-3, P53, Ku70 and DNA-PKcs in the cultured spermatogonia was also up-regulated following IR in vitro, but their expression decreased gradually over time after IR, which was supported by the findings from flow cytometry, and the apoptosis of spermatogonia peaked at 24 h post IR. Conclusions IR may induce the apoptosis of spermatogonia at early stage in vivo, but the apoptosis of spermatogonia secondary to IR occurs at a relatively later time point (24 h) in vitro mainly. The apoptosis of spermatogonia is improved over time after IR.
Collapse
Affiliation(s)
- Lixin Qi
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Jiaxuan Li
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Wei Le
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Jinfu Zhang
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China.,Department of Urology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200050, China
| |
Collapse
|
22
|
La HM, Hobbs RM. Mechanisms regulating mammalian spermatogenesis and fertility recovery following germ cell depletion. Cell Mol Life Sci 2019; 76:4071-4102. [PMID: 31254043 PMCID: PMC11105665 DOI: 10.1007/s00018-019-03201-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/07/2019] [Accepted: 06/19/2019] [Indexed: 12/19/2022]
Abstract
Mammalian spermatogenesis is a highly complex multi-step process sustained by a population of mitotic germ cells with self-renewal potential known as spermatogonial stem cells (SSCs). The maintenance and regulation of SSC function are strictly dependent on a supportive niche that is composed of multiple cell types. A detailed appreciation of the molecular mechanisms underpinning SSC activity and fate is of fundamental importance for spermatogenesis and male fertility. However, different models of SSC identity and spermatogonial hierarchy have been proposed and recent studies indicate that cell populations supporting steady-state germline maintenance and regeneration following damage are distinct. Importantly, dynamic changes in niche properties may underlie the fate plasticity of spermatogonia evident during testis regeneration. While formation of spermatogenic colonies in germ-cell-depleted testis upon transplantation is a standard assay for SSCs, differentiation-primed spermatogonial fractions have transplantation potential and this assay provides readout of regenerative rather than steady-state stem cell capacity. The characterisation of spermatogonial populations with regenerative capacity is essential for the development of clinical applications aimed at restoring fertility in individuals following germline depletion by genotoxic treatments. This review will discuss regulatory mechanisms of SSCs in homeostatic and regenerative testis and the conservation of these mechanisms between rodent models and man.
Collapse
Affiliation(s)
- Hue M La
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Robin M Hobbs
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
23
|
New insights into the genetics of spermatogenic failure: a review of the literature. Hum Genet 2019; 138:125-140. [PMID: 30656449 DOI: 10.1007/s00439-019-01974-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/09/2019] [Indexed: 12/23/2022]
Abstract
Genetic anomalies are known to affect about 15% of infertile patients with azoospermia or severe oligozoospermia. Despite a throughout diagnostic work-up, in up to the 72% of the male partners of infertile couples, no etiological factor can be found; hence, the cause of infertility remains unclear. Recently, several novel genetic causes of spermatogenic failure (SPGF) have been described. The aim of this review was to collect all the available evidence of SPGF genetics, matching data from in-vitro and animal models with those in human beings to provide a comprehensive and updated overview of the genes capable of affecting spermatogenesis. By reviewing the literature, we provided a list of 60 candidate genes for SPGF. Their investigation by Next Generation Sequencing in large cohorts of patients with apparently idiopathic infertility would provide new interesting data about their racial- and ethnic-related prevalence in infertile patients, likely raising the diagnostic yields. We propose a phenotype-based approach to identify the genes to look for.
Collapse
|
24
|
Sèdes L, Desdoits-Lethimonier C, Rouaisnel B, Holota H, Thirouard L, Lesne L, Damon-Soubeyrand C, Martinot E, Saru JP, Mazaud-Guittot S, Caira F, Beaudoin C, Jégou B, Volle DH. Crosstalk between BPA and FXRα Signaling Pathways Lead to Alterations of Undifferentiated Germ Cell Homeostasis and Male Fertility Disorders. Stem Cell Reports 2018; 11:944-958. [PMID: 30245210 PMCID: PMC6178796 DOI: 10.1016/j.stemcr.2018.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022] Open
Abstract
Several studies have reported an association between the farnesoid X receptor alpha (FXRα) and estrogenic signaling pathways. Fxrα could thus be involved in the reprotoxic effects of endocrine disruptors such as bisphenol-A (BPA). To test this hypothesis, mice were exposed to BPA and/or stigmasterol (S), an FXRα antagonist. Following the exposure to both molecules, wild-type animals showed impaired fertility and lower sperm cell production associated with the alteration of the establishment and maintenance of the undifferentiated germ cell pool. The crosstalk between BPA and FXRα is further supported by the lower impact of BPA in mice genetically ablated for Fxrα and the fact that BPA counteracted the effects of FXRα agonists. These effects might result from the downregulation of Fxrα expression following BPA exposure. BPA and S act additively in human testis. Our data demonstrate that FXRα activity modulates the impact of BPA on male gonads and on undifferentiated germ cell population. BPA and S exposures synergistically induce male fertility disorders BPA regulates Fxr expression BPA and S act additively in human testis
Collapse
Affiliation(s)
- Lauriane Sèdes
- INSERM U 1103, Université Clermont Auvergne, CNRS, UMR 6293, GReD, Laboratoire Génétique, Reproduction & Développement, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Christèle Desdoits-Lethimonier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Betty Rouaisnel
- INSERM U 1103, Université Clermont Auvergne, CNRS, UMR 6293, GReD, Laboratoire Génétique, Reproduction & Développement, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Hélène Holota
- INSERM U 1103, Université Clermont Auvergne, CNRS, UMR 6293, GReD, Laboratoire Génétique, Reproduction & Développement, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Laura Thirouard
- INSERM U 1103, Université Clermont Auvergne, CNRS, UMR 6293, GReD, Laboratoire Génétique, Reproduction & Développement, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Laurianne Lesne
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Christelle Damon-Soubeyrand
- INSERM U 1103, Université Clermont Auvergne, CNRS, UMR 6293, GReD, Laboratoire Génétique, Reproduction & Développement, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Emmanuelle Martinot
- INSERM U 1103, Université Clermont Auvergne, CNRS, UMR 6293, GReD, Laboratoire Génétique, Reproduction & Développement, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Jean-Paul Saru
- INSERM U 1103, Université Clermont Auvergne, CNRS, UMR 6293, GReD, Laboratoire Génétique, Reproduction & Développement, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Séverine Mazaud-Guittot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Françoise Caira
- INSERM U 1103, Université Clermont Auvergne, CNRS, UMR 6293, GReD, Laboratoire Génétique, Reproduction & Développement, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Claude Beaudoin
- INSERM U 1103, Université Clermont Auvergne, CNRS, UMR 6293, GReD, Laboratoire Génétique, Reproduction & Développement, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Bernard Jégou
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - David H Volle
- INSERM U 1103, Université Clermont Auvergne, CNRS, UMR 6293, GReD, Laboratoire Génétique, Reproduction & Développement, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France.
| |
Collapse
|
25
|
Bie B, Wang Y, Li L, Fang H, Liu L, Sun J. Noncoding RNAs: Potential players in the self-renewal of mammalian spermatogonial stem cells. Mol Reprod Dev 2018; 85:720-728. [PMID: 29969526 DOI: 10.1002/mrd.23041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/30/2018] [Indexed: 12/11/2022]
Abstract
Spermatogonial stem cells (SSCs), a unique population of male germ cells with self-renewal ability, are the foundation for maintenance of spermatogenesis throughout the life of the male. Although many regulatory molecules essential for SSC self-renewal have been identified, the fundamental mechanism underlying how SSCs acquire and maintain their self-renewal activity remains largely to be elucidated. In recent years, many types of noncoding RNAs (ncRNAs) have been suggested to regulate the SSC self-renewal through multiple ways, indicating ncRNAs play crucial roles in SSC self-renewal. In this paper, we mainly focus on four types of ncRNAs including microRNA, long ncRNA, piwi-interacting RNA, as well as circular RNAs, and reviewed their potential roles in SSC self-renewal that discovered recently to help us gain a better understanding of molecular mechanisms by which ncRNAs perform their function in regulating SSC self-renewal.
Collapse
Affiliation(s)
- Beibei Bie
- Department of Pharmacy, Medical School, Xi'an Peihua University, Xi'an, China
| | - Ya Wang
- Department of Pharmacy, Medical School, Xi'an Peihua University, Xi'an, China
| | - Liang Li
- Department of Pharmacy, Medical School, Xi'an Peihua University, Xi'an, China
| | - Huanle Fang
- Department of Pharmacy, Medical School, Xi'an Peihua University, Xi'an, China
| | - Libing Liu
- Department of Pharmacy, Medical School, Xi'an Peihua University, Xi'an, China
| | - Jin Sun
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
26
|
Defective germline reprogramming rewires the spermatogonial transcriptome. Nat Struct Mol Biol 2018; 25:394-404. [PMID: 29728652 PMCID: PMC6086329 DOI: 10.1038/s41594-018-0058-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/21/2018] [Indexed: 01/13/2023]
Abstract
Defective germline reprogramming in Miwi2- and Dnmt3l-deficient mice results in the failure to reestablish transposon silencing, meiotic arrest and progressive loss of spermatogonia. Here we sought to understand the molecular basis for this spermatogonial dysfunction. Through a combination of imaging, conditional genetics and transcriptome analysis, we demonstrate that germ cell elimination in the respective mutants arises due to defective de novo genome methylation during reprogramming rather than a function for the respective factors within spermatogonia. In both Miwi2-/- and Dnmt3l-/- spermatogonia the intracisternal-A particle (IAP) family of endogenous retroviruses is de-repressed, but in contrast to meiotic cells DNA damage is not observed. Instead we find that unmethylated IAP promoters rewire the spermatogonial transcriptome by driving expression of neighboring genes. Finally, spermatogonial numbers, proliferation and differentiation are altered in Miwi2-/- and Dnmt3l-/- mice. In summary, defective reprogramming deregulates the spermatogonial transcriptome and may underlie spermatogonial dysfunction.
Collapse
|
27
|
Sakashita A, Yeh YHV, Namekawa SH, Lin SP. Epigenomic and single-cell profiling of human spermatogonial stem cells. Stem Cell Investig 2018; 5:11. [PMID: 29782571 PMCID: PMC5945786 DOI: 10.21037/sci.2018.04.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/09/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Akihiko Sakashita
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Yu-Han V. Yeh
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Satoshi H. Namekawa
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Shau-Ping Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University/Academia Sinica, Taipei, Taiwan
- Agricultural Biotechnology Research Centre, Academia Sinica, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
28
|
Schafler ED, Thomas PA, Ha S, Wang Y, Bermudez-Hernandez K, Tang Z, Fenyö D, Vigodner M, Logan SK. UXT is required for spermatogenesis in mice. PLoS One 2018; 13:e0195747. [PMID: 29649254 PMCID: PMC5896988 DOI: 10.1371/journal.pone.0195747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 03/28/2018] [Indexed: 12/25/2022] Open
Abstract
Male mammals must simultaneously produce prodigious numbers of sperm and maintain an adequate reserve of stem cells to ensure continuous production of gametes throughout life. Failures in the mechanisms responsible for balancing germ cell differentiation and spermatogonial stem cell (SSC) self-renewal can result in infertility. We discovered a novel requirement for Ubiquitous Expressed Transcript (UXT) in spermatogenesis by developing the first knockout mouse model for this gene. Constitutive deletion of Uxt is embryonic lethal, while conditional knockout in the male germline results in a Sertoli cell-only phenotype during the first wave of spermatogenesis that does not recover in the adult. This phenotype begins to manifest between 6 and 7 days post-partum, just before meiotic entry. Gene expression analysis revealed that Uxt deletion downregulates the transcription of genes governing SSC self-renewal, differentiation, and meiosis, consistent with its previously defined role as a transcriptional co-factor. Our study has revealed the first in vivo function for UXT in the mammalian germline as a regulator of distinct transcriptional programs in SSCs and differentiating spermatogonia.
Collapse
Affiliation(s)
- Eric D. Schafler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States of America
- Pathobiology and Translational Medicine Training Program, New York University School of Medicine, New York, NY, United States of America
| | - Phillip A. Thomas
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States of America
| | - Susan Ha
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States of America
- Department of Urology, New York University School of Medicine, New York, NY, United States of America
| | - Yu Wang
- Department of Urology, New York University School of Medicine, New York, NY, United States of America
- Department of Microbiology, New York University School of Medicine, New York, NY, United States of America
| | - Keria Bermudez-Hernandez
- Institute for Systems Genetics, New York University Langone Medical Center, New York, New York, United States of America
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY, United States of America
| | - Zuojian Tang
- Institute for Systems Genetics, New York University Langone Medical Center, New York, New York, United States of America
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY, United States of America
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States of America
- Institute for Systems Genetics, New York University Langone Medical Center, New York, New York, United States of America
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY, United States of America
| | - Margarita Vigodner
- Department of Biology, Stern College, Yeshiva University, New York, NY, United States of America
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Susan K. Logan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States of America
- Department of Urology, New York University School of Medicine, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
29
|
Zhao L, Zhu Z, Yao C, Huang Y, Zhi E, Chen H, Tian R, Li P, Yuan Q, Xue Y, Wan Z, Yang C, Gong Y, He Z, Li Z. VEGFC/VEGFR3 Signaling Regulates Mouse Spermatogonial Cell Proliferation via the Activation of AKT/MAPK and Cyclin D1 Pathway and Mediates the Apoptosis by affecting Caspase 3/9 and Bcl-2. Cell Cycle 2018; 17:225-239. [PMID: 29169284 DOI: 10.1080/15384101.2017.1407891] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We have previously shown that the transcript levels of Vegfc and its receptor Vegfr3 were high in spermatogonia and extremely low in spermatocytes and spermatids. However, it remains unknown about the functions and the mechanisms of VEGFC/VEGFR3 signaling in regulating the fate determinations of spermatogonia. To this end, here we explored the role and signaling pathways of VEGFC/VEGFR3 by using a cell line derived from immortalized mouse spermatogonia retaining markers of mitotic germ cells, namely GC-1 cells. VEGFR3 was expressed in mouse primary spermatogonia and GC-1 cells. VEGFC stimulated the proliferation and DNA synthesis of GC-1 cells and enhanced the phosphorylation of PI3K-AKT and MAPK, whereas LY294002 (an inhibitor for AKT) and CI-1040 (an inhibitor for MAPK) blocked the effect of VEGFC on GC-1 cell proliferation. Furthermore, VEGFC increased the transcripts of c-fos and Egr1 and protein levels of cyclin D1, PCNA and Bcl-2. Conversely, the blocking of VEGFC/VEGFR3 signaling by VEGFR3 knockdown reduced the phosphorylation of AKT/MAPK and decreased the levels of cyclin D1 and PCNA. Additionally, VEGFR3 knockdown not only resulted in more apoptosis of GC-1 cells but also led to a decrease of Bcl-2 and promoted the cleavage of Caspase-3/9 and PARP. Collectively, these data suggested that VEGFC/VEGFR3 signaling promotes the proliferation of GC-1 cells via the AKT /MAPK and cyclin D1 pathway and it inhibits the cell apoptosis through Caspase-3/9, PARP and Bcl-2. Thus, this study sheds a novel insight to the molecular mechanisms underlying the fate decisions of mammalian spermatogonia.
Collapse
Affiliation(s)
- Liangyu Zhao
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Zijue Zhu
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Chencheng Yao
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Yuhua Huang
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Erlei Zhi
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Huixing Chen
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Ruhui Tian
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Peng Li
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Qingqing Yuan
- b State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital , School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Yunjing Xue
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Zhong Wan
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Chao Yang
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Yuehua Gong
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Zuping He
- b State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital , School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Zheng Li
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| |
Collapse
|
30
|
Chen J, Cai T, Zheng C, Lin X, Wang G, Liao S, Wang X, Gan H, Zhang D, Hu X, Wang S, Li Z, Feng Y, Yang F, Han C. MicroRNA-202 maintains spermatogonial stem cells by inhibiting cell cycle regulators and RNA binding proteins. Nucleic Acids Res 2017; 45:4142-4157. [PMID: 27998933 PMCID: PMC5397178 DOI: 10.1093/nar/gkw1287] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/13/2016] [Indexed: 12/21/2022] Open
Abstract
miRNAs play important roles during mammalian spermatogenesis. However, the function of most miRNAs in spermatogenesis and the underlying mechanisms remain unknown. Here, we report that miR-202 is highly expressed in mouse spermatogonial stem cells (SSCs), and is oppositely regulated by Glial cell-Derived Neurotrophic Factor (GDNF) and retinoic acid (RA), two key factors for SSC self-renewal and differentiation. We used inducible CRISPR-Cas9 to knockout miR-202 in cultured SSCs, and found that the knockout SSCs initiated premature differentiation accompanied by reduced stem cell activity and increased mitosis and apoptosis. Target genes were identified with iTRAQ-based proteomic analysis and RNA sequencing, and are enriched with cell cycle regulators and RNA-binding proteins. Rbfox2 and Cpeb1 were found to be direct targets of miR-202 and Rbfox2 but not Cpeb1, is essential for the differentiation of SSCs into meiotic cells. Accordingly, an SSC fate-regulatory network composed of signaling molecules of GDNF and RA, miR-202 and diverse downstream effectors has been identified.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,The Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tanxi Cai
- University of Chinese Academy of Sciences, Beijing 100049, China.,The Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunwei Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,The Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiwen Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guojun Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shangying Liao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuxia Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haiyun Gan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Daoqin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,The Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangjing Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,The Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Si Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanmin Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,The Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuquan Yang
- University of Chinese Academy of Sciences, Beijing 100049, China.,The Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,The Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
31
|
Fan H, Cui Z, Zhang H, Kailasam Mani SK, Diab A, Lefrancois L, Fares N, Merle P, Andrisani O. DNA demethylation induces SALL4 gene re-expression in subgroups of hepatocellular carcinoma associated with Hepatitis B or C virus infection. Oncogene 2017; 36:2435-2445. [PMID: 27797380 PMCID: PMC5408304 DOI: 10.1038/onc.2016.399] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 08/16/2016] [Accepted: 09/18/2016] [Indexed: 02/06/2023]
Abstract
Sal-like protein 4 (SALL4), an embryonic stem cell transcriptional regulator, is re-expressed by an unknown mechanism in poor prognosis hepatocellular carcinoma (HCC), often associated with chronic hepatitis B virus (HBV) infection. Herein, we investigated the mechanism of SALL4 re-expression in HBV-related HCCs. We performed bisulfite sequencing PCR of genomic DNA isolated from HBV-related HCCs and HBV replicating cells, and examined DNA methylation of a CpG island located downstream from SALL4 transcriptional start site (TSS). HBV-related HCCs expressing increased SALL4 exhibited demethylation of specific CpG sites downstream of SALL4 TSS. Similarly, SALL4 re-expression and demethylation of these CpGs was observed in HBV replicating cells. SALL4 is also re-expressed in poor prognosis HCCs of other etiologies. Indeed, increased SALL4 expression in hepatitis C virus-related HCCs correlated with demethylation of these CpG sites. To understand how CpG demethylation downstream of SALL4 TSS regulates SALL4 transcription, we quantified by chromatin immunoprecipitation (ChIP) assays RNA polymerase II occupancy of SALL4 gene, as a function of HBV replication. In absence of HBV replication, RNA polymerase II associated with SALL4 exon1. By contrast, in HBV replicating cells RNA polymerase II occupancy of all SALL4 exons increased, suggesting CpG demethylation downstream from SALL4 TSS influences SALL4 transcriptional elongation. Intriguingly, demethylated CpGs downstream from SALL4 TSS are within binding sites of octamer-binding transcription factor 4 (OCT4) and signal transducer and activator of transcription3 (STAT3). ChIP assays confirmed occupancy of these sites by OCT4 and STAT3 in HBV replicating cells, and sequential ChIP assays demonstrated co-occupancy with chromatin remodeling BRG1/Brahma-associated factors. BRG1 knockdown reduced SALL4 expression, whereas BRG1 overexpression increased SALL4 transcription in HBV replicating cells. We conclude demethylation of CpGs located within OCT4 and STAT3 cis-acting elements, downstream of SALL4 TSS, enables OCT4 and STAT3 binding, recruitment of BRG1, and enhanced RNA polymerase II elongation and SALL4 transcription.
Collapse
Affiliation(s)
- Huitao Fan
- Department of Basic Medical Sciences, Purdue University, West Lafayette IN 47907
- Purdue Center for Cancer Research, Purdue University, West Lafayette IN 47907
| | - Zhibin Cui
- Department of Basic Medical Sciences, Purdue University, West Lafayette IN 47907
- Purdue Center for Cancer Research, Purdue University, West Lafayette IN 47907
| | - Hao Zhang
- Department of Basic Medical Sciences, Purdue University, West Lafayette IN 47907
- Purdue Center for Cancer Research, Purdue University, West Lafayette IN 47907
| | - Saravana Kumar Kailasam Mani
- Department of Basic Medical Sciences, Purdue University, West Lafayette IN 47907
- Purdue Center for Cancer Research, Purdue University, West Lafayette IN 47907
| | - Ahmed Diab
- Department of Basic Medical Sciences, Purdue University, West Lafayette IN 47907
- Purdue Center for Cancer Research, Purdue University, West Lafayette IN 47907
| | - Lydie Lefrancois
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052, CNRS 5286, Lyon Cedex, France
| | - Nadim Fares
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052, CNRS 5286, Lyon Cedex, France
| | - Philippe Merle
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052, CNRS 5286, Lyon Cedex, France
| | - Ourania Andrisani
- Department of Basic Medical Sciences, Purdue University, West Lafayette IN 47907
- Purdue Center for Cancer Research, Purdue University, West Lafayette IN 47907
| |
Collapse
|
32
|
Cui X, Jing X, Wu X, Yan M, Li Q, Shen Y, Wang Z. DNA methylation in spermatogenesis and male infertility. Exp Ther Med 2016; 12:1973-1979. [PMID: 27698683 DOI: 10.3892/etm.2016.3569] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/06/2016] [Indexed: 12/12/2022] Open
Abstract
Infertility is a significant problem for human reproduction, with males and females equally affected. However, the molecular mechanisms underlying male infertility remain unclear. Spermatogenesis is a highly complex process involving mitotic cell division, meiosis cell division and spermiogenesis; during this period, unique and extensive chromatin and epigenetic modifications occur to bring about specific epigenetic profiles in spermatozoa. It has recently been suggested that the dysregulation of epigenetic modifications, in particular the methylation of sperm genomic DNA, may serve an important role in the development of numerous diseases. The present study is a comprehensive review on the topic of male infertility, aiming to elucidate the association between sperm genomic DNA methylation and poor semen quality in male infertility. In addition, the current status of the genetic and epigenetic determinants of spermatogenesis in humans is discussed.
Collapse
Affiliation(s)
- Xiangrong Cui
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China; Division of Clinical Microbiology The Center Hospital of Linfen, Linfen, Shanxi 041000, P.R. China
| | - Xuan Jing
- Clinical Laboratory, Shanxi Province People's Hospital, Taiyuan, Shanxi 030001, P.R. China
| | - Xueqing Wu
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China
| | - Meiqin Yan
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China
| | - Qiang Li
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China
| | - Yan Shen
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China
| | - Zhenqiang Wang
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China
| |
Collapse
|
33
|
Association of TGFβ signaling with the maintenance of a quiescent stem cell niche in human oral mucosa. Histochem Cell Biol 2016; 146:539-555. [PMID: 27480259 DOI: 10.1007/s00418-016-1473-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2016] [Indexed: 12/26/2022]
Abstract
A dogma in squamous epithelial biology is that proliferation occurs in the basal cell layer. Notable exceptions are squamous epithelia of the human oral cavity, esophagus, ectocervix, and vagina. In these human epithelia, proliferation is rare in the basal cell layer, and the vast majority of cells positive for Ki67 and other proliferation markers are found in para- and suprabasal cell layers. This unique human feature of a generally quiescent basal cell layer overlaid by highly proliferative cells offers the rare opportunity to study the molecular features of undifferentiated, quiescent, putative stem cells in their natural context. Here, we show that the quiescent human oral mucosa basal cell layer expresses putative markers of stemness, while para- and suprabasal cells are characterized by cell cycle genes. We identified a TGFβ signature in this quiescent basal cell layer. In in vitro organotypic cultures, human keratinocytes could be induced to express markers of these quiescent basal cells when TGFβ signaling is activated. The study suggests that the separation of basal cell layer and proliferation in human oral mucosa may function to accommodate high proliferation rates and the protection of a quiescent reserve stem cell pool. Psoriasis, an epidermal inflammatory hyperproliferative disease, exhibits features of a quiescent basal cell layer mimicking normal oral mucosa. Our data indicate that structural changes in the organization of epithelial proliferation could contribute to longevity and carcinogenesis.
Collapse
|
34
|
Targeting the Gdnf Gene in peritubular myoid cells disrupts undifferentiated spermatogonial cell development. Proc Natl Acad Sci U S A 2016; 113:1829-34. [PMID: 26831079 DOI: 10.1073/pnas.1517994113] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are a subpopulation of undifferentiated spermatogonia located in a niche at the base of the seminiferous epithelium delimited by Sertoli cells and peritubular myoid (PM) cells. SSCs self-renew or differentiate into spermatogonia that proliferate to give rise to spermatocytes and maintain spermatogenesis. Glial cell line-derived neurotrophic factor (GDNF) is essential for this process. Sertoli cells produce GDNF and other growth factors and are commonly thought to be responsible for regulating SSC development, but limited attention has been paid to the role of PM cells in this process. A conditional knockout (cKO) of the androgen receptor gene in PM cells resulted in male infertility. We found that testosterone (T) induces GDNF expression in mouse PM cells in vitro and neonatal spermatogonia (including SSCs) co-cultured with T-treated PM cells were able to colonize testes of germ cell-depleted mice after transplantation. This strongly suggested that T-regulated production of GDNF by PM cells is required for spermatogonial development, but PM cells might produce other factors in vitro that are responsible. In this study, we tested the hypothesis that production of GDNF by PM cells is essential for spermatogonial development by generating mice with a cKO of the Gdnf gene in PM cells. The cKO males sired up to two litters but became infertile due to collapse of spermatogenesis and loss of undifferentiated spermatogonia. These studies show for the first time, to our knowledge, that the production of GDNF by PM cells is essential for undifferentiated spermatogonial cell development in vivo.
Collapse
|
35
|
Liao HF, Kuo J, Lin HH, Lin SP. Isolation of THY1+ Undifferentiated Spermatogonia from Mouse Postnatal Testes Using Magnetic-activated Cell Sorting (MACS). Bio Protoc 2016. [DOI: 10.21769/bioprotoc.2072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
36
|
Abstract
Mammalian spermatogenesis is a complex and highly ordered process by which male germ cells proceed through a series of differentiation steps to produce haploid flagellated spermatozoa. Underlying this process is a pool of adult stem cells, the spermatogonial stem cells (SSCs), which commence the spermatogenic lineage by undertaking a differentiation fate decision to become progenitor spermatogonia. Subsequently, progenitors acquire a differentiating spermatogonia phenotype and undergo a series of amplifying mitoses while becoming competent to enter meiosis. After spermatocytes complete meiosis, post-meiotic spermatids must then undergo a remarkable transformation from small round spermatids to a flagellated spermatozoa with extremely compacted nuclei. This chapter reviews the current literature pertaining to spermatogonial differentiation with an emphasis on the mechanisms controlling stem cell fate decisions and early differentiation events in the life of a spermatogonium.
Collapse
Affiliation(s)
- Jennifer M Mecklenburg
- Department of Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Brian P Hermann
- Department of Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
37
|
Gely-Pernot A, Raverdeau M, Teletin M, Vernet N, Féret B, Klopfenstein M, Dennefeld C, Davidson I, Benoit G, Mark M, Ghyselinck NB. Retinoic Acid Receptors Control Spermatogonia Cell-Fate and Induce Expression of the SALL4A Transcription Factor. PLoS Genet 2015; 11:e1005501. [PMID: 26427057 PMCID: PMC4591280 DOI: 10.1371/journal.pgen.1005501] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 08/14/2015] [Indexed: 11/19/2022] Open
Abstract
All-trans retinoic acid (ATRA) is instrumental to male germ cell differentiation, but its mechanism of action remains elusive. To address this question, we have analyzed the phenotypes of mice lacking, in spermatogonia, all rexinoid receptors (RXRA, RXRB and RXRG) or all ATRA receptors (RARA, RARB and RARG). We demonstrate that the combined ablation of RXRA and RXRB in spermatogonia recapitulates the set of defects observed both upon ablation of RAR in spermatogonia. We also show that ATRA activates RAR and RXR bound to a conserved regulatory region to increase expression of the SALL4A transcription factor in spermatogonia. Our results reveal that this major pluripotency gene is a target of ATRA signaling and that RAR/RXR heterodimers are the functional units driving its expression in spermatogonia. They add to the mechanisms through which ATRA promote expression of the KIT tyrosine kinase receptor to trigger a critical step in spermatogonia differentiation. Importantly, they indicate also that meiosis eventually occurs in the absence of a RAR/RXR pathway within germ cells and suggest that instructing this process is either ATRA-independent or requires an ATRA signal originating from Sertoli cells.
Collapse
Affiliation(s)
- Aurore Gely-Pernot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France
- Université de Strasbourg (UNISTRA), Illkirch Cedex, France
| | - Mathilde Raverdeau
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France
- Université de Strasbourg (UNISTRA), Illkirch Cedex, France
| | - Marius Teletin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France
- Université de Strasbourg (UNISTRA), Illkirch Cedex, France
- Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
| | - Nadège Vernet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France
- Université de Strasbourg (UNISTRA), Illkirch Cedex, France
| | - Betty Féret
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France
- Université de Strasbourg (UNISTRA), Illkirch Cedex, France
| | - Muriel Klopfenstein
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France
- Université de Strasbourg (UNISTRA), Illkirch Cedex, France
| | - Christine Dennefeld
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France
- Université de Strasbourg (UNISTRA), Illkirch Cedex, France
| | - Irwin Davidson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France
- Université de Strasbourg (UNISTRA), Illkirch Cedex, France
| | - Gérard Benoit
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire (GCPhiMC), UMR5534 CNRS, Université de Lyon 1, Villeurbanne, France
| | - Manuel Mark
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France
- Université de Strasbourg (UNISTRA), Illkirch Cedex, France
- Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
| | - Norbert B. Ghyselinck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France
- Université de Strasbourg (UNISTRA), Illkirch Cedex, France
- * E-mail:
| |
Collapse
|
38
|
Kubo N, Toh H, Shirane K, Shirakawa T, Kobayashi H, Sato T, Sone H, Sato Y, Tomizawa SI, Tsurusaki Y, Shibata H, Saitsu H, Suzuki Y, Matsumoto N, Suyama M, Kono T, Ohbo K, Sasaki H. DNA methylation and gene expression dynamics during spermatogonial stem cell differentiation in the early postnatal mouse testis. BMC Genomics 2015; 16:624. [PMID: 26290333 PMCID: PMC4546090 DOI: 10.1186/s12864-015-1833-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/07/2015] [Indexed: 12/18/2022] Open
Abstract
Background In the male germline, neonatal prospermatogonia give rise to spermatogonia, which include stem cell population (undifferentiated spermatogonia) that supports continuous spermatogenesis in adults. Although the levels of DNA methyltransferases change dynamically in the neonatal and early postnatal male germ cells, detailed genome-wide DNA methylation profiles of these cells during the stem cell formation and differentiation have not been reported. Results To understand the regulation of spermatogonial stem cell formation and differentiation, we examined the DNA methylation and gene expression dynamics of male mouse germ cells at the critical stages: neonatal prospermatogonia, and early postntal (day 7) undifferentiated and differentiating spermatogonia. We found large partially methylated domains similar to those found in cancer cells and placenta in all these germ cells, and high levels of non-CG methylation and 5-hydroxymethylcytosines in neonatal prospermatogonia. Although the global CG methylation levels were stable in early postnatal male germ cells, and despite the reported scarcity of differential methylation in the adult spermatogonial stem cells, we identified many regions showing stage-specific differential methylation in and around genes important for stem cell function and spermatogenesis. These regions contained binding sites for specific transcription factors including the SOX family members. Conclusions Our findings show a distinctive and dynamic regulation of DNA methylation during spermatogonial stem cell formation and differentiation in the neonatal and early postnatal testes. Furthermore, we revealed a unique accumulation and distribution of non-CG methylation and 5hmC marks in neonatal prospermatogonia. These findings contrast with the reported scarcity of differential methylation in adult spermatogonial stem cell differentiation and represent a unique phase of male germ cell development. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1833-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naoki Kubo
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.,Research Institute for Disease of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hidehiro Toh
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kenjiro Shirane
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takayuki Shirakawa
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama, 236-0004, Japan
| | - Hisato Kobayashi
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Tetsuya Sato
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hidetoshi Sone
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama, 236-0004, Japan
| | - Yasuyuki Sato
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama, 236-0004, Japan
| | - Shin-ichi Tomizawa
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama, 236-0004, Japan
| | - Yoshinori Tsurusaki
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, 236-0004, Japan
| | - Hiroki Shibata
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hirotomo Saitsu
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, 236-0004, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba, 277-8568, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, 236-0004, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tomohiro Kono
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, 156-8502, Japan.,Department of BioScience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Kazuyuki Ohbo
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama, 236-0004, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
39
|
Song W, Mu H, Wu J, Liao M, Zhu H, Zheng L, He X, Niu B, Zhai Y, Bai C, Lei A, Li G, Hua J. miR-544 Regulates Dairy Goat Male Germline Stem Cell Self-Renewal via Targeting PLZF. J Cell Biochem 2015; 116:2155-65. [DOI: 10.1002/jcb.25172] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/20/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Wencong Song
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Hailong Mu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Jiang Wu
- College of Agriculture; Guangdong Ocean University; Zhanjiang 524088 China
| | - Mingzhi Liao
- College of Life Science; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Haijing Zhu
- College of Life Science; Yulin College, Yulin University; 719000 China
| | - Liming Zheng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Xin He
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Bowen Niu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Yuanxin Zhai
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Chunling Bai
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education; Inner Mongolia University; Hohhot 010021 China
| | - Anmin Lei
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Guangpeng Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education; Inner Mongolia University; Hohhot 010021 China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling Shaanxi 712100 China
| |
Collapse
|
40
|
Deletion of the tyrosine phosphatase Shp2 in Sertoli cells causes infertility in mice. Sci Rep 2015; 5:12982. [PMID: 26265072 PMCID: PMC4533007 DOI: 10.1038/srep12982] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/13/2015] [Indexed: 01/15/2023] Open
Abstract
The male’s ability to reproduce is completely dependent on Sertoli cells. However, the mechanisms governing the functional integrity of Sertoli cells have remained largely unexplored. Here, we demonstrate that deletion of Shp2 in Sertoli cells results in infertility in mice. In Shp2 knockout mice (SCSKO), a normal population of Sertoli cells was observed, but the blood-testis barrier (BTB) was not formed. Shp2 ablation initiated the untimely and excessive differentiation of spermatogonial stem cells (SSCs) by disturbing the expression of paracrine factors. As a consequence, the process of spermatogenesis was disrupted, and the germ cells were depleted. Furthermore, Shp2 deletion impaired the cell junctions of the primary Sertoli cells and failed to support the clonal formation of SSCs co-cultured with SCSKO Sertoli cells. As expected, Shp2 restoration largely restores the cell junctions of the primary Sertoli cells and the clonal formation of SSCs. To identify the underlying mechanism, we further demonstrated that the absence of Shp2 suppressed Erk phosphorylation, and thus, the expression of follicle-stimulating hormone (FSH)- and testosterone-induced target genes. These results collectively suggest that Shp2 is a critical signaling protein that is required to maintain Sertoli cell function and could serve as a novel target for male infertility therapies.
Collapse
|
41
|
Liao HF, Mo CF, Wu SC, Cheng DH, Yu CY, Chang KW, Kao TH, Lu CW, Pinskaya M, Morillon A, Lin SS, Cheng WTK, Bourc'his D, Bestor T, Sung LY, Lin SP. Dnmt3l-knockout donor cells improve somatic cell nuclear transfer reprogramming efficiency. Reproduction 2015; 150:245-56. [PMID: 26159833 DOI: 10.1530/rep-15-0031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 07/09/2015] [Indexed: 12/18/2022]
Abstract
Nuclear transfer (NT) is a technique used to investigate the development and reprogramming potential of a single cell. DNA methyltransferase-3-like, which has been characterized as a repressive transcriptional regulator, is expressed in naturally fertilized egg and morula/blastocyst at pre-implantation stages. In this study, we demonstrate that the use of Dnmt3l-knockout (Dnmt3l-KO) donor cells in combination with Trichostatin A treatment improved the developmental efficiency and quality of the cloned embryos. Compared with the WT group, Dnmt3l-KO donor cell-derived cloned embryos exhibited increased cell numbers as well as restricted OCT4 expression in the inner cell mass (ICM) and silencing of transposable elements at the blastocyst stage. In addition, our results indicate that zygotic Dnmt3l is dispensable for cloned embryo development at pre-implantation stages. In Dnmt3l-KO mouse embryonic fibroblasts, we observed reduced nuclear localization of HDAC1, increased levels of the active histone mark H3K27ac and decreased accumulation of the repressive histone marks H3K27me3 and H3K9me3, suggesting that Dnmt3l-KO donor cells may offer a more permissive epigenetic state that is beneficial for NT reprogramming.
Collapse
Affiliation(s)
- Hung-Fu Liao
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Chu-Fan Mo
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Shinn-Chih Wu
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Dai-Han Cheng
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Chih-Yun Yu
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Kai-Wei Chang
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Tzu-Hao Kao
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Chia-Wei Lu
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Marina Pinskaya
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Antonin Morillon
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Shih-Shun Lin
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, T
| | - Winston T K Cheng
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Déborah Bourc'his
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Timothy Bestor
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Li-Ying Sung
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Shau-Ping Lin
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, T
| |
Collapse
|
42
|
Yao C, Liu Y, Sun M, Niu M, Yuan Q, Hai Y, Guo Y, Chen Z, Hou J, Liu Y, He Z. MicroRNAs and DNA methylation as epigenetic regulators of mitosis, meiosis and spermiogenesis. Reproduction 2015; 150:R25-34. [PMID: 25852155 DOI: 10.1530/rep-14-0643] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/07/2015] [Indexed: 01/15/2023]
Abstract
Spermatogenesis is composed of three distinctive phases, which include self-renewal of spermatogonia via mitosis, spermatocytes undergoing meiosis I/II and post-meiotic development of haploid spermatids via spermiogenesis. Spermatogenesis also involves condensation of chromatin in the spermatid head before transformation of spermatids to spermatozoa. Epigenetic regulation refers to changes of heritably cellular and physiological traits not caused by modifications in the DNA sequences of the chromatin such as mutations. Major advances have been made in the epigenetic regulation of spermatogenesis. In this review, we address the roles and mechanisms of epigenetic regulators, with a focus on the role of microRNAs and DNA methylation during mitosis, meiosis and spermiogenesis. We also highlight issues that deserve attention for further investigation on the epigenetic regulation of spermatogenesis. More importantly, a thorough understanding of the epigenetic regulation in spermatogenesis will provide insightful information into the etiology of some unexplained infertility, offering new approaches for the treatment of male infertility.
Collapse
Affiliation(s)
- Chencheng Yao
- State Key Laboratory of Oncogenes and Related GenesSchool of Medicine, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, 160 Pujiang Road, Shanghai 200127, ChinaDepartment of UrologySchool of Medicine, Shanghai Institute of Andrology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai Human Sperm Bank, 145 Shangdong Road, Shanghai 200001, ChinaShanghai Key Laboratory of Assisted Reproduction and Reproductive GeneticsShanghai 200127, ChinaShanghai Key Laboratory of Reproductive MedicineShanghai 200025, China
| | - Yun Liu
- State Key Laboratory of Oncogenes and Related GenesSchool of Medicine, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, 160 Pujiang Road, Shanghai 200127, ChinaDepartment of UrologySchool of Medicine, Shanghai Institute of Andrology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai Human Sperm Bank, 145 Shangdong Road, Shanghai 200001, ChinaShanghai Key Laboratory of Assisted Reproduction and Reproductive GeneticsShanghai 200127, ChinaShanghai Key Laboratory of Reproductive MedicineShanghai 200025, China
| | - Min Sun
- State Key Laboratory of Oncogenes and Related GenesSchool of Medicine, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, 160 Pujiang Road, Shanghai 200127, ChinaDepartment of UrologySchool of Medicine, Shanghai Institute of Andrology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai Human Sperm Bank, 145 Shangdong Road, Shanghai 200001, ChinaShanghai Key Laboratory of Assisted Reproduction and Reproductive GeneticsShanghai 200127, ChinaShanghai Key Laboratory of Reproductive MedicineShanghai 200025, China
| | - Minghui Niu
- State Key Laboratory of Oncogenes and Related GenesSchool of Medicine, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, 160 Pujiang Road, Shanghai 200127, ChinaDepartment of UrologySchool of Medicine, Shanghai Institute of Andrology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai Human Sperm Bank, 145 Shangdong Road, Shanghai 200001, ChinaShanghai Key Laboratory of Assisted Reproduction and Reproductive GeneticsShanghai 200127, ChinaShanghai Key Laboratory of Reproductive MedicineShanghai 200025, China
| | - Qingqing Yuan
- State Key Laboratory of Oncogenes and Related GenesSchool of Medicine, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, 160 Pujiang Road, Shanghai 200127, ChinaDepartment of UrologySchool of Medicine, Shanghai Institute of Andrology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai Human Sperm Bank, 145 Shangdong Road, Shanghai 200001, ChinaShanghai Key Laboratory of Assisted Reproduction and Reproductive GeneticsShanghai 200127, ChinaShanghai Key Laboratory of Reproductive MedicineShanghai 200025, China
| | - Yanan Hai
- State Key Laboratory of Oncogenes and Related GenesSchool of Medicine, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, 160 Pujiang Road, Shanghai 200127, ChinaDepartment of UrologySchool of Medicine, Shanghai Institute of Andrology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai Human Sperm Bank, 145 Shangdong Road, Shanghai 200001, ChinaShanghai Key Laboratory of Assisted Reproduction and Reproductive GeneticsShanghai 200127, ChinaShanghai Key Laboratory of Reproductive MedicineShanghai 200025, China
| | - Ying Guo
- State Key Laboratory of Oncogenes and Related GenesSchool of Medicine, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, 160 Pujiang Road, Shanghai 200127, ChinaDepartment of UrologySchool of Medicine, Shanghai Institute of Andrology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai Human Sperm Bank, 145 Shangdong Road, Shanghai 200001, ChinaShanghai Key Laboratory of Assisted Reproduction and Reproductive GeneticsShanghai 200127, ChinaShanghai Key Laboratory of Reproductive MedicineShanghai 200025, China
| | - Zheng Chen
- State Key Laboratory of Oncogenes and Related GenesSchool of Medicine, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, 160 Pujiang Road, Shanghai 200127, ChinaDepartment of UrologySchool of Medicine, Shanghai Institute of Andrology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai Human Sperm Bank, 145 Shangdong Road, Shanghai 200001, ChinaShanghai Key Laboratory of Assisted Reproduction and Reproductive GeneticsShanghai 200127, ChinaShanghai Key Laboratory of Reproductive MedicineShanghai 200025, China
| | - Jingmei Hou
- State Key Laboratory of Oncogenes and Related GenesSchool of Medicine, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, 160 Pujiang Road, Shanghai 200127, ChinaDepartment of UrologySchool of Medicine, Shanghai Institute of Andrology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai Human Sperm Bank, 145 Shangdong Road, Shanghai 200001, ChinaShanghai Key Laboratory of Assisted Reproduction and Reproductive GeneticsShanghai 200127, ChinaShanghai Key Laboratory of Reproductive MedicineShanghai 200025, China
| | - Yang Liu
- State Key Laboratory of Oncogenes and Related GenesSchool of Medicine, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, 160 Pujiang Road, Shanghai 200127, ChinaDepartment of UrologySchool of Medicine, Shanghai Institute of Andrology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai Human Sperm Bank, 145 Shangdong Road, Shanghai 200001, ChinaShanghai Key Laboratory of Assisted Reproduction and Reproductive GeneticsShanghai 200127, ChinaShanghai Key Laboratory of Reproductive MedicineShanghai 200025, China
| | - Zuping He
- State Key Laboratory of Oncogenes and Related GenesSchool of Medicine, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, 160 Pujiang Road, Shanghai 200127, ChinaDepartment of UrologySchool of Medicine, Shanghai Institute of Andrology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai Human Sperm Bank, 145 Shangdong Road, Shanghai 200001, ChinaShanghai Key Laboratory of Assisted Reproduction and Reproductive GeneticsShanghai 200127, ChinaShanghai Key Laboratory of Reproductive MedicineShanghai 200025, China State Key Laboratory of Oncogenes and Related GenesSchool of Medicine, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, 160 Pujiang Road, Shanghai 200127, ChinaDepartment of UrologySchool of Medicine, Shanghai Institute of Andrology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai Human Sperm Bank, 145 Shangdong Road, Shanghai 200001, ChinaShanghai Key Laboratory of Assisted Reproduction and Reproductive GeneticsShanghai 200127, ChinaShanghai Key Laboratory of Reproductive MedicineShanghai 200025, China State Key Laboratory of Oncogenes and Related GenesSchool of Medicine, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, 160 Pujiang Road, Shanghai 200127, ChinaDepartment of UrologySchool of Medicine, Shanghai Institute of Andrology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai Human Sperm Bank, 145 Shangdong Road, Shanghai 200001, ChinaShanghai Key Laboratory of Assisted Reproduction and Reproductive GeneticsShanghai 200127, ChinaShanghai Key Laboratory of Reproductive MedicineShanghai 200025, China State Key Laboratory of Oncogenes and Related GenesSchool of Medicine, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, 160 Pujiang Road, Shanghai 200127, ChinaDepartment of UrologySchool of Medicine, Shanghai Institute of Andrology, Ren Ji Hospital, Shangha
| |
Collapse
|
43
|
Vlachogiannis G, Niederhuth CE, Tuna S, Stathopoulou A, Viiri K, de Rooij DG, Jenner RG, Schmitz RJ, Ooi SKT. The Dnmt3L ADD Domain Controls Cytosine Methylation Establishment during Spermatogenesis. Cell Rep 2015; 10:944-956. [PMID: 25683717 PMCID: PMC4534369 DOI: 10.1016/j.celrep.2015.01.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/12/2014] [Accepted: 01/08/2015] [Indexed: 01/17/2023] Open
Abstract
A critical aspect of mammalian gametogenesis is the reprogramming of genomic DNA methylation. The catalytically inactive adaptor Dnmt3L is essential to ensuring this occurs correctly, but the mechanism by which it functions is unclear. Using gene targeting to engineer a single-amino-acid mutation, we show that the Dnmt3L histone H3 binding domain (ADD) is necessary for spermatogenesis. Genome-wide single-base-resolution DNA methylome analysis of mutant germ cells revealed overall reductions in CG methylation at repetitive sequences and non-promoter CpG islands. Strikingly, we also observe an even more severe loss of non-CG methylation, suggesting an unexpected role for the ADD in this process. These epigenetic deficiencies were coupled with defects in spermatogonia, with mutant cells displaying marked changes in gene expression and reactivation of retrotransposons. Our results demonstrate that the Dnmt3L ADD is necessary for Dnmt3L function and full reproductive fitness. Full establishment of CG methylation during male gametogenesis requires Dnmt3L ADD Non-CG methylation establishment critically requires Dnmt3L ADD Correct spermatogenesis and fertility requires Dnmt3L ADD Defects are a consequence of altered gene expression and retroelements expression
Collapse
Affiliation(s)
- Georgios Vlachogiannis
- Epigenetic Signaling Group, Department of Cancer Biology, UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Chad E Niederhuth
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA 30602, USA
| | - Salih Tuna
- Epigenetic Signaling Group, Department of Cancer Biology, UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Athanasia Stathopoulou
- Epigenetic Signaling Group, Department of Cancer Biology, UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Keijo Viiri
- Epigenetic Signaling Group, Department of Cancer Biology, UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Dirk G de Rooij
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Richard G Jenner
- Epigenetic Signaling Group, Department of Cancer Biology, UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA 30602, USA
| | - Steen K T Ooi
- Epigenetic Signaling Group, Department of Cancer Biology, UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK.
| |
Collapse
|
44
|
Chen SR, Liu YX. Regulation of spermatogonial stem cell self-renewal and spermatocyte meiosis by Sertoli cell signaling. Reproduction 2014; 149:R159-67. [PMID: 25504872 DOI: 10.1530/rep-14-0481] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spermatogenesis is a continuous and productive process supported by the self-renewal and differentiation of spermatogonial stem cells (SSCs), which arise from undifferentiated precursors known as gonocytes and are strictly controlled in a special 'niche' microenvironment in the seminiferous tubules. Sertoli cells, the only somatic cell type in the tubules, directly interact with SSCs to control their proliferation and differentiation through the secretion of specific factors. Spermatocyte meiosis is another key step of spermatogenesis, which is regulated by Sertoli cells on the luminal side of the blood-testis barrier through paracrine signaling. In this review, we mainly focus on the role of Sertoli cells in the regulation of SSC self-renewal and spermatocyte meiosis, with particular emphasis on paracrine and endocrine-mediated signaling pathways. Sertoli cell growth factors, such as glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2), as well as Sertoli cell transcription factors, such as ETS variant 5 (ERM; also known as ETV5), nociceptin, neuregulin 1 (NRG1), and androgen receptor (AR), have been identified as the most important upstream factors that regulate SSC self-renewal and spermatocyte meiosis. Other transcription factors and signaling pathways (GDNF-RET-GFRA1 signaling, FGF2-MAP2K1 signaling, CXCL12-CXCR4 signaling, CCL9-CCR1 signaling, FSH-nociceptin/OPRL1, retinoic acid/FSH-NRG/ERBB4, and AR/RB-ARID4A/ARID4B) are also addressed.
Collapse
Affiliation(s)
- Su-Ren Chen
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Xun Liu
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|